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Independence relations play an important role in uncertain reasoning based on Bayesian
networks. In particular, they are useful in decomposing joint distributions into more

elementary local ones. Recently, in a possibility theory framework, several qualitative

independence relations have been proposed, where uncertainty is encoded by means of
a complete pre-order between states of the world. This paper studies the well-known

graphoid properties of these qualitative independences. Contrary to the probabilistic
independence, several qualitative independence relations are not necessarily symmetric.

Therefore, we also analyze the symmetric counterparts of graphoid properties (called

reverse graphoid properties)
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1. Introduction

Independence relations play an important role in handling uncertain information.

Two forms of independences can be distinguished: causal relations which express

the lack of causality between variables and decompositional ones which ensure the

decomposition of a joint distribution pertaining to tuples of variables into local dis-

tributions on smaller subsets of variables. Causal independences are not necessarily

symmetric contrary to decompositional ones.

In the probabilistic framework, two variables A and B are said to be decom-

posably independent if the joint probability distribution on the range of (A,B) is

the product of the probability distribution of A and the probability distribution

of B, i.e., P (A ∧ B) = P (A) · P (B). Moreover, A and B are said to be causally

independent if the probability of B given A is the same as the probability of B,

i.e., P (B | A) = P (B). In this framework causal and decompositional independence

relations are equivalent.
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In possibility theory, and more generally in total pre-orderings settings, the sit-

uation is different since causal and decompositional relations are not always equiv-

alent. In2 several forms of qualitative independence relations have been proposed in

possibility theory framework. These new relations are only based on the qualitative

plausibility relations induced by possibility distributions.

This paper goes one step further by studying graphoid properties7,22 of qualita-

tive independence relations proposed in2. Graphoid properties are very important in

the study of Bayesian networks. In particular, they are useful in developing efficient

local propagation algorithms.

The graphoid properties are dedicated to symmetric independence relations. For

instance, the decomposition property asserts that if X is independent of Y ∪W (by

symmetry Y ∪W is independent of X), then X is independent of Y (resp. W ) and

by symmetry Y (resp. W ) is also independent of X.

However, if an independence relation is not symmetric, then the decomposition

property simply states that if Y ∪W is irrelevant to X, then Y (resp. W ) is irrele-

vant to X too. Namely, a non-symmetric relation which satisfies the decomposition

property may not allow to conclude that X is irrelevant to Y (resp. W ) from the

fact that Y ∪W is irrelevant to X.

This paper also proposes to analyze qualitative possibilistic independence rela-

tions with respect to symmetric counterparts of graphoid properties called reverse

graphoid properties25.

Section 2 gives a brief background on possibility theory. Section 3 recalls recent

causal and decompositional qualitative independence relations proposed in2. Section

4 recalls graphoid properties. Section 5 and Section 6 study graphoid properties of

non-symmetric and symmetric independence relations, respectively. Lastly, Section

7 summarizes main results regarding graphoid properties. Proofs are provided in

the Appendix.

2. Basics of possibility theory

2.1. Notations

Let V = {A1, A2, ..., AN} be a set of variables. We denote by DA the supposedly

finite domain associated with the variable A. By ai we denote any instance of Ai.

X,Y, Z, ... denote subsets of variables from V , and DX = ×Ai∈XDAi represents

the Cartesian product of domains of variables in X. DA (resp. DX) is also called

the range of the variable A (resp. the set of variables X). By x we denote any

instance of X; if X = {A1, ..., An} then x = (a1, ..., an) denotes an instance of DX .

Ω = ×Ai∈VDAi denotes the universe of discourse, which is the Cartesian product

of all variable domains in V . Each element ω ∈ Ω is called a possible world, ele-

mentary event or state of Ω. Depending on the context, we use one of the following

notations: either tuples: ω = (a1, ..., aN ) or conjunctions: ω = a1 ∧ ... ∧ aN .

φ, ψ denote subsets of Ω (called propositions or events) and ¬φ denotes the com-

plementary set of φ, namely, ¬φ = Ω − φ. φ ∧ ψ denotes the intersection of φ and
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ψ.

2.2. Possibility and necessity measures

This subsection gives a brief recalling on possibility theory, for more details see15.

A first notion in possibility theory is the one of possibility distribution. It is a

mapping from Ω to the scale [0, 1] usually denoted by π. Possibility distributions

aim at encoding an agent’s knowledge about an ill-known world : π(ω) = 1 means

that ω is totally possible and π(ω) = 0 means that ω can not be the real world. A

possibility distribution π is said to be normalized if there exist at least one state ω

which is totally possible.

Given a possibility distribution π, the uncertainty of any event φ ⊆ Ω is char-

acterized by means of two dual measures:

• The possibility measure of φ (which is a basic notion in a possibility theory):

Π(φ) = max
ω∈φ

π(ω). (1)

The measure Π(φ) evaluates at which level φ is consistent with our knowledge

represented by the possibility distribution π.

• The necessity measure, associated with Π by duality:

N(φ) = 1−Π(¬φ) = min
ω 6∈φ

(1− π(ω)). (2)

The measure N(φ) corresponds to the extent to which ¬φ is impossible and thus

evaluates at which level φ is certainly implied by our knowledge (represented by

the possibility distribution π).

2.3. Possibilistic conditioning

Conditioning is a crucial notion when studying independence relations. In the pos-

sibilistic setting it consists in modifying our initial knowledge on X encoded by the

possibility distribution π by the arrival of the event [Y = y]. The initial distribution

π is then replaced by another one denoted by π
′

= π(. | y).

In possibility theory there are several definitions of conditioning3,4,10,14,19,21 (see

also26 for an overview of existing possibilistic independence relation).

In this section, in order to easily define independence relation, conditioning is

given in terms of possibility measures, instead of possibility distributions.

Possibilistic conditioning Π(x | y) is generally derived from Π(x ∧ y) and Π(y),

following an equation close to the Bayesian rule, of the form:

∀x,Π(x ∧ y) = Π(x | y)⊗Π(y). (3)

where ⊗ is a t-norm.

When using the minimum (or Gödel’s) t-norm and the product t-norm as ex-

amples of ⊗ in 3, we get:

• min-based conditioning proposed by Hisdal21 (see also15).
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However, as noticed by de Cooman 10, the definition of conditional possibility

distribution is not uniquely defined. The solution proposed by Dubois and Prade15

consists in considering the following greatest solution (least specific conditional

possibility distribution) to:

Π(x |m y) =


1 if Π(x ∧ y) = Π(y)

Π(x ∧ y) if Π(x ∧ y) < Π(y)

0 otherwise.

(4)

If Π(y) = 0 then, by convention Π(x |m y) = Π(x |p y) = 1.

• product-based conditioning proposed in a numerical setting and which is a direct

counterpart of probabilistic conditioning (for Π(y) 6= 0):

Π(x |p y) =
Π(x ∧ y)

Π(y)
. (5)

Note that the product-based conditioning (4)) is equivalent to the Dempster rule

of conditioning 12.

Fonck18 also gives another definition of conditioning based on the Lukasziewicz’

t-norm. The conditioning rule is then:

Π(x |l y) = Π(x ∧ y)−Π(y) + 1. (6)

However, the main limitation of this definition is that an impossible event can

become somewhat possible after conditioning.

There exist other definitions of conditioning. For instance de Campos et al. 8,9

proposed the following definition which is a modification of the min-based condi-

tioning (4):

Π(x |hc y) =

{
Π(x) if Π(x |m y) ≥ Π(x)∀x ∈ DX

Π(x |m y) if ∃x′ ∈ DX s.t Π(x′ |m y) < Π(x′)
(7)

In addition, they proposed a modification of the product-based conditioning (5)

which is more restrictive:

Π(x |dc y) =

{
Π(x) if Π(x ∧ y) ≥ Π(x) ·Π(y)∀x ∈ DX

Π(x |p y) if ∃x′ ∈ DX s.t Π(x′ ∧ y) < Π(x′) ·Π(y)
(8)

The idea behind these two definitions is that if after conditioning we obtain a

less informative distribution, then it is better to use the unconditional distribution

in order to not loose any information.

Lastly, and contrary to most existing works where conditioning Π(x | y) is

defined from Π(x∧ y) and Π(y), Bouchon-Meunier et al.4 consider conditional pos-

sibility as a primitive concept which is directly defined as a function whose domain

is a set of conditional events x | y, with y 6= ∅.
More precisely, given a set C = X × Y of conditional events xi | yj , such that C

is a Boolean algebra, Y an additive set, with Y ⊆ X , and ∅ 6∈ Y, then a function Π

on C is a ⊗-conditional possibility if the following conditions hold:

(i) Π(X | Y ) = Π(X ∧ Y | Y ),∀X ∈ X and Y ∈ Y;
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(i) Π(. | Y ) is possibility measure, for any given Y ∈ Y;

(iii) Π(X ∧ A | Y ) = Π(X | Y )⊗ Π(A | X ∧ Y ), ∀A ∈ X , Y ∈ Y, X ∧ Y ∈ Y for a

triangular norm ⊗.

2.4. Existing possibilistic independence relations

As we have seen in the previous subsection, there exist multiple definitions of condi-

tioning in the possibilistic framework. This leads to several definitions of possibilistic

independence.

Different works have been achieved on this topic4,8,9,11,17,18,19,24,26,27. This subsec-

tion gives a brief refresher on existing possibilistic independence relations.

In the rest of this paper, given three mutually disjoint subsets of variables X,

Y and Z of V , we use the notation I(X,Y | Z) to say that X is independent of Y

in the context of Z.

One natural way to define independence relations in the possibilistic setting is

to consider that X is independent from Y in the context Z, if for any instance

z ∈ DZ , the possibility degree of any x ∈ DX remains unchanged for any value

y ∈ DY . Namely, ∀x ∈ DX , y ∈ DY , z ∈ DZ :

Π(x | y ∧ z) = Π(x | z). (9)

Since possibility theory admits several definitions of conditioning, this leads to

several definitions of causal possibilistic independence obtained by replacing the

conditioning in (9) by different forms of conditioning (i.e. (4) (5) (6) (7) (8)).

For sake of simplicity, we only develop the min-based and product-based inde-

pendence relations:

• Min-based independence relation obtained by using the min-based condi-

tioning (4) in (9). This form of independence, denoted by IM , is not symmetric

i.e. IM (X,Y | Z) 6= IM (Y,X | Z) where Z denotes the context variable, as

pointed out by Fonck18.

Let us denote IMS(X,Y | Z) the symmetrized version of IM suggested in 17

(called MS-independence), defined by IMS(X,Y | Z) iff

∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

(i) Π(x |m y ∧ z) = Π(x |m z) and

(ii) Π(y |m x ∧ z) = Π(y |m z). (10)

This relation is a very restrictive one since the MS-independence between two

sets of variables X and Y requires full ignorance about one of them (uniform

distribution) 8,9 i.e. Π(x) = 1,∀x ∈ DX or Π(y) = 1,∀y ∈ DY .

• Product independence relation obtained by using the product-based condi-

tioning (5) in (9). This form of independence, denoted IP , can be written using

∀x ∈ DX , y ∈ DY , z ∈ DZ :

Π(x ∧ y |p z) = Π(x |p z) ·Π(y |p z). (11)
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Similarly, when conditional possibility is directly defined on conditional events,

Bouchon-Meunier et al.4 define conditional independence of X and Y in the context

of Z, denoted by ICE(X,Y | Z) (CE for Conditional Events), iff for any events

x ∈ DX , y ∈ DY , z ∈ DZ we have:

Π(x | y ∧ z) = Π(x | z). (12)

This independence relation is not symmetric, and Bouchon-Meunier et al.4 have

defined its symmetric counterpart, denote ISCE(X,Y | Z), as simply:

ISCE(X,Y | Z) iff ICE(X,Y | Z) and ICE(Y,X | Z). (13)

de Campos et al.8,9 propose an independence definition of X and Y in the

context of Z, if given any value of Z, if we know the value that Y takes, we obtain

a piece of information about X similar to the one prior learning the value of Y .

More formally ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

Π(x | y ∧ z) ≈ Π(x | z). (14)

This definition was studied in 8,9 by using the min-based conditioning (4) and

the product-based conditioning (5).

Alternative definitions of possibilistic independence were suggested by the same

authors in8,9 by replacing the equality in (9) by less restrictive operators. In fact,

the independence of X from Y in the context Z is asserted when we do not gain

additional information about the values of X after conditioning to Y . More formally

∀x ∈ DX , y ∈ DY , z ∈ DZ :

Π(x | y ∧ z) ≥ Π(x | z). (15)

This definition, in fact, is equivalent to the standard decompositional indepen-

dence between X and Y in the context Z is represented by the non-interactivity

relation introduced by Zadeh27 for unconditional independence and extended by

Fonck for conditional independence, denoted by INI(X,Y | Z) (NI for Non Inter-

activity) and defined by:

Π(x ∧ y |m z) = min(Π(x |m z),Π(y |m z)),∀x, y, z, (16)

or equivalently by17:

Π(x ∧ y ∧ z) = min(Π(x ∧ z),Π(y ∧ z)),∀x, y, z. (17)

3. Qualitative possibilistic independence

This section recalls recent qualitative independence relations introduced in2

where two forms of independence (causal and decompositional) have been proposed

(for more details see2).

The main difference between qualitative possibilistic independence relations and

existing ones (recalled in Section 2) is that qualitative possibilistic independence

only use plausibility relations induced by possibility distributions. Hence, the inter-

val [0, 1] is used in this section as a mere ordinal scale.

We first need to give a formal description of the qualitative representation of

uncertainty we are using, and introduce the concept of accepted beliefs.
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3.1. Basics definitions of qualitative possibility theory

The basic idea of qualitative possibility distributions is to equip the referential

Ω with a complete pre-order instead of using the interval [0, 1]. This complete pre-

order denoted ≥π, corresponds to a plausibility relation on Ω and simply enables

us to express that some situations are more plausible than others.

We denote =π (resp. >π, <π) the equality (resp. inequality) relation correspond-

ing to ≥π. Namely the relation ω =π ω
′ means that ω is as plausible as ω′.

Let ϕ = {ω1, .., ωn} ⊆ Ω be a subset of Ω, the most plausible state(s) (called

also normal states) in ϕ, denoted by max≥π (ϕ) and is defined as:

max≥π (ϕ) = {ωi : ωi ∈ ϕ, 6 ∃ωj ∈ ϕ s.t. ωj >π ωi}. (18)

Given a plausibility relation ≥π on Ω, we can lift it to another plausibility

relation defined on the subsets of Ω denoted ≥Π by (e.g.,13):

φ ≥Π ψ iff ∀ω ∈ ψ,∃ω′ ∈ φ such that ω′ ≥π ω. (19)

Namely, φ ≥Π ψ holds if there exist a state within the most plausible state(s)

in φ which is preferred to any element in the most plausible state(s) in ψ. In other

terms:

φ ≥Π ψ iff ∃ω ∈ max≥π (φ) such that ∀ω′ ∈ max≥π (ψ), ω ≥π ω′.

The idea behind the relation ≥Π is that the agent whose epistemic state is mod-

eled by the plausibility relation ≥π evaluates events by their most plausible state

considering that if φ occurs, then the expected situation is among the states in

max≥π (φ), because they are considered as normal states.

Qualitative conditioning: In the qualitative setting, conditioning consists in fo-

cusing a plausibility relation ≥π on a subclass φ ⊆ Ω, on the basis of a new piece

of sure information about a case at hand. A plausibility relation restricted to φ,

denoted by ≥π|φ is uniquely defined using the following postulates:

A1: ∀ω1, ω2 ∈ φ, ω1 >π ω2 iff ω1 >π|φ ω2,

A2: ∀ω1 ∈ φ, ∀ω2 6∈ φ, ω1 >π|φ ω2,

A3: ∀ω1, ω2 6∈ φ, ω1 =π|φ ω2.

A1 means that the new plausibility relation should not alter the initial order

between elements of φ. A2 confirms that each element of φ should be preferred to

any element not belonging to φ. Finally, the last postulate A3 says that elements

not belonging to φ are irrelevant and should be in the same equivalence class.

We denote =π|φ (resp. >π|φ, <π|φ) the equality (resp. inequality) relation cor-

responding to ≥π|φ.

The notion of qualitative conditioning extends the possibilistic conditioning re-

called in Section 2.2. Indeed, when using possibilistic conditioning on a positive

possibility distribution π (with the minimum operator or the product operator) the

order of instances in the new conditional possibility distribution is the same as in
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the conditional plausibility relation computed from the plausibility relation induced

from π1.

Accepted beliefs : We now introduce the notion of accepted beliefs, already used

in the context of default reasoning 16,20, and which will be helpful in defining quali-

tative independence. The acceptance function associated with a plausibility relation

≥π denoted by Acc≥π (.) assigns to each φ a value in {−1, 0, 1} in the following way:

Acc≥π (φ) =


1 if φ >Π ¬φ
−1 if ¬φ >Π φ

0 if φ =Π ¬φ.
(20)

When Acc≥π (φ) = 1 (resp. Acc≥π (φ) = −1) we say that φ is accepted (resp.

rejected). Acc≥π (φ) = Acc≥π (¬φ) = 0, corresponds to the situation of total igno-

rance concerning φ, i.e., φ and ¬φ are equally plausible.

The function Acc≥π can be extended in order to take into account a given

context. Then a conditional belief measure denoted by Acc≥π (.|.) is defined by:

Acc≥π (φ | ψ) =


1 if φ ∧ ψ >Π ¬φ ∧ ψ
0 if φ ∧ ψ =Π ¬φ ∧ ψ
−1 if ¬φ ∧ ψ >Π φ ∧ ψ.

(21)

In the following, we use Acc(.) (resp. Acc(.|.)) instead of Acc≥π (.) (resp.

Acc≥π (.|.) ) when there is no ambiguity.

3.2. Causal qualitative independence

The causal qualitative independence can be seen from different points of view.

Namely, the variable set X is independent of Y if upon learning any instance of Y :

- the agent’s beliefs on DX , i.e. the accepted (resp. rejected and ignored) instances

of X, are preserved or

- the relative ordering between instances of X is preserved.

In the following, we reproduce the same notations and independence relations

names as the ones used in2.

- Belief-preserving independence: The first notion of causal independence is

concerned with the preservation of accepted and rejected beliefs. A set of variables

X can be considered as independent of Y in the context Z, if the accepted and

rejected beliefs pertaining to X, held in the context Z, remain unchanged when

some information about Y is obtained. Formally:

Definition 1. (BP-independence) Let ≥π be a plausibility relation defined on

Ω and consider three mutually disjoint subsets of variables X, Y and Z of V . The

variable set X is said to be BP-independent (BP for Belief Preserving) of Y in the

context Z, denoted IBP (X,Y | Z), iff ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

Acc(x | y ∧ z) = Acc(x | z). (22)



April 6, 2012 2:47 WSPC/INSTRUCTION FILE graphoid˙prop˙VF˙NOV

Graphoid Properties of Qualitative Possibilistic Independence Relations 9

The BP-independence relation is not symmetric as it will be shown later (Section

5.2). We denote by IBPS the symmetrized version1 of BP-independence relation;

i.e. the variable set X is said to be BPS-independent of Y in the context Z if

∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

(i) Acc(x | y ∧ z) = Acc(x | z) and

(ii) Acc(y | x ∧ z) = Acc(y | z). (23)

- Preserving-ordering independence: The second causality-oriented definition

says that X is independent of Y in the context of Z, if for all z ∈ DZ , the local

preferential ordering between the different instances of X is preserved after the

revision by any instance y of Y . More formally:

Definition 2. (PO-independence) Let ≥π be a plausibility relation defined on

Ω and consider three mutually disjoint subsets of variables X, Y and Z of V . The

variable set X is said to be PO-independent (PO for Preserving Ordering) of Y in

the context Z, denoted IPO(X,Y | Z), if ∀y ∈ DY ,∀z ∈ DZ :

∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z >Π xj ∧ y ∧ z. (24)

This relation is not symmetric as it will be shown later. We denote IPOS the

symmetrized version of IPO; i.e. X is said to be POS-independent of Y in the

context Z if ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

(i) ∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z >Π xj ∧ y ∧ z, and

(ii) ∀yk, yl ∈ DY , yk ∧ z >Π yl ∧ z iff x ∧ yk ∧ z >Π x ∧ yl ∧ z. (25)

3.3. Decompositional independence

This section proposes two classes of decompositional independences, the first is

based on belief decomposition and the second on remarkable plausibility relations.

- Belief decompositional independence: The idea of this independence rela-

tion is to consider two variable sets X and Y as independent in the context Z if

for any instance z of Z, the acceptance of any instance (x ∧ y) of X ∪ Y is fully

determined by the acceptance of x and y.

Definition 3. (PT-independence) Let ≥π be a plausibility relation defined on

Ω and consider three mutually disjoint subsets of variables X, Y and Z of V . The

variable set X is said to be PT-independent (PT for Preserving Top elements) of

Y in the context Z, denoted IPT (X,Y | Z), iff ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

Acc(x ∧ y | z) = min(Acc(x | z),Acc(y | z)). (26)

1In what follows the suffix S is used to denote the symmetrized version of non symmetric relations.
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- Decompositional independence of remarkable plausibility relations: A

plausibility relation is said to be decomposable w.r.t. X and Y in the context Z, iff

≥π is a function of the local orderings on X∪Z and Y ∪Z. The following introduces

well known example of orderings used in the qualitative setting.

(i) A plausibility relation ≥π is said to be Pareto-decomposable on X and Y

in the context Z, if ∀z ∈ DZ ,∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

xi ∧ yk ∧ z ≥π xj ∧ yl ∧ z if and only if xi ∧ z ≥Π xj ∧ z and yk ∧ z ≥Π yl ∧ z.

(ii) A plausibility relation ≥π is said to be leximin-decomposable on X and Y

in the context Z, if ∀z ∈ DZ ,∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

- xi ∧ yk ∧ z >Π xj ∧ yl ∧ z if and only if

(i) min(xi ∧ z, yk ∧ z) >Π min(xj ∧ z, yl ∧ z) or

(ii) min(xi ∧ z, yk ∧ z) =Π min(xj ∧ z, yl ∧ z) and

max(xi ∧ z, yk ∧ z) >Π max(xj ∧ z, yl ∧ z).
- xi ∧ yk ∧ z =Π xj ∧ yl ∧ z if and only if

min(xi ∧ z, yk ∧ z) =Π min(xj ∧ z, yl ∧ z) and max(xi ∧ z, yk ∧ z) =Π

max(xj ∧ z, yl ∧ z).

where

max(a, b) =

{
a if a ≥Π b

b otherwise
and

min(a, b) =

{
a if a ≤Π b

b otherwise
.

(iii) A plausibility relation ≥π is said to be leximax-decomposable on X and Y

in the context Z, if ∀z ∈ DZ ,∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

- xi ∧ yk ∧ z >Π xj ∧ yl ∧ z if and only if

(i) max(xi ∧ z, yk ∧ z) >Π max(xj ∧ z, yl ∧ z) or

(ii) max(xi ∧ z, yk ∧ z) =Π max(xj ∧ z, yl ∧ z) and

min(xi ∧ z, yk ∧ z) >Π min(xj ∧ z, yl ∧ z).
- xi ∧ yk ∧ z =Π xj ∧ yl ∧ z if and only if

min(xi∧ z, yk ∧ z) =Π min(xj ∧ z, yl∧ z) and max(xi∧ z, yk ∧ z) =Π max(xj ∧
z, yl ∧ z).

Definition 4. (Pareto, leximin, leximax-independences) X and Y are said to

be Pareto-independent (resp. leximin-independent, leximax-independent)

in the context Z, denoted IPareto (resp. Ileximin, Ileximax), if the plausibility relation

≥π is Pareto-decomposable (resp. leximin-decomposable, leximax-decomposable) on

X and Y in the context Z.
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3.4. Summary

Figure 1 (a) (resp. (b)) illustrates the existing links between the different symmetric

(resp. non-symmetric) independence relations (see2 for proofs). The arrows show

the inclusion between independence relations (transitivity is not explicit for sake

of clarity). The absence of arrows implies the incomparability of the independence

relations. IMS and IPareto are the strongest independence relations while IPT is the

weakest one.

Fig. 1. Links between symmetric (a) and non-symmetric (b) independence relations

4. Graphoid properties

Independence relations can be characterized by the well known graphoid proper-

ties which have been largely studied in the probabilistic framework5,7,22,23. These

properties are as follows:

• P1: Symmetry : I(X,Y | Z)⇒ I(Y,X | Z)

This relation asserts that in any state of context Z, if Y tells us nothing new

about Y , then X tells us nothing new about Y .

• P2: Decomposition: I(X,Y ∪W | Z)⇒ I(X,Y | Z) and I(X,W | Z)

This relation asserts that if Z separates X from Y ∪W , then it also separates X

from every subset of Y ∪W .

• P3: Weak union: I(X,Y ∪W | Z)⇒ I(X,W | Y ∪ Z)

This relation asserts that if Z separates X from Y ∪W , then Z can be augmented

by Y and still separate X from W .

• P4: Contraction: I(X,W | Y ∪ Z) and I(X,Y | Z)⇒ I(X,Y ∪W | Z)

This relation asserts that if Y ∪Z separates X from W , then the separator Y ∪Z
can be reduced from the subset Y which will be added to W , if the remaining

part i.e. Z, separates X from the deleted part Y .

• P5: Intersection: I(X,Y | Z ∪W ) and I(X,W | Y ∪ Z)⇒ I(X,Y ∪W | Z)

This relation states that if within some set of variables S = X ∪ Y ∪ Z ∪ W ,

X can be separated from the rest of S by two different subsets, S1 and S2 (i.e.

S1 = Y ∪Z and S2 = Z ∪W ), then the intersection of S1 and S2 is sufficient to

separate X from the rest of S.

Any independence structure that satisfies the properties P1-P4 is called a semi-

graphoid. If it also satisfies property P5 it is said to be a graphoid. It has been

shown that the probabilistic independence relation is a semi-graphoid, and it is a

graphoid if the considered probability distribution is strictly positive (i.e. p >0)22.

Graphoid properties have been studied for several possibilistic independence re-

lations. Indeed, Fonck18 has shown that INI and IProd relations are semi-graphoids.
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INI does not satisfy the intersection property, while IProd satisfies this property

only if we consider strictly positive distributions. IM independence relation satisfies

all graphoid properties except the symmetry and its symmetrized version IMS is a

graphoid.

5. Graphoid properties of non-symmetric independence relations

5.1. Reverse graphoid properties

Graphoid properties are stated for symmetric relations while most of qualitative

possibilistic independences are not naturally symmetric (the symmetry is generally

enforced). For instance, the decomposition property shows how to derive

I(X,Y | Z) from I(X,Y ∪W | Z). If the relation is naturally symmetric, then one

also derives I(X,Y | Z) from I(Y ∪W,X | Z). However, if the relation is not sym-

metric, then there is no guarantee to derive I(X,Y | Z) from I(Y ∪W,X, | Z) even

the relation satisfies the decomposition property. Thus, we also propose to study

the symmetric counterparts of graphoid properties called reverse graphoid proper-

ties, which has been recently proposed by Vantaggi25 when studying conditional

independence in coherent conditional probabilistic framework:

• Reverse-Decomposition: I(X ∪ Y,W | Z)⇒ I(Y,W | Z) and I(X,W | Z)

This relation asserts that if W is irrelevant to X ∪ Y in the context of Z then W

is irrelevant to Y (resp. X) in the same context.

• Reverse-Weak union: I(X ∪ Y,W | Z)⇒ I(X,W | Y ∪ Z)

This relation asserts that if Z makes W irrelevant to X ∪ Y , then Z can be

augmented by Y and still make W irrelevant to X.

• Reverse-Contraction: I(X,W | Y ∪ Z) and I(Y,W | Z)⇒ I(X ∪ Y,W | Z)

This relation asserts that if Y ∪Z separates X from W , then the separator Y ∪Z
can be reduced from the subset Y which will be added to X, if the remaining

part i.e. Z, separates the deleted part Y from W .

• Reverse-Intersection:

I(Y,W | Z ∪X) and I(X,W | Y ∪ Z)⇒ I(X ∪ Y,W | Z)

This relation states that if within some set of variables S = X ∪Y ∪Z ∪W , W is

irrelevant to the rest of S by two different subsets, S1 and S2 (i.e. S1 = Z∪X and

S2 = Z ∪ Y ), then the intersection of S1 and S2 is sufficient to make irrelevant

W from the rest of S.

It is important to note that if a symmetric relation satisfies any of the graphoid

properties, then it satisfies its reverse counterpart too.

However, it may happen that, for a given plausibility relation, a non-symmetric

independence relation (e.g., IBP ) fails to satisfy any of the reverse graphoid prop-

erties (e.g., reverse weak union), while its symmetrized version (e.g., IBPS) satisfies

such graphoid property (e.g., weak union).

The following subsections establish the graphoid properties of non-symmetric

qualitative independence relations.
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5.2. Properties of belief-preserving independence

Proposition 1. IBP satisfies all graphoid properties except the symmetry. More-

over, it satisfies the reverse-decomposition but it fails to satisfy the reverse-weak

union, the reverse-contraction and the reverse-intersection.

The proofs are reported in the appendix. Here, we only provide counter-

examples.

Counter-example 1. Lack of symmetry property for IBP
Let us consider two binary variables A and B with the following plausibility relation:

a1 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2 >π a2 ∧ b1.

Table 1 shows that IBP (A,B | ∅) is true, namely ∀a ∈ DA,∀b ∈ DB ,

Acc(a | b) = Acc(a). However, IBP (B,A | ∅) is false, for instance Acc(b1) = 1 6=
Acc(b1 | a2) = −1.

Table 1. Lack of symmetry property for IBP

a b Acc(a | b) Acc(a) Acc(b | a) Acc(b)

a1 b1 1 1 1 1

a1 b2 1 1 -1 -1

a2 b1 -1 -1 -1 1

a2 b2 -1 -1 1 -1

Counter-example 2. : Lack of reverse-weak union property for IBP
Let us consider three binary variables A, B and C with the following plausibility

relation: a1∧ b1∧ c1 >π a1∧ b2∧ c1 >π a1∧ b1∧ c2 >π a2∧ b2∧ c1 >π a1∧ b2∧ c2 =π

a2 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c1 >π a2 ∧ b1 ∧ c2.
Table 2 shows that IBP (A ∪B,C | ∅) is true, namely,

∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC , we have Acc(a ∧ b | c) = Acc(a ∧ b).
However, IBP (A,C | B) is false since Acc(a2 | b2 ∧ c2) = 0 6= Acc(a2 | b2) = −1.

Table 2. Validity of IBP (A ∪B,C | ∅)

a b Acc(a ∧ b | c1) Acc(a ∧ b | c2) Acc(a ∧ b)
a1 b1 1 1 1

a1 b2 -1 -1 -1

a2 b1 -1 -1 -1

a2 b2 -1 -1 -1

Counter-example 3. : Lack of reverse-contraction property for IBP
Let us consider three binary variables A, B and C with the following plausibility
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relation: a1∧ b1∧ c1 >π a1∧ b2∧ c1 >π a1∧ b2∧ c2 >π a1∧ b1∧ c2 >π a2∧ b1∧ c1 >π
a2 ∧ b1 ∧ c2 >π a2 ∧ b2 ∧ c1 >π a2 ∧ b2 ∧ c2.

Tables 3 and 4, respectively, show that IBP (A,C | B) and IBP (A,C | ∅) are

true, namely,

∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC ,Acc(a | b ∧ c) = Acc(a | b) and

∀a ∈ DA,∀c ∈ DC ,Acc(a | c) = Acc(a). However, IBP (A ∪B,C | ∅) is false since:

Acc(a1 ∧ b1 | c2) = −1 6= Acc(a1 ∧ b1) = 1.

Table 3. Validity of IBP (A,C | B)

a b Acc(a | b ∧ c1) Acc(a | b ∧ c2) Acc(a | b)
a1 b1 1 1 1

a1 b2 1 1 1

a2 b1 -1 -1 -1

a2 b2 -1 -1 -1

Table 4. Validity of IBP (A,C | ∅)

a c Acc(a | c) Acc(a)

a1 c1 1 1

a1 c2 1 1

a2 c1 -1 -1

a2 c2 -1 -1
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Counter-example 4. : Lack of reverse-intersection property for IBP
Let us consider three binary variables A, B and C with the following plausibility

relation: a1∧ b1∧ c1 >π a2∧ b2∧ c1 >π a2∧ b1∧ c1 >π a1∧ b1∧ c2 =π a2∧ b2∧ c2 >π
a1 ∧ b2 ∧ c1 >π a1 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c2.

Table 5 shows that IBP (B,C | A) and IBP (A,C | B) are true, namely,

∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC ,Acc(b | a ∧ c) = Acc(b | a) and

Acc(a | b ∧ c) = Acc(a | b). However, IBP (A ∪B,C | ∅) is false since:

Acc(a2 ∧ b2 | c2) = 0 6= Acc(a2 ∧ b2) = −1.

Table 5. Validity of IBP (B,C | A) and IBP (A,C | B)

a b Acc(b | a ∧ c1) Acc(b | a ∧ c2) Acc(b | a)

a1 b1 1 1 1

a1 b2 -1 -1 -1

a2 b1 -1 -1 -1

a2 b2 1 1 1

a b Acc(a | b ∧ c1) Acc(a | b ∧ c2) Acc(a | b)
a1 b1 1 1 1

a1 b2 -1 -1 -1

a2 b1 -1 -1 -1

a2 b2 1 1 1

5.3. Properties of preserving-ordering independence

Proposition 2. IPO independence relation satisfies all graphoid properties except

the symmetry. Moreover, it satisfies the reverse-decomposition and the reverse-weak

union properties but neither the reverse-contraction nor the reverse-intersection are

satisfied.

Counter-example 5. Lack of symmetry property for IPO
Let us consider two binary variables A and B with the following plausibility rela-

tion: a1 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2 >π a2 ∧ b1.

• The local plausibility relation relative to A is a1 >Π a2. Moreover, in the context

b1 (resp. b2), we have a1 >Π a2 since a1 ∧ b1 >Π a2 ∧ b1 (resp. a1 ∧ b2 >Π a2 ∧ b2).

Thus, the relation IPO(A,B | ∅) is true since the ordering relative to the different

instances of A is preserved for all instances of B.

• The local plausibility relation relative to B is b1 >Π b2. However, in the context

a2, we have b2 >Π b1, thus, the relation IPO(B,A | ∅) is false, since the ordering

between b1 and b2 is not preserved in the context a2.
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Counter-example 6. : Lack of reverse-contraction property for IPO
Let us consider three binary variables A, B and C with the following plausibility

relation:

a2 ∧ b2 ∧ c1 >π a2 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c1 >π a2 ∧ b1 ∧ c2 >π a1 ∧ b2 ∧ c1 >π
a1 ∧ b1 ∧ c1 >π a1 ∧ b2 ∧ c2 >π a1 ∧ b1 ∧ c2.

Let us check that IPO(C,A | B) and IPO(B,A | ∅) are indeed satisfied while

IPO(B ∪ C,A | ∅) is not satisfied.

• In the context of b1 (resp. b2), the local plausibility relation relative to C is

c1 >Π c2 (resp. c1 >Π c2). This order is preserved after the revision by a1 and

a2 since a1 ∧ b1 ∧ c1 >π a1 ∧ b1 ∧ c2 and a2 ∧ b1 ∧ c1 >π a2 ∧ b1 ∧ c2 (resp.

a1 ∧ b2 ∧ c1 >π a1 ∧ b2 ∧ c2 and a2 ∧ b2 ∧ c1 >π a2 ∧ b2 ∧ c2). Thus, the relation

IPO(C,A | B) is true.

• The local plausibility relation relative to B is b2 >Π b1. Moreover, in the context

a1 (resp. a2), we have b2 >Π b1 since a1 ∧ b2 >Π a1 ∧ b1 (resp. a2 ∧ b2 >Π a2 ∧ b1).

Thus, the relation IPO(B,A | ∅) is true since the ordering relative to the different

instances of B is preserved for all instances of A.

• The local plausibility relation relative to B∪C is b2∧c1 >Π b2∧c2 >Π b1∧c1 >Π

b1 ∧ c2. However, in the context a1 we have b1 ∧ c1 >Π b2 ∧ c2. Thus, the order is

not preserved and the relation IPO(B ∪ C,A | ∅) is false.

Counter-example 7. : Lack of reverse-intersection property for IPO
Let us consider again the plausibility relation given in Counter-example 6, where

we already checked that IPO(C,A | B) is true and IPO(B ∪ C,A | ∅) is false. Let

us check that IPO(B,A | C) is true too.

This relation is true. Indeed, in the context of c1 (resp. c2), the local plausibility

relation relative to B is b2 >Π b1 (resp. b2 >Π b1). This order is preserved after the

revision by a1 and a2 since a1∧b2∧c1 >π a1∧b1∧c1 and a2∧b2∧c1 >π a2∧b1∧c1
(resp. a1 ∧ b2 ∧ c2 >π a1 ∧ b1 ∧ c2 and a2 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c2).

6. Graphoid properties of symmetric independence relations

This section establishes the graphoid properties of symmetric or symmetrized qual-

itative independence relations.

6.1. Properties of symmetrized belief-preserving independence

Proposition 3.

IBPS satisfies the symmetry (by definition), the decomposition but it fails to

satisfy the weak union, the contraction and the intersection.

The proof of decomposition property is immediate since IBP satisfies the de-

composition and the reverse-decomposition properties.
Counter-example 8. : Lack of weak union property for IBPS
Let us consider again the plausibility relation given in Counter-example 2. In

this plausibility relation IBPS(A,C | B) is false since IBP (A,C | B) is false.
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Moreover, we have checked that IBP (A ∪ B,C | ∅) is true. Thus, it is enough

to check IBP (C,A ∪ B | ∅) to establish IBPS(A ∪ B,C | ∅) an hence to falsify

the weak union property. Table 6 shows that this relation is indeed true. Namely,

∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC , we have Acc(c | a ∧ b) = Acc(c).

Table 6. Validity of IBP (C,A ∪B | ∅)

a b Acc(c1 | a ∧ b) Acc(c1) Acc(c2 | a ∧ b) Acc(c2)

a1 b1 1 1 -1 -1

a1 b2 1 1 -1 -1

a2 b1 1 1 -1 -1

a2 b2 1 1 -1 -1

Counter-example 9. : Lack of contraction property for IBPS
Let us consider again the plausibility relation given in Counter-example 3. In this

plausibility relation IBPS(A ∪ B,C | ∅) is false since IBP (A ∪ B,C | ∅) is false.

Moreover, we have checked that IBP (A,C | B) and IBP (A,C | ∅) are true. Thus,

it is enough to check IBP (C,A | B) and IBP (C,A | ∅) to establish IBPS(A,C | B)

and IBPS(A,C | ∅) and hence to falsify the contraction property. Tables 7 and 8

show, respectively, that these two relations are indeed true.

Namely, ∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC ,Acc(c | a ∧ b) = Acc(c | b) and

∀a ∈ DA,∀c ∈ DC ,Acc(c | a) = Acc(c).

Table 7. Validity of IBP (C,A | B)

c b Acc(c | a1 ∧ b) Acc(c | a2 ∧ b) Acc(c | b)
c1 b1 1 1 1

c1 b2 -1 -1 -1

c2 b1 1 1 1

c2 b2 -1 -1 -1

Table 8. Validity of IBP (C,A | ∅)

a c Acc(c | a) Acc(c)

a1 c1 1 1

a1 c2 -1 -1

a2 c1 1 1

a2 c2 -1 -1
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Counter-example 10. : Lack of intersection property for IBPS
Let us consider again the plausibility relation given in Counter-example 4. In this

plausibility relation IBPS(A ∪ B,C | ∅) is false since IBP (A ∪ B,C | ∅) is false.

Moreover, we have checked that IBP (B,C | A) and IBP (A,C | B) are true. Thus,

it is enough to check IBP (C,B | A) and IBP (C,A | B) to establish IBPS(B,C | A)

and IBPS(A,C | B). Table 9 shows that these relations are indeed true.

Namely, ∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC ,Acc(c | a ∧ b) = Acc(c | a) and

∀a ∈ DA,∀c ∈ DC ,Acc(c | a ∧ b) = Acc(c | b).

Table 9. Validity of IBP (C,B | A) and IBP (C,A | B)

a c Acc(c | a ∧ b1) Acc(c | a ∧ b2) Acc(c | a)

a1 c1 1 1 1

a1 c2 -1 -1 -1

a2 c1 1 1 1

a2 c2 -1 -1 -1

b c Acc(c | a1 ∧ b) Acc(c | a1 ∧ b) Acc(c | b)
b1 c1 1 1 1

b1 c2 -1 -1 -1

b2 c1 1 1 1

b2 c2 -1 -1 -1

6.2. Properties of symmetrized preserving-ordering independence

Proposition 4. IPOS satisfies the symmetry (by definition), the decomposition and

the weak union but neither the contraction nor the intersection.

The proof of decomposition (resp. weak union) property is immediate since IPO
satisfies the decomposition (resp. weak union) and the reverse-decomposition (resp.

reverse-weak union) properties.

Counter-example 11. : Lack of contraction property for IPOS
Let us consider again the plausibility relation given in Counter-example 6. We have

already checked that IPO(B∪C,A | ∅) is false which implies that IPOS(B∪C,A | ∅)
is false too. Moreover, we have checked that IPO(C,A | B) and IPO(B,A | ∅) are

true. Thus, it is enough to test IPO(A,C | B) and IPO(A,B | ∅) to establish

IPOS(C,A | B) and IPOS(B,A | ∅).

• In the context of b1 (resp. b2), the local plausibility relation relative to A is

a2 >Π a1 (resp. a2 >Π a1). This order is preserved after the revision by c1 and

c2 since a2 ∧ b1 ∧ c1 >π a1 ∧ b1 ∧ c1 and a2 ∧ b1 ∧ c1 >π a1 ∧ b1 ∧ c1 (resp.

a2 ∧ b2 ∧ c1 >π a1 ∧ b2 ∧ c1 and a2 ∧ b2 ∧ c1 >π a1 ∧ b2 ∧ c1 ). Thus, the relation

IPO(A,C | B) is true.
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• The local plausibility relation relative to A is a2 >Π a1. Moreover, in the context

b1 (resp. b2), we have a2 >Π a1 since a2 ∧ b1 >Π a1 ∧ b1 (resp. a2 ∧ b2 >Π a1 ∧ b2).

Thus, the relation IPO(A,B | ∅) is true since the ordering relative to the different

instances of A is preserved for all instances of B.

Counter-example 12. : Lack of intersection property for IPOS
Let us consider again the plausibility relation given in Counter-example 6.

In Counter-example 11 we have checked that IPOS(C,A | B) is true and

IPOS(B ∪ C,A | ∅) is false.

Moreover, in Counter-example 7 we have checked that IPO(B,A | C) is true,

thus it is enough to check that IPO(A,B | C) is true to establish IPOS(B,A | C).

This relation is true, indeed, in the context of c1 (resp. c2), the local plausibility

relation relative to A is a2 >Π a1 (resp. a2 >Π a1). This order is preserved after the

revision by b1 and b2 since a2∧ b1∧ c1 >π a1∧ b1∧ c1 and a2∧ b2∧ c1 >π a1∧ b2∧ c1
(resp. a2 ∧ b1 ∧ c2 >π a1 ∧ b1 ∧ c2 and a2 ∧ b2 ∧ c2 >π a1 ∧ b2 ∧ c2).

6.3. Properties of belief decompositional independence

Proposition 5. IPT relation is not a semi-graphoid, since it satisfies the sym-

metry, the decomposition and the contraction but neither the weak union nor the

intersection properties.

Counter-example 13. : Lack of weak union property for IPT
Let us consider three binary variables A, B and C with the following plausibility

relation: a2∧ b2∧ c1 >π a1∧ b1∧ c1 =π a2∧ b1∧ c2 >π a1∧ b1∧ c2 =π a2∧ b1∧ c1 >π
a1 ∧ b2 ∧ c1 =π a1 ∧ b2 ∧ c2 =π a2 ∧ b2 ∧ c2.

Table 10 shows that IPT (A,B ∪ C | ∅) is true, namely,

∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC ,Acc(a ∧ b ∧ c) = min(Acc(a),Acc(b ∧ c)).
However, IPT (A,C | B) is false since:

Acc(a1 ∧ c2 | b1) = −1 6= min(Acc(a1 | b1),Acc(c2 | b1)) = 0.

Table 10. Validity of IPT (A,B ∪ C | ∅)

a b c Acc(a ∧ b ∧ c) Acc(a) Acc(b ∧ c) a b c Acc(a ∧ b ∧ c) Acc(a) Acc(b ∧ c)
a1 b1 c1 -1 -1 -1 a2 b1 c1 -1 1 -1

a1 b1 c2 -1 -1 -1 a2 b1 c2 -1 1 -1

a1 b2 c1 -1 -1 1 a2 b2 c1 1 1 1

a1 b2 c2 -1 -1 -1 a2 b2 c2 -1 1 -1

Counter-example 14. : Lack of intersection property for IPT
Let us consider three binary variables A, B and C with the following plausibility

relation: a1∧ b2∧ c2 =π a2∧ b1∧ c1 >π a1∧ b1∧ c1 =π a1∧ b1∧ c2 =π a1∧ b2∧ c1 =π

a2 ∧ b1 ∧ c2 =π a2 ∧ b2 ∧ c1 =π a2 ∧ b2 ∧ c2.
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Table 11 shows that IPT (A,B | C) and IPT (A,C | B) are true, namely

∀a ∈ DA,∀b ∈ DB ,∀c ∈ DC ,

Acc(a ∧ b | c) = min(Acc(a | c),Acc(b | c)) and

Acc(a ∧ c | b) = min(Acc(a | b),Acc(c | b)).
However, IPT (A,B ∪ C | ∅) is false since:

Acc(a2 ∧ b2 ∧ c2) = −1 6= min(Acc(a2),Acc(b2 ∧ c2)) = 0 .

Table 11. Validity of IPT (A,B | C) and IPT (A,C | B)

a b Acc(a ∧ b | c1) Acc(a | c1) Acc(b | c1) Acc(a ∧ b | c2) Acc(a | c2) Acc(b | c2)

a1 b1 -1 -1 1 -1 1 -1

a1 b2 -1 -1 -1 1 1 1

a2 b1 1 1 1 -1 -1 -1

a2 b2 -1 1 -1 -1 -1 1

a c Acc(a ∧ c | b1) Acc(a | b1) Acc(c | b1) Acc(a ∧ c | b2) Acc(a | b2) Acc(c | b2)

a1 c1 -1 -1 1 -1 1 -1

a1 c2 -1 -1 -1 1 1 1

a2 c1 1 1 1 -1 -1 -1

a2 c2 -1 1 -1 -1 -1 1

6.4. Properties of decompositional independence based on

remarkable plausibility relations

Proposition 6. IPareto independence is a graphoid.

The proof of this proposition is immediate since IPareto is equivalent to IMS

independence relation2 which is a graphoid.

Proposition 7.

Ileximax and Ileximin only satisfy the symmetry and the decomposition and fail

to satisfy weak union, contraction and intersection properties.

Some properties may be recovered in particular cases. For instance in the case of

of binary variables and two-level distributions, Ileximax and Ileximin relations satisfy

the weak union since they are equivalent to IPOS
2.

Counter-example 15. : Lack of weak union property for Ileximax
Let us consider three variables A, B and C with the following plausibility relation:

a1∧b1∧c1 >π a2∧b1∧c1 >π a1∧b2∧c2 >π a3∧b1∧c1 =π a1∧b1∧c2 >π a1∧b2∧c1 >π
a2∧b2∧c2 >π a2∧b1∧c2 >π a2∧b2∧c1 >π a3∧b2∧c2 >π a3∧b1∧c2 >π a3∧b2∧c1.
It can be checked that Ileximax(A,B ∪ C | ∅) is true since a1 =Π b1 ∧ c1 >Π a2 >Π

a3 =Π b1 ∧ c2 >Π b2 ∧ c1 >Π b2 ∧ c2. However, Ileximax(A,C | B) is false since

a2 ∧ b2 ∧ c1 >Π a3 ∧ b2 ∧ c2 while max(a3 ∧ b2, b2 ∧ c2) >Π max(a2 ∧ b2, b2 ∧ c1).
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Counter-example 16. : Lack of contraction property for Ileximax
Let us consider three binary variables A, B and C with the following plausibility

relation: a1∧ b2∧ c1 >π a1∧ b2∧ c2 =π a2∧ b2∧ c1 >π a2∧ b2∧ c2 >π a1∧ b1∧ c2 >π
a1 ∧ b1 ∧ c1 =π a2 ∧ b1 ∧ c2 >π a2 ∧ b1 ∧ c1.
It can be checked that Ileximax(A,B | ∅) and Ileximax(A,C | B) are true since

a1 =Π b2 >Π a2 >Π b1 and a1 ∧ b2 =Π b2 ∧ c1 >Π a2 ∧ b2 =Π b2 ∧ c2 >Π a1 ∧ b1 =Π

b1 ∧ c2 >Π a2 ∧ b1 =Π b1 ∧ c1. However, Ileximax(A,B ∪ C | ∅) is false since

a1 ∧ b1 ∧ c1 =π a2 ∧ b1 ∧ c2 while max(a1, b1 ∧ c1) >Π max(a2, b1 ∧ c2).

Counter-example 17. : Lack of intersection property for Ileximax
Let us consider three binary variables A, B and C with the following plausibility

relation: a1∧ b1∧ c1 =π a1∧ b2∧ c2 >π a1∧ b2∧ c1 >π a1∧ b1∧ c2 >π a2∧ b2∧ c2 >π
a2 ∧ b1 ∧ c1 >π a2 ∧ b2 ∧ c1 >π a2 ∧ b1 ∧ c2.
It can be checked that Ileximax(A,B | C) and Ileximax(A,C | B) are true since

a1∧c1 =Π a1∧c2 =Π b1∧c1 =Π b2∧c2 >Π b2∧c1 >Π b1∧c2 >Π a2∧c2 >Π a2∧c1 and

a1∧ b1 =Π a1∧ b2 =Π b1∧ c1 =Π b2∧ c2 >Π b2∧ c1 >Π b1∧ c2 >Π a2∧ b2 >Π a2∧ b1.

However, Ileximax(A,B ∪ C | ∅) is false since a2 ∧ b2 ∧ c2 >Π a2 ∧ b1 ∧ c1 while

max(a2, b2 ∧ c2) =Π max(a2, b1 ∧ c1) and min(a2, b2 ∧ c2) =Π min(a2, b1 ∧ c1).

Counter-example 18. : Lack of weak union property for Ileximin
Let us consider three variables A, B and C with the following plausibility relation:

a3∧b2∧c3 >π a2∧b2∧c3 =π a3∧b1∧c1 >π a2∧b1∧c1 >π a1∧b2∧c3 =π a3∧b1∧c2 >π
a1∧b1∧c1 =π a2∧b1∧c2 >π a1∧b1∧c2 >π a3∧b1∧c3 >π a2∧b1∧c3 >π a1∧b1∧c3 >π
a3∧b2∧c1 >π a2∧b2∧c1 >π a1∧b2∧c1 >π a3∧b2∧c2 >π a2∧b2∧c2 >π a1∧b2∧c2
It can be checked that Ileximin(A,B ∪ C | ∅) is true since a3 =Π b1 ∧ c3 >Π a2 =Π

b1 ∧ c1 >Π a1 =Π b1 ∧ c2 >Π b1 ∧ c3 >Π b2 ∧ c1 >Π b2 ∧ c2.

However, Ileximin(A,C | B) is false since a1∧ b1∧ c1 =Π a2∧ b1∧ c2 while min(a1∧
b1, b1 ∧ c1) <Π min(a2 ∧ b1, b1 ∧ c2).

Counter-example 19. : Lack of contraction property for Ileximin
Let us consider three binary variables A, B and C with the following plausibility

relation: a1∧ b2∧ c1 >π a1∧ b2∧ c2 =π a2∧ b2∧ c1 >π a2∧ b2∧ c2 >π a1∧ b1∧ c2 >π
a1 ∧ b1 ∧ c1 =π a2 ∧ b1 ∧ c2 >π a2 ∧ b1 ∧ c1.
It can be checked that Ileximin(A,B | ∅) and Ileximin(A,C | B) are true since

a1 =Π b2 >Π a2 >Π b1 and a1 ∧ b2 =Π b2 ∧ c1 >Π a2 ∧ b2 =Π b2 ∧ c2 >Π a1 ∧
b1 =Π b1 ∧ c2 >Π a2 ∧ b1 =Π b1 ∧ c1. However, Ileximin(A,B ∪ C | ∅) is false since

a1 ∧ b1 ∧ c1 =π a2 ∧ b1 ∧ c2 while min(a2, b1 ∧ c2) >Π min(a1, b1 ∧ c1).

Counter-example 20. : Lack of intersection property for Ileximin
Let us consider the plausibility relation given in the previous example. It can be

checked that Ileximin(A,B | C) and Ileximin(A,C | B) are true since a1 ∧ c1 =Π

b2 ∧ c1 >Π a1 ∧ c2 =Π a2 ∧ c1 =Π b2 ∧ c2 >Π a2 ∧ c2 >Π b1 ∧ c2 >Π b1 ∧ c1 and

a1∧ b2 =Π b2∧ c1 >Π a2∧ b2 =Π b2∧ c2 >Π a1∧ b1 =Π b1∧ c2 >Π a2∧ b1 =Π b1∧ c1.

However, Ileximin(A,B ∪ C | ∅) is false since a1 ∧ b1 ∧ c1 =π a2 ∧ b1 ∧ c2 while

min(a2, b1 ∧ c2) >Π min(a1, b1 ∧ c1).
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7. Summary of graphoid properties

Table 12 summarizes results on graphoid properties and their reverse counterparts.

Table 12. Summary of graphoid properties

Symmetry Decomposition / Weak union / Contracaction / Intersection /

R-decomposition R-weak union R-contraction R-intersection

IBP no yes/yes yes/no yes/no yes/no

IBPS yes yes no no no

IPO no yes/yes yes/yes yes/no yes/no

IPOS yes yes yes no no

IPT yes yes no yes no

Ileximax yes yes no no no

Ileximin yes yes no no no

IPareto yes yes yes yes yes

Note that IBP and IPO have good properties since they satisfy all graphoid

properties except the symmetry. Unfortunately, the addition of this property to

IBP leads to the loss of the weak union, contraction and intersection properties. In

the same manner it leads to the loss of the contraction and intersection properties

of IPO. In addition, IPareto has good properties since it is a graphoid but is too

strong2 to be practically used.

8. Conclusion

In this paper, we have studied graphoid properties of qualitative possibilistic

independence relations that we have proposed in2.

Two kinds of independence have been investigated: causal and decompositional

ones. Causal independence relations can be simply defined using notions of accepted,

ignored and rejected beliefs. Decompositional independence relations are defined

using other operators different from the traditional minimum and product operators

such that the leximin and leximax operators.

Since, several of these qualitative possibilistic independence fails to satisfy the

symmetry property, we have also proposed to analyze these non-symmetric relations

with respect to the symmetric counterparts of graphoid properties called reverse

graphoid properties (see25) . We have shown that adding the symmetry property

can lead to the loose of some graphoid properties. For instance, adding the symmetry

to the PO-independence causes the failure of the contraction and the intersection

properties.

Note that similar behaviour appears with possibilistic independence based on

conditional events proposed by Bouchon-Meunier et al.4. Indeed, adding the sym-

metry property to ICE(X,Y | Z) leads to the lost of weak union property.
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Our study shows that except Pareto independence relation, there is no qualita-

tive independence relation (symmetrized or not) which satisfies all graphoid prop-

erties. Moreover, only the decomposition property is satisfied by all these inde-

pendence relations. This may be explained by the absence of commensurability

assumption between the different orderings in the qualitative setting since we only

use total pre-orders between events which are weaker than the common finite scale

[0, 1] used in the min and product based independence relations which have good

graphoid properties.

Results on independence relations can be used for defining new forms of quali-

tative networks. For instance, Brafmann and col. 6 have proposed a new qualitative

network where inside each node a plausibility relation is used instead of possibility

degrees. They use Ceteris Paribus independence which is equivalent to the qualita-

tive independence relation based on preserving orderings2 (i.e. POS-independence).

Therefore, our study of graphoid properties can be useful for showing the coherence

of propagation algorithms based on Ceteris Paribus independence.

More generally, some care should be taken if one would like to develop local

algorithms based on qualitative possibilistic independence. For instance, the simpli-

fications, based on d-separation, used in local propagation algorithms in graphical

models are not valid, and therefore, other conditions should be considered.

For example, Vantggi25, in studying conditional independence in coherent con-

ditions, has proposed a new separation criterion (called t-separation) for directed

acyclic graphs which is appropriate for independence relations which do not satisfy

the symmetry property.
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Appendix A.

We first give two technical lemmas which will be needed in some proofs (proofs of

these lemmas can be found in2).

Lemma 1. Let X, Y , Z be three mutually disjoint subsets of variables of V , then

∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ :

Acc(x ∧ y | z) 6= min(Acc(x | z),Acc(y | z))
⇔ Acc(x ∧ y | z) = −1,Acc(x | z) = 0, and Acc(y | z) = 0.

Lemma 2. Let x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ . Then:

if Acc(x ∧ y | z) = 1 then Acc(x | z) = 1 (resp. Acc(y | z) = 1).

if Acc(x ∧ y | z) = 0 then Acc(x | z) ≥ 0. (resp. Acc(y | z) ≥ 0).
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Proof of Proposition 1

- Decomposition property for IBP .

We want to prove that IBP (X,Y ∪W | Z)⇒ IBP (X,Y | Z) and IBP (X,W | Z).

We only prove that IBP (X,Y ∪W | Z)⇒ IBP (X,Y | Z)

(the proof of IBP (X,Y ∪W | Z)⇒ IBP (X,W | Z) is analogous).

This means that we want to prove that:

if (i) ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW , Acc(x | y ∧ z ∧ w) = Acc(x | z)
then (ii) ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW , Acc(x | y ∧ z) = Acc(x | z).
Suppose that this implication is false, this means that (i) is true and (ii) is false.

This means that, ∃x′ ∈ DX , y
′ ∈ DY , z

′ ∈ DZ , s.t Acc(x′ | y′ ∧ z′) 6= Acc(x′ | z′)
Let us analyze the possible values for Acc(x′ | z′) :

• Acc(x′ | z′) = 0

⇒ ∃x” 6=Π x′ ∈ DX s.t. Acc(x” | z′) = 0

⇒ ∀y ∈ DY ,∀w ∈ DW ,Acc(x′ | y ∧ z′ ∧ w) = 0 and Acc(x” | y ∧ z′ ∧ w) = 0

(from (i))

⇒ ∀y ∈ DY ,∀w ∈ DW , x
′ ∧ y ∧ z′ ∧ w =Π x” ∧ y ∧ z′ ∧ w.

⇒ ∀y ∈ DY ,maxw{x′ ∧ y ∧ z′ ∧ w} =Π maxw{x” ∧ y ∧ z′ ∧ w},
⇒ ∀y ∈ DY , x

′ ∧ y ∧ z′ =Π x” ∧ y ∧ z′.
⇒ ∀y ∈ DY ,Acc(x′ | y ∧ z′) = 0.

⇒ Acc(x′ | y′ ∧ z′) = 0 (when Y takes y′ as particular value)

Hence contradiction.

• Acc(x′ | z′) = −1

⇒ ∀y ∈ DY ,∀w ∈ DW ,Acc(x′ | y ∧ z′ ∧ w) = −1 (from (i))

⇒ ∀y ∈ DY ,∀w ∈ DW ,∃x” 6=Π x′ ∈ DX s.t. x” ∧ y ∧ z′ ∧ w >Π x′ ∧ y ∧ z′ ∧ w
⇒ ∀y ∈ DY ,∃x” 6=Π x′ ∈ DX ,∃w” ∈ DW s.t ∀w ∈ DW ,

x” ∧ y ∧ z′ ∧ w” >Π x′ ∧ y ∧ z′ ∧ w
⇒ ∀y ∈ DY ,∃x” 6=Π x′ ∈ DX ,∃w” ∈ DW s.t

x” ∧ y ∧ z′ ∧ w” >Π maxw{x′ ∧ y ∧ z′ ∧ w}
⇒ ∀y ∈ DY ,∃x” 6=Π x′ ∈ DX ,∃w” ∈ DW s.t x” ∧ y ∧ z′ ∧ w” >Π x′ ∧ y ∧ z′
⇒ ∀y ∈ DY ,∃x” 6=Π x′ ∈ DX s.t x” ∧ y ∧ z′ >Π x′ ∧ y ∧ z′
(since x” ∧ y ∧ z′ ≥Π x” ∧ y ∧ z′ ∧ w”)

⇒ ∀y ∈ DY ,Acc(x′ | y ∧ z′) = −1.

⇒ Acc(x′ | y′ ∧ z′) = −1 (when Y takes y′ as particular value)

Hence contradiction.

• Acc(x′ | z′) = 1

⇒ ∀y ∈ DY ,∀w ∈ DW ,Acc(x′ | y ∧ z′ ∧ w) = 1 (from (i))

⇒ ∀y ∈ DY ,∀w ∈ DW ,∀x” 6=Π x′, x′ ∧ y ∧ z′ ∧ w >Π x” ∧ y ∧ z′ ∧ w
⇒ ∀y ∈ DY ,∀x” 6=Π x′, maxw{x′ ∧ y ∧ z′ ∧ w} >Π maxw{x” ∧ y ∧ z′ ∧ w}
⇒ ∀y ∈ DY ,∀x” 6=Π x′ s.t x′ ∧ y ∧ z′ >Π x” ∧ y ∧ z′
⇒ ∀y ∈ DY ,Acc(x′ | y ∧ z′) = 1.

⇒ Acc(x′ | y′ ∧ z′) = 1 (when Y takes y′ as particular value)

Hence contradiction.
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- Weak union property for IBP .

We want to prove that IBP (X,Y | Z ∪W )⇒ IBP (X,W | Z ∪ Y ).

Suppose that IBP (X,Y | Z ∪W ) is true.

This means that ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW ,

(a) Acc(x | y ∧ z ∧ w) = Acc(x | z).
Moreover, we have shown that IBP satisfies the decomposition property i.e.

IBP (X,Y ∪W | Z)⇒ IBP (X,Y | Z), namely, :

(b) if ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW , Acc(x | y ∧ z ∧ w) = Acc(x | z)
then ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW , Acc(x | y ∧ z) = Acc(x | z).
Therefore from (a) and (b) we have ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

Acc(x | y ∧ z ∧ w) = Acc(x | y ∧ z).
Hence IBP (X,W | Z ∪ Y ) is also true.

- Contraction property for IBP .

We want to prove that IBP (X,W | Z∪Y ) and IBP (X,Y | Z)⇒ IBP (X,Y ∪W | Z).

Suppose that (i) IBP (X,W | Z ∪ Y ) and (ii) IBP (X,Y | Z) are true.

This means that ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

(a) Acc(x | y ∧ z ∧ w) = Acc(x | y ∧ z) (from (i)) and

(b) Acc(x | y ∧ z) = Acc(x | z) (from (ii))

(a) + (b) implies that ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW ,

Acc(x | y ∧ z ∧ w) = Acc(x | z).
Hence IBP (X,Y | Z ∪W ) is also true.

- Intersection property for IBP .

We want to prove that

IBP (X,Y | Z ∪W ) and IBP (X,W | Z ∪ Y )⇒ IBP (X,Y ∪W | Z).

Suppose that this relation is false.

Namely, we have ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

(i) Acc(x | y ∧ z ∧w) = Acc(x | z ∧w) and (ii) Acc(x | y ∧ z ∧w) = Acc(x | y ∧ z)
but ∃x′ ∈ DX , y

′ ∈ DY , z
′ ∈ DZ , w

′ ∈ DW , s.t.

(iii) Acc(x′ | y′ ∧ z′ ∧ w′) 6= Acc(x′ | z′).

We distinguish three cases regarding the value of Acc(x′ | y′ ∧ z′ ∧ w′):

Case 1: Acc(x′ | y′ ∧ z′ ∧ w′) = 0,

This implies from (i) that:

(iv) Acc(x′ | z′ ∧ w′) = 0.

Moreover, from (iii) Acc(x′ | z′) is either equal to −1 or 1, then:

• if Acc(x′ | z′) = −1 then ∃x” 6=Π x′ ∈ DX s.t x” ∧ z′ >Π x′ ∧ z′
⇒ ∃x” 6=Π x′ ∈ DX ,∃y” ∈ DY ,∃w” ∈ DW s.t

x” ∧ z′ >Π x′ ∧ y” ∧ z′ ∧ w”

⇒ ∃y” ∈ DY ,∃z” ∈ DZ s.t Acc(x′ | y” ∧ z′ ∧ w”) = −1

⇒ ∃y” ∈ DY s.t Acc(x′ | y” ∧ z′) = −1 (from (ii))
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⇒ ∃y” ∈ DY s.t ∀w ∈ DW ,Acc(x′ | y” ∧ z′ ∧ w) = −1 (from (ii))

⇒ ∀w ∈ DW ,Acc(x′ | z′ ∧ w) = −1 (from (i))

⇒ Acc(x′ | z′ ∧ w′) = −1 (when W takes the particular instance w′).

This contradicts (iv).

• if Acc(x′ | z′) = 1

⇒ ∀x” 6=Π x′ ∈ DX , x
′ ∧ z′ >Π x” ∧ z′

⇒ ∀x” 6=Π x′ ∈ DX ,∃y” ∈ DY ,∃z” ∈ DZ , s.t. x′ ∧ y” ∧ z′ ∧ w” >Π x” ∧ z′
⇒ ∀x” 6=Π x′ ∈ DX ,∃y” ∈ DY ,∃z” ∈ DZ s.t. x′∧y”∧z′∧w” >Π x”∧y”∧z′∧w”

⇒ ∃y” ∈ DY ,∃w” ∈ DW s.t. Acc(x′ | y” ∧ z′ ∧ w”) = 1

⇒ ∃y” ∈ DY s.t. Acc(x′ | y” ∧ z′) = 1 (from (ii))

⇒ ∃y” ∈ DY s.t. ∀w ∈ DW ,Acc(x′ | y” ∧ z′ ∧ w) = 1 (from (ii))

⇒ ∀w ∈ DW ,Acc(x′ | z′ ∧ w) = 1 (from (i))

⇒ Acc(x′ | z′ ∧ w′) = 1 (when W takes the particular instance w′).

This contradicts (iv).

Case 2: Acc(x′ | y′ ∧ z′ ∧ w′) = 1,

From (iii) Acc(x′ | z′) is either equal to −1 or 0.

• if Acc(x′ | z′) = −1 then Acc(x′ | z′ ∧ w′) = −1

(by following same steps as in Case 1)

This contradicts (i) since Acc(x′ | y′∧ z′∧w′) = 1 (by assumption) and Acc(x′ |
z′ ∧ w′) = −1.

• if Acc(x′ | z′) = 0

⇒ ∃x” 6=Π x′ ∈ DX s.t. x” ∧ z′ =Π x′ ∧ z′ and ∀x ∈ DX , x” ∧ z′ ≥Π x ∧ z′
⇒ ∃x” 6=Π x′ ∈ DX s.t. ∀x ∈ DX ,∀y ∈ DY ,∀w ∈ DW , x” ∧ z′ ≥Π x ∧ y ∧ z′ ∧ w
⇒ ∃x” 6=Π x′ ∈ DX ,∃y” ∈ DY ,∃w” ∈ DW s.t. ∀x ∈ DX ,

x” ∧ y” ∧ z′ ∧ w” ≥Π x ∧ y” ∧ z′ ∧ w”

⇒ ∃x” 6=Π x′ ∈ DX ,∃y” ∈ DY ,∃w” ∈ DW , s.t. Acc(x” | y” ∧ z′ ∧ w”) ≥ 0

⇒ ∃x” 6=Π x′ ∈ DX ,∃y” ∈ DY , s.t. Acc(x” | y” ∧ z′) ≥ 0 (from (ii))

⇒ ∃x” 6=Π x′ ∈ DX ,∃y” ∈ DY , s.t. ∀w ∈ DW ,Acc(x” | y” ∧ z′ ∧ w) ≥ 0

(from (ii))

⇒ (a) ∀w ∈ DW ,Acc(x” | z′ ∧ w) ≥ 0 (from (i))

Moreover,

Acc(x′ | y′ ∧ z′ ∧ w′) = 1

⇒ Acc(x′ | y′ ∧ z′) = 1 (from (ii))

⇒ ∀w ∈ DW ,Acc(x′ | y′ ∧ z′ ∧ w) = 1 (from (ii))

⇒ ∀w ∈ DW ,Acc(x′ | z′ ∧ w) = 1 (from (i))

⇒ ∀x 6=Π x′ ∈ DX ,∀w ∈ DW ,Acc(x | z′ ∧ w) = −1 (by definition of Acc)

Hence this contradicts (a) when X takes the particular instance x” 6=Π x′.

Case 3: Acc(x′ | y′ ∧ z′ ∧ w′) = −1,

From (iii) we have Acc(x′ | z′) is either equal to 0 or 1.

• if Acc(x′ | z′) = 0

⇒ ∀x ∈ DX , x
′ ∧ z′ ≥Π x ∧ z′
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⇒ ∀x ∈ DX ,∀y ∈ DY ,∀w ∈ DW , x
′ ∧ z′ ≥Π x ∧ y ∧ z′ ∧ w

⇒ ∃y” ∈ DY ,∃w” ∈ DW s.t. ∀x ∈ DX , x
′ ∧ y” ∧ z′ ∧ w” ≥Π x ∧ y” ∧ z′ ∧ w”

⇒ ∃y” ∈ DY ,∃w” ∈ DW , s.t. Acc(x′ | y” ∧ z′ ∧ w”) ≥ 0

⇒ ∃y” ∈ DY , s.t. Acc(x′ | z′ ∧ y”) ≥ 0 (from (ii))

⇒ ∃y” ∈ DY , s.t. ∀w ∈ DW ,Acc(x′ | y” ∧ z′ ∧ w) ≥ 0

(from (ii))

⇒ (b) ∀w ∈ DW ,Acc(x′ | z′ ∧ w) ≥ 0 (from (i))

Moreover,

Acc(x′ | y′ ∧ z′ ∧ w′) = −1

⇒ Acc(x′ | y′ ∧ z′) = −1 (from (ii))

⇒ ∀w ∈ DW ,Acc(x′ | y′ ∧ z′ ∧ w) = −1 (from (ii))

⇒ ∀w ∈ DW ,Acc(x′ | z′ ∧ w) = −1 (from (i))

Hence contradiction with (b).

• if Acc(x′ | z′) = 1 then Acc(x′ | z′ ∧w′) = 1 (by following same steps as in Case

1)

Hence, this contradicts (i) since Acc(x′ | y′ ∧ z′ ∧w′) = −1 (by assumption) and

Acc(x′ | z′ ∧ w′) = 1.

- Reverse-Decomposition property for IBP .

We want to prove that IBP (X ∪ Y,W | Z) ⇒ IBP (Y,W | Z) and IBP (X,W | Z).

We only prove that IBP (X ∪ Y,W | Z)⇒ IBP (X,W | Z)

(the proof of IBP (X ∪ Y,W | Z)⇒ IBP (Y,W | Z) is analogous).

This means that we want to prove that:

if (i) ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW ,Acc(x ∧ y | z ∧ w) = Acc(x ∧ y | z)
then (ii) ∀x ∈ DX , y ∈ DY , z ∈ DZ , w ∈ DW ,Acc(x | z ∧ w) = Acc(x | z).
Assume that (i) is true, and let us show that (ii) is also true.

Let us analyze the possible values of Acc(x | z):

Case 1: Acc(x | z) = 0

⇒ ∃x′ 6=Π x ∈ DX s.t. x ∧ z =Π x′ ∧ z and

∀x” ∈ DX , x ∧ z ≥Π x” ∧ z and x′ ∧ z ≥Π x” ∧ z.
⇒ ∃x′ 6=Π x ∈ DX , s.t. maxy”{x ∧ y” ∧ z} =Π maxy”{x′ ∧ y” ∧ z} and

∀x” ∈ DX ,maxy”{x ∧ y” ∧ z} =Π maxy”{x′ ∧ y” ∧ z} >Π maxy”{x” ∧ y” ∧ z}
⇒ ∃x′ 6=Π x ∈ DX ,∃y, y′ ∈ DY s.t. Acc(x ∧ y | z) = Acc(x′ ∧ y′ | z) = 0

(It is enough to take y and y′ such that x ∧ y ∧ z = maxy”{x ∧ y” ∧ z} and

x′ ∧ y′ ∧ z = maxy”{x′ ∧ y” ∧ z})
⇒ ∃x′ 6=Π x ∈ DX ,∃y, y′ ∈ DY s.t.

∀w ∈ DW ,Acc(x ∧ y | z ∧ w) = Acc(x′ ∧ y′ | z ∧ w) = 0 (from (i))

⇒ ∃x′ 6=Π x ∈ DX ,∃y, y′ ∈ DY s.t.

∀x” ∈ DX ,∀y” ∈ DY ,∀w ∈ DW , x∧ y ∧ z ∧w =Π x′ ∧ y′ ∧ z ∧w ≥Π x”∧ y”∧ z ∧w
⇒ ∃x′ 6= x ∈ DX ,∃y, y′ ∈ DY s.t.

∀x” ∈ DX ,∀w ∈ DW , x ∧ y ∧ z ∧ w =Π x′ ∧ y′ ∧ z ∧ w ≥Π maxy”{x” ∧ y” ∧ z ∧ w}
⇒ ∃x′ 6=Π x ∈ DX ,∃y, y′ ∈ DY s.t.

(a) ∀x” ∈ DX ,∀w ∈ DW , x ∧ y ∧ z ∧ w =Π x′ ∧ y′ ∧ z ∧ w ≥Π x” ∧ z ∧ w
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⇒ ∃x′ 6=Π x ∈ DX ,∃y, y′ ∈ DY s.t. ∀x” ∈ DX ,∀w ∈ DW ,

x ∧ y ∧ z ∧ w ≥Π x ∧ z ∧ w, (from (a) when x” =Π x)

x′ ∧ y′ ∧ z ∧ w ≥Π x′ ∧ z ∧ w (from (a) when x” =Π x′), and

x ∧ y ∧ z ∧ w =Π x′ ∧ y′ ∧ z ∧ w ≥Π x” ∧ z ∧ w (from (a))

⇒ ∃x′ 6=Π x ∈ DX ,∃y, y′ ∈ DY s.t. ∀x” ∈ DX ,∀w ∈ DW ,

x ∧ y ∧ z ∧ w =Π x ∧ z ∧ w,

x′ ∧ y′ ∧ z ∧ w =Π x′ ∧ z ∧ w and

x ∧ y ∧ z ∧ w =Π x′ ∧ y′ ∧ z ∧ w ≥Π x” ∧ z ∧ w
⇒ ∃x′ 6=Π x ∈ DX s.t. ∀x” ∈ DX ,∀w ∈ DW ,

x ∧ z ∧ w =Π x′ ∧ z ∧ w ≥Π x” ∧ z ∧ w
⇒ ∀w ∈ DW ,Acc(x | z ∧ w) = 0.

Case 2: Acc(x | z) = 1

⇒ ∀x′ 6=Π x ∈ DX , x ∧ z >Π x′ ∧ z
⇒ ∀x′ 6=Π x ∈ DX ,∃w′ ∈ DW s.t. x ∧ z ∧ w′ >Π x′ ∧ z ∧ w′
⇒ ∀x′ 6=Π x ∈ DX ,∃w′ ∈ DW s.t. ∀y ∈ DY we have x ∧ z ∧ w′ >Π x′ ∧ y ∧ z ∧ w′
⇒ ∀x′ 6=Π x ∈ DX ,∃w′ ∈ DW s.t. ∀y ∈ DY we have Acc(x′ ∧ y | z ∧ w′) = −1

⇒ ∀x′ 6=Π x ∈ DX ,∀y ∈ DY , Acc(x′ ∧ y | z) = −1 (from (i))

⇒ ∀x′ 6=Π x ∈ DX ,∀y ∈ DY ,∀w ∈ DW , Acc(x′ ∧ y | z ∧ w) = −1 (from (i))

⇒ ∀x′ 6=Π x ∈ DX ,∀y ∈ DY ,∀w ∈ DW , x′ ∧ y ∧ z ∧ w <Π x ∧ y ∧ z ∧ w
⇒ ∀x′ 6=Π x ∈ DX ,∀w ∈ DW ,maxy′{x′ ∧ y ∧ z ∧ w} <Π maxy′{x ∧ y ∧ z ∧ w}
⇒ ∀x′ 6=Π x ∈ DX ,∀w ∈ DW , x

′ ∧ z ∧ w <Π x ∧ z ∧ w
⇒ ∀x′ 6=Π x ∈ DX ,∀w ∈ DW ,Acc(x′ | z ∧ w) = −1

⇒ ∀w ∈ DW , Acc(x | z ∧ w) = 1.

Case 3: Acc(x | z) = −1

⇒ ∃x′ 6=Π x ∈ DX , x′ ∧ z >Π x ∧ z
⇒ ∃x′ 6=Π x ∈ DX ,∃w′ ∈ DW s.t. x′ ∧ z ∧ w′ >Π x ∧ z ∧ w′
⇒ ∃x′ 6=Π x ∈ DX ,∃y′ ∈ DY ,∃w′ ∈ DW s.t. x′ ∧ y′ ∧ z ∧ w′ >Π x ∧ z ∧ w′
⇒ ∃x′ 6=Π x ∈ DX ,∃y′ ∈ DY ,∃w′ ∈ DW s.t. ∀y ∈ DY we have

x′ ∧ y′ ∧ z ∧ w′ >Π x ∧ y ∧ z ∧ w′
⇒ ∀y ∈ DY ,∃w′ ∈ DW s.t. Acc(x ∧ y | z ∧ w′) = −1

⇒ ∀y ∈ DY ,Acc(x ∧ y | z) = −1 (from (i))

⇒ ∀y ∈ DY ,∀w ∈ DW ,Acc(x ∧ y | z ∧ w) = −1 (from (i))

⇒ ∀w ∈ DW ,Acc(x | z ∧ w) = −1.

Proof of Proposition 2

- Decomposition property for IPO.

We want to prove that IPO(X,Y ∪W | Z)⇒ IPO(X,Y | Z) and IPO(X,W | Z)

We only prove that IPO(X,Y ∪W | Z)⇒ IPO(X,Y | Z)

(the proof of IPO(X,Y ∪W | Z)⇒ IPO(X,W | Z) is analogous).
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Thus, we need to prove that:

if (i) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w
then (ii) ∀y ∈ DY ,∀z ∈ DZ :

∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z >Π xj ∧ y ∧ z.
Let us assume that (i) is true, and let us show that (ii) is also true.

Let z ∈ DZ and xi, xj ∈ DX , and assume that xi ∧ z >Π xj ∧ z
(resp. xi ∧ z =Π xj ∧ z)
⇒ ∀y ∈ DY ,∀w ∈ DW , xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w
(resp. xi ∧ y ∧ z ∧ w =Π xj ∧ y ∧ z ∧ w) (from (i))

⇒ ∀y ∈ DY ,maxw{xi ∧ y ∧ z ∧ w} >Π maxw{xj ∧ y ∧ z ∧ w}
(resp. maxw{xi ∧ y ∧ z ∧ w} =Π maxw{xj ∧ y ∧ z ∧ w})
⇒ ∀y ∈ DY , xi ∧ y ∧ z >Π xj ∧ y ∧ z (resp. xi ∧ y ∧ z =Π xj ∧ y ∧ z).

- Weak union property for IPO.

We want to prove that IPO(X,Y ∪W | Z)⇒ IPO(X,W | Z ∪ Y ).

Thus, we need to prove that:

if (i) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w
then (ii) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ y ∧ z >Π xj ∧ y ∧ z iff xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w.

Let us assume that (i) is true, and let us show that (ii) is also true.

Let xi, xj ∈ DX , y′ ∈ DY and w′ ∈ DW and z ∈ DZ ,

Assume that xi∧y′∧z∧w′ >Π xj∧y′∧z∧w′ (resp. xi∧y′∧z∧w′ =Π xj∧y′∧z∧w′)
⇒ ∀z ∈ DZ , xi ∧ z >Π xj ∧ z (resp. xi ∧ z =Π xj ∧ z) (from (i))

⇒ ∀y ∈ DY ,∀w ∈ DW , xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w
(resp. xi ∧ y ∧ z ∧ w =Π xj ∧ y ∧ z ∧ w) (from (i))

⇒ ∀y ∈ DY ,maxw{xi ∧ y ∧ z ∧ w} >Π maxw{xj ∧ y ∧ z ∧ w}
(resp. maxw{xi ∧ y ∧ z ∧ w} =Π maxw{xj ∧ y ∧ z ∧ w})
⇒ ∀y ∈ DY , xi ∧ y ∧ z >Π xj ∧ y ∧ z (resp. xi ∧ y ∧ z =Π xj ∧ y ∧ z)
⇒ xi ∧ y′ ∧ z >Π xj ∧ y′ ∧ z (resp. xi ∧ y′ ∧ z =Π xj ∧ y′ ∧ z) (when Y takes the

particular instance y′)

- Contraction property for IPO.

We want to prove that IPO(X,W | Z∪Y ) and IPO(X,Y | Z)⇒ IPO(X,Y ∪W | Z).

Thus, we need to prove that:

if (i) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ y ∧ z >Π xj ∧ y ∧ z iff xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w and

(ii) ∀y ∈ DY ,∀z ∈ DZ :

∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z >Π xj ∧ y ∧ z
then (iii) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :
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∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z iff xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w.
Let us assume that (i) and (ii) are true, and let us show that (iii) is also true.

Let xi, xj ∈ DX and ∀z ∈ DZ .

Assume that xi ∧ z >Π xj ∧ z
(resp. xi ∧ z =Π xj ∧ z)
⇒ ∀y ∈ DY , xi ∧ y ∧ z >Π xj ∧ y ∧ z
(resp. xi ∧ y ∧ z =Π xj ∧ y ∧ z) (from (ii))

⇒ ∀y ∈ DY ,∀w ∈ DW , xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w
(resp. xi ∧ y ∧ z ∧ w =Π xj ∧ y ∧ z ∧ w) (from (i)).

- Intersection property for IPO.

We want to prove that

IPO(X,Y | Z ∪W ) and IPO(X,W | Z ∪ Y )⇒ IPO(X,Y ∪W | Z)

Thus we need to prove that:

if (i) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w iff xi ∧ z ∧ w >Π xj ∧ z ∧ w and

(ii) ∀z ∈ DZ ,∀y ∈ DY ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w iff xi ∧ y ∧ z >Π xj ∧ y ∧ z
then (iii) ∀z ∈ DZ ,∀y ∈ DY ,∀w ∈ DW :

∀xi, xj ∈ DX , xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w iff xi ∧ z >Π xj ∧ z
Let us assume that (i) and (ii) are true, and that (iii) is false.

This means that: ∃x′, x” ∈ DX ,∃y′ ∈ DY ,∃z′ ∈ DZ ,∃w′ ∈ DW s.t.

x′ ∧ z′ >Π x” ∧ z′ (resp. x′ ∧ z′ =Π x” ∧ z′)
but

x” ∧ y′ ∧ z′ ∧ w′ ≥Π x′ ∧ y′ ∧ z′ ∧ w′ (resp. x′ ∧ y′ ∧ z′ ∧ w′ 6=Π x” ∧ y′ ∧ z′ ∧ w′)
⇒ x” ∧ y′ ∧ z′ ≥Π x′ ∧ y′ ∧ z′ (resp. x′ ∧ y′ ∧ z′ 6=Π x” ∧ y′ ∧ z′) (from (ii))

⇒ ∀w ∈ DW , x”∧y′∧z′∧w ≥Π x′∧y′∧z′∧w (resp. x′∧y′∧z′∧w 6=Π x”∧y′∧z′∧w)

(from (ii))

⇒ ∀w ∈ DW , x”∧ z′ ∧w ≥Π x′ ∧ z′ ∧w (resp. x′ ∧ z′ ∧w 6=Π x”∧ z′ ∧w ) (from (i))

⇒ maxw{x” ∧ z′ ∧ w} ≥Π maxw{x′ ∧ z′ ∧ w}
(resp. maxw{x′ ∧ z′ ∧ w} 6=Π maxw{x” ∧ z′ ∧ w})
⇒ x” ∧ z′ >Π x′ ∧ z′ (resp. x′ ∧ z′ 6=Π x” ∧ z′)
Hence contradiction.

- Reverse-Decomposition property for IPO.

We want to prove that IPO(X ∪ Y,W | Z)⇒ IPO(Y,W | Z) and IPO(X,W | Z).

We only prove that IPO(X ∪ Y,W | Z)⇒ IPO(Y,W | Z)

(the proof of IPO(X ∪ Y,W | Z)⇒ IPO(X,W | Z) is analogous).

Thus, we need to prove that:

if (i) ∀z ∈ DZ ,∀w ∈ DW :

∀xk, xl ∈ DX ,∀ym, yn ∈ DY , xk ∧ ym ∧ z >Π xl ∧ yn ∧ z iff
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xk ∧ ym ∧ z ∧ w >Π xl ∧ yn ∧ z ∧ w
then (ii) ∀z ∈ DZ ,∀w ∈ DW :

∀yk, yl ∈ DY , yk ∧ z >Π yl ∧ z iff yk ∧ z ∧ w >Π yl ∧ z ∧ w.

Let us assume that (i) is true and let us show that (ii) is also true.

Let z ∈ DZ and let yk, yl ∈ DY s.t. yk ∧ z >Π yl ∧ z (resp. yk ∧ z =Π yl ∧ z).
Let xi be one of the instances of X which maximizes yk ∧ z and xj one of the

instances of X which maximizes yl ∧ z.
Namely xi ∧ yk ∧ z =Π maxx{x ∧ yk ∧ z} and xj ∧ yl ∧ z =Π maxx{x ∧ yl ∧ z}
Then:

xi ∧ yk ∧ z >Π xj ∧ yl ∧ z (resp. xi ∧ yk ∧ z =Π xj ∧ yl ∧ z)
⇒ ∀w ∈ DW , xi ∧ yk ∧ z ∧ w >Π xj ∧ yl ∧ z ∧ w
(resp. ∀w ∈ DW , xi ∧ yk ∧ z ∧ w =Π xj ∧ yl ∧ z ∧ w) (from (i))

⇒ ∀w ∈ DW ,maxx{x∧ yk ∧ z ∧w} =Π xi ∧ yk ∧ z ∧w >Π maxx{x∧ yl ∧ z ∧w} =

xj ∧ yl ∧ z ∧ w (resp. ∀w ∈ DW ,maxx{x ∧ yk ∧ z ∧ w} =Π xi ∧ yk ∧ z ∧ w =Π

maxx{x ∧ yl ∧ z ∧ w} =Π xj ∧ yl ∧ z ∧ w)

⇒ ∀w ∈ DW , yk ∧ z ∧ w >Π yl ∧ z ∧ w (resp. ∀w ∈ DW , yk ∧ z ∧ w =Π yl ∧ z ∧ w).

- Reverse-Weak union property for IPO.

We want to prove that IPO(X ∪ Y,W | Z)⇒ IPO(X,W | Y ∪ Z).

Thus, we need to prove that:

if (i) ∀z ∈ DZ ,∀w ∈ DW : ∀xk, xl ∈ DX ,∀ym, yn ∈ DY ,

xk ∧ ym ∧ z >Π xl ∧ yn ∧ z iff xk ∧ ym ∧ z ∧ w >Π xl ∧ yn ∧ z ∧ w
then (ii) ∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW : ∀xi, xj ∈ DX ,

xi ∧ y ∧ z >Π xj ∧ y ∧ z iff xi ∧ y ∧ z ∧ w >Π xj ∧ y ∧ z ∧ w

The proof is immediate.

Indeed, ∃xi, xj ∈ DX , ∃y′ ∈ DY and ∃z′ ∈ DZ s.t. xi ∧ y′ ∧ z′ >Π xj ∧ y′ ∧ z′
(resp. xi ∧ y′ ∧ z′ =Π xj ∧ y′ ∧ z′).
This means that ∀w ∈ DW , xi ∧ y′ ∧ z′ ∧ w >Π xj ∧ y′ ∧ z′ ∧ w
(resp. xi ∧ y′ ∧ z′ ∧ w =Π xj ∧ y′ ∧ z′ ∧ w) (from (i)).

Proof of Proposition 5

- Decomposition property for IPT .

We want to prove that

IPT (X,Y ∪W | Z)⇒ IPT (X,Y | Z) and IPT (X,W | Z).

We only prove that IPT (X,Y ∪W | Z)⇒ IPT (X,Y | Z)

(the proof of IPT (X,Y ∪W | Z)⇒ IPT (X,W | Z) is analogous).

Suppose that this relation is false. Namely, we have:

(i) ∀x ∈ DX ,∀y ∈ DY ,∀w ∈ DW ,

Acc(x ∧ y ∧ w | z) = min(Acc(x | z),Acc(y ∧ w | z))
but (ii) ∃x′ ∈ DX ,∃y′ ∈ DY ,∃z′ ∈ DZ s.t.

Acc(x′ ∧ y′ | z′) 6= min(Acc(x′ | z′),Acc(y′ | z′)).
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Using Lemma 1, the unique case where this inequality holds is when:

(a) Acc(x′ ∧ y′ | z′) = −1, (b) Acc(x′ | z′) = 0 and (c) Acc(y′ | z′) = 0.

The equality (c) implies that ∃y” 6=Π y′ ∈ DY s.t. y” ∧ z′ =Π y′ ∧ z′ and y′ and y”

are accepted instances of Y in the context of z′.

Namely, ∀y ∈ DY , y” ∧ z′ ≥Π y ∧ z′ and y′ ∧ z′ ≥Π y ∧ z′.
By definition we have:

y′ ∧ z′ =Π maxw{y′ ∧ z′ ∧ w}
y” ∧ z′ =Π maxw{y” ∧ z′ ∧ w}
Let wi, wj ∈ DW s.t. maxw{y′ ∧ z′ ∧ w} =Π y′ ∧ z′ ∧ wi and

maxw{y” ∧ z′ ∧ w} =Π y” ∧ z′ ∧ wj
⇒ y′ ∧ z′ ∧ wi =Π y” ∧ z′ ∧ wj (since y′ ∧ z′ =Π y” ∧ z′)
⇒ Acc(y′ ∧ wi | z′) = 0 (since y′ ∧ z′ ∧ wi =Π maxw{y′ ∧ z′ ∧ w} and

y” ∧ z′ ∧ wj =Π maxw{y” ∧ z′ ∧ w} and y” 6=Π y′)

Moreover, (a) implies that ∃xk ∈ DX ,∃yk ∈ DY s.t. xk ∧ yk ∧ z′ >Π x′ ∧ y′ ∧ z′
⇒ ∃xk ∈ DX ,∃yk ∈ DY ,∃wk ∈ DW s.t. xk ∧ yk ∧ z′ ∧ wk >Π x′ ∧ y′ ∧ z′
⇒ ∃xk ∈ DX ,∃yk ∈ DY ,∃wk ∈ DW s.t. ∀w ∈ DW , xk∧yk∧z′∧wk >Π x′∧y′∧z′∧w
⇒ ∃xk ∈ DX ,∃yk ∈ DY ,∃wk ∈ DW s.t. xk ∧ yk ∧ z′ ∧ wk >Π x′ ∧ y′ ∧ z′ ∧ wi
(when W takes wi as particular value)

⇒ Acc(x′ ∧ y′ ∧ wi | z′) = −1

⇒ Acc(x′ ∧ y′ ∧ wi | z′) 6= min(Acc(x′ | z′),Acc(y′ ∧ wi | z′)) = 0

Hence contradiction with (i).

- Contraction property for IPT .

We want to prove that IPT (X,W | Z∪Y ) and IPT (X,Y | Z)⇒ IPT (X,Y ∪W | Z)

Suppose that this relation is false. This means that we have:

(i) ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,∀w ∈ DW ,

Acc(x ∧ w | y ∧ z) = min(Acc(x | y ∧ z),Acc(w | y ∧ z))
(ii) ∀x ∈ DX ,∀y ∈ DY ,∀z ∈ DZ ,Acc(x ∧ y | z) = min(Acc(x | z),Acc(y | z))
but

(iii) ∃x′ ∈ DX ,∃y′ ∈ DY ,∃z′ ∈ DZ ,∃w′ ∈ DW s.t.

Acc(x′ ∧ y′ ∧ w′ | z′) 6= min(Acc(x′ | z′),Acc(y′ ∧ w′ | z′)).

Using Lemma 1, the unique case where this inequality holds is when

(a) Acc(x′ ∧ y′ ∧ w′ | z′) = −1, (b) Acc(x′ | z′) = 0 and (c) Acc(y′ ∧ w′ | z′) = 0.

Let us analyze the three possible values for Acc(x′ ∧ y′ | z′):

• Case 1: Acc(x′ ∧ y′ | z′) = −1

Using (ii) we have Acc(x′ | z′) = −1.

Hence, this contradicts (b).

• Case 2: Acc(x′ ∧ y′ | z′) = 1

⇒ Acc(y′ | z′) = 1 and Acc(x′ | z′) = 1 (from Lemma 2)

Hence this contradicts (b).

• Case 3: Acc(x′ ∧ y′ | z′) = 0
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From (a) we have:

∃x” ∈ DX ,∃y” ∈ DY ,∃w” ∈ DW s.t x” ∧ y” ∧ z′ ∧ w” >Π x′ ∧ y′ ∧ z′ ∧ w′
From (c) we have:

∀y ∈ DY ,∀w ∈ DW , y
′ ∧ z′ ∧ w′ ≥Π y ∧ z′ ∧ w

⇒ y′ ∧ z′ ∧ w′ ≥Π y” ∧ z′ ∧ w”

(when Y and W takes y” and w” as particular values)

⇒ ∃x ∈ DX s.t. x∧y′∧z′∧w′ ≥Π y”∧z′∧w” ≥Π x”∧y”∧z′∧w” >Π x′∧y′∧z′∧w′
(since by definition y” ∧ z′ ∧ w” ≥Π x” ∧ y” ∧ z′ ∧ w”)

⇒ ∃x ∈ DX s.t. x ∧ y′ ∧ z′ ∧ w′ >Π x′ ∧ y′ ∧ z′ ∧ w′
⇒ Acc(x′ ∧ w′ | y′ ∧ z′) = −1

Moreover Acc(x′ ∧ y′ | z′) = 0 implies that Acc(x′ | y′ ∧ z′) ≥ 0 and

(c) implies that Acc(w′ | y′ ∧ z′) ≥ 0.

Hence, contradiction with (i).

Proof of Proposition 7

- Decomposition property for Ileximax.

We want to prove that

Ileximax(X,Y ∪W | Z)⇒ Ileximax(X,Y | Z) and Ileximax(X,W | Z).

We only prove that if Ileximax(X,Y ∪W | Z) is true then Ileximax(X,Y | Z) is true

(the proof of Ileximax(X,Y ∪W | Z)⇒ Ileximax(X,W | Z) is analogous).

Suppose that

(i) Ileximax(X,Y ∪W | Z) is true

but not Ileximax(X,Y | Z).

Let us consider the two cases where Ileximax(X,Y | Z) is falsified:

Case 1: ∃x, x′ ∈ DX ,∃y, y′ ∈ DY ,∃z′ ∈ DZ s.t.

(a) x ∧ y ∧ z′ >Π x′ ∧ y′ ∧ z′ but

(i1) max(x ∧ z′, y ∧ z′) <Π max(x′ ∧ z′, y′ ∧ z′) or

(i2) max(x ∧ z′, y ∧ z′) =Π max(x′ ∧ z′, y′ ∧ z′) and

min(x ∧ z′, y ∧ z′) ≤Π min(x′ ∧ z′, y′ ∧ z′)

By definition we have x ∧ y ∧ z′ =Π maxw{x ∧ y ∧ z′ ∧ w} and

x′ ∧ y′ ∧ z′ =Π maxw{x′ ∧ y′ ∧ z′ ∧ w}
Let wi be one of the instances of W which maximizes x ∧ y ∧ z′ and wj be one of

the instances of W which maximizes x′ ∧ y′ ∧ z′. Namely,

x ∧ y ∧ z′ =Π x ∧ y ∧ z′ ∧ wi and x′ ∧ y′ ∧ z′ =Π x′ ∧ y′ ∧ z′ ∧ wj

From (a) we have x ∧ y ∧ z′ ∧ wi >Π x′ ∧ y′ ∧ z′ ∧ wj then from (i) this rela-

tion implies:

(ii1) max(x ∧ z′, y ∧ z′ ∧ wi) >Π max(x′ ∧ z′, y′ ∧ z′ ∧ wj) or

(ii2) max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x′ ∧ z′, y′ ∧ z′ ∧ wj) and

min(x ∧ z′, y ∧ z′ ∧ wi) >Π min(x′ ∧ z′, y′ ∧ z′ ∧ wj)
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Then it is enough to show that y ∧ z′ ∧ wi =Π y ∧ z′ and y′ ∧ z′ ∧ wj =Π y′ ∧ z′ in

order to show that (i1) and (i2) contradict (ii1) and (ii2).

Let us prove that y ∧ z′ ∧ wi =Π y ∧ z′
(the proof of y′ ∧ z′ ∧ wj =Π y′ ∧ z′ is analogous).

By definition we have :

(b) y ∧ z′ =Π maxw{y ∧ z′ ∧ w} =Π max(y ∧ z′ ∧ wi,maxw′
i 6=Πwi{y ∧ z′ ∧ w′i})

Moreover, recall that wi maximizes x ∧ y ∧ z′ then ∀w′i ∈ DW s.t. w′i 6=Π wi:

x ∧ y ∧ z′ ∧ wi ≥Π x ∧ y ∧ z′ ∧ w′i. Then, for a given w′i 6=Π wi

• if x ∧ y ∧ z′ ∧ wi >Π x ∧ y ∧ z′ ∧ w′i, then from (i), we can distinguish two cases:

(a) either max(x ∧ z′, y ∧ z′ ∧ wi) >Π max(x ∧ z′, y ∧ z′ ∧ w′i)
⇒ max(x∧ z′, y∧ z′ ∧wi) >Π x∧ z′ and max(x∧ z′, y∧ z′ ∧wi) >Π y∧ z′ ∧w′i
⇒ y ∧ z′ ∧ wi >Π x ∧ z′ (otherwise x ∧ z′ >Π x ∧ z′ which is impossible)

⇒ y ∧ z′ ∧ wi >Π y ∧ z′ ∧ w′i
(b) or max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x ∧ z′, y ∧ z′ ∧ w′i) and

min(x ∧ z′, y ∧ z′ ∧ wi) >Π min(x ∧ z′, y ∧ z′ ∧ w′i)
⇒ min(x∧ z′, y ∧ z′ ∧w′i) <Π x∧ z′ and min(x∧ z′, y ∧ z′ ∧w′i) <Π y ∧ z′ ∧wi
⇒ y ∧ z′ ∧ w′i <Π x ∧ z′ (otherwise x ∧ z′ <Π x ∧ z′ which is impossible)

⇒ y ∧ z′ ∧ wi >Π y ∧ z′ ∧ w′i
(Indeed, x ∧ z′ >Π y ∧ z′ ∧ w′i and

max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x ∧ z′, y ∧ z′ ∧ w′i)
⇒ max(x ∧ z′, y ∧ z′ ∧ wi) = x ∧ z′
⇒ x ∧ z′ ≥Π y ∧ z′ ∧ wi
Hence, min(x ∧ z′, y ∧ z′ ∧ wi) >Π min(x ∧ z′, y ∧ z ∧ w′i)
⇒ y ∧ z′ ∧ wi >Π y ∧ z′ ∧ w′i)

• if x ∧ y ∧ z′ ∧ wi =Π x′ ∧ y′ ∧ z′ ∧ w′i, then from(i) we deduce that:

(j1) max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x ∧ z′, y ∧ z′ ∧ w′i) and

(j2) min(x ∧ z′, y ∧ z′ ∧ wi) =Π min(x ∧ z′, y ∧ z′ ∧ w′i)
Let a = x ∧ z′ and b = y ∧ z′ ∧ wi and let us show that (j1) + (j2)⇒ b = c:

(a) if a > b

i. if a > c then (j2)⇒ b = c

ii. if a < c then (j1)⇒ a = c and (j2)⇒ b = a

which implies that b = c

iii. a = c then (j2)⇒ b = c

(b) if a < b

i. if a > c then (j1)⇒ b = a and (j2)⇒ a = c

which implies that b = c

ii. if a < c then (j1)⇒ b = c

iii. a = c then (j1)⇒ b = c
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(c) if a = b

i. if a > c then (j2)⇒ b = c

ii. if a < c then (j1)⇒ b = c

iii. a = c then (j1)⇒ b = c

This means that y ∧ z′ ∧ wi =Π y ∧ z′ ∧ w′i.

Thus, it is clear that ∀w′i 6=Π wi, y∧z′∧wi ≥Π y∧z′∧w′i, so from (b) we deduce

that y ∧ z′ =Π y ∧ z′ ∧ wi.

Case 2: ∃x, x′ ∈ DX ,∃y, y′ ∈ DY s.t. (c) x ∧ y ∧ z′ =Π x′ ∧ y′ ∧ z′ but

(i1) max(x ∧ z′, y ∧ z′) 6=Π max(x′ ∧ z′, y′ ∧ z′) or

(i2) min(x ∧ z′, y ∧ z′) 6=Π min(x′ ∧ z′, y′ ∧ z′)

From (c) we have x ∧ y ∧ z′ ∧ wi =Π x′ ∧ y′ ∧ z′ ∧ wj where wi is one of the

instances of W which maximizes x ∧ y ∧ z′ and wj is one of the instances of W

which maximizes x′ ∧ y′ ∧ z′.
From (i), x ∧ y ∧ z′ ∧ wi =Π x′ ∧ y′ ∧ z′ ∧ wj implies:

(ii1) max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x′ ∧ z′, y′ ∧ z′ ∧ wj) and

(ii2) min(x ∧ z′, y ∧ z′ ∧ wi) =Π min(x′ ∧ z′, y′ ∧ z′ ∧ wj).
Moreover, we have shown above that y∧z′∧wi =Π y∧z′ and that y′∧z′∧wj =Π y′∧z′
then (i1) and (i2) contradict (ii1) and (ii2).

- Decomposition property for Ileximin.

We want to prove that

Ileximin(X,Y | Z ∪W )⇒ Ileximin(X,Y | Z) and Ileximin(X,W | Z).

We only prove that (i) Ileximin(X,Y | Z ∪W ) is true, then Ileximin(X,Y | Z) is

true (the proof of (i) Ileximin(X,Y | Z ∪W )⇒ Ileximin(X,W | Z) is analogous).

Suppose that Ileximin(X,Y ∪W | Z) is true but not Ileximin(X,Y | Z).

Let us consider the two cases where Ileximin(X,Y | Z) is falsified:

Case 1: ∃x, x′ ∈ DX ,∃y, y′ ∈ DY ,∃z′ ∈ DZ s.t.

(a) x ∧ y ∧ z′ >Π x′ ∧ y′ ∧ z′ but

(i1) min(x ∧ z′, y ∧ z′) <Π min(x′ ∧ z′, y′ ∧ z′) or

(i2) min(x ∧ z′, y ∧ z′) =Π min(x′ ∧ z′, y′ ∧ z′) and

max(x ∧ z′, y ∧ z′) ≤Π max(x′ ∧ z′, y′ ∧ z′)

By definition we have x ∧ y ∧ z′ =Π maxw{x ∧ y ∧ z′ ∧ w} and

x′ ∧ y′ ∧ z′ =Π maxw{x′ ∧ y′ ∧ z′ ∧ w}
Let wi be one of the instances of W which maximizes x ∧ y ∧ z′ and wj be one of

the instances of W which maximizes x′ ∧ y′ ∧ z′, namely:

x ∧ y ∧ z′ =Π x ∧ y ∧ z′ ∧ wi and x′ ∧ y′ ∧ z′ =Π x′ ∧ y′ ∧ z′ ∧ wj From (a) we have
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x ∧ y ∧ z′ ∧ wi >Π x′ ∧ y′ ∧ z′ ∧ wj then from (i) this relation implies:

(ii1) max(x ∧ z′, y ∧ z′ ∧ wi) >Π max(x′ ∧ z′, y′ ∧ z′ ∧ wj) or

(ii2) max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x′ ∧ z′, y′ ∧ z′ ∧ wj) and

min(x ∧ z′, y ∧ z′ ∧ wi) >Π min(x′ ∧ z′, y′ ∧ z′ ∧ wj)

Then it is enough to show that y ∧ z′ ∧wi =Π y ∧ z′ ∧ z and y′ ∧ z′ ∧wj =Π y′ ∧ z′
in order to prove that (i1) and (i2) contradict (ii1) and (ii2).

Let us prove that y ∧ z′ ∧ wi =Π y ∧ z′
(the proof of y′ ∧ z′ ∧ wj =Π y′ ∧ z′ is analogous).

By definition we have :

(b) y ∧ z′ =Π maxw{y ∧ z′ ∧ w} =Π max(y ∧ z′ ∧ wi,maxw′
i 6=Πwi{y ∧ z′ ∧ w′i})

Moreover wi maximizes x ∧ y ∧ z′ then ∀w′i ∈ DW s.t. w′i 6=Π wi:

x ∧ y ∧ z′ ∧ wi ≥Π x ∧ y ∧ z′ ∧ w′i. Then,

• if x ∧ y ∧ z′ ∧ wi >Π x ∧ y ∧ z′ ∧ w′i, then from (i) we can distinguish two cases:

(a) either min(x ∧ z′, y ∧ z′ ∧ wi) >Π min(x ∧ z′, y ∧ z′ ∧ w′i)
⇒ min(x∧ z′, y∧ z′∧w′i) <Π x∧ z′ and min(x∧ z′, y∧ z′∧w′i) <Π y∧ z′∧w′i
⇒ y ∧ z′ ∧ w′i <Π x ∧ z′ (otherwise x ∧ z′ <Π x ∧ z′)
⇒ y ∧ z′ ∧ wi >Π y ∧ z′ ∧ w′i

(b) or min(x ∧ z′, y ∧ z′ ∧ wi) =Π min(x ∧ z′, y ∧ z′ ∧ w′i) and

max(x ∧ z′, y ∧ z′ ∧ wi) >Π max(x ∧ z′, y ∧ z′ ∧ w′i)
⇒ max(x∧z′, y∧z′∧wi) >Π x∧z′ and max(x∧z′, y∧z′∧wi) >Π y∧z′∧w′i
⇒ y ∧ z′ ∧ wi >Π x ∧ z′ (otherwise x ∧ z′ >Π x ∧ z′)
⇒ y ∧ z′ ∧ wi >Π y ∧ z′ ∧ w′i

• if x ∧ y ∧ z′ ∧ wi =Π x′ ∧ y′ ∧ z′ ∧ w′i, then from (i) we deduce that:

min(x ∧ z′, y ∧ z′ ∧ wi) =Π min(x ∧ z′, y ∧ z′ ∧ w′i) and

max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x ∧ z′, y ∧ z′ ∧ w′i)
⇒ y ∧ z′ ∧ wi =Π y ∧ z′ ∧ w′i (in the same manner than in the previous proof)

Thus, it is clear that ∀w′i 6=Π wi, y∧z′∧wi ≥Π y∧z′∧w′i, so from (b) we deduce
that y ∧ z′ =Π y ∧ z′ ∧ wi.

Case 2: ∃x, x′ ∈ DX ,∃y, y′ ∈ DY ,∃z′ ∈ DZ s.t.
(b) x ∧ y ∧ z′ =Π x′ ∧ y′ ∧ z′ but
(i1) min(x ∧ z′, y ∧ z′) 6=Π min(x′ ∧ z′, y′ ∧ z′) or
(i2) max(x ∧ z′, y ∧ z′) 6=Π max(x′ ∧ z′, y′ ∧ z′)

From (b) we have x ∧ y ∧ z′ ∧ wi =Π x′ ∧ y′ ∧ z′ ∧ wj where wi is one of the
instances of W which maximizes x ∧ y ∧ z′ and wj is one of the instances of W
which maximizes x′ ∧ y′ ∧ z′.
From (i) x ∧ y ∧ z′ ∧ wi =Π x′ ∧ y′ ∧ z′ ∧ wj implies:
(ii1) min(x ∧ z′, y ∧ z′ ∧ wi) =Π min(x′ ∧ z′, y′ ∧ z′ ∧ wj) and
(ii2) max(x ∧ z′, y ∧ z′ ∧ wi) =Π max(x′ ∧ z′, y′ ∧ z′ ∧ wj).
Moreover, we have shown above that y∧z′∧wi =Π y∧z′ and that y′∧z′∧wj =Π y′∧z′
then (i1) and (i2) contradict (ii1) and (ii2).
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