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Abstract

This thesis focuses on the identification of non-disjoint groups from unlabeled data, referred

to as Overlapping Clustering, with a special emphasis on overlapping methods based on the parti-

tional approach. Overlapping clustering has the characteristic that an object could be assigned to

several groups which offers a richer model for fitting existing structures in several applications re-

quiring non-exclusive partitioning. In this context, we firstly propose two methods, KOKMI and

KOKMII, which are based on kernel methods in order to look for overlapping clusters with both

linear and nonlinear separations. The identification of nonlinear separations becomes a necessary

requirement given that data structuring in real life applications are usually complex. Next, the

thesis goes beyond the control of the size of overlaps between clusters given that this size is not

unique and depends on the considered application. We propose a generic overlapping clustering

model with overlap regulation which supports different instantiations able to restrict, to regulate

or to auto-control the overlapping boundaries between clusters. The third contribution of this

thesis deals with the identification of non-disjoint groups from textual documents. We designed a

kernel based method, referred to as KOKM based WSK, using the Word Sequence Kernel as sim-

ilarity measure between documents. Proposed methods are integrated in the software Weka4OC

offering for researchers and developers working on overlapping clustering the possibility to build,

to visualize and to evaluate non-disjoint partitioning.

Key words: overlapping clustering, non-disjoint partitioning, multi-labeled data, size of

overlaps, nonlinear separations, kernel methods, overlap regulation.



Résumé

La présente thèse porte sur l’identification des groupes non-disjoints à partir de données

non étiquetées, appelée classification recouvrante, avec un intért particulier sur les méthodes

recouvrantes basées sur le principe de partitionnement. Ce type de classification permet à un objet

dappartenir à la fois à plusieurs groupes offrant ainsi un modèle plus riche pour des applications

nécessitant une organisation non-exclusive des données. Dans ce cadre, nous proposons en premier

lieu deux méthodes, KOKMI et KOKMII, basées sur les méthodes de noyaux et capables de

produire des recouvrements de classes ayant des séparations aussi bien linéaires que non-linéaires.

Lidentification des séparations non-linéaires savère nécessaire vu que les structurations des données

dans les applications réelles sont généralement complexes. La deuxième contribution de cette

thèse concerne la capacité à contrôler la taille des intersections entre les classes puisque cette taille

dépend de lapplication concernée. Nous proposons un modèle générique avec recouvrement de

classes offrant différentes instances capables de restreindre, de régler ou d’auto-ajuster les zones

de chevauchement entre les classes. La troisième contribution porte sur lorganisation automatique

des documents textuels en groupes non-disjoints. Nous proposons la méthode KOKM based WSK

utilisant le noyau de séquence de mots comme mesure de similarité entre les documents. Les

méthodes proposées sont intégrées dans le logiciel Weka4OC permettant ainsi, aux chercheurs de

la communauté de classification recouvrante, la possibilité de construire, de visualiser et d’évaluer

des regroupements non-disjoints.

Mots clés: classification recouvrante, partitionnement non-disjoints, données avec multi-

labels, taille des chevauchements, séparations non-linéaires, méthodes à noyaux, ajustement des

recouvrements.
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Introduction

Given the explosion of data available from different sources such as web, scientific re-

searches, companies and social networks, developing methods for analyzing data efficiently

has become increasingly important. In this way, clustering is considered as an interesting

technique in data mining and pattern recognition to predict and to summarize data. It

has been applied successfully in many fields such as market segmentation (DeSarbo and

Cron 1988; Hattum and Hoijtink 2009), social network analysis (Wang and Fleury 2011;

Pérez-Suárez et al. 2013), document classification (Aliguliyev 2009; Liu et al. 2011),

etc. Clustering aims to group similar observations into the same group and dissimilar

observations into different groups. For example, given the task of clustering animals, one

might group them together by type resulting in groups of mammals, reptiles and amphib-

ians; or alternatively by size resulting in small-size and large-size groups. Typically, any

particular dataset does not have a uniquely correct clustering, and the desired clustering

may depend on the particular application.

The problem of clustering data has led to many methods which are widely used across

many fields. Unfortunately, while clustering methods are an interesting tool for many

applications, they are actually quite limited. Clustering methods traditionally assume

that each observation belongs to one and only one cluster leading to k exhaustive and

disjoint clusters explaining the data. In many situations the data being modeled can have

a much richer and more complex hidden representation than this disjoint partitioning.

For example, there may be overlapping regions where observations actually belong to

multiple clusters. Solutions to this problem contribute to solve many real applications

that require to find overlapping regions in order to fit the dataset structure. For example,
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in social network analysis, community extraction algorithms need to detect overlapping

clusters where an actor can belong to multiple communities (Tang and Liu 2009; Wang

et al. 2010; Fellows et al. 2011). In video classification, overlapping clustering is a

necessary requirement where videos have potentially multiple genres (Snoek et al. 2006).

In emotion detection, overlapping clustering methods need to detect different emotions

for a specific piece of music (Wieczorkowska et al. 2006). In text clustering, learning

methods should be able to group document, which discuss more than one theme, into

several groups (Gil-Garćıa and Pons-Porrata 2010; Pérez-Suárez et al. 2013), etc. A

trend in designing clustering methods called “overlapping clustering” has tried to solve

these problems which have arisen naturally.

In fact, overlapping clustering is based on the assumption that an observation may

belong to one or several clusters. In this cluster configuration, obtained groups are usually

non-disjoints and are called covers or clusters. Several overlapping clustering methods

based on hierarchical (Diday 1984; Bertrand and Janowitz 2003), graph (Suárez et al.

2009; Fellows et al. 2011; Hasan et al. 2011; Pérez-Suárez et al. 2013), generative

(Banerjee et al. 2005; Heller and Ghahramani 2007; Fu and Banerjee 2008), correlation

(Bonchi et al. 2011; Bonchi et al. 2013) and partitional (Mirkin 1987; Mirkin 1990; Depril

et al. 2008; Masson and Denoeux 2008) approaches are proposed in the literature. Our

work distinguishes from this body of research as it is developed within partitional methods,

especially those based on k-means algorithm (MacQueen 1967; Jain 2010). A category

of these methods extends results of uncertain partitioning methods, such as results of

fuzzy c-means, possiblistic c-means (Krishnapuram and Keller 1993) and evidential c-

means (Masson and Denoeux 2008) to obtain overlapping clusters. These methods need a

post-processing treatment to generate the final overlapping clusters either by thresholding

clusters memberships or by maximizing memberships evidence. More perfective methods

(Cleuziou 2008; Cleuziou 2009; Depril et al. 2008) are based on the generalization of

the optimized criterion of k-means to look for optimal covers. As opposed to uncertain

partitioning methods, these methods produce hard overlapping clusters and do not need

any post processing treatment.
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Challenges of the Thesis

Although the ability of existing methods to build non-disjoint groups, many suffer from

some limitations which motivate researchers to design more efficient methods. Almost

existing methods perform linear and spherical separations between clusters (Masson and

Denoeux 2008; Cleuziou 2008; Cleuziou 2009; Depril et al. 2008; Bonchi et al. 2011;

Fellows et al. 2011; Liu et al. 2012), thus fail to model data having complex hidden

representation with nonlinear and non-spherical boundaries. This can be a crucial issue

in real life applications where data structuring generally have complex separations between

groups. The ability of the method to look for nonlinear separations becomes a necessary

requirement to detect relevant overlapping clusters.

Another challenge that motivates overlapping clustering is the ability to regulate the

sizes of overlaps between clusters. Although the method should reveal the clustering that

best fit to the data, existing overlapping methods produce clusterings without possibility

of control of the size of the overlaps. The application of these methods in practise usu-

ally leads to clusters with large overlapping boundaries. In fact, clusters with too large

overlaps are not appropriate for most of the target applications while obtained clusters

become not well separated. Ideally, the size of overlaps should be controlled, depending

on the requirements of the application, and should be used as a parameter of the pattern

recognition process.

Moreover, many of existing methods assumed that data have a vectorial description.

However, in many applications of clustering, data are described by other structures such

as sequences, trees or graphs. For example, in “Document Clustering” application, the

vectorial representation of textual data ignores the correlation between adjacent words and

leads to the loss of information regarding words positions. More effective representation

of documents uses a sequential representation and group documents based on the shared

subsequences. For such type of application and data representation, the overlapping

clustering algorithm should be adapted to detect non-disjoint groups from these specific

structures of data.
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Contributions of the Thesis

Known all these shortcomings, the goal of this thesis is to design more efficient and per-

fective methods for overlapping clustering which address the above described limitations

of prior works. The main contributions can be described as in the following.

The first contribution of this thesis put emphasis on the identification of overlapping

clusters with nonlinear separations and non-spherical shapes. We propose (BenN’Cir and

Essoussi 2011; BenN’Cir and Essoussi 2012b) two methods which use kernel functions

to implicitly map data from an input space to a high dimensional feature space where

separability of clusters becomes easier. First, we propose Kernel Overlapping K-means

I (KOKMI) which is a centroid based method generalizing kernel k-means to produce

overlapping clusters with nonlinear and non spherical shapes. Second, we propose Kernel

Overlapping K-means II (KOKMII) which is a medoid based method improving KOKMI

in terms of efficiency and complexity. Experiments are performed on artificial, non-

spherical and real overlapping datasets in order to evaluate KOKMI and KOKMII against

the existing methods.

The second contribution put emphasis on the identification of overlapping clusters with

control of overlapping boundaries between clusters. We propose a generic clustering model

that generalizes k-means to detect overlapping clusters with overlap regulation. Different

instantiations (BenN’Cir et al. 2013a; BenN’Cir et al. 2013b; BenN’Cir et al. 2014a;

BenN’Cir et al. 2014b) of the proposed model are defined which produce different layouts

for the overlapping boundaries between clusters. These instantiations offer for users the

possibility to restrict, to regulate or to auto-adjust the sizes of overlaps according their

prior knowledge on data. Proposed instantiations are confronted with existing methods

for evaluating both the quality of clustering and the size of overlaps known the actual

overlap in different real multi-labeled benchmarks.

The third contribution of this thesis is an application of overlapping clustering on

text document. We propose (BenN’Cir et al. 2013) a non supervised learning method,

referred to as KOKM based WSK, which considers each textual document as a sequence
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of words and avoids the limitation of the Vector Space Model representation of text. The

proposed method is based on the Word Sequence kernel (WSK) to evaluate similarity

measure between documents. It has the advantages that the correlation between adjacent

words in text and the possibility of document to belong to more than one cluster are not

ignored. Experiments are performed in several text collections and using different text

representation techniques to check its effectiveness.

The fourth contribution consists in proposing a software for overlapping clustering.

This software is an extension of the “Weka” tool in which most of the clustering methods

presented in this thesis and other existing ones were developed with the aim of making

them accessible and useful to researchers and developers working on a diverse range of

overlapping clustering. The proposed software is a Graphical User Interface (GUI) acces-

sible as a java application or as a web based application (Applet) giving the possibility

to look for overlapping clusters on different types of data such as vector, structured and

unstructured data. It can be integrated in any java application and can be executed on

different operating system such as Windows or Linux.

Organization of the Thesis

The rest of this thesis is organized as in the following:

• Chapter 1 reviews existing methods in the literature which are able to produce

a non-disjoint partitioning of data. A detailed description and comparison of over-

lapping methods based on the partitional approach are given. Furthermore, a com-

parison of existing techniques which are used to evaluate the quality of overlapping

partitionings is introduced.

• Chapter 2 describes the proposed methods KOKMI and KOKMII which are able

to perform a non-disjoint partitioning of data with both linear and nonlinear sepa-

rations between clusters.

• Chapter 3 presents the proposed generic overlapping clustering model with overlap
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regulation which supports different instantiations able to reduce, to parameterize or

to auto-adjust the sizes of overlaps.

• Chapter 4 introduces the proposed KOKM based WSK method which is able to

look for non-disjoint partitioning from textual documents by measuring similarity

between documents based on the shared sequences of text.

• Chapter 5 presents the proposed Weka4OC software which supports different meth-

ods for preprocessing, overlapping clustering and visualizing data.

• Conclusion summarizes the main contributions of this thesis and discusses ways

for extensions of the proposed works which could be considered in future researches.
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Chapter 1

Overlapping clustering
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1.1 Introduction

This chapter focuses on fundamental concepts of clustering and overlapping clustering.

First, we describe cluster analysis as an unsupervised learning method requiring data

preparation and similarity measure definition. Then, we introduce the overlapping clus-

tering research domain and we give a literature review of existing overlapping methods,

especially those based on k-means and k-medoids algorithms. Finally, we give a literature

review of existing techniques for the evaluation of non-disjoint partitioning.

1.2 Clustering: a non supervised learning

Given a training data, the aim of clustering, also referred to as cluster analysis or learning,

is to detect hidden structures in the observed data. Usually, a clear distinction is made

between learning problems that are supervised (Han and Kamber 2000), also referred to

as classification, and those that are unsupervised, referred to as clustering. The first deals

with only labeled data while the latter deals with only unlabeled data (Duda et al. 2001).

In many practical learning domains, there is a large supply of unlabeled data but limited

labeled data. This fact makes clustering more difficult than classification. However, there

is a growing interest in a hybrid setting, called semi-supervised learning (Chapelle et al.

2006) where the unlabeled data, instead of being discarded, are also used in the learning

process.

Practically, the goal of clustering is to discover the natural groupings of a set of ob-

servations, also referred to as data points, instances or objects. Han and Kamber (2000)

defined cluster analysis as “The process of grouping a set of physical or abstract objects

into classes of similar objects” and define a cluster as a “collection of data objects that are

similar to one another within the same cluster and are dissimilar to the objects in other
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clusters”. A formal definition of clustering can be stated as follows: given a description of

n data over p variables, clustering aims to find k groups based on a measure of similarity

such that similarities between data in the same group are high while similarities between

data in different groups are low. An example of clustering’s results are shown in Figure.

1.1 where the used clustering algorithm automatically discovers three natural clusters in

the unlabeled data and summarizes each group by a cluster’s representative.

Figure 1.1: Identi�cation of natural grouping in unlabeled data using clustering: (a)

unlabeled data (b) 3 detected clusters (Han and Kamber 2000)

1.2.1 Data description and representation

Usually, data that often occur in cluster analysis are represented by one of these two

structures: Data matrix and Proximity matrix.

Data matrix, also referred to as object-by-variable structure or vectorial structure

(Rokach 2010), represents n objects by p variables which are also called measurements

or attributes. Each row of the matrix represents a single observation described by p

variables. For example, if data describe demographic information about a population,

each row represents demographic data related to one person such as age, height, weight,

gender, profession and so on. However, if data is a set of documents, each row represents

a single document and variables are the words in all documents.
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M(n, p) =



x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp


(1.1)

Proximity matrix, also referred to as object-by-object structure (Rokach 2010), stores

a collection of similarities or dissimilarities that are available for all pairs of n objects. It

is often represented by an n-by-n matrix:

M(n, n) =



0 D(1, 2) · · · D(1, n)

D(2, 1) 0 · · · D(2, n)

...
...

. . .
...

D(n, 1) D(n, 2) · · · 0


(1.2)

where D(i, j) indicates the proximity of an observation xi to an observation xj .

The use of object-by-variable or object-by-object structures is determined based on the

requirement of the learning method to have one of these two structures as input and based

on the possibility of formatting data as proximity matrix or as data by variables matrix.

The variables describing the data can have different types which can be classified into

qualitative and quantitative data, and within each of these groups, data can be further

categorized as shown below.

Qualitative data

Qualitative data are “categorical” data summarized using percentages or proportions.

This type of data can be classified (Han and Kamber 2000) as binary, nominal and

ordinal. Binary data are described only by two categories, e.g., male or female for the

sex of a person. Nominal data generalizes the binary description and supports different

categories explaining the data, e.g., black, white, red, yellow for describing the color of

each car. However, ordinal data are inherently categorical in nature, but have a logical
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order of the categories. Example of ordinal data are the description of the class level of

a student.

Quantitative data

Quantitative data are numerical descriptions of the data which can be classified (Han

and Kamber 2000) as discrete or continuous. Discrete data only include integer values

describing the count or quantities of a given finite variable. Example of discrete data are

the number of products per box. However, continuous data are a decimal description of

an infinite range of possible values. Examples of continuous data are the weight or the

height of a person.

In fact, the type of data variables is an important characteristic to estimate whether

two observations are similar or dissimilar. Since clustering requires to determine this

relation for quantitative and qualitative data, many proximity measures are proposed in

the literature.

1.2.2 Similarity and dissimilarity measures

Proximity measures can be classified into two main types: dissimilarity (distance) mea-

sures and similarity measures.

Dissimilarity measures

Methods based on distance measure estimate the degree of dissimilarity between any

pair of observations. Given a set of observations X = {x1, ..., xn}, a distance measure

D : X ×X → R+
0 is a valid distance (Rokach 2010) if it is non-negative, symmetric and

obtains its minimum value, usually zero, in case of identical observations:

1. D(xi, xj) > 0 ∀xi, xj ∈ X(Non-negativity)

2. D(xi, xj) = S(xj , xi) ∀xi, xj ∈ X(Symmetry)

3. D(xi, xj) = 0⇔ xi = xj ∀xi, xj ∈ X (Identity)
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The distance measure is called a metric distance measure (Han and Kamber 2000) if it

also satisfies the triangle inequality:

4. D(xi, xj) +D(xj , xz) ≥ D(xi, xz)∀xi, xj and xz ∈ X.

If a mapping satisfies all the described properties except the third one, it is called a pseu-

dometric (Rokach 2010) distance measure. However, if a mapping satisfies the following

stronger version of the triangle inequality:

5. max(S(xi, xj), S(xj , xz)) ≥ S(xi, xz)∀xi, xjandxz ∈ X,

it is called ultrametric.

Based on the type of data, many distance measures have been proposed. In the case

of quantitative data, given two p-dimensional data objects xi = (xi1, xi2, ..., xip) and

xj = (xj1, xj2, ..., xjp), the distance between the two data objects can be calculated using

the Minkowski measure (Han and Kamber 2000):

D(xi, xj) = (|xi1 − xj1|g + |xi2 − xj2|g + ...+ |xip − xjp|g)1/g, (1.3)

which generalizes the Euclidean distance when g = 2, the Manhattan distance when g = 1,

and the Chebyshev distance when g →∞.

In the case of binary attributes, the distance between objects may be calculated based

on a contingency table. The Jaccard coefficient can be used to evaluate the distance

between two binary observation having binary attributes:

D(xi, xj) =
r + s

q + r + s
, (1.4)

where q the number of attributes that equal to 1 for both objects while s and r the number

of attributes that are unequal for both objects. In the case of nominal attributes, the

matching technique can be used to evaluate the distance between two nominal data:

D(xi, xj) =
p−m
p

, (1.5)
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where p the total number of attributes and m the number of matches. Another technique

for binary attributes consists in creating a binary attribute for each value of each nominal

attribute and computing the binary dissimilarity. If attributes are ordinal, the evalua-

tion of distances between data can be realized using quantitative distance measures after

performing a mapping of data into a range of [0, 1].

Similarity measures

An alternative measure to that of distance is the similarity measure. Methods based on

similarity measure estimate the degree of similarity S(xi, xj), rather than dissimilarity,

between any pair of observations. A valid similarity measure should satisfy the property

of symmetry and should have the largest value for identical vectors (Duda et al. 2001).

A similarity measure where the target range is [0, 1] is called a dichotomous similarity

measure (Rokach 2010). The Cosine measure can be used to evaluate relativeness of two

data objects, represented as vectors, based on their angles:

S(xi, xj) =
xti.xj

||xi||.||xj ||
. (1.6)

Other examples of similarity measure are the Pearson Correlation measure described

by:

S(xi, xj) =
(xi − xi)t.(xj − xj)
||xi − xi||.||xj − xj ||

(1.7)

where xj denotes the average feature value of x over all dimensions and the Dice Coefficient

Measure described by:

S(xi, xj) =
2.xti.xj

||xi||2 + ||xj ||2
. (1.8)

We showed in this section that performing a clustering process requires to define a

similarity or a dissimilarity metric, based on type of variables describing the data, to

measure the relatedness between observations. However, in many applications of cluster-

ing the data to be clustered cannot be described by a vectorial structure which requires
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to define more advanced similarities or dissimilarities in order to take into account some

specificities of data like semantics or biological aspects. An example of these similarities

are String Subsequence Kernel (SSK) (Lodhi et al. 2001) and Word Sequence Kernel

(WSK) (Cancedda et al. 2003) which will be described in Chapter 4 when performing

clustering of textual documents.

1.2.3 Clustering methods

There are more than thousands of clustering methods that exist in the literature. Com-

monly used methods can be classified according to the fundamental concepts on which

clustering methods are based. Thus, clustering methods can be classified into the fol-

lowing categories (Han and Kamber 2000): hierarchical, partitional, density-based and

grid-based.

The category of hierarchical methods aims to produce an hierarchy of clusters, called

dendrogram, which shows how the clusters are related. By cutting the dendrogram at a

desired level, a clustering of the observations into disjoint groups is obtained. A hierar-

chical method can be classified as being either agglomerative or divisive, based on how

the hierarchical decomposition is formed. Agglomerative methods, also called bottom-up,

start with one observation forming one group and proceed successively by merging smaller

clusters into larger ones until all the groups are merged into one or a termination condition

holds. However, contrary to the agglomerative methods the divisive methods, also called

bottom-down, start with only one cluster containing all the data and proceed successively

by splitting larger clusters into smaller ones until each observation forming one group or a

termination condition holds. Examples of hierarchical methods are BIRCH (Zhang et al.

1996), CURE (Guha et al. 1998), ROCK (Guha et al. 2000), Chameleon (Karypis et al.

1999), etc. The main advantage of hierarchical methods is the visualization of structures

in the data at multiple levels of granularity. However, they suffer from the fact that once

a step of merge or split is done, it can not be undone in order to improve the partitioning.

The category of partitional methods attempts to decompose the dataset into a set of k

disjoint clusters where the obtained partitioning optimizes a given criterion function. The
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criterion function is optimized iteratively and emphasizes the local or the global structure

of the data. Partitioning methods create an initial partitioning and then use an itera-

tive relocation technique that moves observations from one cluster to another in order

to optimize the criterion function. Partitioning based methods can be subdivided into 3

sub categories which are respectively probabilistic, centroid based and medoid based meth-

ods. Probabilistic methods assume that data come from a mixture of several populations

whose distributions and priors should be estimated. Centroid based methods, instead of

an exhaustive enumeration of all the possible partitions that achieve the global optimal-

ity of the criterion function, obtained partitions are represented by the mean value of

observations assigned to this partition. Similarly, k-medoid based methods use the same

heuristic to prohibit an exhaustive enumeration of all the possible partitions, except that

each partition is represented by one of the observation located near the center of cluster.

Examples of partitioning methods are EM (Dempster et al. 1977), K-means (MacQueen

1967), PAM (Kaufman and Rousseeuw 2008), CLARANS (Ng and Han 2002), etc.

The category of density-based methods aims to detect high density and low density

regions in the data where high density regions represent clusters and low density regions

represent outliers. Contrary to most of clustering methods which are based on the distance

between observations, density based methods are based on the notion of density. Clusters

are built as long as the density, which corresponds to the number of observations, in the

“neighborhood” exceeds some threshold. Therefore, for each observation within a given

cluster, the neighborhood of a given radius has to contain at least a minimum number

of observations. Examples of density based algorithms are DBSCAN (Density Based

Spatial Clustering of Applications with Noise) (Ester et al. 1996), OPTICS (Ordering

Points To Identify the Clustering Structure) (Ankerst et al. 1999), DENCLUE (DENsity-

based CLUstEring) (Hinneburg and Keim 1998; Hinneburg and Gabriel 2007), MCLUST

(Fraley and Raftery 2003), etc. The main advantage of this approach consists in its

ability to detect clusters with arbitrary shapes while distance based methods can detect

only spherical-shaped clusters.

The category of grid-based methods is mainly proposed for very large datasets. The
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grid-based clustering methods differ from the conventional clustering methods since they

deal with the value space that surrounds the data points and not data points themselves.

Their main characteristic is that they transform the space into a finite number of cells

that form a grid structure on which all of the operations for clustering are performed.

In general, a typical grid-based clustering method consists in creating the grid structure,

calculating the cell density for each cell, sorting the cells according to their densities,

identifying cluster centers and finally traversal of neighbor cells. The main advantage

of this category of methods is its fast processing time. Examples of grid based methods

are BANG-clustering (Schikuta and Erhart 2002), WaveCluster (Sheikholeslami et al.

2000), STING (STatistical INformation Grid-based method) (Wang et al. 1997), CLIQUE

(Agrawal et al. 1998), MAFIA (Goil et al. 1999), etc.

1.2.4 An example of clustering methods: K-means

K-means (MacQueen 1967), also referred to as c-means, is a centroid based method

mostly used for grouping data due to its simplicity and its linear complexity. Given a

set of observations X = {xi}Ni=1 with xi ∈ Rd and N the number of observations, the

aim of k-means is to find a partition matrix Π = {πc}kc=1 into k clusters that minimizes

the within groups sum of squared errors. The minimization of the squared error J is

performed iteratively. This process is formulated as optimizing the resolution of the

following problem:

Minimize J(Π, C) =
k∑
c=1

N∑
i=1

πic.||xi −mc||2

subject to

k∑
c=1

πic = 1,∀i ∈ {1, .., N}

πic ∈ {1, 0}, ∀i ∈ {1, .., N} and c ∈ {1, .., k}, (1.9)

where πic is a binary variable indicating that observation xi belongs to cluster c and mc

represents the representative of cluster c. The minimization of the objective function J

can be solved by iteratively solving the following two subproblems:
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• subproblem P1: Fix C = Ĉ and minimize the objective function J(Π, Ĉ).

• subproblem P2: Fix Π = Π̂ and minimize the objective function J(Π̂, C).

The first subproblem P1 can be solved by:

πic = 1 if ||xi −mc||2 ≤ ||xi −ml||2,∀l ∈ {1, .., k}

πic = 0 ∀l 6= c. (1.10)

The second subproblem P2 can be solved by:

mc =

N∑
i=1

πic.xi

N∑
i=1

πic

. (1.11)

The k-means algorithm iterates two main steps: update of clusters’ memberships and

update of centroids. It converges to a local minimum value after a finite number of

iterations and the value of the objective function J is strictly decreasing (Selim and

Ismail 1984). An example of the different steps of k-means in a two dimensional data are

schematized in Figure 1.2. The main algorithm of k-means is described by Algorithm 1.

Algorithm 1 k-means (X, ε, k) → Π

Input X: a dataset described over Rd.
ε: minimal improvement in the objective function.

k: number of clusters.
Output Π: assignment of observations over k clusters.

1: Initialize representative of clusters with random clusters prototypes C0, solve J(Π, C0)
to obtain Π0 in iteration 0.

2: Let Π̂ = Πt and solve J(Π̂, C) to obtain Ct+1. If J(Π̂, Ct+1) − J(Π̂, Ct) ≤ ε then

return Π̂, Ct+1 and Stop, Else go to step 3.
3: Let Ĉ = Ct+1 and solve J(Π, Ĉ) to obtain Πt+1.If J(Πt+1, Ĉ) − J(Πt, Ĉ) ≤ ε then

return Π, Ĉ and Stop, Else go to step 2.

K-means algorithm has the following characteristics: it has a linear computational com-

plexity, it needs to specify the number of clusters in advance, it often terminates at a

17



Chapter 1: Overlapping Clustering

Figure 1.2: The di�erent steps of k-means using 3 clusters in a 2 dimensional data (Jain

2010)

local optimum, it works only on numeric values, it is unable to handle outliers and it is

unable to build non spherical shapes (Anderberg 1973).

1.3 Overview of overlapping clustering

Although that thousand of clustering methods exist in the literature, many active chal-

lenges motivate researchers to propose more perfective and efficient clustering methods.

The use of clustering in real life applications involve many typical requirements to make

an efficient analysis of the data. For example, a reasonable runtime of clustering methods

in large datasets and their ability to use a limited core memory become especially impor-

tant. In addition, the ability of the method to look for clusters with nonlinear separations

is an important characteristic while data structuring usually have complex shapes. Other
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researches are concerned by designing clustering methods able to perform partitioning in

data having mixed types of attributes or building robust partitioning in the presence of

outliers.

The works presented in this thesis are motivated by another important challenge in

clustering that motivates several applications. We deal in this thesis with the challenge

of identifying non-disjoint partitioning from unlabeled data. Most of existing clustering

methods assume that each data observation belongs to one and only one cluster leading

to k disjoint clusters explaining the data. However, in many applications the data being

modeled can have a much richer and more complex hidden representation where observa-

tions actually belong to multiple clusters. Designing clustering methods able to perform

non-disjoint partitioning of data would be benefic for several applications requiring such

type of clustering.

1.3.1 Overlapping clustering vs hard clustering

Traditional learning methods, referred to as hard or strict clustering methods, ignore the

possibility that an observation can belong to more than one cluster and lead to k exclusive

clusters representing the data. Although this approach has been successfully applied in

unsupervised learning, there are many situations in which a richer model is needed for

representing the data. For example, in social network analysis, community extraction

algorithms need to detect overlapping clusters where an actor can belong to multiple

communities (Tang and Liu 2009; Wang et al. 2010; Fellows et al. 2011). In video classi-

fication, overlapping clustering is a necessary requirement where videos have potentially

multiple genres (Snoek et al. 2006). In emotion detection, overlapping clustering meth-

ods need to detect different emotions for a specific piece of music (Wieczorkowska et al.

2006). In text clustering, learning methods should be able to group document, which

discuss more than one topic, into several groups (Gil-Garćıa and Pons-Porrata 2010;

Pérez-Suárez et al. 2013), etc. The corresponding research domain has been referred to

as overlapping clustering.

Figure 1.3 shows an example of obtained partitioning using both hard clustering and
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overlapping clustering. In hard clustering, every observation belongs to exactly one clus-

ter. However, in overlapping clustering all constraints on the memberships are removed

and any observation can belong to one or several clusters using binary membership co-

efficient. For example, the observation 2 in Figure 1.3.(b) is assigned to both group A

and C. Given that many real life applications require assigning data to multiple clusters,

overlapping clustering has been studied through various approaches while it offers a richer

model to fit existing structures in data.

Figure 1.3: Partitioning using hard and overlapping clustering

1.3.2 Classi�cation of overlapping clustering methods

In this section, we propose a classification of existing overlapping methods based on

the conceptual approach to build non-disjoint partitioning of data. Figure 1.4 shows a

classification tree of these methods where the depth of the tree represents the progression

in time and the width of the tree represents the different categories and subcategories.

We classify the existing methods into 6 categories which are respectively: hierarchical,

graphical, generative, partitional, correlation and topological. We detail in the following

the main characteristics of each category.

The overlapping variants of hierarchies aim to reduce the discrepancy between the

original dissimilarities over the considered dataset and the ones induced by the hierarchical

structure. Although the flexibility in visualization offered by hierarchical methods, they
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still too restrictive in overlaps while they do not study all the possible combinations of

clusters for each observation. Examples of these methods are the pyramids (Diday 1984)

and more generally the weak-hierarchies (Bertrand and Janowitz 2003).
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Overlapping methods based on graph are mostly used in the context of community

detection in complex networks (Baumes et al. 2005; Gregory 2007; Zhang et al. 2007a;

Davis and Carley 2008; Gregory 2008; Goldberg et al. 2010; Fellows et al. 2011; Magdon-

Ismail and Purnell 2011; Wang and Fleury 2011). For this category of methods, a network

is represented as a graph, where vertices are the studied observations and edges are links

between the observations. All these graph-based methods use a greedy heuristic for cov-

ering the similarity graph. The difference between them consists in defining the criterion

for ordering and selecting the sub-graphs. The main shortcoming of these methods is the

computational complexity which is usually exponential and could be reduced to O(N2) as

the case for OClustR (Overlapping Clustering based on Relevance) (Pérez-Suárez et al.

2013).

Overlapping clustering methods using generative mixture models have been proposed

(Banerjee et al. 2005; Heller and Ghahramani 2007; Fu and Banerjee 2008) as extensions

of the EM algorithm (Dempster et al. 1977). These models are supported by biological

processes; they hypothesize that each data is the result of a mixture of distributions .

The mixture can be additive (Banerjee et al. 2005) or multiplicative (Heller and Ghahra-

mani 2007; Fu and Banerjee 2008) and the probabilistic framework makes possible to use

not only gaussian components but any exponential family distributions. On the other

hand, generative models are not parameterizable and do not allow the user to control the

requirements of the overlaps.

Other methods for overlapping clustering extend recent approaches to address the

problem of overlapping clustering. For example, an extension of correlation clustering

(Bonchi et al. 2011; Bonchi et al. 2013) and topological maps (Cleuziou 2013) have been

recently proposed. Overlapping correlation clustering has been defined as an optimization

problem that extends the framework of correlation clustering to allow overlaps by relaxing

the function which measures the similarity of assigned set of labels, instead of one single

label, for each data object. For topological maps, an extension of the Self-Organizing-

Maps (SOM) has been proposed by allowing for each data to be assigned to one or several

neurons on the grid by searching for a subset of neurons winners rather than a single
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neuron. The main advantage of both correlation and topological methods consists in

their ability to learn the right number of overlapping clusters.

Despite the use of all these approaches to build non-disjoint partitioning of data, the

Partitional approach remains the most commonly used while several methods are based

on. This category of methods consists either in modifying the clusters resulting from

a standard method into overlapping clusters or in proposing new objective criteria to

model overlaps. This thesis put emphasis on overlapping partitional clustering methods,

specifically those extending and generalizing k-means and K-medoid methods (MacQueen

1967; Jain 2010). In this way, we present in the next section a description of these

methods.

1.4 Literature review of overlapping partitional methods

Several works have focused on partitional clustering in order to build overlapping clusters

leading to two main categories of methods: the category of uncertain memberships and the

category of hard memberships. We denote by uncertain memberships the solutions which

model clusters’ memberships for each data object as uncertainty function using fuzzy,

possibilistic or evidential frameworks. The uncertainty function measures the degree of

belonging of each data to the underlying group. However, we denote by hard memberships

the solutions which lead to hard and overlapping partitioning by considering a binary

function to model clusters’ memberships.

1.4.1 Uncertain memberships based-methods

Uncertain memberships based-methods consist either in extending results of uncertain

methods into overlapping clusters, typically the extension of fuzzy-c-means (FCM) (Lin-

gras and West 2004; Zhang et al. 2007b) and possiblistic c-means (PCM) (Krishnapuram

and Keller 1993), or in proposing new objective criterion that takes into account the

possibility of overlaps between clusters. The Evidential c-means (ECM) (Masson and De-

noeux 2008) and the Belief c-means (BCM) (Liu et al. 2012) are two distinctive examples
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of such criteria where their optimization processes lead to generate overlapping clusters.

All uncertain methods need a post-processing treatment to generate the final overlapping

clusters.

We detail in the following the principal uncertain clustering methods which are able

to produce non-disjoint partitioning. We consider for all the detailed methods a set of

observations X = {xi}Ni=1 with xi ∈ Rd and N the number of observations where the aim,

of each method, is to find a non-disjoint partitioning matrix Π = {πc}kc=1 into k clusters

and a set C = {mc}kc=1 of k clusters’ representatives minimizing an objective criterion.

Fuzzy c-means (FCM) and Possiblistic c-means (PCM) methods

The FCM (Bezdek 1981) identifies clusters as fuzzy sets where the objective function

JFCM allows that an observation belongs to many clusters with a coefficient indicating

membership degrees to all clusters in the [0,1] interval (0 stands for no membership and

1 for total membership). FCM is based on the minimization of the following function:

JFCM (Π, C) =
k∑
c=1

N∑
i=1

πβic.||xi −mc||2, (1.12)

where Π is the fuzziness membership matrix that indicates the coefficient of closeness of

an object to every cluster under the constraints:

πic ∈ [0..1] ∀i, ∀c

k∑
c=1

(πic) = 1,∀i (1.13)

β > 1.

The parameter β controls the fuzziness of the memberships: for high values of β

the algorithm tends to set all the memberships equals while for β tending to one it

has the behavior of k-means algorithm with crisp memberships. The minimization of
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Equation 1.12 is done iteratively using an alternating least square optimization of the

two parameters Π and C. The optimal fuzziness membership matrix Π and the optimal

clusters’ representatives C are computed in each step as the following.

π∗ic =
1

k∑
l=1

(
||xi −mc||2

||xi −ml||2

)( 1
β−1

)
(1.14)

m∗c =

N∑
i=1

πβicxi

N∑
i=1

πβic

(1.15)

The extension of FCM to overlapping clustering can be done by fixing a threshold where

all observations having memberships’ degrees that exceed this threshold are assigned to

the respective clusters. An example of this transformation is shown in Figure 1.5 where

the obtained clusters’ memberships are non-disjoints. We note that in some cases, when

the fixed threshold is somewhat large, observations having all the memberships lower than

this threshold will not be assigned to any cluster. Obtained clusters are usually much

sensitive to the threshold’s value.

In the same way that FCM, the PCM (Krishnapuram and Keller 1993) method is

proposed to relax the constrained condition of the fuzzy partition (

k∑
c=1

(πic) = 1) in order

to obtain a possiblistic type of memberships matrix. The objective function of PCM1 is

described by:

JPCM (Π, C) =
k∑
c=1

N∑
i=1

πβic||xi −mc||2, (1.16)

under the constraints:

1The original objective function of PCM takes into account the identi�cation of outliers, whereas we
give in this report a short structure of the objective function to facilitate the comparison of PCM with
the other described methods.
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Figure 1.5: Extension of the results of fuzzy clustering to obtain overlapping clustering

using a threshold value equals to 0.3

πic ∈ [0..1] ∀i, ∀c

k∑
c=1

(πic) ∈ [0, k] ∀ i (1.17)

β > 1.

Similar to FCM, the objective function JPCM is minimized iteratively where memberships

and clusters’ representatives are updated as follows:

π∗ic =
1

1 + (||xi −mc||2)1/(β−1)
, (1.18)

m∗c =

N∑
i=1

πβicxi

N∑
i=1

πβic

. (1.19)
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Each observation can belong to several clusters with a possiblistic membership. The pos-

siblistic memberships can be extended to overlapping ones by setting memberships with

higher values to 1 and the other are replaced with 0.

Evidential c-means (ECM) and Belief c-means (BCM) methods

ECM (Masson and Denoeux 2008) is based on the concept of credal partition which is a

general extension of fuzzy and possiblistic partitioning. As opposed to FCM and PCM,

the ECM method evaluates all the possible combinations of clusters, denoted Aj , from

the set of single clusters Ω = {ω1, . . . , ωk} by allocating a mass of belief πi within each

possible combination.

Let the credal partition matrix Π = (π1, . . . , πN ) ∈ RN×2k and the matrix C = (m1, . . . ,mk)

of clusters’ representatives, ECM2 is based on the minimization of the following objective

function:

JECM (Π, C) =

N∑
i=1

∑
j/Aj⊆Ω

cαj π
β
ij ‖xi −mj‖2 (1.20)

under the constraint:

∑
j/Aj⊆Ω

πij = 1 ∀i ∈ {1, .., N} , (1.21)

where πij denotes the mass of belief for associating the observation xi to the specific set

Aj which can be either a single cluster or a combination of single clusters, cj denotes

the cardinality |Aj | of each set which aims at penalizing the combination of clusters with

high cardinality, α and β are two parameters used respectively to control the penalization

2The original objective function of ECM takes into account the identi�cation of outliers by considering
πi∅ a mass of belief to belong to any cluster, whereas we consider in this report that all combinations of
clusters are tolerated except the empty set (Aj 6= ∅) in order to facilitate the comparison of ECM with
the other described methods.
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term cj and the fuzziness degree πij and ‖xi −mj‖2 is the distance between xi and the

combination of clusters’ representatives mj of the focal set Aj defined by:

mj =

∑
j/Aj⊆Ω

mj

cj
. (1.22)

To minimize the objective function of ECM, an alternating optimization scheme is de-

signed as in FCM where the update of the mass of belief πij and the clusters’ representa-

tives Ck is computed as described in Equations 1.23 and 1.24 .

π∗ij =
c
−α/(β−1)
j ‖xi − m̄j‖−2/(β−1)∑

Ak

c
−α/(β−1)
k ‖xi − m̄k‖−2/(β−1)

∀i ∈ {1, .., N} ∀j/Aj ⊆ Ω, (1.23)

C∗k×d = H−1
k×kBk×d, (1.24)

where the elements Blq of the matrix Bk×d for l ∈ {1, .., k} , q ∈ {1, .., d} and the elements

Hlh of the matrix Hk×k for l, h ∈ {1, .., k} are defined respectively by:

Blq =

N∑
i=1

xiq
∑

j/ωl∈Aj

cα−1
j πβij Hlh =

N∑
i=1

∑
j/ωh,ωl⊆Aj

cα−2
j πβij . (1.25)

Similar to ECM, a more recent method, referred to as Belief c-means (BCM) (Liu et al.

2012), is also developed within the framework of belief function which is an extension

of ECM that improves the quality of the credal partitions by assigning only relatively

distant observations to the combination of clusters. This method evaluates the distance

inter-prototypes before building the mass of believe πij related to each observation. The

objective function optimized by BCM is described by:

JBCM (Π, C) =

N∑
i=1

∑
j/Aj⊆Ω,|Aj |=1

πβij ‖xi −mj‖2 +

N∑
i=1

∑
j/Aj⊆Ω,|Aj |>1

cαj π
β
ij d̂ij

2
, (1.26)
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where d̂ij
2

evaluates the distance xi with respect to inter-distances of clusters’ prototypes

to which xi belongs to:

d̂ij
2

=

∑
k∈Aj

‖xi −mk‖2 +
∑
l,p∈Aj

‖ml −mp‖2

|Aj |+ γC2
|Aj |

, (1.27)

with γ the weighting factor of the distances among the clusters’ prototypes and C2
|Aj | =

|Aj |!
2!(|Aj |−2)! the number of possible combinations of pairs from the set of assignments Aj .

In fact, both ECM and BCM lead to credal partitioning of N data into 2k possible

combinations of k clusters. An example of credal partitioning is reported in Figure 1.6. We

note that both possiblistic and fuzzy partitions can be recovered from the credal partition.

A possiblistic partition can be obtained by computing from each mi the plausibilities

(possibilities) of the different clusters and a fuzzy partition can be obtained by calculating

the pignistic probabilities of the different clusters from each mi. The extension of both

ECM and BCM to overlapping clustering, called hard credal partition by the authors,

can be done by assigning each object xi to the set of clusters Aj with the highest mass.

Overlapping observations are those having highest mass for |Aj | >= 2. The process

that leads to hard credal partitioning is called “Upper” (Masson and Denoeux 2008)

approximation.

1.4.2 Hard memberships based-methods

The category of hard memberships based methods generalizes the strict k-means to look

for optimal overlapping clusters. As opposed to fuzzy, possiblistic, and evidential cluster-

ing, these methods produce hard overlapping clusters and do not need any post processing

treatment. Two kind of hard memberships based-methods have been proposed: additive

and geometrical methods. We denote by additive the methods which hypothesize that

overlaps result in the addition of the representatives of the related clusters. These meth-

ods group observations into overlapping clusters while minimizing the sum of distances

between each observation and the sum of clusters’ representatives to which the observa-

tion belongs to. In contrast, we denote by geometrical methods those formalizing overlaps

30



Chapter 1: Overlapping Clustering

Figure 1.6: Example of the extension of credal partition containing 6 observations under

3 clusters: observations are assigned to the combination of clusters having the max mass

of evidence.

as a barycenter on the related cluster representatives. This category of methods is based

on a geometrical reasoning in the data space and groups observations into overlapping

clusters while minimizing the sum of distances between each observation and the average,

instead of the sum, of clusters’ representatives to which the observation belongs to. Fig-

ure 1.7 shows an illustrative example of modeling overlaps using additive and geometrical

models. Given a two dimensional dataset with two clusters’ representatives C1(2, 2) and

C2(4, 4) and a data point X(2.5, 3.5) to assign as described in Figure 1.7(a). Geometri-

cal methods evaluate the distance d(X,X), represented by the red line in Figure 1.7(c),

between X and the average of clusters’ representatives X. However, additive methods

evaluate the distance d(X,X), described by the green line in Figure 1.7(d), between X

and the sum of clusters’ representatives X. For both models, additive and geometrical,

the data point X will be assigned to both clusters C1 and C2 if the following condition
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holds:

d(X,X) < d(X,C1) & d(X,X) < d(X,C2).

Additive methods

Several additive methods are proposed in the literature such as Principal Cluster Analysis

(PCL) (Mirkin 1987; Mirkin 1990), Alternating Least Square algorithms (ALS) (Depril

et al. 2008) and Lowdimensional Additive Overlapping Clustering.

• PCL method

PCL (Mirkin 1990) introduces the possibility that an observation belongs to more than

one cluster based on the Additive model by considering variable values of an observation

equals to the sum of the clusters’ representatives to which the observation belongs to.

Given a dataset X, a model matrix M = ΠC is looked for to optimally approximate X.

The matrix M can be estimated by minimizing the least squares loss function:

JPCL(Π, C) =‖ X −ΠC ‖2F=
∑
xi∈X

‖ xi −
∑
c∈Πi

mc ‖2, (1.28)

where ‖ . ‖2F is the Frobenius norm, also called the Euclidean norm, of a matrix and mc

is the representative of cluster c.

To minimize the objective criterion (1.28), PCL proceeds by building clusters one by

one from a dataset until achieving the expected number of clusters k. PCL builds the

memberships of each cluster c independently from the memberships of the other clusters

by minimizing the following criterion for each cluster c:

JcPCL =
∑
xi∈X

πic ‖ xi −mc ‖2 . (1.29)

The minimization process starts with an empty cluster (i.e., with πic = 0, ∀xi ∈ X)

and sequentially add observations to it in a greedy way leading to the smallest value of
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Figure 1.7: Geometrical vs Additive model for overlapping clustering: (a) Input data with

2 representatives C1(2,2) and C2(4,4) and a data point X(2.5,3.5) to assign (b) Geometrical

model formalizing overlaps as the average of clusters' representatives (C) Additive model

formalizing overlaps as the sum of clusters' representatives
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criterion (1.29). For every observation that is considered for joining the cluster, a new

representative mc and a new value of JcPCL have to be calculated. The process is continued

until there is no further decrease of JcPCL. The computation of clusters’ representatives

is also done locally for each cluster independently from the other clusters by:

m∗c =

∑
xi∈X

πicxi∑
xi∈X

πic
. (1.30)

The main characteristic of this method consists in its high computational complexity

evaluated by O(2N.k) which makes the method under-used in real life applications of

overlapping clustering.

• ALS method

ALS (Depril et al. 2008) is based on the same objective criterion of PCL described in

Equation 1.28. However, ALS proposes two other algorithms for minimizing this objective

criterion referred to as ALSlf1 and ALSlf2. For both algorithms, the minimization of the

objective criterion starts from an initial binary membership matrix Π0. This membership

matrix can be initialized using a Bernoulli distribution with parameter τ = 0.5 or by

computing the conditionally optimal memberships upon k randomly drawn representa-

tives from the initial data. Then, ALS estimates the conditionally optimal representatives

C upon Π; subsequently it estimates the conditionally optimal memberships Π upon C,

and this process will be repeated until convergence.

The estimation of optimal memberships are computed separably for each observation

xi by enumerating all possible binary configurations that lead to decrease the objective

criterion given the conditionally optimal representative and the conditionally optimal

memberships for the other observations. The algorithm repeats this procedure for the next

observation and so on. After a pass through all observations, the new value of the objective

criterion computed with new memberships Π1 is compared to the one computed with old

memberships Π0. The process stops when there is no further decrease in the objective

criterion. We note that ALSlf1 differs from ALSlf2 in that for each membership update
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Πi the conditionally optimal representatives C are recalculated immediately, whereas in

ALSlf2 the representatives are only updated at the end of the membership updating step.

In the other side, the optimal representatives are updated equivalently for ALSlf1 and

ALSlf2 based on the memberships matrix Π as follows:

C∗ = (Π′Π)−1Π′X. (1.31)

In fact, we notice that ALS with its two variants explores all the possible 2k combina-

tions of clusters and takes the optimal one that leads to decrease the objective criterion.

This characteristic makes this method highly time consuming when the number of clus-

ters becomes large. The computational complexity of ALSlf1 and ALSlf2 are respectively

evaluated by O(N3.2k) and O(N2.2k).

• Low dimensional Additive Overlapping Clustering method

The Low dimensional Additive Overlapping Clustering (Depril et al. 2012) extends

ALS method by establishing an overlapping clustering of the observations and a dimen-

sional reduction of the variables (or dimensions) simultaneously. This method is designed

in order to perform relevant non-disjoint partitioning when data contains a high number

of dimensions. Given a set of observations X described over d variables, the aim of this

method is to find a recovery Π of k overlapping clusters and a matrix C̃ of clusters’ repre-

sentatives described over d̃ < d. The low dimensional additive Overlapping Clustering is

based on the same objective criterion used for ALS and PCL. The process of optimizing

this objective criterion uses an alternating optimization procedure similar to that of ALS,

except that optimal reduced clusters’ representatives are computed by:

C̃∗ = (Π′Π)−1Π′TT ′X, (1.32)

where columns of matrix T represent the d̃ orthogonal eigenvectors of the product of

matrixes ZXX ′Z with Z = Π(Π′Π)−1Π′ denotes the orthogonal projector operator.
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Geometrical methods

Many Geometrical methods are proposed in the literature such as Overlapping k-means

(OKM) (Cleuziou 2008), Weighted Overlapping k-means (WOKM) (Cleuziou 2009) and

Overlapping k-Medoid (OKMED) (Cleuziou 2009). We note that ECM and BCM, de-

scribed with uncertain memberships methods, can be categorized with geometrical meth-

ods while they are based on a geometrical reasoning to model the different combinations

of clusters.

• OKM method

The OKM (Cleuziou 2008) method is an extension of the k-means algorithm which

allows observations to belong to one or different clusters. Given a set of N observations

X = {xi}Ni=1 with xi ∈ Rd, OKM aims to find a recovery Π = {πc}kc=1 of k overlapping

clusters such that the following objective function is minimized:

JOKM (Π, C) =
N∑
i=1

‖xi − (xi)‖2. (1.33)

This objective function minimizes the sum of squared Euclidean distances between each

observation xi and its representatives (xi) for all xi ∈ X. The representative (xi) is

defined as the barycenter of clusters’ representatives to which the observation xi belongs

to:

(xi) =
∑
c∈Πi

mc

|Πi|
. (1.34)

where Πi is the set of clusters to which xi belongs to and mc is the representative of cluster

c. The minimization of the objective function is performed by alternating two principal

steps: computation of clusters’ representatives (C) and the assignment of observations to

one or several clusters (Π). The update of representatives is performed locally for each

cluster as described in Equation 1.35.
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m∗c =

∑
xi∈πc

1

|Πi|2
.x̃i

c

∑
xi∈πc

1

|Πi|2
, (1.35)

where x̃i
c = |Πi|.xi− (|Πi| − 1).(xi)Π\c and πc denotes the set of observations assigned to

cluster c. For the multiple assignment step, OKM uses an heuristic to explore part of the

combinatorial set of possible assignments. The heuristic consists, for each observation,

in sorting clusters from closest to the farthest, then assigning the observation in the

order defined while assignment minimizes the distance between the observation and its

representative. OKM is characterized by a linear computational complexity evaluated by

O(N.k. lg k).

• WOKM method

The WOKM (Cleuziou 2009) method is a generalization of both OKM and Weighted k-

means (Chan et al. 2004) methods to detect overlapping clusters. The WOKM introduces

a vector of local feature weighting λc, relative to each cluster c, which allows data to be

assigned to a cluster as regards to a subset of attributes that are important for the cluster

concerned. Given a set of N observations X = {xi}Ni=1 with xi ∈ Rd, WOKM aims to

find a recovery Π = {πc}kc=1 of k overlapping clusters such that the following objective

function is minimized:

JWOKM (Π, C) =
N∑
i=1

d∑
v=1

γβi,v‖xi,v − (xi,v)‖2, (1.36)

where d the number of features and γi a vector of weights relative to the representative

(xi) which is defined for each feature v as the following:

γi,v =

∑
c∈Πi

λc,v

|Πi|
. (1.37)
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The representative (xi,v) is defined, for each feature v, as the weighted barycenter of

clusters’ representatives to which the observation xi belongs to:

(xi,v) =

∑
c∈Πi

λβc,v.mc,v∑
c∈Πi

λβc,v
. (1.38)

The optimization of the objective criterion is performed by iterating three steps. The

first step consists in assigning each data object to the nearest cluster while minimizing

the local error
∑d

v=1 γβi,v‖xi,v − (xi,v)‖2. The second step consists in updating clusters’

representatives using the following criterion:

m∗c,v =

∑
xi∈πc

λβi,v
|Πi|2

.x̃i
c

∑
xi∈πc

λβi,v
|Πi|2

, (1.39)

The third step concerns the update of the set of clusters weights {λc}kc=1 by using:

λc,v =

(
∑
xi∈πc

‖xi,v −mc,v‖2)1/(1−β)

d∑
u=1

(
∑
xi∈πc

‖xi,u −mc,u‖2)1/(1−β)

. (1.40)

The computational complexity of WOKM stills linear, similar to OKM, evaluated by

O(N.k. lg k).

• OKMED method

OKMED (Cleuziou 2009) extends the method Partitioning Around Medoid (PAM)

(Kaufman and Rousseeuw 2008) for overlapping clustering. It consists in aggregating the

data around representatives of the clusters denoted as medoids which are chosen among

the data themselves. The objective criterion of OKMED is based on the optimization of

the following objective criterion:
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JOMED(Π, C) =
∑
xi∈X

‖xi − (χi)‖2. (1.41)

where (χi) is defined as the data from X that minimizes the sum of the dissimilarities

with all the medoids of the clusters where xi belongs to:

(χi) = arg min
xj∈X

∑
mc∈Πi

‖xj −mc‖2. (1.42)

The optimization of the objective function of OKMED is realized using an alternating

optimization between two steps: assignment of each data to its nearest medoid and up-

dating of the medoid for each cluster. The update of medoids consist in searching among

the set of data belonging to the cluster, the one that minimizes the sum of the distances

with any other data into the cluster.

m∗c = arg min
xi∈πc

(xi)
∑
xj∈πc

‖xj − (χj)xi‖2, (1.43)

where (χj)xi denotes the representative of observation xj computed by considering xi the

medoid of the cluster. The use of medoids as representatives of clusters makes OKMED

more robust to outliers and offers the possibility to use any metric since it only requires

a proximity matrix over the data. However, OKMED is characterized by a high compu-

tational complexity evaluated by O(N3.k).

1.4.3 Illustrative example of the di�erent steps of OKM

We give in the following an illustrative example of the different iterations and steps of

OKM method with two clusters in a small dataset containing 6 observations described by

two dimensions D1 and D2 as reported in Table 1.1.

Iteration 1 of OKM

At the first iteration, the OKM method requires to initialize random clusters’ represen-

tatives. We consider that observations Y and W are the representative of cluster 1 and

39



Chapter 1: Overlapping Clustering

Table 1.1: Description of the di�erent observations in the dataset

observation D1 D2

X 1 2

Y 1 1

Z 2 2

W 2 1

N 3 2

M 3 1

Cluster 2 respectively described by C1(1, 1) and C2(2, 1). The next step is the assignment

step which assigns each observation to cluster C1, C2 or C1 ∩ C2. For each observation

xi, OKM orders clusters nearest to farthest and then assigns xi to the scheduled clusters

while the local error Ji(Ai) = (xi − xi)2 decreases with Ai the set of assignments. We

give in the following the numeric application of the assignment of observation Z to the

different clusters:

1. scheduling clusters respectively to Z: the distance d(Z,C1)2 = 2 and the distance

d(Z,C2)2 = 1. The scheduling is C2 then C1.

2. assignment of Z to the nearest cluster, which is C2, and evaluation of the local error

JZ(C2) = (Z − Z)2 = (Z − C2)2 = (
√

(2− 2)2 + (2− 1)2)2 = 1.

3. assignment of Z to the next nearest cluster, which is C1, and evaluation of the local

error JZ(C1, C2) = (Z −Z)2 = (Z − (C1+C2)
2 )2 = (

√
(2− 1.5)2 + (2− 1)2)2 = 1.25.

4. Given that the value of the local error JZ is not minimized, OKM returns the old

assignment which is C2.

Once assignments are performed for all observations, OKM evaluates the optimized ob-

jective function known the obtained partitioning of data as described in Figure 1.8(a).

The evaluation of the objective function gives JOKM (iteration1) = 5.

40



Chapter 1: Overlapping Clustering

Figure 1.8: Non-disjoint clusters obtained using OKM: (a) input data (b) obtained clusters

at iteration 1 (C) obtained clusters at iteration 2 (d) obtained clusters at iteration 3 and

4

Iteration 2 of OKM

At the second iteration, OKM begins by updating the representative of each cluster sepa-

rably using Equation 1.35. The update of representatives gives C1(1, 1.5) and C2(2.5, 1.5).
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We note here that the obtained representative for each cluster is the barycenter of the

respective observations in the cluster, similarly to k-means, given that obtained clusters

in the last iteration are disjoint. After that, the step of update of assignments gives the

partitioning described in Figure 1.8(b). We show in this figure that observations Z and

W belong to both clusters C1 and C2. The new evaluation of the objective function

gives JOKM (iteration2) = 2.125 which is improved compared to the objective criterion

in iteration 1. Therefore, OKM continues the iteration of these different steps.

Iteration 3 of OKM

At the third iteration, OKM updates the representative of the different clusters which

resulted in the new representatives C1(1.1, 1.5) and C2(2.9, 1.5). However, the update of

assignments gives the same non-disjoint partitioning obtained in iteration 2 as described

in Figure 1.8(c). The evaluation of the objective function gives JOKM (iteration3) = 1.52

which is improved compared to the objective criterion in iteration 2. The OKM method

repeats the same steps in iteration 4.

Iteration 4 of OKM

At the fourth iteration, the update of representatives of clusters and the update of as-

signments give same values obtained in iteration 3. The new evaluation of the objective

function gives JOKM (iteration4) = 1.52 which does not show improvement compared

to that of iteration 3. Therefore, the OKM method converges and returns the obtained

non-disjoint partitioning as described in Figure 1.8(c).

1.4.4 Synthesis of overlapping partitional methods

This section offers a synthesis of the main characteristics of overlapping partitional clus-

tering methods presented in a comparative way. Table 1.2 summarizes these main charac-

teristics. Our study is based on the following features of the methods: 1) model of overlaps

in the objective criterion which could be additive, geometrical or no overlap model, 2) re-

quirement of the method to use a post-assignment step to generate the final overlapping
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clusters which could be threshold, max evidence or no post-assignment step , 3) type of

clusters’ representatives which could be centroid or medoid, 4) type of data supported by

each method which could be numeric or any type, 5) computational complexity, 6) ability

to handle noise and outliers and 7) ability to regulate the sizes of overlaps. We also notice

that all the studied methods performs linear separations between clusters.

We remark that some methods do not model overlaps in their optimized criteria like

FCM and PCM. However, methods which supports an overlapping model lead to two

main categories, additive and geometrical, which differer in the assumptions and in the

context of use. The adoption of additive or geometrical methods is motivated by the

requirement of the application. Additive methods have been well applied in grouping

patients into diseases (Depril et al. 2008; Wilderjans et al. 2011). Each patient may

suffer from more than one disease and therefore could be assigned to multiple syndrome

clusters. Thus, the final symptom profile of a patient is the sum of the symptom profiles

of all syndromes he is suffering from. However, this type of methods needs to prepare data

to have zero mean to avoid false analysis. For example, if symptom variable represents

the body temperature, then when a patient simultaneously suffers from two diseases, it is

not realistic to assume that his body temperature equals to the sum of body temperatures

as associated with two diseases.

Conversely, geometrical methods have been well applied to group music signals into

different emotions and films into several genres. These methods consider that overlapping

observations must appear in the extremity surface between overlapping clusters. For ex-

ample, if a film belongs to action and horror genres, it should have some shared properties

with these categories of films but it can neither be a full action film neither a full horror

one. So, overleaping films belonging to action and horror categories may appear in the

limit surface between full horror and full action films.
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Chapter 1: Overlapping Clustering

While all described overlapping partitional clustering methods offer a richer model to

fit the existing structures in data, some parameters need to be estimated before performing

the learning. All the described methods require to configure the number of clusters in

prior while this number is usually unknown. Different heuristics (Depril et al. 2012;

Wilderjans et al. 2012) for determining the optimal number are used in the literature.

For example, the user can test different clusterings with increasingly number of clusters

and then, takes the clustering having the best balance between the minimization of the

objective function and the number of clusters (Wilderjans et al. 2011).

Furthermore, all the described overlapping partitional methods need to initialize the

clusters’ representatives or the primary clusters memberships. Clusters’ representatives

can be set randomly from data themselves or can be determined using another cluster-

ing method such as k-means. For initializing memberships, a Bernoulli distribution of

parameter τ = 0.5 can be used to generate random memberships. Using either a repre-

sentative initialization or memberships initialization, the result of the presented methods

may be a local optimum of the objective criterion, rather than the global optimum. To

deal with this problem, the user should adopt a multi-start procedure by testing different

initializations and keeping only the clustering which has the lowest value of the objective

criterion.

All the presented overlapping methods are essentially based on the Euclidean distance

between the sets of observations. Since they use numerical data, these methods are able

to perform only linear and spherical separations between overlapping clusters. In fact, in

real life applications data may have complex organization with non-spherical shapes such

as ellipsoid and concentric shapes. In such cases, the performance of existing overlapping

methods is considerably reduced while nonlinear separations with complex shapes are

expected.

The study of partitional overlapping methods shows also that most of the described

methods ignore the possibility to regulate the sizes of overlaps. This characteristic has

an important effect in real applications because the expected size of overlaps differs from

one application to another. For example, in social network analysis large overlaps are
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expected while an actor usually belongs to several active communities, however in video

grouping small sizes of overlaps are expected since a movie or film is usually related to one

genre. Although the importance of the regulation of overlaps, almost described methods,

except uncertain memberships based methods like FCM, ECM and BCM, build a fixe size

of overlaps between clusters. However, the regulation of overlaps in uncertain methods is

much sensitive as the number of clusters increases.

Finally, we notice that all the presented partitional methods have the assumption that

data support a vectorial description with numerical variables. This fact could limit the

use of overlapping methods in many applications where data can not be described by

numerical vectors but by other data formats like graphs and sequences. An example

of these applications is textual document clustering where using vectorial description of

text usually leads to ignore relations between words and consequently leads to reduce the

performance of the clustering.

In this thesis, we are concerned with three limits of the existing methods which are the

inability to look for nonlinear separations, the inability to regulate the sizes of overlaps

and the inability to cluster textual data having non vectorial description. The geometrical

model is adopted in all the presented solutions to introduce overlaps without loss of

generality.

1.5 Evaluation of overlapping clustering

The evaluation of clustering, also referred to as cluster validity, is a crucial process to

assess the performance of the learning method in identifying relevant groups. This process

allows the comparison of several clustering methods and allows the analysis of whether

one method is superior to another one. Usually, the evaluation of clustering can be

categorized into internal and external. The first type, internal evaluation, is based only

on the output of clustering by measuring the closeness of observations from one cluster

and the distinctions of observations from different clusters. External evaluation, on the

other hand, is based on comparisons between the output of the clustering and a dataset
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with known labels, also referred to as gold standard, usually built using human assessors.

For overlapping clustering, most of the validity measures traditionally used for cluster-

ing assessment, including both internal and external evaluations, become obsolete because

of the multiple assignments of each observation. Despite this, some works (Banerjee et al.

2005; Amigo et al. 2009; Tsoumakas et al. 2010) propose an extension of well known

validation measures to validate overlapping partitioning. In particular, internal evalua-

tion measures, such as purity and entropy-based measures, cannot capture this aspect of

the quality of a given clustering solution because they focus on the internal quality of the

clusters. However, external validation measures, essentially Precision-Recall measures,

were designed for overlapping partitioning. We give in the following three evaluation

methods used for computing precision-recall measures for overlapping clustering which

are respectively Label based, Pair based and BCubed evaluations.

1.5.1 Label based evaluation

Label based evaluation (Tsoumakas et al. 2010) is usually used in the field of Infor-

mation Retrieval (IR) where each document can discuss several topics. This evaluation

method is based on the evaluation of each class separately. Given a set of observations

X = {x1, ..., xN} and two partitions over X to compare, C = {c1, ..., ck} a non-exclusive

partitioning of X into k classes representing true labels, and Π = {π1, ..., πk} a non-

exclusive partitioning of X into k clusters where Π is defined by the clustering algorithm.

Known the following:

• True positive TPij : the number of observations in πj that exist in ci,

• False negative FNij : the number of observations in ci that not exist in πj

• False positive FPij : the number of observations in πj that not exist in ci,

the Precision-Recall validation measures are computed for each class i and cluster j as

follows:
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Precisionij =
TPij

TPij+FPij

Recallij =
TPij

TPij+FNij

F −measureij =
(2∗Recallij∗Precisionij)
(Recallij+Precisionij)

.

The computation of Precision-Recall measures for all labels is archived using macro-

averaging technique which is usually used in Information Retrieval tasks to evaluate clus-

tering results when the number of classes is not large (Yang 1999) as follows:

Recall =

k∑
i=1

max
j
Recallij

k

Precision =

k∑
i=1

max
j
Precisionij

k

Fmeasure =

k∑
i=1

max
j
Fmeasureij

k .

(1.44)

1.5.2 Pair based evaluation

The pair based Precision-Recall measures are calculated over pairs of observations (Baner-

jee et al. 2005). For each pair of observations that share at least one cluster in the over-

lapping clustering results, Precision-Recall measures evaluate whether the prediction of

this pair as being in the same cluster is correct with respect to the underlying true class

in the data.

Given a set of observation X = {x1, ..., xN} and two non-exclusive partitionings over

X to compare, C = {c1, ..., ck} a partition of X into k classes, and Π = {π1, ..., πk1} a

partition of X into k1 clusters and by Considering the following:

• TP : the number of pairs of observations in X that share at least one class in C

and share at least one cluster in Π,

• FN : the number of pairs of observations in X that share at least one class in C

and do not share any cluster in Π and
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• FP : the number of pairs of observations in X that do not share any class in C and

share at least one cluster in Π,

the Precision-Recall measures are computed as follows:

Precision = (TP )/(TP + FP )

Recall = (TP )/(TP + FN)

F-measure = (2∗Recall∗Precision)/(Recall+Precision).

1.5.3 BCubed evaluation

Given the importance of observation occurrences in clusters and classes in overlapping

partitioning, the BCubed evaluation (Amigo et al. 2009) takes into account the multi-

plicity of classes and clusters which considers the fact that two observations sharing n

classes should share n clusters.

BCubed Precision-Recall measures are computed independently for each observation

in the partitioning. Let the following:

Multiplicity precision(xi, xj) =
Min(|=(xi) ∩ =(xj)|, |L(xi) ∩ L(xj)|)

|=(xi) ∩ =(xj)|

Multiplicity recall(xi, xj) =
Min(|=(xi) ∩ =(xj)|, |L(xi) ∩ L(xj)|)

|L(xi) ∩ L(xj)|
(1.45)

where xi and xj are two observations, L(xi) the set of classes and =(xi) the set of clusters

associated to observation xi. In fact, Multiplicity Precision is defined only when the pair

of observations (xi, xj) share at least one cluster, and Multiplicity Recall is defined only

when (xi, xj) share at least one class. Multiplicity Precision is maximal, equal to 1, when

the number of shared clusters is lower or equal than the number of shared classes and

it is minimal, equal to 0, when the two observations do not share any class. Reversely,

Multiplicity Recall is maximal when the number of shared classes is lower or equal than

the number of shared clusters, and it is minimal when the two observations do not share

any cluster.
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The BCubed precision associated to one observation will be its averaged multiplicity

precision over other observations sharing some of its classes; and the overall BCubed

precision will be the averaged precision of all observations. The overall BCubed recall is

obtained using the same procedure. The overall BCubed Precision-Recall measures can

be formally described by:

Precision = AV Gi[AV Gj.C(xi)∩C(xj) 6=∅Multiplicity precision(xi, xj)]∀i, j ∈ {1, .., N}

Recall = AV Gi[AV Gj.L(xi)∩L(xj)6=∅Multiplicity recall(xi, xj)]∀i, j ∈ {1, .., N}

F −measure = (2 ∗ Precision ∗Recall)/(Precision+Recall)

1.5.4 Synthesis of evaluation methods for overlapping clustering

Three evaluation methods for assessing the quality of overlapping clustering were pre-

sented. The first evaluation method, label based evaluation, is based on matching be-

tween labels while the two others are based on pairs of observations. In fact, the label

based evaluation requires to label the obtained clusters by matching between classes and

clusters which is not a trivial task for unsupervised learning, especially for datasets with

large overlaps. The labeling of clusters could lead to biased matching, and consequently

lead to biased validation measures. Moreover, the matching between classes and clusters

requires to configure a number of clusters equal to that of classes which limits the pro-

cess of evaluation. Although these limitations, label based evaluation is usually used in

Information Retrieval tasks to evaluate clustering results when the number of classes and

the sizes of overlaps are not large (Yang 1999). Consequently, label based evaluation will

be used to evaluate the quality of partitionings of documents obtained with the proposed

method in Chapter 4.

To address the issue of labeling the obtained clusters and to make possible the com-

parison of partitionings with different number of clusters, the pair based Precision-Recall

measures are calculated over pairs of observations. This evaluation method offers a flex-
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ible evaluation of obtained clusters independently from the real number of classes in the

labeled dataset. However, the pair based evaluation has the issue that obtained Recall

could be biased as the built overlap in the partitioning decreases and the actual overlap in

the dataset increases. The biased Recall is induced by considering only a binary function

for assessing the relation between a pair of observations and ignoring the multiplicity of

shared clusters between pairs of observations. For instance, if two observations share three

classes in the actual dataset and just share two clusters in the partitioning, the obtained

Recall is 1 which is not correct. This problem also occurs for the Precision when actual

overlap in the dataset is large.

Given the importance of observation occurrences in clusters and classes in overlapping

partitioning, the relation between two observations can not be represented as a binary

function. If two observations share two classes and share just one cluster, then the clus-

tering is not capturing completely the relation between both observations as presented in

case 3 in Figure 1.9. On the other hand, if two observations share three clusters but just

two classes, then the clustering is introducing more information than necessary as shown

in case 3 in Figure 1.9. This relation is considered for BCubed validation measures by

extending the pair based evaluation to take into account the multiplicity of clusters and

classes.

Figure 1.9 shows an illustrative example comparing Precision and Recall computed for

a pair of observations (x1, x2) using BCubed and pair based evaluations by considering

different case-studies. We notice that Precision and Recall using the label based evaluation

are not reported because they can not be computed for a pair of observations. This

comparison shows that multiplicity Recall is reduced compared to Recall computed with

the pair based evaluation if the partitioning gives less shared clusters than needed as

described in case 3. In contrast, if the partitioning gives more shared clusters than actual

labels as described in case 4, the multiplicity Precision is reduced compared to the one

obtained with pair based evaluation.

As a summary, we can conclude that assessing the quality of overlapping clustering

using the BCubed evaluation is more suitable than the pair based evaluation while it
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Figure 1.9: Comparison of Recall and Precision measures computed using the BCubed

and the Pair based evaluations: (a) true labels and (b) di�erent cases of the clustering.

takes into account the multiplicity of shared clusters and classes between the pair of ob-

servations. The BCubed method will be used to evaluate the performance of the proposed
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methods, in Chapter 2 and Chapter 3, against the existing ones.

1.6 Conclusion

We introduced in this chapter clustering as an unsupervised learning method requiring

data format and similarity or dissimilarity measure definition. Then, we introduced the

domain of overlapping clustering which aims to build non-disjoint groups from unlabeled

data. We have shown that enabling observations to belong to more than one cluster

would be recommended for several applications to better fit the existing structures in

data. We reviewed existing overlapping clustering methods, especially those based on the

partitional approach. Furthermore, we detailed different evaluation methods designed to

assess the quality of overlapping clusters and we have showed that BCubed evaluation

offers the more suitable assessment.

In the next chapter, we will focus on the issue of identifying overlapping clusters with

nonlinear separations. We will show how can we make non-disjoint partitioning with

linear and nonlinear separations.
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Chapter 2: Overlapping clusters with nonlinear boundaries

2.1 Introduction

This chapter deals with the issue of identifying overlapping clusters with nonlinear and

non spherical separations. We focus on kernel k-means, a nonlinear variant of k-means,

which is generalized to look for overlapping clusters. Two variants are proposed (BenN’Cir

and Essoussi 2011; BenN’Cir and Essoussi 2012b) in this work, Kernel Overlapping K-

Means I (KOKMI) and Kernel Overlapping K-Means II (KOKMII) to produce clusters

in a high, possibly infinite, dimensional space based on Mercer Kernel technique. Data

are implicitly mapped to a higher dimensional space where separability of input patterns

is improved.

This chapter is organized as follows: Section 2.2 describes the motivation of identifying

non-disjoint clusters with nonlinear boundaries. Then Section 2.3 describes the existing

Kernel k-means algorithm used to perform nonlinear separations between clusters. Af-

ter that Section 2.4 describes the two proposed solutions, KOKMI and KOKMII, which

generalize kernel k-means for overlapping clustering while section 2.5 presents the exper-

iments that we performed to check their effectiveness. Finally Section 2.6 presents the

conclusion.

2.2 Motivation: overlapping clustering with nonlinear sepa-

rations

In real life applications of clustering data usually have complex shapes. The identifica-

tion of separations between groups is usually hard and require looking for non spherical

and nonlinear separations. Therefore, overlapping clustering methods need to perform

nonlinear and non spherical separations between clusters to fit the true structure of data.

In order to check this important characteristic, we study patterns produced by existing

overlapping methods based on additive and geometrical models. We visualize partition-

ing of OKM, a geometrical based method, and ALS, an additive based method, through

Voronöı cells obtained for three clusters over a two dimensional space as defined by the
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objective criterion optimized by these methods. Figure 2.1 shows an example of these

Voronöı cells: the representation space is divided into several cells where each possible

combination of clusters is associated to one cell. For OKM, Figure 2.1.(a) shows seven

cells, all possible combinations of clusters except the empty set, where each cell is centered

on a prototype or a combination of prototypes. For ALS, Figure 2.1.(b) shows that over-

laps between clusters are not recovered, except cluster1∩cluster2 and cluster2∩cluster3.

We notice that the Gray cell is the resulting combination (sum) of representatives of clus-

ter 1 (Red cell) and cluster 2 (Green cell).

Figure 2.1: Voronoï cells obtained with OKM and ALS for three clusters.

Hence, OKM and ALS have the ability to detect overlapping clusters even though

separations between resulting clusters are linear. This fact makes these methods not well

adapted to real life applications where separations between clusters are usually nonlinear

with complex shapes.

Since complex and nonlinear separations between clusters are expected depending on

the target application, we focus our study on the nonlinear method kernel k-means (Giro-

lami 2002). We show how it can be generalized to detect overlapping clusters with both

linear and nonlinear boundaries.
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2.3 Learning with nonlinear separations using Kernel Meth-

ods

2.3.1 Kernel Methods

To solve the problem of non-linearly-separable clusters, many methods have been modified

incorporating kernels such as SVM (Cortes and Vapnik 1995) which performs better than

other classification algorithms in many applications (Cristianini et al. 2002). The success

of SVM has extended the use of kernels to other learning algorithms (e.g., Kernel PCA

(Schölkopf et al. 1998), kernel k-means (Girolami 2002)). These methods use positive-

definite kernel, also referred to as Mercer kernel, to implicitly map data from original

space called input space into a high dimensional space called feature space. Computing a

partition with linear boundaries in the feature space results in a partition with nonlinear

boundaries in the input space.

A function K : X ×X −→ R is called a Mercer kernel if and only if K is symmetric

and the following condition of positiveness holds:

N∑
i=1

N∑
j=1

cicjKij ≥ 0 ∀N ≥ 2 and ∀ci, cj ∈ R, (2.1)

where Kij is the dot product of mapped data in the feature space defined as follows:

Kij = K(xi, xj) = φ(xi)φ(xj), (2.2)

where φ : X −→ F is a mapping from the input space X to a high dimensional fea-

ture space F . Some widely used kernels given in Table 2.1 are the Linear, Polynomial,

Gaussian, Exponential, Laplace, Quadratic, Inverse Multi Quadratic and Sigmoid kernels.

The advantage of kernel consists in the possibility of computing distance measure

between observations in the feature space F without explicitly knowing φ. The kernel

induced distance measure (Schölkopf et al. 1998), also referred to as Kernel Trick, can be

57



Chapter 2: Overlapping clusters with nonlinear boundaries

Table 2.1: Examples of Positive De�nite Kernels
Kernel function Value

Linear Kernel K(xi, xj) = xi.xj
Polynomial Kernel K(xi, xj) = ((xi.xj) + 1)d

Gaussian RBF Kernel K(xi, xj) = exp(
−‖xi−xj‖2

2σ2 )

Exponential RBF Kernel K(xi, xj) = exp(
−‖xi−xj‖

2σ2 )

Laplace Kernel K(xi, xj) = exp(
−‖xi−xj‖

σ )

Quadratic Kernel K(xi, xj) = 1− ‖ xi − xj ‖2

‖ xi − xj ‖2 +c

Inverse Multi quadratic Kernel K(xi, xj) =
1√

‖ xi − xj ‖2 +c2

computed as follows:

‖ φ(xi)− φ(xj) ‖2 = (φ(xi)− φ(xj))((φ(xi)− φ(xj))

= φ(xi)φ(xi)− 2φ(xi)φ(xj) + φ(xj)φ(xj)

= Kii − 2Kij +Kjj . (2.3)

In fact, the use of Mercer kernel in clustering can be divided into three categories

(Filippone et al. 2008). The first category includes methods based on kernelization of

the metric (Zhang and Chen 2002; Zhang and Chen 2003; Zhang and Chen 2004; Wu

et al. 2003) which look for centroids in input space and distances between patterns and

centroids are computed by means of kernels. Second, methods based on clustering in

the feature space (Graepel and Obermayer 1998; Girolami 2002; Inokuchi and Miyamoto

2004; Qinand and Suganthan 2004) which map data into a higher feature space and then

compute centroids using the Kernel Trick. Third, methods based on support vectors

(Ben-Hur et al. 2001; Camastra and Verri 2005) which use One Class SVM to find a

minimum enclosing sphere in the feature space able to include almost all data excluding

outliers.

In this work, Mercer kernel is used for clustering in the feature space (the second

category of the use of Mercer kernel in clustering) for KOKMI and KOKMII where the

whole learning process is performed in a high dimensional space.
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2.3.2 Kernel k-means method

Kernel k-means (Girolami 2002) is an extension of k-means to solve the problem of non-

linearly separable clusters. By an implicit mapping of the data from an input space to

a higher feature space, kernel k-means looks for separations in feature space and solves

the problem of clustering non-linearly-separable data. For a finite data sample X, the

kernel function yields a symmetric N × N positive definite matrix K, where each Kij

entry is the dot product between the representations in feature space, φ(xi) and φ(xj), of

observations xi and xj as measured by the kernel function.

Kernel k-means aims to minimize the sum of squared Euclidean errors in feature space

given by:

J(Π) =
N∑
i=1

k∑
c=1

Pic‖φ(xi)−mφ
c ‖2, (2.4)

where Pic is a binary variable indicating membership of observation xi to cluster c and mφ
c

is the prototype of cluster c in feature space. The prototype is defined in the feature space

as the gravity center of observations that belong to cluster c. This prototype cannot be

computed because the mapping function φ is generally unknown. However, the clustering

error ‖ φ(xi)−mφ
c ‖ can be computed using the Kernel Trick as follows:

‖φ(xi)−mφ
c ‖2 = ‖φ(xi)−

1

Wc

N∑
j=1

Pjcφ(xj)‖2

= Kii −
2

Wc

N∑
j=1

PjcKij +
1

(Wc)2

N∑
j= 1

N∑
g= 1

PjcPgcKjg, (2.5)

where Wc =
N∑
j=1

Pjc is the number of observations that belong to cluster c, Pjc ∈ {0, 1}

and Pgc ∈ {0, 1} denote the memberships of observations xj and xg to cluster c. Then,

the clustering error function in kernel k-means can be written as follows:
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J(Π) =
N∑
i=1

k∑
c=1

Pic[Kii −
2

Wc

N∑
j=1

PjcKij +
1

(Wc)2

N∑
j= 1

N∑
g= 1

PjcPgcKjg]. (2.6)

To minimize the clustering error (2.6), kernel k-means performs two principal steps:

the determination of the nearest cluster from each observation in the feature space and the

update of memberships matrix. The stopping rule is defined by the maximal number of

iterations and the minimal improvement of the objective function between two iterations.

2.4 Proposed overlapping clustering with nonlinear bound-

aries

In order to look for overlapping clusters with linear and nonlinear boundaries, we propose

two methods, KOKMI and KOKMII, where all steps of the clustering algorithm are

performed in a high dimensional feature space implicitly computed based on kernels. For

both methods the geometrical model is adopted to introduce overlaps in the objective

criterion.

2.4.1 KOKMI: Kernel Overlapping K-Means I

The first method generalizes kernel k-means to produce overlapping clusters by intro-

ducing overlaps between clusters in the objective function. Given a set of observations

X = {xi}Ni=1 with xi ∈ Rd and N the number of observations and given an implicit

nonlinear mapping function φ, the aim of KOKMI is to find a set Π = {π1, ..., πk} of k

overlapping clusters such that the following objective function is minimized:

J(Π) =

N∑
i=1

‖φ(xi)− φ(xi)‖2. (2.7)

The objective function iteratively minimizes the distance between each observation and
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its representative in a new feature space F obtained by the nonlinear mapping function φ.

The representative φ(xi) of observation xi is defined by the average of clusters prototypes

which xi belongs to. The representative is performed in feature space and is described

by:

φ(xi) =

k∑
c=1

Picm
φ
c

k∑
c=1

Pic

, (2.8)

Figure 2.2: Main steps of KOKMI

where Pic ∈ {0, 1} is a binary variable that indicates membership of xi to cluster c and

mφ
c is the representative (prototype) of cluster c in the feature space. To minimize the
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objective function J , KOKMI assigns, at each iteration, observations to one or several

clusters and then computes the new value of J . If J shows improvement, the same steps

are repeated until optimization of this function. The function J is considered optimized

if the maximum number of iterations is reached or the minimum improvement of this

function is no longer significant. The main steps of KOKMI are described in Figure 2.2.

A pseudo code of KOKMI is presented in Algorithm 2.

Algorithm 2 KOKMI(X, tmax, ε, k) → Π = {πc}kc=1

Input X: set of observations in Rd.
Output Π: memberships over k clusters.

1: Choose the kernel function and its corresponding parameters.

2: Initialize representatives of clusters with random clusters prototypes, derive clusters

memberships using �ASSIGN � and compute value of the objective function Jt=0(Π)
in iteration 0 using Equation 2.11.

3: Assign each observation xi to one or several clusters using function�ASSIGN �.

4: Compute objective function Jt(Π) using Equation 2.11.

5: if (t < tmax and Jt−1(Π)− Jt(Π) > ε) then
6: go to step 3.

7: else

8: return the distribution of clusters' memberships.

9: end if

Cluster prototype computation in feature space

To evaluate the objective function J we need to compute at each iteration clusters proto-

types in the feature space. Each prototype is defined by the average of observations that

belong to the corresponding cluster weighted according to the number of assignments of

each observation as follows:

mφ
c =

N∑
j=1

Pjcwjφ(xj)

Wc
, (2.9)

where wj is the single weight assigned to observation xj defined by wj = 1/(

k∑
c=1

Pjc)
2 and

Wc =
N∑
j=1

Pjcwj is the sum of single weights of the observations which belong to cluster
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c. The single weight wj decreases as well as assignments of xj increase in order to reduce

the impact of overlapping observations in determining the representative of each cluster.

Since the mapping function φ is not explicitly known, it is impossible to compute

clusters prototypes in feature space using Equation 2.9. Nevertheless, it is always possible

to compute distances between observations and prototypes in feature space using the

Kernel Trick. Therefore, using this technique, the objective function of KOKMI becomes:

J(Π) =
N∑
i=1

‖φ(xi)−
1

Li

k∑
c=1

Pic
1

Wc

N∑
j=1

Pjcwjφ(xj)‖2

=
N∑
i=1

{φ(xi)φ(xi)−
2

Li

k∑
c=1

N∑
j=1

Pic
1

Wc
Pjcwjφ(xi)φ(xj) +

1

L2
i

k∑
c=1

N∑
j=1

k∑
t=1

N∑
g=1

Pic
1

Wc
PjcPit

1

Wt
Pgtwjwgφ(xj)φ(xg)},

(2.10)

where Li =
k∑
c=1

Pic. If each dot product in feature space is replaced by the Mercer kernel,

the objective function J can be performed in feature space as follows:

J(Π) =

N∑
i=1

d[φ(xi), φ(xi)], (2.11)

where:

d[φ(xi), φ(xi)] = Kii −
2

Li

k∑
c=1

N∑
j=1

Pic
1

Wc
PjcwjKij +

1

L2
i

k∑
c=1

N∑
j=1

k∑
t=1

N∑
g=1

Pic
1

Wc
PjcPit

1

Wt
PgtwjwgKjg. (2.12)

If observations are assigned to only one cluster as in hard clustering methods, the

objective function in KOKMI is reduced to:
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J(Π) =
N∑
i=1

[Kii −
2

1

k∑
c=1

N∑
j=1

Pic
1

Wc
PjcKij +

1

12

k∑
c=1

N∑
j=1

k∑
t=1

N∑
g=1

Pic
1

Wc
PjcPit

1

Wt
PgtKjg]

J(Π) =
N∑
i=1

k∑
c=t=1

Pic[Kii −
2

Wc

N∑
j=1

PjcKij +
1

(Wc)2

N∑
j= 1

N∑
g= 1

PjcPgcKjg].

(2.13)

This reduced objective function exactly matches with the objective function of kernel k-

means. This fact shows that KOKMI is a generalization of kernel k-means for overlapping

clustering.

Multi-assignments of observations in feature space

The assignment step is a combinatorial discrete optimization problem. The latter is solved

through searching for optimal cluster memberships by evaluating all possible 2k combi-

nations of clusters for each observation. However, it becomes computationally infeasible

in real life applications. In the following, a heuristic solution is introduced to minimize

the objective function and to explore a sub space of possible assignments. Given an ob-

servation xi, given a set of k clusters and possibly an old assignments of xi, new optimal

assignments of xi are determined using the function ASSIGN. Firstly, this function assigns

xi to the closest cluster, updates representative φ(xi) and then evaluates the distance be-

tween the observation and its representative using Equation 2.12. Next, this function

looks for the next nearest cluster which is not included in the set of assignments. This

cluster is added to the assignments of observation xi, then the representative φ(xi) is up-

dated and the distance between the observation and its new representative is reevaluated.

If the distance is minimized, the function continues the assignment of the observation to

the next nearest cluster. Otherwise, the function compares obtained assignments in the

last step with those given before performing the function ASSIGN and returns the optimal

assignments which minimize the distance between the observation and its representative.
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The old assignments are evaluated to ensure the minimization of the objective function

after each assignment step. The pseudo code of the function ASSIGN is described by

Algorithm 3.

Algorithm 3 ASSIGN(xi, {c = 1, ..., c = k},Πold
i ) → Πi

Input xi: Observation in Rd.
{c = 1, ..., c = k}: Set of k clusters.

Πold
i : Old assignment of observation xi.

Output Πi: New assignment of xi.
1: set Πi = {c?} using Equation 2.14 , evaluate the distance d[φ(xi), φ(xi)] with assign-

ments Πi using Equation 2.12.

2: Look for the next nearest cluster c? which is not included in Πi such that c? =
min

{c=1,...,c=k}/Πi
‖φ(xi)−mφ

c ‖2 using Equation 2.14

3: Evaluate the distance d[φ(xi), φ(xi)′] with assignments Π
′
i = Πi ∪ c?

4: if d[φ(xi), φ(xi)′] ≤ d[φ(xi), φ(xi)] then
5: Πi ← Πi ∪ {c?}, and go to step 2.

6: else

7: if d[φ(xi), φ(xi)] ≤ d[φ(xi), φ(xi)old] then
8: return Πi.

9: else

10: return Πold
i .

11: end if

12: end if

For the determination of the closest cluster from an observation, it could be performed

in feature space using the Kernel Trick as follows:

c? = min
{c=1,...,c=k}

‖φ(xi)−mφ
c ‖2 (2.14)

= min
{c=1,...,c=k}

{Kii −
2

Wc

N∑
j=1

PjcwjKij +
1

(Wc)2

N∑
j=1

N∑
g=1

PjcPgcwjwgKjg}.

Evaluation of the computational complexity of KOKMI

We describe in the following the evaluation of the computational complexity of KOKMI

method. We considered that the computational complexity of Mercer Kernel K(xi, xj) =

Kij between each pair of observations is equal to O(1) because we use an online imple-

mentation of the Kernel function. Given N the number of observations and k the number
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of expected clusters, the main algorithm of KOKMI iterates two independent steps which

are respectively: 1) update of assignments for each observation and 2) evaluation of the

objective function with new assignments. Therefore, the hole computational complexity

of KOKMI can be determined by the sum of the computational complexity of this two

steps:

1. Computational complexity of the step of update of assignments: the as-

signment of clusters is determined for each observation in the dataset by iterating

two independent sub-steps: 1) looking for the nearest cluster and 2) evaluation of

the local error. The first sub-step is determined by Equation 2.14 which is evaluated

by the sum of the computational complexity of its three terms O(1 + N + N2) '

O(N2). The second sub-step is determined by Equation 2.12 which is evaluated by

O(1 +N.k +N2.k2) ' O(N2.k2). As a result, the computational complexity of the

assignment step, for each observation, is evaluated by O(N2.k2 +N2) ' O(N2.k2).

Given that this step is repeated for each observation, the evaluation of the com-

putational complexity of the assignment step for all observations is evaluated by

O(N.[N2.k2]) ' O(N3k2).

2. Computational complexity of the step of the evaluation of the objective

function: the step of the evaluation of the objective function is determined by

Equation 2.11 which is evaluated by O(N.[1 +N.k +N2.k2]) ' O(N3.k2).

Given the computational complexity of each step of the main algorithm of KOKMI, the

computational complexity of this method is evaluated by O(N3.k2 +N3.k2) ' O(N3.k2).

2.4.2 KOKMII: Kernel Overlapping K-means II

In order to detect overlapping clusters with linear and nonlinear separations between

clusters we propose a second alternative, referred to as KOKMII, where cluster centroids

are replaced by clusters medoids in order to improve the efficiency of clustering and the

computational complexity of KOKMI.
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Computation of cluster's representative in KOKMII

The new definition of cluster’s representative of KOKMII in the feature space is based on

cluster medoid. Each cluster’s representative is defined as the observation that minimizes

all distances over all other observations of the cluster. Using Mercer kernel, the prototype

is performed as follows:

mc = min
i∈Nc

(xi)

Nc∑
j=1,j 6=i

1

wj
‖φ(xi)− φ(xj)‖2

Nc

Nc∑
j=1,j 6=i

1

wj

(2.15)

= min
i∈Nc

(xi)

Nc∑
j=1,j 6=i

1

wj
[Kii − 2Kij +Kjj ]

Nc

Nc∑
j=1,j 6=i

1

wj

,

where Nc is the number of observations in cluster c. In this way, the prototype is deter-

mined in the feature space F and is a member of the initial set of observations.

Clustering algorithm of KOKMII

Given the new way of determining prototypes in the feature space, the computational

complexity of the objective function J is reduced to O(N.k2) compared to KOKMI. The

objective function is performed as shown in Equation 2.16.

J(Π) =
N∑
i=1

‖φ(xi)− φ(xi)‖2

=

N∑
i=1

‖φ(xi)−

k∑
c=1

Picφ(mc)

Li
‖2

=
N∑
i=1

d′[φ(xi), φ(xi)], (2.16)
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where d′[φ(xi), φ(xi)] is defined by:

= φ(xi).φ(xi)−
2

Li

k∑
c=1

Picφ(mc)φ(xi) +
1

(Li)2

k∑
c=1

k∑
l=1

PicPilφ(mc)φ(ml)

= Kii −
2

Li

k∑
c=1

PicKimc +
1

(Li)2

k∑
c=1

k∑
l=1

PicPilKmcml . (2.17)

Figure 2.3: Main steps of KOKMII

However, KOKMII adds a new step for the determination of cluster prototypes in-

dependently from the evaluation of the objective function. At each iteration, cluster

prototypes are computed, then observations are assigned to one or several clusters, and
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finally the objective function J is evaluated. These steps are repeated until improvement

of J is no longer significant or the maximum number of iterations is reached. The main

algorithm of KOKMII is given in Algorithm 4 and is schematized in Figure 2.3.

Algorithm 4 KOKMII(X, tmax, ε, k) → Π = {πc}kc=1

Input X: set of observations in Rd.
tmax: maximum number of iterations.

ε: minimal improvement in the objective function.

k: number of clusters.
Output Π: memberships over k clusters.

1: Choose the kernel function and its corresponding parameters.

2: Initialize representatives of clusters with random cluster prototypes, derive clusters

memberships using �ASSIGN � and compute value of the objective function Jt=0(Π)
in iteration 0 using Equation 2.16.

3: Compute cluster prototypes using Equation 2.15.

4: Assign each observation xi to one or several clusters using �ASSIGN �.

5: Compute objective function Jt(Π) using Equation 2.16.

6: if (t < tmax and Jt−1(Π)− Jt(Π) > ε) then
7: go to step 3.

8: else

9: return the distribution of clusters' memberships.

10: end if

Assignments of each observation to one or several clusters in KOKMII are performed

using the same function ASSIGN. The new definition of clusters prototypes has made

computation of the distance between each observation and its representative easier as

described in Equation 2.17. Also, finding the closest cluster from an observation xi in the

feature space is computationally easier and is given by:

c? = min
{mc}kc=1

‖φ(xi)− φ(mc)‖2 = min
{mc}kc=1

Kii − 2Kimc +Kmcmc . (2.18)

Evaluation of the computational complexity of KOKMII

Let us recall that the main algorithm of KOKMII iterates three independent steps which

are respectively: 1) update of clusters’ representatives 2) update of assignments for each

observation and 3) evaluation of the objective function. Therefore, the hole computational

complexity of KOKMII can be determined by the sum of the computational complexity
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of this three steps:

1. Computational complexity of the step of update of clusters’ representa-

tives: the update of clusters’ representatives is performed independently for each

cluster using Equation 2.15 which is evaluated by O(N2
c ) where Nc the maximum

number of observations per cluster. Therefore, the computational complexity for

updating clusters’ representatives for k clusters is evaluated by O(N2
c .k).

2. Computational complexity of the step of update of assignments: the as-

signment step is determined for each observation in the dataset by iterating two

independent sub-steps: 1) looking for the nearest cluster and 2) evaluation of the

local error. The first sub-step is determined by Equation 2.18 which is evaluated

by O(k.[1 + 1 + 1]) ' O(k). The second sub-step is performed using Equation 2.17

which is evaluated by O(1+k+k2) ' O(k2). As a result, the evaluation of the com-

putational complexity of the assignment step, for each observation, is determined by

O(k + k2) ' O(k2). Given that this step is repeated for each observation, the eval-

uation of the computational complexity of the assignment step for all observations

is evaluated by O(N).O(k2) ' O(N.k2).

3. Computational complexity of the step of the evaluation of the objective

function: the step of the evaluation of the objective function is determined by

Equation 2.16 which is evaluated by O(N.[1 + k + k2]) ' O(N.k2).

As a summary, the computational complexity of KOKMII method is evaluated by: O(N2
c .k+

N.k2 +N.k2) ' O(N2
c .k).

2.5 Experiments and discussions

In this section, through an experimental study we evaluate the performance of the two

proposed methods in detecting overlapping groups with complex and nonlinear separations

between clusters.
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2.5.1 Evaluation methodology

We begin by studying patterns induced by the proposed objective criterion through the

report of Voronöı cells for the example described in Figure 2.1. After that, we perform

two experimental studies. First, experiments are conducted on datasets with complex,

non spherical and nonlinear separations to check the effectiveness of proposed methods in

detecting these clusters. Second, experiments are conducted on real overlapping datasets

to check the effectiveness in identifying overlapping groups. For each dataset, the number

of clusters is set by the number of underlying true categories. Although many methods

and techniques were proposed to select the best parameter of the kernel function, it is

still a challenging issue. Since designing the best parameter of a kernel function is not the

objective of this work, it is determined empirically over different executions of proposed

methods. However, we report results using different kernels with different initialization

of parameters to show the sensitivity of proposed methods to the selection of a kernel.

Experiments are performed on a computer, with 4 GB RAM and 2.1 GHZ Intel Core

2 duo processor. Results are compared using four validation measures: Precision, Recall,

F-measure and Overlap size. The first three validation measures are computed using the

BCubed technique as described in Chapter 1. The fourth measure, Overlap size, evaluates

the size of overlaps yielded by the learning method. This measure can be determined by

the average number of clusters of each observation in the dataset as follows:

Overlap =

N∑
i=1

|Πi|

N
. (2.19)

This important measure influences the performance of different overlapping clustering

methods.

2.5.2 Evaluation of the nonlinearity of separations

To evaluate the performance of proposed methods in detecting complex and nonlinear

separations between clusters, we visualize Voronöı cells (for 3 clusters) obtained with
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Figure 2.4: Voronoï cells obtained with KOKMII using Linear and Polynomial kernels

KOKMII using different types of kernels with different parameters. Figures 2.4 to 2.8 show

the ability of KOKMII in detecting overlapping clusters with both linear and nonlinear

boundaries depending of the type of the kernel function. For example, the Polynomial

Kernel performs linear separations as showed in Figure 2.4, the Gaussian, Exponential and

Laplace kernels perform nonlinear separations as showed in Figures 2.5, 2.6 and 2.7, while

Sigmoid performs a more complex and nonlinear separations as showed in Figure 2.7. In

fact, the choice of the kernel function and its parameters affects the structure of obtained

patterns and influences the type of separations. For example, using Gaussian kernel, as

the parameter σ increases overlapping regions between clusters are reduced. This result

is also confirmed in real datasets where obtained overlap decreases as σ becomes larger.

Some kernels perform only linear separations between clusters, such as the case for

Linear and Polynomial Kernels. However, other kernels can perform both linear and

nonlinear separations depending on the value of their parameters. Example of these

kernels is the Sigmoid which can build linear boundaries when θ = −10−9 and c = 10 as

shown in Figure 2.8.

Moreover, Voronöı cells show that some kernels have a similar behavior and can detect
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Figure 2.5: Voronoï cells obtained with KOKMII using Gaussian RBF kernel

Figure 2.6: Voronoï cells obtained with KOKMII using Exponential kernel
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Figure 2.7: Voronoï cells obtained with KOKMII using Laplace kernel

the same patterns: for example the Gaussian Kernel (with σ = 1000) and the Sigmoid

Kernel (with θ = −10−9 and c = 10) build identical clusters shapes.

Compared to Voronöı cells obtained with OKM and ALS, those obtained with KOK-

MII using different kernels prove the ability of the proposed methods to detect overlapping

clusters with both linear and nonlinear separations. Hence, the ability of proposed meth-

ods to detect more relevant groups, when clusters have a complex shapes, is demonstrated.

In the next, these results are checked over artificial and real overlapping datasets.

2.5.3 Empirical results on datasets with non-spherical and nonlinear

separations

Datasets description

Experiments are performed on three artificial datasets which are Iris dataset, Test dataset

and Ionosphere dataset. Iris1 dataset is traditionally used as a basis test for evaluation.

1cf. http://archive.ics.uci.edu/ml/datasets/Iris.
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Figure 2.8: Voronoï cells obtained with KOKMII using Sigmoid Kernel

It is composed of 150 data in R4 tagged according to three non-overlapping clusters with

50 observations per class. One of these clusters “setosa” is known to be clearly separated

from the two others which are difficult to learn.

The second dataset is Test dataset which has a simple structure with two non-spherical

clusters. All observations (14 observations) are randomly chosen from unit square [0, 1]×

[0, 1] in a two dimensional space with the uniform distribution. Observations that fall in

the kernel area with center (0.5, 0.5) and radius 0.4 are assigned label +1. Those in the

complement are assigned label −1. The particularity of this dataset is that corresponding

clusters are non-linearly-separable with non-spherical shapes. Algorithms based k-means

fail to determine these clusters. When these data are mapped to a higher feature space

using RBF kernel, the clusters lose their circular shapes and become easier to separate

as shown in Figure 2.9(a). If data are shown from another angle, the circular shapes of

clusters are there as reported in Figure 2.9(b).
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Figure 2.9: 3D plot of Test dataset using the three principal axis obtained with PCA

method: data in feature space using RBF kernel

The third dataset is Ionosphere2, built by a radar system in Goose Bay Labrador. This

system analyzes the electrons in the ionosphere, where some electrons show a certain type

of structure. These electrons determine the first class in the dataset that is labeled “good”.

Other electrons, with no structure in ionosphere, define the second class in the dataset that

is labeled “bad”. Electrons are transmitted from antennas via a signal, which is described

by 34 attributes that will constitute the size of the dataset Ionosphere. The total number

of signals in the dataset is 351 signals. The characteristic of this dataset is that the two

classes have circular shapes that are difficult to separate by linear clustering algorithms

as shown in Fig. 2.10. When these data are mapped to higher dimensional space using

RBF kernel, it will be easier to find separations between good and bad electrons. The

two classes lose their circular shapes and become linearly separable.

Empirical results

We compared the performance of the proposed methods with 5 existing methods: k-

means, kernel k-means, fuzzy c-means, OKM and ALS. Table 2.2 reports the average of

2cf. http://archive.ics.uci.edu/ml/datasets/Ionosphere.
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Figure 2.10: 2D plot of Ionosphere dataset using the �rst and second principal axis ob-

tained with PCA method: (a) data in input space (b) data in feature space

Precision (P), Recall (R) and F-measure (F) on twenty runs while Table 2.3 reports the

average size of overlaps obtained using the same methods. For each run, all methods have

the same initialization of prototypes.

Compared to existing overlapping methods, F-measures obtained with KOKMI and

KOKMII outperform F-measures obtained with OKM and ALS using Euclidean distance

for all datasets. The improvement in classification results is achieved in terms of Precision

and Recall. The improvement is important in Test dataset where OKM and ALS fail

Table 2.2: Comparison of the performance of KOKMI and KOKMII versus other existing

methods for non overlapping datasets
Dataset Label Iris dataset Test dataset Ionosphere dataset

P R F P R F P R F

k-means 0.794 0.790 0.790 0.540 0.580 0.559 0.621 0.591 0.605
Kernel K-means 0.822 0.824 0.822 1 1 1 0.710 0.715 0.712
Fuzzy c-means 0.800 0.807 0.800 0.499 0.550 0.523 0.633 0.602 0.613

OKM 0.594 0.973 0.738 0.307 0.500 0.381 0.459 0.791 0.581
ALS 0.520 0.997 0.680 0.562 0.692 0.620 0.420 0.902 0.531
KOKMI with 0.704 0.920 0.792 0.940 1 0.969 0.662 0.745 0.701
RBF kernel
KOKMII with 0.704 0.956 0.807 0.940 1 0.969 0.557 0.702 0.621
RBF kernel
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to determine clusters with concentric shapes. Figure 2.11 shows structures of patterns

obtained by k-means, fuzzy c-means, OKM, kernel k-means, KOKMI and KOKMII in Test

dataset. Figures 2.11(b,e,f) show that methods incorporating kernel can detect clusters

with circular shapes. However, k-means and OKM fail to detect these clusters as shown

in Figures 2.11(a,d). These results show the ability of KOKMI and KOKMII to achieve

nonlinear separations between clusters and then their performance in detecting clusters

with complex separations.

Table 2.3: Size of overlaps obtained with KOKMI, KOKMII and other methods for non

overlapping datasets
Size of Overlap

Iris dataset Test dataset Ionosphere dataset

Real overlap size (1) (1) (1)

k-means 1 1 1
Kernel K-means 1 1 1
Fuzzy c-means 1 1 1

ALS 1.37 1.23 1.45
OKM 1.34 1 1.39
KOKMI with RBF kernel 1.15 1.07 1.28
KOKMII with RBF kernel 1.22 1.07 1.25

In fact, methods using kernel approach yield better results than traditional non kernel

methods. For hard methods, Kernel k-means outperforms k-means and fuzzy c-means.

For overlapping methods, KOKMI and KOKMII outperform OKM and ALS. These em-

pirical results prove the theoretical finding that looking for separations between clusters

in a high dimensional space is better than looking for separations in an Euclidean input

space either for hard or for overlapping methods.

Table 2.2 shows that hard methods, specifically kernel k-means, give better classifica-

tion results than overlapping methods. This usefulness of hard methods is explained by

the type of data where all datasets are non overlapping (overlap size= 1). Classification

results obtained with overlapping methods are characterized by a low Precision because

observations are assigned to more than one cluster. Although all datasets do not contain

overlapping observations, all overlapping methods build an overlap size greater than 1 as

reported in Table 2.3. In fact, the size of overlaps affects the value of the F-measure.

As the obtained size of overlaps increases, the value of Precision decreases inducing the
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decrease of F-measure.

Figure 2.11: Clusters obtained with di�erent methods on Test dataset : (a) Clusters

obtained with k-means (Euclidean distance), (b) Clusters obtained with kernel k-means

(RBF kernel), (c) Clusters obtained with fuzzy c-means (threshold=0.4), (d) Clusters ob-

tained with OKM (Euclidean distance), (e) Clusters obtained with KOKMI (RBF kernel),

(f) Clusters obtained with KOKMII (RBF kernel)

In the next section, we study the effectiveness of these methods over real multi-labeled

datasets having different degrees of natural overlaps.
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2.5.4 Empirical results on real multi-labeled datasets

We conducted experiments on real overlapping datasets from three domains that strongly

motivate overlapping clustering researches: video classification, detection of emotions in

music and image classification.

Overlapping datasets description

The first overlapping dataset is EachMovie3 dataset, containing user ratings for each movie

in the collection. Users give ratings on a scale of 1 to 5, with 1 indicating extreme dislike

and 5 indicating strong approval. For each movie, the corresponding genre information is

extracted from the Internet Movie Database (IMDB) collection. If each genre is considered

as a separate category or cluster, then this dataset has naturally overlapping clusters since

many movies are annotated in IMDB as belonging to multiple genres (Banerjee et al.

2005). For example, Aliens movie belongs to three genres: action, horror and science

fiction.

From the EachMovie dataset, we extracted a subset of 75 movies scattered over three

overlapping clusters as follows: “action” = 21 movies; “comedy” = 26 movies; “crime”=

17 movies; “action+crime”= 11 movies. Based on age, sex and rate of users we try to

find categories for each video. Figure 2.12 shows the initial distribution of these movies

where overlapping movies belong to both action and crime genres. When mapping the

same movies into a higher feature space, overlapping movies are easily detected while

there are geometrically laying in the extremity surface between action and crime movies.

In addition, separations between “crime” and “comedy” movies become easier to detect

compared to their first distribution.

The second overlapping dataset is Music emotion 4dataset. Emotion detection in music

can be realized by analyzing music signals. The emotion labels are not usually disjoint

in the sense that a single music sound may be classified simultaneously into multiple

emotional categories e.g. both “happy” and “relaxing” (Trohidis et al. 2008). This

3cf. http://www.grouplens.org/node/76.
4cf.http://mlkd.csd.auth.gr/multilabel.html
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Table 2.4: Distribution of songs by six principal class labels in Music dataset: Amazed

Surprised, Happy Pleased, Relaxing Calm, Quite Still, Sad Lonely and Angry Aggressive
Label number of songs

Amazed Surprised 173

Happy Pleased 166

Relaxing Calm 264

Quite Still 148

Sad Lonely 168

Angry Aggressive 189

Total 593

Figure 2.12: 2D plot of EachMovie dataset using the �rst and the second principal axes

obtained with PCA: (a) data in input space (b) data in feature space

stipulation seems to make the Music dataset naturally overlapping. The Music dataset

contains sound clips described by 72 real attributes and annotated by three male experts.

This process led to a final annotated dataset of 593 songs with 6 main emotional clusters
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as described in Table 3.3. The overlap between clusters is important in Music dataset. For

example, all music sounds that evoke “Quite Still” emotion also evoke “Relaxing Calm”

or/and “Sad Lonely” emotions.

The third overlapping dataset is the Scene 5 dataset that contains 2407 natural scene

images. Each image is transformed into a 49× 3× 2 = 294 dimensional features vectors.

Table 2.5 gives the detailed description of the number of images associated with differ-

ent label sets, where all the possible class labels are Beach, Sunset, Fall foliage, Field,

Mountain and Urban. Over 8% of images belong to multiple classes simultaneously such

as images belonging to beach and mountain as illustrated in Fig. 2.13. On average, each

image is associated with 1.08 class labels.

Figure 2.13: Example of overlapping images in Scene dataset: (a) image associated to

Beach and Mountain (b) image associated to Field and Mountain (Rokach 2004)

Empirical results

For datasets described in Section 2.5.3, Table 2.7 presents results obtained with KOKMI

and KOKMII versus k-means, kernel k-means, fuzzy c-means, OKM and ALS methods in

terms of Precision, Recall and F-measure. Each reported result is an average over twenty

runs of each algorithm. Results of KOKMI in Music and Scene datasets are not reported

due to a time difficulty where execution needs more than 24 hours, however it is easily

5cf.http://mulan.sourceforge.net/datasets.html
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Table 2.5: Distribution of images by six principal class labels in Scene dataset: Beach,

Sunset, Fall foliage, Field, Mountain and Urban
Label number of images

Beach 369

Sunset 364

Fall foliage 360

Field 327

Beach+Field 1

Fall foliage+Field 23

Mountain 405

Beach+Mountain 38

Fall foliage+Mountain 13

Field+Mountain 75

Field+Fall foliage+Mountain 1

Urban 405

Beach+Urban 19

Field+Urban 6

Mountain+Urban 1

Total 2407

solved with KOKMII. A Comparison of runtime required for KOKMI and KOKMII to

return the final clusters in different datasets are given in Table 2.6. The improvement

with KOKMII is shown in terms of computational complexity and in terms of classification

results.

Table 2.6: Comparison of the run time of KOKMI and KOKMII methods
Dataset #Observations #Labels KOKMI KOKMII

Iris 150 3 17.52 Seconds 0.83 Seconds
Ionosphere 351 2 2380.31 Seconds 3.45 Seconds
Eachmovie 75 3 3.46 Seconds 0.52 Seconds
Music 593 6 >24 Hours 8.41 Seconds
Scene 2407 6 >24 Hours 300.23 Seconds

Table 2.7 shows that, for all datasets, F-measures obtained with the proposed methods

are better than those obtained with existing ones. Compared to overlapping methods, the

improvement of the F-measure is induced by the improvement of Precision. There is no

large difference between overlapping methods in terms of Recall because all of them assign

observations to many clusters. However, in terms of Precision, KOKMII has the best

values with a large margin compared to other overlapping methods. These results prove
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Table 2.7: Comparison of the performance of KOKMI and KOKMII versus other existing

methods for overlapping datasets
Dataset Label Eachmovie Music Scene

P R F P R F P R F

K-means 0.546 0.538 0.542 0.515 0.177 0.263 0.399 0.522 0.452
Kernel k-means 0.556 0.542 0.549 0.520 0.181 0.270 0.401 0.533 0.571

Fuzzy c-means (θ = 1/k) 0.605 0.683 0.623 0.480 0.354 0.408 0.102 0.946 0.185
OKM 0.399 0.912 0.555 0.353 0.544 0.428 0.192 0.926 0.216
ALS 0.515 0.779 0.620 0.307 0.940 0.436 - - -
KOKMI with 0.650 0.722 0.671 - - - - - -
RBF kernel
KOKMII with 0.698 0.731 0.714 0.410 0.496 0.449 0.390 0.791 0.510
RBF kernel

that our proposed methods can detect more relevant and complex separations between

clusters leading to the improvement of the classification precision.

Table 2.8: Size of overlaps obtained with KOKMI, KOKMII and other methods for over-

lapping datasets
Size of Overlap

Eachmovie dataset Music dataset Scene dataset

Actual overlap size (1.14) (1.81) (1.08)

k-means 1 1 1
Kernel K-means 1 1 1
Hard Fuzzy c-means 1 1 1

OKM 1.40 2.35 2.85
ALS 1.73 3.46 -
Fuzzy c-means (θ = 1/k) 1.26 1.43 3.34
Fuzzy c-means (θ = 0.3) 1.26 1.22 0.00
Fuzzy c-means (θ = 0.4) 0.93 0.97 0.00
KOKMI with RBF kernel 1.26 - -
KOKMII with RBF kernel 1.17 1.98 1.99

In addition, reported results show that the size of actual overlaps in data affects the

performance of overlapping methods. As the size of overlaps in the dataset increases,

the performance of overlapping methods compared to hard methods becomes more no-

ticeable. For example, in Music dataset, where actual overlaps is 1.81, all F-measures

obtained with OKM, ALS and KOKMII outperform results of k-means and kernel k-

means. However, when the size of overlaps nearly reaches 1, such as in Scene dataset,

F-measures obtained with hard methods outperform, or at at least equal, those of over-

lapping methods. For example, F-measure obtained with kernel k-means in Scene dataset
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is 0.570 which outperforms F-measures obtained with OKM and ALS. In fact, high values

of F-measure obtained with hard methods are induced by high values of Precision, while

for overlapping methods, high values of F-measure are induced by high values of Recall.

Table 2.9: Validation measures obtained with KOKMII using di�erent types of kernels in

Eachmovie Dataset
Kernel Value Precision Recall F-measure Overlap

Gaussian
σ = 1 0.426 ± 0.06 0.788 ± 0.15 0.553 ± 0.11 1.53 ± 0.10
σ = 10 0.698 ± 0.05 0.731 ± 0.15 0.714 ± 0.08 1.17 ± 0.05

RBF kernel
σ = 15 0.698 ± 0.05 0.731 ± 0.15 0.714 ± 0.08 1.17 ± 0.05
σ = 100 0.447 ± 0.05 0.676 ± 0.15 0.559 ± 0.08 1.24 ± 0.05

Exponential
σ = 1 0.277 ± 0.03 0.928 ± 0.11 0.419 ± 0.09 1.96 ± 0.12
σ = 5 0.338 ± 0.06 0.846 ± 0.21 0.483 ± 0.15 1.46 ± 0.15

RBF kernel
σ = 10 0.338 ± 0.06 0.846 ± 0.21 0.483 ± 0.15 1.46 ± 0.15
σ = 100 0.338 ± 0.06 0.846 ± 0.21 0.483 ± 0.15 1.46 ± 0.15
σ = 10000 0.338 ± 0.06 0.846 ± 0.21 0.483 ± 0.15 1.46 ± 0.15

Laplace
σ = 1 0.208 ± 0.08 0.938 ± 0.14 0.340 ± 0.09 2.33 ± 0.03
σ = 10 0.490 ± 0.12 0.820 ± 0.11 0.613 ± 0.07 1.50 ± 0.13

kernel
σ = 20 0.388 ± 0.13 0.846 ± 0.11 0.483 ± 0.08 1.46 ± 0.13
σ = 100 0.388 ± 0.13 0.846 ± 0.11 0.483 ± 0.08 1.46 ± 0.13
σ = 10000 0.388 ± 0.13 0.846 ± 0.11 0.483 ± 0.08 1.46 ± 0.13

Polynomial kernel
d = 1 0.423 ± 0.09 0.690 ± 0.11 0.524 ± 0.10 1.42 ± 0.08
d = 2 0.389 ± 0.08 0.756 ± 0.14 0.514 ± 0.10 1.49 ± 0.02
d = 3 0.418 ± 0.02 0.667 ± 0.13 0.517 ± 0.07 1.36 ± 0.11
d = 4 0.418 ± 0.02 0.667 ± 0.13 0.517 ± 0.07 1.36 ± 0.11

Table 2.10: Validation measures obtained with KOKMII using di�erent types of kernels

in Music dataset
Kernel Value Precision Recall F-measure Overlap

Gaussian
σ = 10 0.370 ± 0.03 0.571 ± 0.00 0.449 ± 0.00 2.64 ± 0.00
σ = 15 0.423 ± 0.00 0.445 ± 0.02 0.434 ± 0.02 1.96 ± 0.03

RBF kernel
σ = 100 0.445 ± 0.02 0.312 ± 0.02 0.370 ± 0.03 1.43 ± 0.01
σ = 1000 0.469 ± 0.08 0.288 ± 0.02 0.357 ± 0.02 1.48 ± 0.02

Exponential
σ = 5 0.388 ± 0.02 0.475 ± 0.02 0.427 ± 0.02 1.96 ± 0.00
σ = 10 0.396 ± 0.02 0.393 ± 0.02 0.395 ± 0.02 1.88 ± 0.00

RBF kernel
σ = 15 0.398 ± 0.00 0.387 ± 0.02 0.392 ± 0.02 1.86 ± 0.01
σ = 100 0.402 ± 0.01 0.383 ± 0.02 0.392 ± 0.02 1.84 ± 0.03

Laplace
σ = 10 0.167 ± 0.04 0.763 ± 0.03 0.274 ± 0.04 3.36 ± 0.01
σ = 20 0.279 ± 0.02 0.646 ± 0.02 0.389 ± 0.02 2.76 ± 0.01

kernel
σ = 100 0.394 ± 0.02 0.385 ± 0.01 0.389 ± 0.01 1.85 ± 0.05
σ = 500 0.415 ± 0.02 0.401 ± 0.01 0.408 ± 0.01 1.71 ± 0.05
σ = 10000 0.413 ± 0.02 0.362 ± 0.02 0.386 ± 0.01 1.77 ± 0.05

Polynomial kernel
d = 1 0.437 ± 0.01 0.323 ± 0.02 0.372 ± 0.01 1.55 ± 0.01
d = 2 0.437 ± 0.00 0.319 ± 0.01 0.369 ± 0.01 1.54 ± 0.02
d = 3 0.441 ± 0.00 0.337 ± 0.01 0.382 ± 0.01 1.49 ± 0.01
d = 4 0.441 ± 0.00 0.337 ± 0.01 0.382 ± 0.01 1.49 ± 0.01

Therefore, knowing the actual overlaps in each dataset, the sizes of overlaps built by

each method are discussed. Table 2.8 summarizes overlaps obtained with KOKMI and
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Table 2.11: Validation measures obtained with KOKMII using di�erent types of kernels

in Scene dataset
Kernel Value Precision Recall F-measure Overlap

Gaussian
σ = 10 0.419 ± 0.04 0.663 ± 0.05 0.513 ± 0.04 1.75 ± 0.04
σ = 15 0.418 ± 0.04 0.655 ± 0.05 0.510 ± 0.05 1.75 ± 0.04

RBF kernel
σ = 100 0.423 ± 0.05 0.657 ± 0.05 0.511 ± 0.05 1.75 ± 0.04
σ = 10000 0.423 ± 0.05 0.657 ± 0.05 0.511 ± 0.05 1.75 ± 0.04

Exponential
σ = 10 0.425 ± 0.01 0.750 ± 0.04 0.548 ± 0.02 1.99 ± 0.00
σ = 15 0.426 ± 0.01 0.753 ± 0.05 0.544 ± 0.02 1.99 ± 0.00

RBF kernel
σ = 100 0.425 ± 0.01 0.753 ± 0.04 0.544 ± 0.02 1.99 ± 0.00
σ = 10000 0.426 ± 0.01 0.753 ± 0.05 0.544 ± 0.02 1.99 ± 0.00

Laplace
σ = 1 0.208 ± 0.08 0.938 ± 0.14 0.340 ± 0.09 2.33 ± 0.03
σ = 10 0.490 ± 0.12 0.820 ± 0.11 0.613 ± 0.07 1.50 ± 0.13

kernel
σ = 20 0.388 ± 0.13 0.846 ± 0.11 0.483 ± 0.08 1.46 ± 0.13
σ = 100 0.388 ± 0.13 0.846 ± 0.11 0.483 ± 0.08 1.46 ± 0.13
σ = 10000 0.388 ± 0.13 0.846 ± 0.11 0.483 ± 0.08 1.46 ± 0.13

Polynomial kernel
d = 2 0.435 ± 0.04 0.661 ± 0.06 0.525 ± 0.05 1.75 ± 0.05
d = 3 0.455 ± 0.05 0.656 ± 0.05 0.537 ± 0.05 1.74 ± 0.05
d = 4 0.481 ± 0.03 0.593 ± 0.02 0.530 ± 0.02 1.63 ± 0.14

KOKMII compared to overlaps obtained with existing overlapping and non overlapping

methods. For hard methods, all sizes of overlaps are equal to 1 since these methods

build non-disjoint clusters and ignore the possibility that an observation belongs to more

than one cluster which is the case for all these datasets. Fuzzy c-means builds acceptable

overlaps if the threshold is well determined, elsewhere we can obtain an overlap size less

than 1. For overlapping methods, we notice that OKM and ALS build large overlap sizes.

For example, in Music dataset, the size of overlaps obtained with OKM and ALS are

2.35 and 3.46 respectively, while actual overlaps in this dataset is 1.81. However, for the

same dataset, KOKMII builds an acceptable overlap size of 1.98. These results prove

the capacity of the proposed methods to build acceptable sizes of overlaps given actual

overlaps in each dataset.

As described in Section 2.5.2, the structure of separations between overlapping clusters

depends of the choice of the kernel function ant its parameters. Therefore, we study

the sensitivity of proposed methods to these parameters by analyzing the performance

of KOKMII in real overlapping datasets using Gaussian, Exponential and Polynomial

kernels with different values of kernel parameters.

Table 2.9, 2.10 and 2.11 report average results and standard deviations, on ten runs,
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obtained with KOKMII using different kernels in Eachmovie, Music and Scene datasets.

From these results we notice that kernels performing nonlinear separations, such as Ex-

ponential and Gaussian, give better results than those performing linear separations like

the Polynomial kernel. These results state that in real life applications where separa-

tions between clusters may be complex, it would be better to perform a learning process

with nonlinear separations. We also notice that kernel-based methods are highly sensitive

to the choice of the kernel function. For example, in Scene dataset, the best obtained

F-measure with Exponential kernel is 0.548; whereas this value does not exceed 0.513

using Gaussian kernel. Moreover, reported results show that initializing the parameters

of the kernel function can considerably affect the performance of clustering. Some kernel

parameters have identical behaviors in all datasets. For example, using Gaussian or Ex-

ponential kernels, the size of overlaps increases, Precision decreases and Recall increases

when σ becomes large. Finally, the reported results of standards deviations on ten runs

with different initializations of clusters representatives, prove that KOKMII is not very

sensitive to these initializations and converges to nearly the same partitions.

2.6 Conclusion

In order to better look for overlapping clusters with nonlinear and non spherical separa-

tions two clustering methods, based Mercer kernel, are proposed. The first method, based

on centroids, generalizes kernel k-means for overlapping clustering. The second method,

based on medoids, improves the clustering accuracy of the previous method and adapts

it to large datasets. Experiments on artificial and real overlapping datasets show the

ability of these methods to detect clusters with complex separations and their efficiency

compared to other overlapping clustering methods.
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Chapter 3: Non-disjoint clustering with overlap regulation

3.1 Introduction

Existing overlapping clustering methods are able to produce a non-disjoint partitioning

of data. However, most of these methods produce clusters with a fixe and large sizes

of overlaps which lead to produce more information than needed. This fact reduces

considerably the precision of classification of existing methods. To deal with this issue,

we present in this chapter a new clustering model (BenN’Cir et al. 2014b) that generalizes

k-means to detect overlapping clusters with parameterizable and auto-adjusted sizes of

overlaps. We propose different instantiations (BenN’Cir et al. 2014a) of the proposed

model which produce different layouts for the overlapping boundaries between clusters.

These instantiations are well adapted for the regulation of the sizes of the overlaps.

This chapter is organized as follows: Section 3.2 describes the motivation of this work

by presenting the requirement of detecting clusters with regularized overlaps. Section 3.3

and Section 3.4 respectively present a first approach that we propose and the generaliza-

tion of this approach for detecting overlapping clusters with possibility of control of the

overlaps. Experiments on different datasets are described and discussed in Section 3.5.

Finally, Section 3.6 presents conclusions

3.2 Motivation: control of overlapping boundaries between

clusters

Into a knowledge discovery process, the user or expert is central and should have the

means to interact with the system; as well as he examines several possibilities on the

number of clusters, the metric to use or the fuzziness of the solution in a clustering

process, he must be able to regulate the size of the overlaps when such an overlapping

structuring is expected. Usually, the existing overlapping clustering methods produce a

large overlaps between clusters. Although the overlapping clustering task reconsiders the

“well separated clusters” property, clusters with too large overlaps are not appropriate for
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most of the target applications. The overlapping clustering hypothesis tolerates overlaps

between clusters, but the size of the overlaps should be controlled, depending on the

requirements of the application.

Therefore, we study patterns and overlaps sizes produced by the existing OKM method,

we build Voronöı cells induced by the objective function of OKM for three clusters. Figure

3.1 shows an example of these Voronöı cells. The representation space is divided into

several areas where each possible combination of clusters is associated to one area except

the empty set. Each area is centered on a prototype or a combination of prototypes. We

notice the large overlapping boundaries which is not appropriate to detect clusters with

small overlaps. For example, the size of the area “cluster1∩3” is very large compared to

areas “cluster1” and “cluster3”. The produced patterns do not match with the overlapping

clustering hypothesis where overlaps between clusters should not be as important as the

single clusters.

Figure 3.1: Voronoï cells obtained with OKM for two and three clusters.

Because the expected clusterings can have different levels of overlaps depending on the

requirement of the application, we focused our study on k-means and on the geometrical

model which will be generalized in order to produce overlaps with fixed (but limited),

parameterizable or auto-adjusted sizes. The problem of overlap regulation for clustering

approaches is considered for the geometrical model, without loss of generality since similar
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regulation principles could be performed on additive models.

3.3 Proposed Restricted OKM method

To make the overlapping regulation feasible for geometrical model, we firstly propose the

R-OKM method (BenN’Cir and Essoussi 2012a) which formalizes a regulation principle

based on the number of clusters concerned by the data assignment. Instead of considering

strong global thresholds that could for example limit or favor for any data the number of

its memberships to a given value regardless of the data context, the regulation process we

propose is data sensitive ; it aims to parameterize the expected benefit of an overlap on

the local errors. In fact, the large overlap boundaries built by OKM method are induced

by the model used that consists in dividing the representation space of observations into

multiple areas, the Voronöı cells, where each observation is assigned to its nearest area.

For example, if we have three clusters, there exists seven areas associated respectively to

clusters {π1} , {π2}, {π3}, {π1, π2} ,{π1, π3}, {π2, π3} and {π1, π2, π3}. All the observa-

tions xi in each area are closer to the prototype or the combination of prototypes of this

area. In the actual OKM model, given two assignments Πi and Π′i of an observation xi,

the assignment Πi is preferred if and only if d2(xi, imΠ,C(xi)) ≤ d2(xi, imΠ′,C(xi)) with

imΠ,C(xi) denotes 1 the combination of clusters’ representatives to which xi belongs to.

To produce overlapping clusters with limited sizes of overlaps, the areas corresponding

to combinations of clusters (for example areas {π1, π2}, {π1, π3}, {π2, π3} and {π1, π2, π3})

should be reduced as well as the number of combined clusters increases. A natural solu-

tion to restrict the assignment of observations is to introduce a weight when evaluating

distances between an observation and it’s image. The weight should be relative to the

number of clusters that participate to the considered overlaps. The preference rule when

building assignment vector of each observation is transformed to:

d2(xi, imΠ,C(xi)) ≤ η.d2(xi, imΠ′,C(xi)). (3.1)

1The notation imΠ,C(xi) is equivalent to the notation xi used in chapter 1 when we described the
combination of clusters' representatives for OKM.
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where the coefficient η ∈]0, 1[ for |Π′i| ≤ |Πi| is set to η =
|Π′i|
|Πi| .

For example, when evaluating assignment of an observation xi that belongs to two

clusters (|Πi| = 2) with another assignment of this observation that belongs to only

one cluster (|Π′i| = 1), the assignment Πi is preferred if and only if d2(xi, imΠ,C(xi)) ≤
1
2 .d

2(xi, imΠ′,C(xi)).

The proposed weight to penalize assignment of each observation can be integrated in

the objective function by introducing the assignment cardinality of each observation as

follows:

J(Π, C) =
∑
xi∈X

|Πi|. ‖ xi − imΠ,C(xi) ‖2

=
k∑
c=1

∑
xi∈πc

‖ xi − imΠ,C(xi) ‖2 . (3.2)

To give the reader a visual reading of the regulation principle, we illustrate the overlaps

with Voronöı cells. Figure 3.2 shows the Voronöı cells obtained with the proposed R-OKM

method for the same example that Figure 3.1. The proposed weight penalizes assignment

of observations and reduces the size of regions where observations are assigned to more

than one cluster. The proposed R-OKM method is considered as a generalization of k-

means for detecting overlapping clusters. If observations are assigned to only one cluster,

the objective function coincides with the objective function of k-means (|Π| = 1).

This proposed method builds a fixed, but limited, overlap size according to the num-

ber of assignments of each observation. However, in real life applications of overlapping

clustering, the size of overlaps is not unique and depends on the requirement of the appli-

cation. The user must be able to regulate the size of the overlaps when such an overlapping

structuring is expected. In contrast, when the expert does not have ay expectations on

the size of overlaps, the ideal solution consists in enabling to auto-regulate these sizes

based on the existing structures in data. In this way, to make the overlapping regulations

feasible for geometrical model, we propose a generic framework that can be instantiated
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Figure 3.2: Voronoï cells obtained with R-OKM method for two and three clusters.

using different regulation principles.

3.4 Proposed generic model for overlapping clustering with

overlap regulation

3.4.1 Objective function considerations

The proposed generic model allows users to detect clusters with non-large overlapping

boundaries, to parameterize the size of the overlaps and to auto-regulate overlaps taking

into account the real organization of the data. The generic behavior of the model is

obtained from the generalization of the weight (ω) associated to each local error :

J(Π, C,Ω) =
∑
xi∈X

ωi. ‖ xi − imΠ,C(xi) ‖2 . (3.3)

The proposed model can be instantiated in different ways. For example, the model can

be instantiated to coincide with OKM when ωi = 1 ∀i or to coincide with the proposed

R-OKM when ωi = |Πi| ∀i.

To give the user the possibility to parameterize the size of overlaps between clusters,

the model can be instantiated (BenN’Cir et al. 2013a; BenN’Cir et al. 2013b) with
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ωi = |Πi|α where α is a parameter to control the size of the overlaps. Depending on the

values of α, the model has the following behavior:

• α = 0 eliminates the weighting on the combination sizes thus leading to the original

OKM model,

• α > 0 penalizes the assignments to wide combinations as well as α increases until a

non-overlapping model identical to the k-means algorithm (α→ +∞),

• α < 0 favors the overlaps as well as α decreases until a trivial clustering scheme

with any data assigned to any clusters (α→ −∞).

The proposed generic model can be also instantiated (BenN’Cir et al. 2013b) to take

into account the real organization of the data in order to adjust automatically a weight

for each cluster. The new weights ωi can be defined by a combination of weights λc,

local to each cluster πc. We define the new weights as ωi =
∑
c∈Πi

(λc)
β under the constraint

k∑
c=1

λc = 1. The objective function of R-OKM with Adjusted Weights (Adjusted R-OKM)

can be described by:

J(Π, C,Ω) =
∑
xi∈X

∑
c∈Πi

(λc)
β. ‖ xi − imΠ,C(xi) ‖2, (3.4)

where β is a fixed parameter to control the variations in the local weights {λc}kc=1. In the

following, we consider β ∈]0, 1[, noticing that when β → 0 any λβc ≈ 1
k and the Adjusted

R-OKM is equivalent to R-OKM.

3.4.2 Optimization and algorithmic resolutions

The minimization of the objective function of each mentioned instantiation of the model

(R-OKM, Parameterized R-OKM and Adjusted R-OKM) is performed by iterating two or

three steps according to the number of parameters considered: (1) computation of cluster
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representatives C, (2) multi assignment (Π) of observations to one or several clusters and

(3) computation of weights (Ω). These three steps are independent and the objective

function is reduced after each step:

1. step of the computation of cluster representatives: considering the assign-

ments (Π) and the local weights (ω) fixed, cluster representatives are successively

update by derivation of the objective function as shown in Table 3.1. The notation

x̃i
c denotes representative mc according to xi such that ‖ xi− imΠ,C(xi) ‖2= 0 and

is computed x̃i
c = |Πi|.xi − (|Πi| − 1).imΠ\c,C(xi).

2. step of the multi-assignments: the assignment step (considering C and ω fixed)

is a combinatorial discrete optimization problem that cannot be solved directly.

We present in the following a generic heuristic that makes the objective function

minimized.

3. step of the update of clusters weights: this step updates the weights considered

for each cluster. For R-OKM and Parameterized R-OKM, this step is not required

since clusters have equal weights. However, for the Adjusted R-OKM, the local

weights (λ) can be obtained independently for each cluster by solving a constraint

optimization problem (last column in Table 3.1). We notice that the update of

local weights λc quantifies the quality of each cluster in terms of optimization of the

local errors. Choosing β < 1 makes the global weight ωi higher for assignments Πi

composed of clusters with high local errors thus, restricting multi-assignments to

these “high quality” clusters.

Algorithm 52 and Figure 3.3 describe the generic algorithm of the proposed model for

restricted overlapping clustering. The computational complexity of this algorithm is in

the order of O(N.k. lg k) for both R-OKM and Parameterized R-OKM and in the order of

O(N.k2. lg k) for Adjusted R-OKM. The main algorithm uses the function R−ASSIGN

(Regulated Assignments) that defines the assignment strategy. This strategy consists, for

each observation xi, in sorting clusters from closest to farthest with respect to ‖ xi−mc ‖2

2Step 5 in Algorithm 1 is used only for Adjusted R-OKM method. For the other methods, while
clusters weights are equal this step is not required

95



Chapter 3: Non-disjoint clustering with overlap regulation

Table 3.1: Description of the update rules with di�erent instantiations of the Generic

Restricted Overlapping k-means model

Overlapping
methods

Instantiations
ωi

Clusters Prototypes
m∗c

Clusters Weights λ∗c

OKM 1

∑
xi∈πc

1

|Πi|2
.x̃i

c

∑
xi∈πc

1

|Πi|2
1

R-OKM |Πi|

∑
xi∈πc

1

|Πi|
.x̃i

c

∑
xi∈πc

1

|Πi|

1
k

Parameterized
R-OKM

|Πi|α

∑
xi∈πc

1

|Πi|2−α
.x̃i

c

∑
xi∈πc

1

|Πi|2−α

1
k

Adjusted
R-OKM

∑
c∈Πi

(λc)
β

∑
xi∈πc

∑
c∈Πi

(λc)
β

|Πi|2
.x̃i

c

∑
xi∈πc

1

|Πi|2

1

k∑
l=1


∑
xi∈πc

‖ xi − imΠ,C(xi) ‖2∑
xj∈πl

‖ xj − imΠ,C(xj) ‖2


1

β−1

then assigning observations in the order defined while assignment improves the local error

therefore, reducing the objective function after each assignment step. A pseudo code for

R−ASSIGN is described in Algorithm 6.

The proposed generic model for overlapping clustering is instantiated with three dif-

ferent methods which are R-OKM, Parameterized R-OKM and Adjusted R-OKM. Each

instantiation of the generic model takes into account some properties relative to the size

of overlaps between clusters and leads to different layouts for the overlapping boundaries

between clusters. In practice, users should decide whether instantiation must be used

depending on the requirement of the application and depending on the expected size of

overlaps. For example, if small overlaps are expected, users can use the R-OKM method;

However, to test different alternatives with different sizes of overlaps the Parameterized

R-OKM can be used by adjusting the parameter α. This parameter can be bounded by

the interval [[−1, 10]] where −1 coincides with the situation of max overlaps where any data

is assigned is to any cluster and 10 coincides with the situation of null overlaps. Users can
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Algorithm 5 Regulated overlapping k-means (X, tmax, ε, k) → Π

Input X: a dataset described over Rd.
tmax: maximum number of iterations.

ε: minimal improvement in the objective function.

k: number of clusters.
Output Π: assignment of observations over k clusters.

1: Initialize representatives of clusters C0 randomly over X, initialize weights Ω0, initial-

ize clusters memberships Π0 using R−ASSIGN(xi, C
0) and compute the objective

function J(Π0, C0,Ω0) at iteration 0.
2: t = t+ 1.
3: Update clusters representatives Ct (using Table 3.1 column 3).
4: Compute new assignments Πt using R−ASSIGN(xi, C

t,Πt−1
i ) ∀i.

5: Update weights Ωt = (using Table 3.1 column 4).
6: Compute objective function J(Πt, Ct,Ωt).
7: if (t < tmax and J(Πt−1, Ct−1,Ωt−1)− J(Πt, Ct,Ωt) > ε) then
8: Go to step 2.
9: else

10: Return Πt the �nal cluster memberships matrix.

11: end if

Algorithm 6 R−ASSIGN(xi, {c = 1, ...c = k},Πold
i ) → Πi

Input xi: Vector in Rd.
{c = 1, ...c = k}: set of k clusters

Πold
i : Old assignment for observation xi.

Output Πi: New assignment for xi.
1: Initialize Πi = {c?} the nearest cluster where c? = arg min

mc
‖ xi −mc ‖2.

2: Looking for the next nearest cluster c? which is not included in Πi.

3: Compute imΠ′,C(xi) and ω
′
i with assignments Π′i = Πi ∪ {c?}.

4: if ω′i. ‖ xi − imΠ′,C(xi) ‖2< ωi. ‖ xi − imΠ,C(xi) ‖2 then
5: Πi ← Π′i and go to step 2.
6: if ωi. ‖ xi − imΠ,C(xi) ‖2≤ ωoldi . ‖ xi − imΠold,C(xi) ‖2 then
7: Return Πi.

8: else

9: Return Πold
i .

10: end if

11: end if
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Figure 3.3: Main steps of the generic model for overlapping clustering with overlap regu-

lation

detect by dichotomy on this interval the smallest value αmin leading to a non-overlapping

clustering. Then, they can test several values uniformly distributed over [−1, αmin] and

keep the salient values corresponding to strong jumps in the overlap rates obtained from

two consecutive values of α. On the other side, if users have no prior knowledge about

the size of overlaps of the data to be clustered, the Adjusted R-OKM should be used to

obtain an automatic customization of the overlaps.

All the proposed instantiations require to configure the number of clusters in prior.

However, in practice this number is unknown while data to be clustered are unlabeled.
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As a solution, users can test different clusterings with increasingly number of clusters

and then, take the clustering having the best balance between the minimization of the

objective function and the number of clusters.

In the next section, we look to empirically confirm the performance of the proposed

methods, and therefore the performance of the proposed generic model.

3.5 Experiments and discussions

This section describes the details of the experiments that we performed in order to show

the ability of the proposed methods to produce clusters with relevant overlaps.

3.5.1 Evaluation methodology

We propose a two fold assessment: firstly, as an “internal” point of view we give visual and

quantitative information about the overlaps produced on a small example and on multi-

labeled benchmarks; then we perform a standard “external” evaluation by comparing

clusterings obtained with the benchmark basis.

We conducted experiments on different domains that motivate the overlapping cluster-

ing researches. In addition to the datasets described in Section 2.5.4, we add experiments

on the yeast dataset which contains a numeric descriptions of genes where each gene can

participate on different metabolic processes. Table 3.2 summarizes the statistics of each

dataset. “Overlap” rate is the average number of labels per data. This rate will be com-

pared with the overlap rate obtained with the clustering method. All described datasets

are multi-labeled except the “Iris” dataset which is used only as a comparative example.

These datasets are characterized by their diversity of application domains, their diversity

of sizes (75→ 2417), their diversity of dimensions (3→ 192) and their diversity of overlap

rates (1→ 4.23).
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Table 3.2: Statistics of used benchmarks
Dataset Domain Observation Dimension Labels Overlap

Iris Plants 150 4 3 1

EachMovie Video 75 3 3 1.14

Music emotion Music 593 72 6 1.86

Scene Images 2407 294 6 1.07

Yeast Biology 2417 103 14 4.23

3.5.2 Evaluation of the size of overlaps

To study the overlaps obtained by the new model, particulary the Parameterized R-OKM

method, we build Voronöı cells on the three-clusters example previously used. Figure 3.4

shows the evolution in the overlaps when the parameter α varies from α = 0 (matching

with OKM) to α → +∞ (matching with k-means) via α = 1 (matching with R-OKM).

This figure shows that Parameterized R-OKM considerably reduces the overlapping area

between clusters 1,2 and 3 compared to the ones obtained with OKM, and then, its ability

to control the sizes of the overlaps.

On a quantitative point of view, Table 3.3 reports the overlap rates reported by the

proposed methods compared with OKM and fuzzy-c-means. We produce overlapping

clustering with fuzzy-c-means using a threshold post-assignment stage: any data with

a membership degree higher than a threshold θ are assigned to the considered cluster.

Comparison are performed with different initializations. The reported rates are averages

and standard deviations obtained over ten runs. For each run, all the methods are started

with the same initialization of cluster representatives to guarantee that all methods have

the same experimental conditions.

Table 3.3 shows that the proposed methods generate reasonable overlap sizes with

respect to the expected overlaps in each dataset. However, OKM and fuzzy-c-means

generate large overlaps as well as the actual overlap size in each dataset increases. For

example, using fuzzy c-means, observations in the Yeast dataset are assigned to almost

clusters and the overlap rate is near to 14 (12.87). In fact, the size of overlaps obtained

with proposed methods is lower than the size of overlaps obtained with OKM over all

datasets. These results show the ability of the proposed generic model to produce clusters
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Figure 3.4: Voronoï cells obtained with Parameterized R-OKM method for three clusters

with di�erent values of parameter α: overlapping cells become more important when α
approach to 0 (coincides with OKM) and become null when α is larger (coincides with

k-means).
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Table 3.3: Size of the overlaps on benchmark datasets using the proposed methods and

compared with OKM, ALS and fuzzy-c-means.
Dataset Iris Eachmovie Music Emotion Scene Yeast
Overlap rates (1) (1.14) (1.81) (1.07) (4.23)

fuzzy-c-means (θ = 1
k
) 1.14 ± 0.01 1.24 ± 0.00 1.43 ± 0.01 5.22 ± 0.22 12.87 ± 0.16

OKM 1.34 ± 0.12 1.76 ± 0.22 2.35 ± 0.20 2.33 ± 0.08 4.75 ± 0.23
ALS 1.57 ± 0.10 1.76 ± 0.11 3.45 ± 0.10 - -

Parameterized R-OKM (α = 0.01) 1.32 ± 0.06 1.70 ± 0.07 2.11 ± 0.05 2.34 ± 0.11 4.48 ± 0.22
Parameterized R-OKM (α = 0.1) 1.31 ± 0.04 1.68 ± 0.07 1.84 ± 0.05 1.66 ± 0.09 2.75 ± 0.10
Parameterized R-OKM(α = 0.4) 1.25 ± 0.02 1.49 ± 0.03 1.69 ± 0.02 1.03 ± 0.02 1.03 ± 0.04
Parameterized R-OKM (α = 0.6) 1.24 ± 0.02 1.29 ± 0.02 1.57 ± 0.04 1.01 ± 0.01 1.00 ± 0.00
Parameterized R-OKM (α = 0.8) 1.21 ± 0.03 1.28 ± 0.10 1.39 ± 0.08 1.01 ± 0.01 1.00 ± 0.00
Restricted-OKM 1.16 ± 0.03 1.21 ± 0.11 1.31 ± 0.04 1.03 ± 0.04 1.00 ± 0.00
Parameterized R-OKM (α = 1.2) 1.13 ± 0.03 1.14 ± 0.07 1.22 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
Parameterized R-OKM(α = 1.5) 1.10 ± 0.02 1.11 ± 0.08 1.20 ± 0.02 1.00 ± 0.00 1.00 ± 0.00
Parameterized R-OKM (α = 2) 1.05 ± 0.01 1.05 ± 0.08 1.14 ± 0.04 1.00 ± 0.00 1.00 ± 0.00
Parameterized R-OKM (α = 3) 1.01 ± 0.00 1.03 ± 0.03 1.05 ± 0.03 1.00 ± 0.00 1.00 ± 0.00
Parameterized R-OKM (α = 5) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

Adjusted R-OKM (β = 0.8) 1.13 ± 0.07 1.18 ± 0.05 1.29 ± 0.09 1.00 ± 0.00 1.00 ± 0.00
Adjusted R-OKM (β = 0.6) 1.18 ± 0.01 1.16 ± 0.08 1.30 ± 0.10 1.00 ± 0.00 1.00 ± 0.00
Adjusted R-OKM (β = 0.4) 1.17 ± 0.02 1.18 ± 0.10 1.30 ± 0.08 1.00 ± 0.00 1.00 ± 0.00
Adjusted R-OKM (β = 0.1) 1.16 ± 0.01 1.21 ± 0.12 1.27 ± 0.07 1.01 ± 0.01 1.00 ± 0.00
Adjusted R-OKM (β = 0.05) 1.16 ± 0.03 1.21 ± 0.10 1.27 ± 0.03 1.01 ± 0.01 1.00 ± 0.00
Adjusted R-OKM (β = 0.01) 1.16 ± 0.03 1.20 ± 0.10 1.28 ± 0.03 1.01 ± 0.01 1.00 ± 0.00

with adjusted overlaps.

3.5.3 Empirical results on real multi-labeled datasets

To evaluate the clustering results, external validation measures were calculated based on

the BCubed technique. We compare the new generic model using different instantiations

with OKM, ALS, fuzzy-c-means and k-means. Table 3.4 reports the average scores and

the standard deviation of Precision, Recall and F-measure on ten runs. For each run, all

the methods are started with the same initialization (cluster representatives). Values in

bold correspond to the best obtained scores.

Results obtained with fuzzy-c-means using different thresholding membership are char-

acterized by low values and are match sensitive to the used threshold: for example, in the

Yeast dataset, using a threshold equal to 0.0714 the obtained F-measure is equal to 0.257

while using the same method with a threshold equal to 0.0715 the F-measure decreases

to 0.017 because clusters memberships are almost null. These results show the limit of

fuzzy c-means to detect overlapping groups.
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Table 3.4: Comparison of proposed methods with OKM, ALS, fuzzy c-means and k-means

on the benchmark datasets
Method Precision Recall F-measure

E
a
c
h
m
o
v
ie
d
a
ta
se
t

k-means 0.644 ± 0.100 0.587 ± 0.036 0.610 ± 0.070
fuzzy-c-means (θ = 1

k
) 0.610 ± 0.001 0.734 ± 0.001 0.666 ± 0.001

OKM 0.402 ± 0.020 0.912 ± 0.055 0.540 ± 0.030
ALS 0.366 ± 0.032 0.819 ± 0.050 0.506 ± 0.038
Restricted-OKM 0.532 ± 0.010 0.764 ± 0.003 0.627 ± 0.006
Parameterized R-OKM(α = 0.1) 0.474 ± 0.016 0.901 ± 0.043 0.621 ± 0.024
Parameterized R-OKM(α = 0.4) 0.498 ± 0.029 0.846 ± 0.062 0.627 ± 0.023
Parameterized R-OKM(α = 0.9) 0.535 ± 0.013 0.763 ± 0.020 0.629 ± 0.016
Parameterized R-OKM(α = 1.5) 0.591 ± 0.071 0.700 ± 0.008 0.639 ± 0.044
Parameterized R-OKM(α = 3) 0.627 ± 0.136 0.601 ± 0.063 0.605 ± 0.083
Adjusted R-OKM (β = 0.4) 0.534 ± 0.039 0.639 ± 0.134 0.580 ± 0.080
Adjusted R-OKM (β = 0.1) 0.573 ± 0.058 0.735 ± 0.038 0.642 ± 0.034
Adjusted R-OKM (β = 0.05) 0.568 ± 0.028 0.757 ± 0.015 0.649 ± 0.014
Adjusted R-OKM (β = 0.01) 0.564 ± 0.030 0.745 ± 0.027 0.641 ± 0.028

E
m
o
ti
o
n
d
a
ta
se
t

k-means 0.507 ± 0.003 0.206 ± 0.012 0.293 ± 0.010
fuzzy-c-means (θ = 1

k
) 0.493 ± 0.003 0.357 ± 0.001 0.414 ± 0.002

OKM 0.483 ± 0.001 0.646 ± 0.031 0.552 ± 0.012
ALS 0.307 ± 0.015 0.970 ± 0.021 0.466 ± 0.018
Restricted-OKM 0.505 ± 0.004 0.335 ± 0.058 0.401 ± 0.040
Parameterized R-OKM(α = 0.1) 0.480 ± 0.002 0.581 ± 0.087 0.524 ± 0.036
Parameterized R-OKM(α = 0.4) 0.484 ± 0.012 0.525 ± 0.079 0.503 ± 0.041
Parameterized R-OKM(α = 0.9) 0.491 ± 0.012 0.378 ± 0.050 0.426 ± 0.031
Parameterized R-OKM(α = 1.5) 0.500 ± 0.002 0.286 ± 0.019 0.363 ± 0.015
Parameterized R-OKM(α = 3) 0.501 ± 0.007 0.218 ± 0.013 0.304 ± 0.010
Adjusted R-OKM (β = 0.4) 0.484 ± 0.004 0.280 ± 0.071 0.352 ± 0.054
Adjusted R-OKM (β = 0.1) 0.483 ± 0.016 0.558 ± 0.044 0.479 ± 0.030
Adjusted R-OKM (β = 0.05) 0.495 ± 0.022 0.329 ± 0.050 0.393 ± 0.028
Adjusted R-OKM (β = 0.01) 0.503 ± 0.006 0.322 ± 0.019 0.392 ± 0.016

S
c
e
n
e
d
a
ta
se
t

k-means 0.441 ± 0.010 0.406 ± 0.012 0.429 ± 0.010
fuzzy-c-means (θ = 1

k
) 0.324 ± 0.004 0.482 ± 0.022 0.388 ± 0.005

OKM 0.233 ± 0.006 0.928 ± 0.013 0.372 ± 0.008
ALS - - -
Restricted-OKM 0.448 ± 0.004 0.413 ± 0.058 0.430 ± 0.040
Parameterized R-OKM(α = 0.1) 0.290 ± 0.001 0.765 ± 0.027 0.421 ± 0.006
Parameterized R-OKM(α = 0.4) 0.444 ± 0.013 0.426 ± 0.014 0.435 ± 0.013
Parameterized R-OKM(α = 0.9) 0.448 ± 0.005 0.413 ± 0.008 0.430 ± 0.007
Parameterized R-OKM(α = 1.5) 0.448 ± 0.007 0.413 ± 0.009 0.430 ± 0.007
Parameterized R-OKM(α = 3) 0.448 ± 0.007 0.413 ± 0.009 0.430 ± 0.007
Adjusted R-OKM (β = 0.4) 0.286 ± 0.093 0.582 ± 0.002 0.344 ± 0.023
Adjusted R-OKM (β = 0.1) 0.416 ± 0.039 0.409 ± 0.026 0.412 ± 0.023
Adjusted R-OKM (β = 0.05) 0.454 ± 0.014 0.415 ± 0.012 0.434 ± 0.012
Adjusted R-OKM (β = 0.01) 0.454 ± 0.010 0.415 ± 0.009 0.433 ± 0.010

Y
e
a
st

d
a
ta
se
t

k-means 0.801 ± 0.006 0.075 ± 0.001 0.137 ± 0.002
fuzzy-c-means (θ = 1

k
) 0.148 ± 0.000 1.000 ± 0.000 0.257 ± 0.000

OKM 0.783 ± 0.001 0.855 ± 0.051 0.817 ± 0.024
ALS - - -
Restricted-OKM 0.801 ± 0.006 0.107 ± 0.067 0.137 ± 0.002
Parameterized R-OKM(α = 0.01) 0.783 ± 0.002 0.830 ± 0.050 0.806 ± 0.024
Parameterized R-OKM(α = 0.05) 0.783 ± 0.001 0.710 ± 0.055 0.744 ± 0.031
Parameterized R-OKM(α = 0.1) 0.786 ± 0.003 0.493 ± 0.033 0.606 ± 0.027
Parameterized R-OKM(α = 0.8) 0.801 ± 0.005 0.075 ± 0.001 0.137 ± 0.002
Parameterized R-OKM(α = 1.5) 0.801 ± 0.006 0.107 ± 0.067 0.137 ± 0.002
Parameterized R-OKM(α = 3) 0.801 ± 0.006 0.107 ± 0.067 0.137 ± 0.002
Adjusted R-OKM (β = 0.8) 0.782 ± 0.002 0.736 ± 0.389 0.735 ± 0.229
Adjusted R-OKM (β = 0.4) 0.790 ± 0.011 0.163 ± 0.023 0.270 ± 0.016
Adjusted R-OKM (β = 0.1) 0.804 ± 0.003 0.072 ± 0.001 0.134 ± 0.002
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Chapter 3: Non-disjoint clustering with overlap regulation

For all experiments, the obtained size of overlaps influences the value of obtained F-

measure: as well as the size of overlaps increases, the value of Precision decreases and

the value of Recall increases. We notice that OKM has the best values of Recall because

OKM builds clusters with large overlapping boundaries and k-means has the best values

of Precision because overlaps are null. But, comparing to the overall F-measure, results

obtained by proposed methods outperform results obtained by k-means and OKM. This

improvement is explained by the reasonable sizes of overlaps compared to the actual

overlaps in each dataset.

For the first proposed instantiation R-OKM, we notice the performance of this method

to detect clusters with small overlaps as shown in Eachmovie and Scene datasets where

actual overlaps are less than 1.5. The improvement in overall F-measure is considerably

important: for example, in Scene dataset the F-measure obtained is 0.430, while using

OKM this measure is 0.372. This improvement is principally induced by the improvement

of the Precision. In fact, the average of Precision obtained by R-OKM is characterized by a

high value compared to OKM for all datasets. The improvement of Precision is explained

by the restriction in the assignments. But in other hand, we notice the limit of R-OKM to

detect clusters with large overlaps as shown in the Yeast dataset (actual overlaps in Yeast

is 4.23) where R-OKM fails to detect these clusters (the obtained F-measure is equal to

0.137).

For the the second proposed instantiation (Parameterized R-OKM), we notice the

performance of this method to detect both small and large overlaps depending on the

parameter α: the best obtained F-measure using Parameterized R-OKM outperforms both

OKM and R-OKM on small overlapping datasets as shown in Scene and Eachmovie, and

on large overlapping datasets as shown in Music Emotion and Yeast. In fact, the high

scores obtained with Parameterized R-OKM matches with reasonable sizes of overlaps

compared to the actual overlaps in each dataset as described in Figure 3.5. This figure

shows also that OKM usually builds large overlaps in all datasets which confirms the limit

of this method to build clusters with a reasonable overlapping boundaries.

The reported results, in Table 3.4, of Parameterized R-OKM with different values of
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Chapter 3: Non-disjoint clustering with overlap regulation

Figure 3.5: Matching between F-measure and Overlap sizes obtained with proposed meth-

ods compared to OKM on the benchmark datasets

α show the impact of this parameter used within Parameterized R-OKM: the obtained

size of overlaps in all datasets is reduced when α becomes more important. For high

values of α, Parameterized R-OKM converges to k-means and builds hard clusters where

observations are assigned to only one group. For small values of α, especially those closer

to 0, the method converges to OKM and builds large overlaps as shown in Yeast dataset

where the size of overlaps is equal to 4.48 when α = 0.01.

For the third proposed instantiation Adjusted R-OKM, we notice the ability of this

method to auto adjust overlaps based on the quality of obtained clusters as shown in

Eachmovie and Scene datasets. The best obtained results outperform results obtained

by both OKM and R-OKM methods especially for small overlapping datasets. The

β parameter, used within Adjusted R-OKM, determines the degree of influence of the
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considered weight λc local to each cluster πc when building overlapping clusters. In fact,

when β approaches to 0, the weight λc assigned to each cluster converges to 1/k and

the method has the characteristics of R-OKM because all clusters have nearly the same

cluster weights. In contrast, when β approaches to 1, the weight λc assigned to cluster

c becomes more important than others weights if observations in this cluster are close

to their images. As shown in Eachmovie dataset, when β approaches to 1 the value of

precision and the size of overlaps decrease while the value of recall increases.

As a summary of the experiments, histograms in Figure 3.5 show that the new R-OKM

method outperforms OKM in the majority of datasets. In addition, the parameterized

and the adjusted variants can lead to better results again in almost datasets.

3.6 Conclusion

We proposed in this chapter a generic model for restricted overlapping clustering to pro-

duce clusters with control of overlapping boundaries. The proposed generic model can be

instantiated in different ways to take into account the ability of the method to regulate

sizes of overlaps and the ability to auto adjust overlaps based on the internal variability of

data in each obtained cluster. The model can be seen as a new generalization of k-means

for overlapping clustering by introducing a new objective function. Empirical results

prove the efficiency of the proposed model compared to OKM and k-means methods to

produce non large overlapping clusters with a high classification precision.

In real life applications, there are many cases where the input data should not be

described by explicit feature vectors but described by strings or trees such as the case

of text documents. For such types of data, it would be interesting to investigate the

application of an overlapping clustering process.
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Chapter 4: Overlapping clustering of textual documents

4.1 Introduction

Text clustering is a widely used technique in Information Retrieval (IR) to find analogous

documents (Saracoglu et al. 2007), to organize large document collection (Aliguliyev

2009; Isa et al. 2009; Liu et al. 2011), to detect duplicate contents and to optimize search

engines (Oberreuter and Velsquez 2013). This technique aims to group similar documents

in the same group or cluster based on their contents, while dissimilar documents must

belong to different groups without using any predefined categories. This definition can be

a crucial issue in many real life applications of text clustering where a document needs

to be assigned to more than one group (Saracoglu et al. 2008). Another issue in Text

clustering is the representation of text within the Vector Space Model (VSM). This text

representation is based on the assumption that relative position of tokens are irrelevant

leading to the loss of correlation with adjacent words and to the loss of information

regarding words positions. This fact affects the quality of obtained clusters.

Therefore, we present in this chapter a clustering process (BenN’Cir et al. 2013)

where the correlation between adjacent words in textual documents and the possibility of

documents to belong to more than one cluster are not ignored.

This chapter is organized as follows: Section 4.2 presents the motivation of considering

overlapping partitioning from textual documents, then Section 4.3 recalls necessary back-

ground of document clustering. After that, Section 4.4 describes the proposed solution,

KOKM based WSK, which we propose to make overlapping clustering from sequential tex-

tual documents while Section 4.5 presents the experiments that we performed to evaluate

the effectiveness of the proposed method. Finally, Section 4.6 presents the conclusion.

4.2 Motivation: overlapping clustering of textual documents

Document clustering represents a natural problem where documents need to be assigned

to more than one cluster since each document can discuss several topics. For example,

a newspaper article concerning the participation of a soccer player in the release of an

action film can be grouped with both of the categories Sports and Movies. Although re-
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cent methods for overlapping clustering propose theoretical (Banerjee et al. 2005; Heller

and Ghahramani 2007; Cleuziou 2008) models to solve this issue, they still understud-

ied in document clustering. The application of these methods to text documents needs

to prepare the collection of documents for numerical analysis by using VSM representa-

tion. This text representation is based on the assumption that relative position of tokens

are irrelevant leading to the loss of correlation with adjacent words and to the loss of

information regarding words positions. This fact affects the quality of obtained clusters.

In order to deal simultaneously with the issue of loosing information regarding words

positions and the issue of identifying relevant overlapping clusters from a set of documents,

we show in the next sections, how we introduce the Word Sequence Kernel (WSK) as

similarity measure to detect overlapping groups from sequential textual documents.

4.3 Text document clustering

Document Clustering, which is the process of finding natural groupings in documents, is

an important task in information retrieval. It is based on the assumption that documents

which discuss the same topic, such as medical, financial, sport and legal topics, tend to

be more similar to each other and therefore tend to appear in the same cluster (Jardine

and van Rijsbergen 1971).

In fact, building an automated document clustering system consists of two important

steps. The first step is text representation which converts the unstructured content of

documents into numerical format since unsupervised learning methods receive numerical

vectors as their input data. The second step is to learn model of a text classifier which is

used for finding groups in unlabeled documents.

4.3.1 Text pre-processing

The process of encoding documents into numerical format begins by pre-processing text

in order to extract words as feature candidates from a particular corpus. Figure 4.1
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illustrates the process of extracting feature candidates from the corpus where all texts in

the corpus are concatenated into a long string.

In the first step, tokenization, the long string is segmented into tokens by a white space

or a punctuation mark. In the second step, each token is stemmed into its root form; verbs

in their past form are stemmed into their root form and nouns in their plural form are

stemmed into their singular form. For example, the words “computer”,“computation”and

“computer” are all reduced to the stem “compute”. After that, in the third step, stop

words are removed for processing documents more efficiently. Stop words are words which

perform only grammatical functions and are irrelevant to contents such as conjunctions,

articles and prepositions. Through the three steps illustrated in Figure 4.1, a list of words

and their frequencies are generated as a group of feature candidates.

Figure 4.1: The process of extracting feature candidates from a corpus

4.3.2 Document representation: Vector Space Model (VSM)

The VSM representation is usually used in Text Clustering to prepare textual documents

for a numerical analysis process. In VSM model, each text document dj is represented by

a vector of features (words or terms)
−→
dj = (w1j , w2j , ..., w|T |j ), where T is the whole set
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Figure 4.2: Document representation under the Vector Space Model (VSM)(Steinbach et

al. 2000)

of terms T = (t1, ..., t|T |), |T | is the size of the vocabulary and wkj represents the weight

of the term tk in the document dj . Documents whose vectors are close to each others are

considered to be similar in content. This representation is based on the assumption that

relative position of tokens has a little importance leading to the loss of correlation with

adjacent words and to the loss of information regarding words positions.

4.3.3 Document representation: n-Grams

The “n-Grams” representation of text (Yannakoudakis et al. 1990), which is a language

independent text representation technique, solves the issue of losing information regarding

words positions by considering each text document as a sequence of n consecutive char-

acters, syllables or words. The whole set of “n-Grams” is obtained by the extraction of

all possible ordered subsequences of consecutive n characters along the text. Similarities

between documents are measured based on the number of contiguous and non-contiguous

subsequences shared between them. This representation leads to a high dimensional

features of subsequences to represent each text document. This problem is solved in

information retrieval tasks by using Kernel Machines over sequences of text.
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Figure 4.3: n-Grams representation of text: (a) 2-Grams of words (b) 3-Grams of words

4.4 Kernel based sequences similarity

Many kernels known as String Kernel are proposed in the literature to solve the problem

of high dimensional features in n-Grams representation of Text. The n-Grams are not

explicitly computed for each document, but only dot products between n-Grams of each

pair of documents are computed. Examples of these kernels are String Subsequence Kernel

(SSK) (Lodhi et al. 2001) and Word Sequence Kernel (WSK) (Cancedda et al. 2003).

SSK measures similarity between two documents based on the number of sequences of

characters shared between them while WSK measures similarity based on the number of

sequences of words rather then characters. The advantage of using words as atomic unit

is to keep information regarding words positions in order to maintain linguistic meaning

of terms. For example, the terms ”son-in-law” have a special meaning that can be lost

if they are broken. The WSK has also the advantage of reducing the number of features

per document because it uses sequences of words rather than sequences of characters.

The time complexity of computing WSK similarity between two documents d1 and d2

is evaluated to O(n.|d1|.|d2|) (Cancedda et al. 2003) where n is the length of the used

subsequence and |di| is the number of words in document di.

Let Σ the alphabet which consists in the set of words that exist in all documents.

Let S = t1t2t3...t|S| a sequence of words where |S| is the length of S. Let u = s[i]
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a subsequence in S with s[i] = ti1 ..tij ..tin where ti1 and tij in this subsequence are not

necessarily contiguous in S and n is the length of the subsequence u. The feature mapping

φ for the sentences S in the feature space is given by defining φu for each u ∈ Σn as:

φu(S) =
∑

i:u=s[i]

λl(i), (4.1)

where λ is the decay factor used to penalize non contiguous subsequences and l(i) is the

length of subsequence s[i] in S with l(i) = Index(tin) − Index(ti1) + 1. These features

measure the number of occurrences of subsequence u in the sentences S weighting them

according to their lengths. So, given two strings S1 and S2, the inner product of the

feature vectors is obtained by computing the sum over all common subsequences:

Kn(S1, S2) =
∑
u∈Σn

φu(s1)φu(s2)

=
∑
u∈Σn

∑
i:u=s1[i]

∑
j:u=s2[j]

λl(i)+l(j). (4.2)

4.5 Proposed KOKM based WSK method

To detect non-disjoint groups from sequential text document, we propose “KOKM based

WSK” using WSK as similarity measure between structured documents. Given a set of N

documents D = {d1, d2, ..., dN} where each document dq is defined in the feature space by

the Sum of u coordinate Φ(dq) =
∑

u φu(dq) which measures the number of occurrences

of subsequence u in the document dq weighted according to its lengths. The aim of the

proposed method is to find the optimal assignments matrix Π(N ×k) = {π1, π2, ..., πk} of

documents over k non-disjoint groups. The proposed method consists in minimizing an

objective function defined by the sum of errors Eq local to each document dq. The sum

of local errors over all documents is described by:

Er(Π) =
∑
dq∈D

Eq =
∑
dq∈D

∥∥∥Φ(dq)− Φ(dq)
∥∥∥2
, (4.3)
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where Φ(dq) is the combination of clusters representatives (typical documents) to which

document dq belongs and is defined by:

Φ(dq) =

k∑
c=1

Pqc · Φ(dmc)

k∑
c=1

Pqc

, (4.4)

with Pqc is a binary variable indicating membership of document dq in cluster c and dmc

is the typical document of cluster c. Using the Kernel Trick and based on WSK kernel,

the objective function is performed as follows:

Er(Π) =
∑
dq∈D

[
Φ(dq)Φ(dq)−

2

Lq

k∑
c=1

Pqc · Φ(dq)Φ(dmc)+

( 1
Lq

)2
k∑
c=1

k∑
l=1

PqcPql · Φ(dmc)Φ(dml)
]

=
∑
dq∈D

[ ∑
u∈Σn

φu(dq)φu(dq)−
2

Lq

k∑
c=1

Pqc ·
∑
u∈Σn

φu(dq)φu(dmc)+

( 1
Lq

)2
k∑
c=1

k∑
l=1

PqcPql ·
∑
u∈Σn

φu(dmc)φu(dml)
]

=
∑
dq∈D

[
Kn(dq, dq)−

2

Lq

k∑
c=1

Pqc ·Kn(dq, dmc)+

( 1
Lq

)2
k∑
c=1

k∑
l=1

PqcPql ·Kn(dmc , dml)
]
,

(4.5)

where Lq =
k∑
c=1

Pqc and Kn(di, dj) is the WSK similarity measure between document di

and document dj as described in Equation 4.2.

4.5.1 Clustering algorithm of KOKM based WSK

The minimization of the objective function is performed by iterating two independent

steps:

1. Update of cluster representatives (dmc).
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2. Multi assignment of documents to one or several clusters (Π).

The stopping rule of KOKM based WSK algorithm is characterized by two criteria: the

maximum number of iterations or the minimum improvement of the objective function

between two iterations. The main algorithm of KOKM based WSK is described by Algo-

rithm 7.

Algorithm 7 KOKM based WSK (D, k, tmax, ε, n, λ)→ Π

Input D: set of Documents,

tmax: maximum number of iterations,

ε: minimal improvement in Er between two iterations,

k: number of clusters,
n: length of subsequences

λ: decay factor used for WSK.

Output

1: Initialize representatives of clusters overD, Assign documents using "MULTIASSIGN-

DOC" and derive value of Er(Π0) in iteration 0 using Equation 4.5.

2: t = t+ 1
3: Update representatives using Equation 4.6.

4: Assign documents to one or several clusters using "MULTIASSIGN-DOC" and derive

Πt.

5: Compute Er(Πt) using Equation 4.5.

6: if (t < tmax and Er(Πt−1) - Er(Πt) > ε) then
7: go to step 2.
8: else

9: Return the assignment matrix Πt.

10: end if

Considering the assignments (Π) fixed, the update of representatives is performed

locally for each cluster. Each representative dmc is defined by the typical document

(medoid) in cluster c which minimizes the sum of distances from all documents belonging

to the following cluster weighted according to documents memberships as described in

Equation 4.6.
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dmc = min
q∈πc

∑
j∈πc,j 6=q

wj . ‖Φ(dq)− Φ(dj)‖2

∑
j∈πc,j 6=q

wj

= min
q∈πc

∑
j∈πc,j 6=q

wj [Kn(dq, dq)− 2.Kn(dq, dj) +Kn(dj , dj)]

∑
j∈πc,j 6=q

wj

, (4.6)

where wj is a weight assigned to the distance between dq and dj depending on the num-

ber of clusters to which document dj belongs. This weight is more important as the

assignments of dj increase in order to reduce its influence in determining the typical doc-

ument (document which discuss more than one theme has small probability of being and

determining the typical document).

The second step concerns the multi assignments of each document to one or several

clusters. By considering representatives fixed, we present in the following a heuristic

“MULTIASSIGN-DOC” which makes the objective function minimized and explores the

combinatorial sets of possible assignments. The heuristic consists, for each document dq,

in sorting representatives of clusters from closest to farthest, then assigning the document

in the order defined while assignment minimizes the local error Eq and therefore it mini-

mizes the hole objective function. The heuristic “MULTIASSIGN-DOC” is described by

Algorithm 8.

4.5.2 Diagonal dominance problem: Sub Polynomial Kernel as a solu-

tion

The proposed method KOKM based WSK uses the Kernel Kn(di, dj) as a similarity

measure between documents di and dj . Kn(di, dj) represents the inner product between

features of documents di and dj and is evaluated by the sum over all common subsequences

weighted according to their frequency of occurrence, lengths and contiguities.

Nevertheless, this definition makes documents having extremely sparse representations
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Algorithm 8 MULTIASSIGN-DOC(dq, {dm1 , ..., dmk},Πold
q )→ Πq

Input dq: Document considered as sequences of words,

{dm1 , ..., dmk}: k cluster representatives ,

Πold
q : Old assignments of document dq.

Output

1: Initialize Πq = {d?mc} the nearest representative where d
?
mc = min

dmc
‖Φ(dq)− Φ(dmc)‖2

and compute Eq with assignment Πq.

2: Find the next nearest representative d?mc which is not included in Πq and derive Π
′
q =

Πq ∪ d?mc
3: Compute E

′
q with assignment Π

′
q

4: if E
′
q < Eq then

5: Πq = Π
′
q and return to step 2.

6: else

7: compute Eoldq with assignment Πold
q .

8: if Eq < Eoldq then

9: return Πq

10: else

11: return Πold
q

12: end if

13: end if

in the feature space and leads to the overfitting 1 situation when performing clustering

algorithm. The kernel-based similarity Kn(di, dj) between any pair of distinct documents

(di 6= dj) will tend to be very small (Kn(di, dj) ∼= 0) with respect to the self-similarity of

documents (Kn(di, di) = 1), especially for large values of n. The Gram Matrix tends to

be nearly diagonal because the off-diagonal entries are very small and the diagonal entries

are equal to 1 meaning that all documents are mapped to nearly orthogonal points.

In order to overcome this problem, we propose to integrate Sub-Polynomial Kernels

(Jason et al. 2003) within KOKM based WSK. Sub-Polynomial Kernels are used in

Kernel machines to avoid the diagonal dominance in Gram Matrix. Given a positive

kernel K(xi, xj), the Sub-Polynomial Kernel is defined as:

Ksp(xi, xj) = (K(xi, xj))
p = 〈φ(xi), φ(xj)〉p (4.7)

where p ∈ [0, 1] is the degree of the Sub-Polynomial Kernel. As well as the value of

1The Over�tting situation is reached when all documents are mapped to orthogonal points in feature
space. For overlapping methods, the over�tting situation consists in assigning each document to all
clusters.
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p decreases (p 7−→ 0), the ratio of diagonal entries to off-diagonal entries in the Gram

Matrix decreases (ratio 7−→ 1). Therefore, to deal with the diagonal dominance problem,

we define a new Kernel based similarity Ksp
n (di, dj) between any pair of documents di and

dj defined by:

Ksp
n (di, dj) = (K ′n(di, dj))

p (4.8)

where K ′n(di, dj) is the normalization of Kn(di, dj) to prevent influence of weighting ac-

cording to the length of subsequences and is described by:

K ′n(di, dj) =
Kn(di, dj)√

Kn(di, di)Kn(dj , dj)
. (4.9)

4.6 Experiments and discussions

4.6.1 Evaluation methodology

To evaluate quality of obtained groups of documents, we used an extension of external

validation measures (Precision, Recall and F-measure) for multi labeled data based on

Label Based Evaluation methodology (matching) (Tsoumakas et al. 2010) as described

in Section 1.5. These validation measures attempt to estimate whether the prediction

of categories is correct with respect to the underlying true categories in the data. The

computation of external validation measure for all labels is archived using macro-averaging

technique which is usually used in Information Retrieval tasks to evaluate clustering

results when the number of classes is not large (Yang 1999).

Experiments are conducted on two overlapping textual datasets which are respectively

Reuters 2 and Ohsumed 3 datasets. The first dataset contains a collection of documents

initially composed of 21578 English newspaper articles. Each document is labeled by

one or several labels from a set of 114 categories. We used different subsets 4 which

are composed of 100, 500, 800 and 2000 documents, each document belongs to one or

2cf.http://kdd.ics.uci.edu/databases/reuters-transcribed/reuters-transcribed.html
3cf.http://disi.unitn.it/moschitti/corpora/ohsumed-�rst-20000-docs.tar.gz
4Subsets are built manually over 10 categories where documents which belong to more than one category

were kept. The rates of overlaps in these subsets lie between 1.2 and 1.5.
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several categories from a set of 10 categories. The second dataset is a set of different

references from the On-Line Medical Information database (MEDLINE), consisting of

titles and abstracts from 270 medical journals over five-year period. We extract a subset

of Ohsumed composed of 200 documents where each document is labeled by one or several

labels from a set of 5 categories.

4.6.2 Empirical results on real multi-labeled corpus

Experiments are performed on computer with 4 GB RAM and 2.1 GHZ Intel Core 2 duo

processor. Data are preprocessed by removing a stop words. The VSM representation

of each dataset is built using the “Weka text processing” module where frequency of

occurrence of words is computed using the TF − IDF technique. Table 4.1 and Table 4.2

report average scores and standard deviation variation of Precision, Recall and F-measure

on ten runs using k-means, OKM and KOKMII methods based on VSM representation

compared to the proposed method KOKM based WSK. For KOKMII method, we studied

its performance using different types of kernels (linear, polynomial and RBF) while for

KOKM based WSK, we used n = 2 and n = 3 the length of word sequences, λ = 0.9

the value of the decay factor and p = 0.05 the power of the sub polynomial kernel. For

each run, all methods are computed with same initialization of seeds to guarantee that all

methods have the same experimental conditions. Values in bold correspond to the best

obtained scores.

As reported in Table 4.1 and Table 4.2, KOKM based WSK builds in almost all

collections, higher quality clusterings than all the other methods, according to the F-

measure. For summarizing the above results, we report the statistical significance matrix

for the F-measure values obtained by each method as shown in Table 4.3. In this table,

the symbols “>>” (“<<”) indicates that the F-measure values obtained by the method

of the row are significantly better (worse) than the values obtained by the method of the

column; the symbol “>” (“<”) indicates that the relation is not significant. For testing

the statistical significance we used the MannWhitney U-test (Mann and Whitney 1947)

with a 90% of confidence. This non parametric test is usually used to test whether one
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Table 4.1: Comparison of the performance of KOKM based WSK versus other existing

methods based on VSM representation in di�erent collections of Reuters dataset.
Dataset Methods Precision Recall F-measure

k-means 0,570±0,02 0,262±0,03 0,351±0,02
Fuzzy-c-means 0,562±0,01 0,283±0,04 0,359±0,02
OKM 0,275±0,01 0,968±0,03 0,429±0,01
KOKMII (Linear) 0,275±0,01 0,955±0,04 0,427±0,02

Reuters-100 KOKMII (Polynomial) 0,275±0,01 0,955±0,04 0,427±0,01
KOKMII (RBF σ=1010) 0,275±0,01 0,955±0,05 0,427±0,02
KOKM based WSK (n=2) 0,425±0,04 0,717±0,12 0,534±0,06
KOKM based WSK (n=3) 0,436±0,06 0,721±0,13 0,540±0,09
k-means 0,427±0,03 0,132±0,10 0,201±0,07
Fuzzy-c-means 0,432±0,04 0,142±0,10 0,223±0,07
OKM 0,308±0,01 0,136±0,03 0,188±0,01
KOKMII (Linear) 0,162±0,01 0,314±0,04 0,214±0,02

Reuters-500 KOKMII (Polynomial) 0,438±0,01 0,273±0,04 0,336±0,01
KOKMII (RBF σ=1010) 0,388±0,01 0,141±0,05 0,207±0,02
KOKM based WSK (n=2) 0,283±0,04 0,759±0,12 0,410±0,04
KOKM based WSK (n=3) 0,200±0,04 0,466±0,12 0,280±0,04
k-means 0,470±0,03 0,135±0,36 0,214±0,04
Fuzzy-c-means 0,470±0,03 0,135±0,36 0,214±0,04
OKM 0,122±0,01 0,583±0,03 0,202±0,01
KOKMII (Linear) 0,170±0,01 0,613±0,04 0,267±0,02

Reuters-800 KOKMII (Polynomial) 0,122±0,01 0,583±0,04 0,202±0,01
KOKMII (RBF σ=1010) 0,457±0,01 0,144±0,05 0,219±0,02
KOKM based WSK (n=2) 0,334±0,04 0,620±0,12 0,434±0,04
KOKM based WSK (n=3) 0,324±0,04 0,530±0,12 0,402±0,04
k-means 0,520±0,04 0,132±0,09 0,216±0,06
Fuzzy-c-means 0,520±0,04 0,132±0,09 0,216±0,06
OKM 0,183±0,01 0,316±0,03 0,232±0,01
KOKMII (Linear) 0,128±0,01 0,391±0,04 0,193±0,02

Reuters-2000 KOKMII (Polynomial) 0,150±0,01 0,321±0,04 0,205±0,01
KOKMII (RBF σ=1010) 0,112±0,01 0,362±0,05 0,171±0,02
KOKM based WSK (n=2) 0,345±0,04 0,487±0,12 0,404±0,04
KOKM based WSK (n=3) 0,257±0,04 0,568±0,12 0,354±0,04

of two random variables is stochastically larger than the other (Fay and Proschan 2010).

As it can be seen from Table 4.3, KOKM based WSK significantly wins the other

algorithms used in the comparison, in terms of the quality of the clusters. In fact, obtained

F-measure with overlapping methods outperforms F-measure obtained with hard k-means.

The improvement is induced by a remarkable improvement of Recall. Results obtained
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with hard k-means are characterized by high value of Precision and low value of Recall.

Hard k-means fails to detect groups of document as well as the dimensionality increases

which explains the low value of Recall when the number of documents increases as shown

in Reuters-2000 (Recall obtained with k-means is 0.132).

Table 4.2: Comparison of the performance of KOKM based WSK versus other existing

methods based on VSM representation in a collection of Ohsumed dataset.
Dataset Methods Precision Recall F-measure

k-means 0,450±0,03 0,180±0,36 0,252±0,04
Fuzzy-c-means 0,455±0,02 0,188±0,28 0,258±0,13
OKM 0,274±0,03 0,799±0,36 0,396±0,04
KOKMII (Linear) 0,297±0,10 0,798±0,36 0,417 ±0,11

Ohsumed-200 KOKMII (Polynomial) 0,297±0,10 0,798±0,35 0,417±0,10
KOKMII (RBF σ=108) 0,262±0,04 0,835±0,40 0,385±0,03
KOKM based WSK (n=2) 0,324±0,03 0,694±0,08 0,441±0,02
KOKM based WSK (n=3) 0,319±0,03 0,709±0,08 0,440±0,02

The F-measure obtained with KOKM based WSK is characterized by a high value

compared to overlapping methods based VSM representation. The improvement of F-

measure is induced by the improvement of Precision. For example, in Reuters-100 dataset,

the obtained Precision using KOKM based WSK is 0.425 while using KOKMII and OKM

methods the max obtained Precision is 0.275. Recalls obtained with KOKMII and OKM

methods are characterized by high values (Recall obtained with OKM in Reuters-100

dataset is 0.968). These high values of recall is explained by the way that OKM and

KOKMII assign documents to all clusters because of the high dimensionality of data. For

example, in Reuters-100 dataset, where the dimensionality of the VSM matrix is very

sparse (1482 words), OKM and KOKMII assign each document to practically all clusters.

This problem is solved when using KOKM based WSK which explains the important

improvement in terms of Precision and the reduction of Recall (obtained Recall is 0.717).

Obtained results prove the theoretical finding that maintaining order in text improves

clustering accuracy compared to VSM representation. The frequent word sequences can

provide compact and valuable information about documents structures. In fact, methods

based kernel function (Bag of Word Kernel or Word Sequence Kernel) outperform non
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Table 4.3: Statistical signi�cance matrix for F-measure values.
Method k-means Fuzzy-c-means OKM KOKMII KOKMII KOKM

(RBF) (Polynomial) based WSK

k-means - < < << < <<

Fuzzy-c-means > - < < << <<

OKM < < - < < <<

KOKMII (RBF) > > > - < <<

KOKMII (Polynomial) >> >> >> > - <<

KOKM based WSK >> >> >> >> >> -

kernel methods. These results prove that looking for separation between clusters in a

feature space is better than looking for separation in input space. Separability between

documents can be improved when documents are implicitly mapped to feature space.

4.6.3 Sensitivity of KOKM based WSK to prede�ned parameters

Table 4.4: The impact of varying the decay factor λ when using KOKM based WSK.
Dataset Precision Recall F-measure

Reuters

λ=0,1 0,458±0,045 0,698±0,023 0,553±0,037
λ=0,3 0,443±0,027 0,664±0,096 0,531±0,050
λ=0,5 0,434±0,060 0,705±0,093 0,536±0,058
λ=0,7 0,431±0,042 0,708±0,103 0,535±0,063
λ=0,9 0,440±0,065 0,705±0,054 0,540±0,031

Ohsumed

λ=0,1 0,320±0,021 0,587±0,070 0,413±0,011
λ=0,3 0,325±0,022 0,616±0,042 0,433±0,018
λ=0,5 0,323±0,021 0,587±0,035 0,416±0,017
λ=0,7 0,310±0,014 0,614±0,080 0,411±0,028
λ=0,9 0,307±0,014 0,695±0,050 0,426±0,014

We study in this section the sensitivity of KOKM based WSK to the value of the decay

factor λ, the length of the subsequences n and the power of the sub polynomial kernel

p. All these parameters should be initialized before performing KOKM based WSK. The

first parameter λ ∈ [0, 1] is used to penalize non contiguous subsequences. As well as λ is

near to 0, the non contiguous word subsequences are considered dissimilar and then, the

gap is more penalized. Table 4.4 reports obtained results using different values of λ used

within KOKM based WSK in Reuters and Ohsumed datasets. Obtained F-measures are

little sensitive to λ. These results prove that locality doesn’t have an important impact
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Table 4.5: The impact of varying the subsequence length n and the power p on the

performance of KOKM-based-WSK.
Dataset Length Power Precision Recall F-measure

Reuters dataset

n=1 p=0,05 0,432±0,107 0,681±0,150 0,529±0,126
n=1 p=0,20 0,401±0,103 0,689±0,129 0,503±0,114
n=1 p=0,40 0,410±0,028 0,750±0,013 0,530±0,023
n=1 p=0,60 0,383±0,029 0,769±0,018 0,511±0,027
n=2 p=0,05 0,425±0,032 0,717±0,045 0,534±0,037
n=2 p=0,10 0,440±0,064 0,705±0,054 0,540±0,030
n=2 p=0,20 0,388±0,042 0,774±0,033 0,516±0,043
n=2 p=0,40 0,331±0,061 0,884±0,037 0,480±0,066
n=2 p=0,60 0,277±0,006 0,787±0,509 0,391±0,113
n=3 p=0,05 0,436±0,086 0,722±0,039 0,540±0,080
n=3 p=0,10 0,426±0,072 0,729±0,058 0,537±0,065
n=3 p=0,20 0,358±0,014 0,811±0,021 0,497±0,014
n=3 p=0,40 0,274±0,008 0,963±0,037 0,427±0,012
n=3 p=0,60 0,274±0,010 0,968±0,032 0,427±0,015

Ohsumed dataset

n=1 p=0,05 0,323±0,027 0,710±0,041 0,444±0,018
n=1 p=0,10 0,319±0,027 0,694±0,023 0,437±0,029
n=1 p=0,20 0,304±0,022 0,725±0,040 0,428±0,014
n=1 p=0,40 0,291±0,015 0,763±0,020 0,421±0,012
n=1 p=0,60 0,280±0,001 0,860±0,012 0,423±0,000
n=2 p=0,05 0,324±0,014 0,696±0,070 0,442±0,018
n=2 p=0,10 0,308±0,012 0,696±0,038 0,426±0,015
n=2 p=0,20 0,279±0,012 0,760±0,046 0,408±0,014
n=2 p=0,40 0,253±0,004 0,978±0,038 0,402±0,007
n=2 p=0,60 0,249±0,006 0,985±0,025 0,397±0,010
n=3 p=0,05 0,330±0,017 0,656±0,036 0,437±0,023
n=3 p=0,10 0,319±0,014 0,709±0,004 0,440±0,012
n=3 p=0,20 0,265±0,003 0,923±0,033 0,412±0,000
n=3 p=0,40 0,249±0,006 0,985±0,025 0,397±0,010
n=3 p=0,60 0,249±0,006 0,985±0,025 0,397±0,010

on the performance of the proposed method when applied to text clustering.

To study the sensitivity of KOKM based WSK to both parameters n and p, we fix

λ = 0.8 and we perform experiments with different values of these parameters. Table 4.5

reports the average of obtained results in Reuters and Ohsumed datasets over ten runs

with same initialization of cluster representatives. We notice a high sensitivity of KOKM

based WSK to parameters n and p. For example, in Reuters dataset, obtained values of

Precision lie between 0.274 and 0.440 and obtained values of Recalls lie between 0.681
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and 0.968. Concerning the impact of n, as well as this parameter increases, obtained

F-measures are slightly improved until n = 4 where F-measures are reduced as shown in

Figure 4.4. These results can be explained by the difficulty to find similar subsequences of

words between textual documents since the length of subsequences becomes larger than

3. In this case, documents are considered all different which explains the high value of

Recall and the low value of Precision.

Figure 4.4: The impact of varying subsequences length n on the performance of KOKM

based WSK

Concerning the impact of p, as well as p decreases, the obtained Precision increases

and obtained Recall decreases leading to the improvement of over all F-measure in both

Reuters and Ohsumed datasets as illustrated in Figure 4.5. The high values of Recall

(Recall 7−→ 1) which coincides with high values of p (p 7−→ 1), are induced by the off-

diagonal problem in the Gram Matrix. This problem is solved when using small values

of p (p 7−→ 0). For example, Recall is reduced from 0.968 to 0.722 when the value of p

varies from 0.6 to 0.05.
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Figure 4.5: The impact of varying power of sub polynomial kernel p on the performance

of KOKM based WSK

4.7 Conclusion

We dealt in this chapter with the issue of identifying overlapping clusters for textual

documents. We proposed the KOKM based WSK method which is able to detect non-

disjoint groups from sequential textual documents based on WSK as similarity measure.

Detecting overlapping groups by considering text as a sequence of words improves quality

of obtained groups compared to VSM representation of text. Obtained results on Reuters

and Ohsumed datasets show the efficiency of KOKM based WSK compared to overlapping

methods using VSM.

This proposed method can be applied for many others application domains where

textual data need to be assigned to more than one cluster. Some of these applications

considers text document as a structured data such as Trees and Graphs. For such repre-

sentation of text, it would be interesting to look for relevant overlapping groups.
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5.1 Introduction

Most of the overlapping clustering methods presented in this thesis were developed, in

an integrated toolbox, with the aim of being accessible and useful to researchers and de-

velopers working on a diverse range of overlapping clustering applications. The proposed

toolbox, referred to as Weka4OC, is a Graphical User Interface (GUI) extending the well

known data mining tool “Weka”. The Toolbox is accessible as a java application or as a

web based application (Applet) giving the possibility to make an overlapping clustering

process on different types of data such as vectorial, structured and unstructured data.

It can be integrated in any java application and can be executed on different operating

system such as Windows or Linux.

This chapter is organized as the following: in the first section we present the main

functionalities and characteristics of Weka4OC, then in Section 2 we present the loading

and preprocessing process supported by the proposed software. In Section 3 we describe

the different learning methods that can be used to perform non-disjoint partitioning while

in Section 4 and Section 5 we respectively present the different outputs resulting from the

learning process and the supported visualization options that can be performed within

Weka4OC. Finally, we present in Section 6 the functionality of exporting results of clus-

tering.

5.2 Main functionalities and characteristics of Weka4OC

Weka4OC, formally called Weka for Overlapping Clustering, is a software that has been

developed for the purpose of identifying non-disjoint groups from different types of data.

Weka4OC has been developed within Weka data mining toolkit. This choice was made

in order to take advantages of the vast resources of Weka on preprocessing data and the

familiarity of many machine learning and data mining practitioners with this tool.

Weka4OC is freely available 1 under the GNU general public license agreement. It

has been programmed in Java and is compatible with almost every computing platform.

1Weka4OC is available at: https://sourceforge.net/projects/overlappingclus
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It can be easily installed and run (as given in Appendix B) and allows for quick set up

and operation through a user friendly graphical interface (a use case of using Weka4OC

is described in Appendix A).

The main user-related advantages of Weka4OC are: (a) it can be downloaded freely

from the internet, (b) it can easily be functional by end-users that are not familiar with

software programming, (c) it is easy and flexible in use in that it extends Weka tool and

allows the user to specify different options for the analysis and (d) the results of the

clustering can be evaluated, visualized and exported to different formats.

Figure 5.1: Main interface of Weka4OC

Weka4OC supports many standard data mining tasks such as data preprocessing,

clustering, evaluation of clustering and visualization. The main interface of the program,

as reported in Figure 5.1, shows the main functionalities and the different parameterizable

options which can be summarized as in the following:

• “Preprocess”: enables to load many types of data saved in different data formats

and enables many preprocessing techniques for customizing the data.
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• “Cluster option”: enables to ignore attributes that must be leave out from the

analysis.

• “Clustering”: enables to look for non-disjoint grouping of the loaded data.

• “Cluster output” : reports detailed descriptions concerning the data, the configura-

tion of the clustering, the evaluation and the visualization of the obtained grouping.

• “Visualize”: enables to visualize the loaded data.

• “Export”: enables to export the obtained partitioning of data into a text file.

In the remaining sections, we detail each functionality supported by Weka4OC by de-

scribing the different parameterizable options enabling to perform non-disjoint clustering

of data.

5.3 Loading and preprocessing data in Weka4OC

For loading data, Weka4OC offers several standard loaders that can be used by activating

the functionality “Preprocess” as described in Figure 5.2. All data format supported by

Weka could be used in Weka4OC including:

• Files: many standard files are supported by Weka4OC such as ARFF files, C4.5

Files, CSV files, JSON files and libsvm files.

• Databases: data could be loaded from relational data saved in commercial and open

sources databases management systems (DBMS) such as Oracle, SqlServer, BD2,

Mysql, etc. A specific “.jar” file must be added to the path of the application in

order to perform the connection with the used DBMS. Data which must be loaded

and used by Weka4OC can be specified using a customized SQL query.

• URL: If data are saved in a specified server, the Uniform Resource Locator (URL)

of the server can be specified to load the data.
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Figure 5.2: Loading and Preprocessing data with Weka4OC

We notice that specific loader, such as text directory loader, Matlab loader and XRFF

loader can be used to import these data formats. For example, textual files (“.txt” or

“.html”) saved in different folders can be loaded as a string attribute and transformed

to vector space model data. We also notice that using the word sequence approach,

described in Chapter 4, requires data to be loaded as string attribute containing all the

textual description of the document. Figure 5.3 shows an example of a set of documents

from Reuters dataset which can be learned using the word sequence approach.

Figure 5.3: Loading textual data as a String attribute in Weka4OC for learning groups

using the word sequence approach
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Once data loaded, Weka4OC offers different preprocessing techniques to customize the

data such as attribute transformation, class transformation, instances filtering, attributes

filtering, etc. In fact, all the preprocessing techniques implemented in Weka are inherited

and can be used to configure the loaded data. We recommend to save the preprocessed

data in a separate file, like “.arff” file, then reload these data to make the learning process.

We notice that loading “Class” attributes within data is optional. However, “Class”

attributes are required for evaluating the robustness of the learning method using outputs

and visualization functionalities. In that case, each class must be loaded as a separate

binary attribute indicating membership of each observation to the following class. The

validation of all the loading and preprocessing tasks can be done using the button “OK”

which switches to the main interface of Weka4OC.

5.4 Learning methods in Weka4OC

Different learning methods are available in Weka4OC and can be selected using the listbox

“Learning Method” which allows to choose a method to be performed for grouping the

set of observations. Five methods can be chosen: OKM, KOKMII, KOKM based WSK,

Parameterized R-OKM and k-means. We note that all these learning methods lead to non-

disjoint partitioning, except k-means which is given as baseline. If “Class” attributes are

loaded within the collection of data or any other attributes which should not be included

in the analysis, the GUI allows to ignore some attributes when learning clusters by using

the functionality “Cluster option”. Once parameters and attributes are configured, the

learning process can be performed with the specified parameters using the button “Start”.

We give in the following a description of parameters and options that should be configured,

for each method, before performing the learning.

5.4.1 OKM

The OKM method has 3 parameters that should be configured which are the maximal

number of iterations, the number of clusters, and the minimal improvement in the objec-
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tive function. The parameters of OKM can be configured in the tab “Cluster Parameters”

and is described by:

• Max iterations: the maximal number of iterations of the main algorithm.

• Num cluster: the number of clusters to be considered.

• Minimal improvement: the minimal improvement in the objective function between

two iterations which is used for the convergence of the method. If the improve-

ment is less than the specified value as minimal improvement, the used learning

method returns partitioning obtained at the latest iteration. By default, this value

is initialized to 0.01.

• Initialize centroids (optional): this functionality can be used to manually configure

the positions of observations which will be used as initial representative of clusters,

known as seeds. The position of observations to be considered as seeds should be

given separated by comma and must exactly match with the number of clusters

specified in “Num cluster”. For example, for initializing representative of 3 clusters

using the first three observations in the dataset we use “1,2,3”. If this functionality

is not activated, observations used as initial clusters’ representatives are chosen

randomly.

5.4.2 Parameterized R-OKM

In addition to the parameters described for OKM, Parameterized R-OKM needs to con-

figure the parameter α used to control the size of overlaps. The value of α ∈ R can be

given in the text field “Alpha” in the tab “Cluster Parameters”. When using Parameter-

ized R-OKM with α = 0, obtained results exactly coincide with results of OKM. Instead,

when using Parameterized R-OKM with α = 1, the obtained results are equivalent to

R-OKM as described in Chapter 3. If α is not given, an error message indicates that

Parameterized R-OKM needs to configure the value of α. In fact, the value of α controls

the overlaps between the clusters. As α increases the size of overlaps are reduced until

leading to non-overlapping clustering.
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5.4.3 KOKMII and KOKM based WSK

For KOKMII, in addition to parameters used for OKM, kernel options must be configured

before performing the learning.

• Kernel function: this parameter must be configured for methods which incorporate

kernels. Many standard Kernel functions can be chosen in the listbox responding to

data representation model. “Linear”, “Polynomial”, “Laplace”, “RBF Gaussian”

and “RBF Exponential” kernels could be configured within KOKMII if data have a

numeric vector representation. However, if data are loaded as a string attribute (for

example textual data), “String” kernel should be configured to perform the KOKM

based WSK method as described in Chapter 4. We used an online implementation

of all the kernel function to avoid the pre-computing of the kernel matrix. For the

implementation of WSK, we used a recursive definition proposed by Lodhi et al.

(2001) and based on the dynamic programming technique. The advantage of this

implementation is to reduce the time complexity and to perform WSK without

explicitly extracting word sequences.

• Value of the kernel parameter: this option indicates the value of the parameter of

the considered kernel function. For example, for Polynomial kernel the parameter

“d” must be configured, for RBF kernels the parameter “σ” is required and for WSK

the length of the sequence of words “n” is required.

5.5 Outputs and evaluation of clustering in Weka4OC

Once the learning achieved, Weka4OC gives several outputs about the performed learn-

ing process and the resulting clusters. These outputs are reported in the tab “Cluster

output”. Two alternatives can be configured: Basic outputs or outputs with evaluation

of clustering. The basic outputs are reported without the evaluation of clusters while the

second alternative report this information. The alternative of basic outputs is configured

by default, however, the second alternative can be activated by checking the option “Dis-

play Evaluation” in the tab “Cluster output”. The evaluation of the resulted clusters is
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optional because it can be time-consuming for data having a huge number of observations

and classes or it can not be performed if data are unlabeled which is the case of most of

real life applications.

5.5.1 Basic Outputs

Weka4OC reports a summary of the different configurations of the learning process, the

considered data and the resulted clusters. Figure 5.4 and Figure 5.5 show an example of

clustering outputs obtained using Parameterized R-OKM for 3 clusters on Iris dataset.

Reported information are as the following:

1. the learning method considered in learning process

2. the number of observations (instances) considered in the learning process

3. the number of attributes considered in the learning process

4. the value of the optimized objective criterion

5. the number of iterations of the main algorithm

6. the final clusters’ representatives

7. the description of the final binary assignment matrix (described in Figure 5.5) where

rows represent observations, columns represent clusters and the internal value “1”

indicates memberships of observation i to the respective clusters.

5.5.2 Evaluation of the resulting clustering

The evaluation functionality gives users the possibility to check the effectiveness and the

robustness of the learning methods among others existing ones. As described in Section

1.5, the evaluation of overlapping clustering is based on comparing scores for Precision-

Recall measures on datasets with known labels. These measures check if groups obtained

with the overlapping clustering method are similar to the actual groups in the dataset. The

134



Chapter 5: Extending Weka for Overlapping Clustering

Figure 5.4: Example of clusters output obtained using Parameterized R-OKM with α = 1
for 3 clusters on Iris dataset.

evaluation functionality in Weka4OC requires the following data format and parameters

to be configured:

• Data format: data must be loaded with “Class” attributes. “Class” attributes

must be formatted as a binary attribute (one column) for each label. All “Class”

attributes must be put after all the exploratory attributes (columns at the end

represent the “Class” attributes).

• “Display evaluation”: this option must be checked

• Number of Labels: the number of “Class” attributes to be considered for performing

the evaluation process. (number of columns to be considered as “Class” attributes).

We notice that the functionality “Cluster option” must be used to ignore all “Class”

attributes before performing the learning. This option must be configured at each start
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Figure 5.5: Final binary assignment matrix obtained using Parameterized R-OKM with

α = 1 for 3 clusters on Iris dataset.

of learning. The reported evaluation measures includes two evaluation techniques: Pair-

based and BCubed-based. For each evaluation technique, Precision, Recall and F-measure

are reported. Additionally, the size of overlaps build by the learning method is also

reported. Figure 5.4 shows an example of the evaluation process of Parameterized R-

OKM on iris dataset.

5.6 Visualization of data and clusters in Weka4OC

Weka4OC offers a visualization tool to discover both the data and the resulting clusters.

For data visualization, we integrate the same panel used in Weka that displays a scatter

plot matrix for the current dataset as reported in Figure 5.6. This panel can be activated

using the functionality “Visualize”. If no dataset is loaded, a message box indicates that

users must load data before using the visualization functionality. The size of the individual
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Figure 5.6: Visualization of data using Weka4OC

cells and the size of the points displayed can be adjusted using the slider controls at the

bottom of the panel. A zooming functionality can be used by clicking on a cell in the

matrix to pops up a larger plot panel that displays the content of the selected cell. This

panel allows users to visualize the current dataset in one and two dimensions.

However, for visualizing the resulted clusters, Weka4OC offers an interactive panel

where the non-disjoint patterns can be easily showed and analyzed. All the performed

learning are saved in the results buffer for a further interactive visual comparison of the

Figure 5.7: Partitioning saved in the bu�er of results for visualization.
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Figure 5.8: Example of patterns obtained using Parameterized R-OKM with 2 clusters

obtained patterns. By activating the functionality “Cluster Output”, the panel containing

all the learning results is showed. Figure 5.7 shows an example of saved results of the

parameterized R-OKM method with two different configurations. By a simple right click

on the desired outputs, the visualization can be done by choosing the option “Visualize

cluster assignments”.

This option shows a new panel which allows users to visualize the selected groupings in

one and two dimensions, responding to attributes selected in the top of the panel. Selected

attributes can be easily configured by choosing among the list of attributes in the X or

Y axes thus, giving users more flexible visualization and analysis of the outputs. Figure

5.8 shows an example of a non-disjoint partitioning resulting from the Parameterized R-

OKM for two clusters in a two dimensional artificial dataset: the red and the blue points

constitute observations which are assigned to the first or to the second cluster however,

the green points are observations which belong to the intersection of the two clusters.

Furthermore, users can inspect attributes and classes for each visualized data points by

left clicking on the desired data where statistics related to the indicated observation are

showed. It is possible to save the visualization of clusters out to an ARFF file using the
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“Save” button and then, load it back to Weka4OC. The two dimensional visualization of

clusters can be exported to image file by holding down “shift”, “alt” and left-clicking on

the panel to save. Available formats include: BMP, JPEG, PNG and postscript. We also

notice that similarly to Weka, the “Jiter” option moves slightly the individual points so

that in the event of close data points users can reveal hidden multiple occurrences within

the initial plot.

5.7 Export of results in Weka4OC

In order to enable further processing of the obtained output, the final binary matrix can

be exported and saved in a separated textual file (“.txt”) using the functionality “Export

results”. This functionality exports the last outputs performed by the learning method.

The saved binary matrix can be used as inputs for other programs, like Matlab, for further

analysis and evaluation of the resulting clusters.

5.8 Conclusion

In order to facilitate for data mining practitioner the task of overlapping clustering, we

have proposed an interactive software, referred to as Weka4OC, extending the well known

data mining tool Weka. Weka4OC supports different types of data and offers many

learning techniques for producing a non-disjoint partitioning. Produced patterns can be

easily evaluated and analyzed through the visualization tool.
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In this thesis, we dealt with the issue of identifying non-disjoint groups from unlabeled

data referred to as overlapping clustering (Banerjee et al. 2005; Depril et al. 2008;

Cleuziou 2013). Although several clustering methods have been proposed in the literature,

most of them build disjoint and exclusive clusters. They ignore the possibility that objects

belong to more than one cluster. However, there are several applications like document

clustering (Gil-Garćıa and Pons-Porrata 2010; Pérez-Suárez et al. 2013), social network

(Tang and Liu 2009; Wang et al. 2010; Fellows et al. 2011) and image classification

(Snoek et al. 2006), where it is common that objects belong to many clusters. For these

kinds of applications, overlapping clustering is useful and important.

The study of existing overlapping clustering methods (Qinand and Suganthan 2004;

Depril et al. 2008; Masson and Denoeux 2008) in the literature has shown that these

methods suffer from several recurrent issues, such as the inability to look for nonlinear

separations between clusters, the inability to regulate the sizes of overlaps and the inability

to deal with non-vectorial data, among others, which may reduce their performance in real

life applications. These recurrent issues motivate researchers to design more perfective

overlapping methods.

Challenges and contributions

The first challenge that motivates our works was the identification of non disjoint clus-

ters with nonlinear boundaries between clusters. Although data structuring are usually

complex with spherical and non-spherical shapes, existing overlapping methods look only
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for linear separations between clusters. Our contribution consisted on proposing two

kernel based methods that produce overlapping clusters with both linear and nonlinear

separations by using Mercer kernel technique. The use of kernel has allows to look for

separations in high feature space where the separability of clusters is improved. The first

proposed method Kernel Overlapping K-means I (KOKMI) is a centroid based method

that generalizes kernel k-means to produce overlapping clusters with nonlinear and non

spherical shapes. The second proposed method Kernel Overlapping K-means II (KOK-

MII) is a medoid based method that is an improvement of KOKMI in terms of efficiency

and in terms of algorithm complexity. Obtained results on artificial and real datasets

have shown the efficiency of proposed methods.

We also dealt with the challenge of controlling sizes of overlaps between clusters. This

characteristic has an important impact on the performance and the validity of overlap-

ping methods. Usually, existing overlapping methods in the literature produce clusterings

without possibility of control on the size or the quality of the overlaps. These methods lead

to clusters with large overlaps and fail to build an acceptable size of overlaps. Ideally, the

method should reveal the clustering that best fit to the data by evaluating partitionings

with different sizes of overlaps. Accordingly, we proposed a generic overlapping cluster-

ing model which generalizes k-means for the identification of clusters with regulation of

overlaps. Different instantiations of the model were defined offering new overlapping lay-

outs with fixed, parameterized or auto-adjusted sizes for the overlaps. Empirical results

performed on artificial and real overlapping datasets have shown the efficiency of the

proposed model compared to the exiting methods.

Furthermore, we designed an overlapping clustering method able to look for non-

disjoint partitioning from sequential textual documents. In fact, grouping documents

is an important application that motivates overlapping clustering while each document

can discuss several themes and then, it must belong to several groups. However, the

application of a learning method for grouping textual document usually requires to pre-

pare a set of documents for numerical analysis (Saracoglu et al. 2007; Aliguliyev 2009)

by using the Vector Space Model (VSM). This representation of text avoids correlation
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between terms and does not give importance to the order of words in the text. By

considering all these important constraints, our contribution consisted on the design of

KOKM based WSK method which considers textual data as an ordered sequences of

words (n-Grams)(Yannakoudakis et al. 1990) and uses WSK as similarity measure be-

tween documents. The use of WSK takes into account the correlation between adjacent

words in text and keeps their order as they appear in the text. The application of KOKM

based WSK to different benchmarks corpus showed that the obtained partitioning could

be improved compared to partitioning obtained with existing methods.

Finally, in order to make accessible and useful to researchers and developers working

on diverse range of overlapping clustering, most of the clustering methods presented in

this thesis and other existing ones were developed in an integrated software referred to as

“Weka4OC”. This software extends the well known data mining tool “Weka” and offers for

users friendly interfaces allowing a quick set up and operation for performing, visualizing,

and evaluating non-disjoint partitioning.

Future works

The presented works in this thesis open several directions for future researches. The use

of Kernel methods in KOKMI and KOKMII offers many alternatives to perform non-

disjoint partitionings in real cases where the input data cannot be described by explicit

feature vectors but described by trees or histograms. For such types of data, it would be

interesting to investigate the application of an overlapping clustering process using specific

designed kernels in the literature such as the Histogram kernel (Barla et al. 2003).

The application of KOKM based WSK to sequential textual document gives a promis-

ing results which could be improved by integrating internal and external knowledge. There

appears to be a growing interest in the further incorporation of semantic kernel like the

the Latent Semantic Kernel (LSK) or using external knowledge taxonomy such as Word-

net or Wikipedia which could be used to improve the semantic relatedness of the terms.

In addition, the KOKM based WSK would be applied in other domains where the input
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data require non-disjoint partitioning and are described by sequential patterns as the

case of grouping genes into different metabolic processes. In such application, it would

be interesting to make overlapping clustering based on the sequential description of each

gene. However, specific kernels should be designed instead of the Word Sequence Kernel

used in KOKM based WSK.

Concerning the proposed generic model for identifying overlapping clusters with over-

lap regulation, we notice that this model supports other principles for controlling and

regularizing the overlaps. For example, one could propose to control the overlaps re-

gardless the dispersal of the cluster prototypes from the data to assign. By this way,

overlaps would be reduced as the prototypes are more distant. Other ways to control

overlaps could be realized by the combination of two regulation principles: for example

the two proposed instantiations, Parameterized R-OKM and Adjusted R-OKM could be

combined in a common model.

All the proposed methods in these works adopt the geometrical model to take into

account the possibility of overlaps. However, the additive model could be also adopted

which would offer an interesting way to compare the efficiency of additive and geometrical

models for overlapping clustering applications.

In this thesis, we dealt with three challenges which motivate overlapping clustering

researches. Many other active challenges could be considered to design more perfective

and efficient learning process such as the identification of non-disjoint groups when data

contain outliers. The presence of outliers affects the resulting clusters and yields to

clusters which do not fit the true structure of data. Designing an overlapping method

with outliers identification would make robust the detection of overlapping clusters.
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Appendix

A. Overlapping clustering using Weka4OC

We describe in the following a use case of using Weka4OC for performing overlapping

clustering using KOKMII method on Iris dataset.

1) Double click to run the GUI (require a Java Runtime Environment (JRE) 6.0 or later)

2) Load and preprocess data

I



Appendix

3) Choose a file containing the description of the data set Iris.

II



Appendix

4) The loaded data contain 4 attributes describing the data and 3 binary attributes

describing the class of each observation.

5) Choose the learning method KOKMII.

III



Appendix

6) Configure cluster Parameters. We consider the following parameters: Max iteration=

20; num cluster= 3; minimal improvement= 0.01;

7) Initialize clusters representatives. We consider the following observations as initial

seeds: 30, 70, 120.

IV
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8) Validate initial seeds

9) Configure kernel options. These parameters are required only for kernel based methods.

We consider using Polynomial kernel with parameter d = 2.

V
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10) Ignore Class attributes while performing the learning

11) Configure outputs for displaying evaluation of the obtained overlapping clusters.

Check “display evaluation” and set the number of Labels to 3.

VI
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12) Start the learning

VII



Appendix

13) Outputs and evaluation of the obtained clusters

VIII
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14) Visualize overlapping clusters

15) Configure X and Y axes

IX
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16) Export results into a txt file.

X
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B. Availability and installation of Weka4OC

Weka4OC is a software that is freely available under the GNU general public license

agreement. The program information can be found by conducting a search on the

Sourceforge web site for Weka4OC overlapping clustering or going directly to the site

at “https://sourceforge.net/projects/overlappingclus”.

When prepared to download the software, it is best to select the latest application

from the selection (if exist) offered on the site. The format for downloading the application

is offered in zipped folder “OverlappingGUI.rar” that provides the complete program on

the end users machine that is ready to use when unzipped.

The program can easily be run by double clicking on the file “OverlappingGUI.jar”

and requires at least Java Runtime Environement 1.6. The program can be also run from

the command line by typing: “java -jar ’OverlappingGUI.jar’ ”.
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