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Résumé
Le travail de ce master de recherche traite un problème qui est très important qui est la

caractérisation des relations existant entre les fonctions de croyances continues. La première
approche élaborée au cours de travail est d’évaluer la similarité entre deux fonctions de croyance
continues. La deuxième est de mesurer l’inclusion d’une fonction dans une autre. La première
contribution a été de proposer une mesure de similarité basée sur le calcul d’une distance entre
deux ou plusieurs de fonctions de croyance. Plus précisément, nous construisons ainsi des densi-
tés de probabilité introduites par des distributions normales ou exponentielles représentant des
fonctions de croyances continues. Notre méthode mesurant ainsi ne distance entre ces distri-
butions. Chaque distribution étant caractérisée par ses propres paramètres, nous avons étudié
le comportement de cette mesure de similarité pour enfin se focaliser sur les éléments pouvant
avoir un impact sur le comportement de notre distance. Notre deuxième proposition est une
mesure d’inclusion entre croyances continues. Pour cela, nous proposons deux typologies : une
inclusion stricte et une inclusion partielle. Nous avons implémenté nos deux approches en uti-
lisant MATLAB pour e�ectuer les simulations. Ces dernières ont été une base essentielle pour
déterminer le rôle de chaque paramètre d’une distribution agissant sur tout aussi bien la mesure
de similarité que sur les deux types d’inclusion.

Abstract
This mater thesis concerns an important issue which is the characterization of relations

between continuous belief functions. The first method elaborated during this work is how to
evaluate the similarity between two continuous belief functions. The second one is about mea-
suring the inclusion of a function in another. The first contribution is to propose a similarity
measure based on the computing of a distance between two or several belief functions. More
precisely, we build probability density functions induced by normal or exponential distributions
representing continuous belief functions. Our method, measures a distance between these dis-
tributions. Our second approach is an inclusion measure between belief functions. To do so, we
propose two types : the strict and the partial one.

Each distribution is characterized by its own parameters ; we have analyzed the behavior
of this continuous distance, and the inclusion so that we were able to determine the elements
that could have an impact on the behavior of our similarity and inclusion measures.

We have implemented our two approaches using MATLAB for the experimentations. These
experimentations are a fundamental base to determine the role of each parameter of a distri-
bution having an impact on both the similarity measure and the types of inclusion.



Notations

� frame of discernment
Ê elements of the frame of discernment
n number of elements of �
m mass function � as frame of discernment
F (m) set of focal elements X,Y
focal elements
bel credibility function defined in the space 2�

pl plausibility function defined in the space 2�

q commonality function defined in the space 2�

betP pignistic probability defined in the space 2�

| X | cardinality of X
s specialization operator
g generalization operator
ı

s

specialization ordering
ı

pl

plausibility ordering
ı

q

commonality ordering



ÿ empty set
X complement of X in the defined space of X
R extended set of reals
Betf pignistic probability density
Biso(Bet) set of isopignistic probability densities
‚ maximal value of two reals
· minimum value of two reals
µ mean of a normal distribution
‡ standard variation of a normal distribution
◊ mean of an exponential distribution
IncStr Strict inclusion
IncPar Partial inclusion
”

IncStr

(f1, f2) Degree of strict inclusion
”

IncP ar

(f1, f2) Degree of partial inclusion



Introduction

The field of Knowledge Management have known a successful expansion these last years.
This phenomena is due to the various new ways of data collecting. Within the collected data
we have to deal with imperfections that represent the real-world issues. These imperfections
present a number of challenges in terms of collecting, modeling, representing and managing.

To overcome these limitations, many researches have been done to adapt standard techniques
to this kind of environment. The idea was to introduce theories managing uncertainty and/or
imprecision, such as probability theory, belief functions theory, fuzzy set theory and possibility
theory.

Then, managing imperfect information became a well explored field in Artificial Intelligence.
This kind of information have to be handled and included in information systems instead of
rejecting or replacing them (which can be an easy solution).
Among the theories over listed, we are interested in the belief functions theory, which o�ers
a natural and easy way to handle imperfections. It is considered as an appropriate way to let
experts express their beliefs in a flexible and natural manner. However, imperfections might
result from using unreliable information sources or aggregating opinions of di�erent experts We
treat a special type of imperfection, namely, uncertainty which is well modeled within the belief
functions theory framework.

And more precisely, we are interested on the field of continuous belief function has been
marginalized comparing to the discrete case. This situation can be explained by the complex
nature of these functions. In order to be able to treat them, we need to use distributions to
model the continuous beliefs which can be a tedious situation when managing continuous belief
functions.

Once the modeling issue solves, how do we describe relations existing between continuous



belief function ? How to model them ?
Our aim, through this work, is to investigate and define some relations that can exist between
continuous belief functions and their proprieties.

It is important to mention that some relations under uncertainty and/or imprecision have
been proposed in the literature but all these works are di�erent from what we propose in this
dissertation because they treat only the discrete belief functions.

This dissertation is organized in three chapters :

In chapters 1 : Belief Functions Theory : An overview we will present the necessary back-
ground regarding the di�erent concepts of the belief functions theory. Then, a more attention
is given to the continuous belief functions, their representation, and the di�erent approaches to
model them in the literature. In chapters 2 and 3, we present our research propositions and an
overview of the contributions.
Chapter 2 : A distance between continuous belief functions : This chapter examines an im-
portant concept in the belief functions theory which is the similarity. Within this chapter, we
provides di�erent ways of similarity measure in the evidential theory, and then we propose our
first contribution which is an adaptation of the distance of Jousselme using the formalism of
Smets for modeling continuous belief functions. The major results that we have developed in
this part are published in (Attiaoui 2012).
Chapter 3 : The inclusion of continuous belief functions : Another natural way to define a
relation between belief functions which is the measurement of inclusion. Two approaches are
presented : A strict and a partial inclusion. This measure will be defined and its proprieties
presented. Later we will show how similarity can be involved and play a role in defining the
inclusion between continuous belief functions. The major results that we have developed in this
part are published in
Two appendices complete this master thesis. The first one briefly recalls other related uncer-
tainty theories such as probability theory, and possibility theory. The second one will present
the behavior of the functions presented in Chapter 2 and Chapter 3

Finally, a general conclusion summarizes the major achievements of this thesis and presents
possible future developments.



Chapter 1

Theory of belief functions : An Overview

Information is the resolution of uncertainty
Claude Shannon

In this chapter we will introduce the di�erent forms of imperfect information. Then, like we
are interested by the belief functions theory, we will start by a general historical introduction.
Later, we will explain the most important notions within this theory by setting out the discrete
belief functions and giving a representation of the continuous belief function and how are we
able to model them.
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Chapter 1. Theory of belief functions : An Overview

1 Introduction

Real-world problems always involve imperfect informations, that must be considered in in-
formation systems in order to model reality. Many research area took in consideration these
imperfections : Information fusion, multi-criteria decision making, medical diagnosis, military
applications, nuclear energy...
As defined by Dubois and Prade (Dubois Prade 2006), an information is any collection of
symbols or signs provided either by the observation of natural (or artificial) phenomena or by
the human cognition. It is intended for the understanding of the real-world and for supporting
decision making, etc
A piece of information could be objective, i.e., stemming from measurements or sensors (it is
not dependent of the information source). It could also be subjective, i.e., expressing indivi-
duals opinions without turning to direct observation (it is dependent of the information source).

In both cases, the information could be imperfect : this can be a result of faulty reading
instruments, unreliable sensors, lack of background knowledge of individuals leading to poor
opinions, etc.
We will consider the Belief Function Theory, also known as the Dempster-Shafer theory or
Evidential Theory. It is a general framework for reasoning under uncertainty.

By reasoning, we mean the way we will manipulate the available information in order to
provide interesting and useful conclusions.
By under uncertainty, we mean that we are in presence of information that does not represent
perfectly the real world, and that we are uncertain about the exact values or state.

The belief function theory is a well known tool for representing imperfect information that
are uncertain and imprecise such as expressed by humans

In this chapter, we will exhibit the foundations of the evidential theory by defining among
other basics, the frame of discernment, focal elements and the di�erent belief functions. Moreo-
ver, we will introduce the principle of the least commitment and how to measure the specificity
of the functions. After that, we will lay out how to estimate the reliability of a belief and proceed
to the discounting. Also some combination rules will be set out like the conjunctive, disjunctive
rules, the RCR... Finally we will focus on continuous belief functions by describing the di�erent
methods to model them by presenting the formalism of Smets. In the other sections, we present
other approaches to define continuous belief functions.

10



1.2 Typology of imperfect information

2 Typology of imperfect information

When we are in presence of information, characterizing the real world, we are sure that they
are imperfect. In this section we

2.1 Imprecise information

It is characterized by the information content. In other words, it is related to the information
itself.
Let’s consider, for example, the age of a person. We say "John’s age is between 20 and 25".
Formally age(Johon) œ {20, 21, 22, 23, 24, 25}, represents an imprecise information. In this case,
we are unable to determine the exact age of John.
Thus, when we deal with this kind of information, we are not able to fully grasp the real world
situation.

2.2 Uncertain information

It is the result of a lack of information about the real world. It is related to the source
providing the information.
Uncertainty corresponds to partial or total ignorance of knowledge. Otherwise, it describes in-
completely the reality.

Any uncertain information has an uncertain scorer which can on the one hand be numeric
(The probability that China will win more medals than the other countries during the Olympic
Games in London 2012 is 0.7), and on the other hand symbolic or linguistic (I belief that John
is 24 years old).

2.3 Inconsistent information

Where no value is compatible with the information. For example "John is single", and "John’s
wife is Marry". John can not be married and single at the same time. The conflict between the
two informations can lead us to an inconsistent deduction

11



Chapter 1. Theory of belief functions : An Overview

3 Basics on the theory belief functions

The belief function theory started with the work of A. Dempster (Dempster 1967,1968).
The aim of his researches was to model mathematically information that can not be described
by a precise probabilistic distribution. To do so, he developed the notions of the lower and
upper probabilities framing the exact distribution. Using that, he was able to represent more
precisely the observed data.
Later, in his book "A mathematical Theory of evidence" (Shafer 1976), the author presented
the information defined by an expert, where basic belief assignments have two functions : a
credibility and a plausibility function corresponding respectively to the lower and upper pro-
babilities of Dempster.
The theory was further developed by Smets (Smets1990a, Smets 1994), who proposed the Trans-
ferable Belief Model (TBM). This model presents a pignistic probability induced by a belief
function which is built by defining a uniform probability from each positive mass. Moreover, in
terms of upper and lower probabilities, it can be considered as the center of gravity of the set
of probabilities dominating the belief functions. He also introduced new tools for information
fusion and decision making.
The objetcive of the evidential theory is to represent information transmitted by a source
concerning an event. A belief function must take in consideration all the possible events on
which a source can describe a belief. Based on that, we can define the frame of discernment

Definition 1.1 Frame of discernment
The frame of discernment is a finite set of disjoint elements noted � where � = {Ê1, ..., Ê

n

}.
This theory allows us to a�ect a mass on a set of hypotheses not only a singleton like in the
probabilistic theory. Thus, we are able to represent ignorance, imprecision...

Definition 1.2 Basic belief assignment (bba)
A bba is defined on the set of all subsets of �, named power set and noted 2�. It a�ects a real
value from [0, 1] to every subset of 2� reflecting sources amount of belief on this subset. A bba

m verifies :

ÿ

X™�
m(X) = 1. (1.1)

12



1.3 Basics on the theory belief functions

A very common assumption advocates the existence of a closed world. In other words, all
the possibilities are represented in �, and defined as :

m(ÿ) = 0. (1.2)

On the contrary, if we accept the case that, there existence any other possibility that is
unrepresented in �, we have :

m(ÿ) > 0. (1.3)

Here, Smets supposed that we are in an open world, which means that decisions are not
exhaustive. This was introduced by Smets.

Definition 1.3 Focal elements Considering a set A in 2� is a focal element with a mass m if
an elementary mass is positive m(A) > 0. The set of focal elements of m is noted F(m).

We can consider some special cases of mass functions :
– Categorical mass function : the function has only one focal element A. If this element

is �, the frame of discernment, we can state that the function is empty and we are
representing the total ignorance.

– Non dogmatic mass function : the function has a non null mass on the ignorance �.
– Baysian mass function : where focal elements are disjoints by pairs, it can be considered

as a probability distribution.
– Consonant mass function : a function that has nested focal elements.

3.1 Belief Functions

Once, the masses defined, we can build di�erent belief functions. the most famous one is
the credibilityfunction.

Credibility : measures the strength of the evidence in favor of a set of propositions for all
X œ 2� :

bel(X) =
ÿ

Y ™X,Y ”=ÿ
m(Y ). (1.4)

13



Chapter 1. Theory of belief functions : An Overview

.
The credibility is interpreted as a degree of justified support given to proposition X by the

available evidence.
Plausibility : quantifies the maximum amount of belief that could be given to a X of the

frame of discernment for all X œ 2� :

pl(X) =
ÿ

Y œ2�
,Y flX ”=ÿ

m(Y ). (1.5)

The plausibility function is a measure of the maximum potential support that could be
given to a subset X of the universe of discourse, of course if further evidence became available.
In other words, it contains those parts of belief that do not contradict X.

The plausibility is considered as the dual function of the credibility :

pl(X) = 1 ≠ bel(X) (1.6)

Commonality : measures the set of bbas a�ected to the focal elements included in the studied
set, for all X œ 2� :

q(X) =
ÿ

Y ´X

m(Y ). (1.7)

Shafer showed for consonant belief function these di�erent proposals : If m is a consonant
belief function then :

1. bel(A fl B) = min(bel(A), bel(B), ’A, B ™ �

2. pl(A fi B) = max(pl(A), p(B), ’A, B ™ �

3. pl(A) = max
ÊœA

pl(Ê), ’ non empty A ™ �

4. q(A) = min
ÊœA

pl(Ê) = min
ÊœA

q(Ê), ’ non empty A ™ �

Decision making in belief functions theory

In (Smets and Kennes 1994), the authors introduced the Transferable Belief Model (TBM).
They a�orded new method to to represent, manipulate and combine information from di�erent
sources. The TBM is based on two levels :

– The credal level (in Latin credo : I belief ), where beliefs are studied and combined
using belief functions in order to preserve as much information as possible during the

14



1.3 Basics on the theory belief functions

combination aiming at decision making.
– The pignistic level (in latin pignus : a bet ), where beliefs are used to make decisions

and represented by probability functions called the pignistic probabilities
When choosing the maximum of the credibility might be pessimistic, on the other hand

decision made with the maximum of plausibility can be considered too optimistic. Based on
that, the best solution is to use the pignistic probability choose the credal level, where for
all X œ 2�, with X ”= 0 :

betP (X) =
ÿ

Y œ2�
,Y ”=0

| X fl Y | m(Y )
| Y | 1 ≠ m(ÿ) . (1.8)

3.2 Combination rules

Belief functions are used to represent information provided by di�erent sources, it is natural
than to combine them for an issue of decision making.
Many combination rules have been proposed taking in consideration the nature of the sources.

Dempster’s combination rule

The first one was proposed by Dempster in 1967 which is a conjunctive normalized combi-
nation rule also called theorthogonalsum

Given two mass functions m1 and m2, for all X œ 2�, X ”= ÿ the Dempster’s rule is defined by :

m
D

(X) = 1
1 ≠ k

ÿ

Y1fiY2=X

m1(Y1)m2(Y2) (1.9)

where k = q
Y1flY2=ÿ m1(Y1)m2(Y2) is the inconstancy of the fusion (or of the combination)

can also be called the conflict or globalconflict.
1 ≠ k is the normalization factor of the combination in a closed world.

The conjunctive combination rule

In order to consider the issues of the open world, like introduced in (Smets 1990), where
the author proposed the conjunctive combination rule. Considering two mass functions m1 and
m2, for all X œ 2� defined by :

15



Chapter 1. Theory of belief functions : An Overview

m
conj

(X) =
ÿ

Y1flY2=X

m1(Y1)m2(Y2) (1.10)

We can note m
conj

= m1 ü m2, and consider k = m
conj

(ÿ) as an unexpected solution.
The operator ü is associative and commutative but not idempotent.
This conjunctive combination rule can also be expressed by the relation of commonality for an
easier implementation.

q1ü2(X) = q1(Y1)q2(Y2) (1.11)

This combination rule can be extended to N mass functions m
i

. We obtain ü
iœ[1,N ]mi

, for
all X ™ � :

ü
iœ[1,N ] m(X) =

ÿ

Y1fl...flY

N

=X

Ÿ

iœ[1,N ]
m

i

(Y
i

) (1.12)

This combination rule, not normalized, allows us to consolidate agreeing sources and dis-
count the others, it also a�ects a mass on the empty set. This mass can be explained by the
following factors :

– Disagreement between di�erent sources of information, leading to the conflict
– Combining a source to itself (the conjunctive combination rule is non idempotent) : the

auto conflict introduced by Martin and al. (Martin 2008)
– Inconstancy of the belief function in other terms combining non independent information

sources

The disjunctive combination rule

First introduced by (Dubois and Prade 1986), then by (Smets 1993), we can considering two
basic belief assignments m1 and m2, after proceeding to a disjunctive combination expressed
like follows for all X ™ � :

m
disj

(X) =
ÿ

Y1flY2=X

m1(Y1)m2(Y2) (1.13)

The disjunctive combination rule can be used when one of the sources is reliable or when
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1.3 Basics on the theory belief functions

we have no knowledge about their reliability.

Robust Combination Rules

Florea and al., (Florea 2009), presented the "Robust Combination Rules"(RCR). They are
called robust, because of their abilities, to adapt to unreliable sources of information even when
corresponding degree of reliability is unknown.
The RCR, are particular weighted sum of the conjunctive and disjunctive rules with weighting
coe�cients which are conflict functions.
They are defined by an adaptative weighting between conjunctive and disjunctive rules. The
RCR act like the conjunctive rule when the conflict is low (k close to 0) or when the sources
are both reliable. Meanwhile, in the presence of high conflict (k close to 1) or when at least one
of the sources is unreliable, such as in this case, the RCR behaves like the disjunctive rule.
Let m1 and m2 two bbds defined in �, the RCR, between those two masses is defined such as
for all X ™ �, X ”= ÿ :

m
RCR

(X) = –(k)m
conj

(X) + —(k)m
disj

(X) (1.14)

Where m
conj

is the conjunctive combination rule, and m
disj

is the disjunctive one and
m

RCR

(ÿ) = 0. – and — are functions of conflict k = m
conj

(ÿ), they at the same time must
satisfy :

–(k)
ÿ

Xµ�
m

conj

(X) + —(k)
ÿ

Xµ�
m

disj

(X) = 1 (1.15)

The equation (1.24) can also be expressed by :

–(k) + (1 ≠ k)—(k) = 1 (1.16)

when k = 0, the sources are in total agreement. Otherwise when k = 1, they are in total conflict.

3.3 Belief functions’ ordering

In order to define a principle that will allow us to choose one belief function over an other
in a set of many functions, when we are in presence of associated belief function. We need
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Chapter 1. Theory of belief functions : An Overview

to classify them. Thus, we define a relation that will specify a standard criterion that can
ease this decision. Hence, in the evidential framework, some operators for specialization and
generalization operators have been defined. Then a principle of least commitment based on
that,shows according to which pattern one can choose the belief function needed.

Specialization and generalization of a belief function

Specialization and generalization operators transform belief functions making them more
(respectively less) specified by using a mass transfer. Once one of these operations made, it
becomes easier to choose the most (or less) committed belief function.

Specialization

The specification operator s is an application of 2� ú 2� in [0, 1] that verifies for all A and
X in � :

(A ”™ X) ∆ s(A, X) = 0 (1.17)

ÿ

A™�

ÿ

X™�
s(A, X) = 1 (1.18)

We say that m2 is a specialization of m1 if and only if it exits a specialization operator that
for all A in �

m2(A) =
ÿ

X™�
s(A, X)m1(X) (1.19)

A specialization operator distributes the mass a�ected by a mass function on a set of its
subsets. Let’s consider S

s

(m) the set of belief functions resulting from the specialization s of
m.

Generalization

The generalization operator s is an application of 2� ú 2� in [0, 1] that verifies for all A and
X in � :
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1.3 Basics on the theory belief functions

(A ”™ X) ∆ g(A, X) = 0 (1.20)

ÿ

A™�

ÿ

X™�
g(A, X) = 1 (1.21)

We say that m2 is a generalization of m1 if and only if it exits a generalization operator
that for all A in �

m2(A) =
ÿ

X™�
g(A, X)m1(X) (1.22)

A generalization operator distributes the a�ected mass of a function to their oversets.

Specialization operator

Let’s consider the three solutions proposed in (Dubois and Prade 1986, with the aim of
ordering belief functions. So as to characterize their commitment, we suppose the existence of
an ordering relation between them.

The first one, is associated to the specialization, if m2 is a specialization of m1, noted :

m1 ı
s

m2 (1.23)

It is also possible to represent this ordering operation using the plausibility (respectively
the commonality) : we say if for all X µ �, the plausibility (respectively the commonality) of
a belief function is lower than an other, that it is less committed in plausibility (respectively
the commonality) noted :

(‚X ™ �pl1(X) Æ pl2(X)) … (m1 ı
pl

m2) (1.24)

(‚X ™ �q1(X) Æ q2(X)) … (m1 ı
q

m2) (1.25)
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Chapter 1. Theory of belief functions : An Overview

Denoeux, shows in (Denoeux 2008), that among these three ordering relations, ı
s

is the
strongest one, because it integrates both of the plausibility and the commonality ordering.

Otherwise, the most used one is the third one ı
q

. In (Dubois, Prade and Smets 2001), the
more amount of belief remains unassigned, i.e. the bigger the focal elements having a high mass
assignment, the higher the commonality degrees and the less informative is the belief function.

Principle of least commitment : PLC

In (Dubois and Prade 1986), this principle was introduced for the evidential reasoning.
This principle is to belief function, what the maximum entropy principle is to the probabilistic
theory.

It allows us to construct a partial ordering relation on the set of belief functions.
In a set of equally justified bodies of evidences, we can use the PLC presented in (Hsia 91),
Hsia, shows how this principle supports the idea of choosing the belief function that involves
the least an expert.
It can be considered as a natural approach to select the less committed bba from a subset. In
that way no one gives more support than justified to any subset of �.

3.4 Discounting

In the belief function framework, knowledge about the reliability of a source of information
(or sensor) is achieved by the discounting operation, which transforms each belief function
provided by a source into a weaker, less informative one. The discounting operation is controlled
by a discount rate in taking values in [0, 1] : if – = 0, the belief function is unchanged ;
if – = 1, the belief function is transformed into the vacuous belief function. This transformation
means that the information provided by the sensor is completely discarded.
Smets in (Smets 1993), shows that the discounting operation is not adhoc, it can be derived
from a simple model of sensor reliability. In this model, the sensor can be in two states : reliable
or not. In the first case, when we know that the sensor is reliable, the belief function which is
provided is accepted without any modification, otherwise when we know that it is not reliable,
the information is considered as irrelevant.

Y
]

[
m–(X) = (1 ≠ –)m(X), if Xµ �
m–(X) = (1 ≠ –)m(X) + –, if X = �.

(1.26)
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1.4 Continuous belief functions

4 Continuous belief functions

In the first part of this chapter, we have presented di�erent specification of discrete belief
function. Unfortunately, these functions do not allow us to manipulate continuous data that
can be provided by sensors in di�erent areas like : search and rescue problems (Dor’2010) ,
classification issues, information fusion...
Some researches were interested in representing belief functions in continuous frame of discern-
ment like Strat and Smets.
In these sections, we will present how to extend these functions on the real numbers. To do so,
we will focus on Smets’ approach to represent continuous belief functions by using probability
densities...

The principle purpose in section 4.1 is to provide some methods that will allow us to have
the needed characteristics in order to build and manipulate belief functions on real numbers.
Section 4.4 will present the basic belief densities associated to pignistic probability. Later, we
will introduce a graphical representation of these function proposed by Vannobel following the
formalism of Smets. Finally, other approaches that have been provided in the literature to
characterize continuous belief functions.

4.1 Continuous belief function on real numbers

Discrete belief functions, presented in the last chapter can not handle information on the
set of real numbers.
Strat in (Strat 1984), and Smets (Smets 2005) proposed a definition of continuous belief func-
tions. Strat, proposed to represent a mass function of a discretized variable in a triangular
matrix. This representation reduces the number of the propositions and simplifies the compu-
tation of the intersections by focusing only on the contiguous intervals.
But unfortunately, Strat unlike Smets, did not have the theoretical background proposed on
the Transferable Belief Model (TBM).
Smets based on the TBM’s background, used the same representation than Strat, and proposed
the belief functions in the extended set of reals noted R = R fi {≠Œ, +Œ}.
However, using the belief function framework to model information in a continuous frame is
not an easy task mainly to the complex nature of the focal elements. Comparing to the discreet
domain, on real numbers, in (Smets 2005) bba becomes basic belief densities (bbd) defined on
an interval [a, b] of R.
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Figure 1.1 – Smets : The interval [a, b] representation.

In this section, we will present an extension of these belief functions to intervals on R.

Definition 1.4 Frame of discernment
Formally, in the case of continuous belief functions, the domain is limited to a spacial subset
of power set defined as a Borel sigma-algebra generated by the collection of closed intervals on
the real numbers, which is the domain of the functions.

Definition 1.5 The intervals
To model the set of intervals I on R contains the classical intervals of R among which ÿ ; and
the intervals [≠Œ, y], [x, Œ] and [≠Œ, Œ] are considered. Note that [x, y] = ÿ ; whenever x > y.

Definition 1.6 Probability density function
Comparing a mass density on R to a probability density function pdf on all the pairs (x, y).
Thus, the point K which is defined by with the pair of points (a, b) represents the interval [a, b]
like shown in Figure 1.1. This pair is defined by u and v where

– u is the distance from (a, b) to the perpendicular projection of (a, b) on the diagonal that
contains the intervals

– v is the coordinate of this projection along this diagonal

Definition 1.7 Basic belief densities
A generalization of the classical bba into a basic belief density (bbd) noted mI on the interval
I.He defined the bbd where all focal elements are closed intervals or ÿ.
Given a normalized bbd mI, Smets defined an other function f on R2, where :
Y
]

[
f(a,b)= mI([a, b)], a Æ b ;
f(a,b)=0, a > b.

f is called a probability density function (pdf) on R2.
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1.4 Continuous belief functions

4.2 Belief functions

To model the set of intervals I on R contains the classical intervals of R among which ÿ ;
and the intervals [≠Œ, y], [x, Œ] and [≠Œ, Œ] are considered. Note that [x, y] = ÿ ; whenever
x > y.

By analogy to discrete belief functions, we have :
– Credibility :

belR([a, b]) =
⁄

x=b

x=a

⁄
y=b

y=x

mR([x, y])dydx. (1.27)

– Plausibility :

plR([a, b]) =
⁄

x=b

x=≠Œ

⁄
y=+Œ

y=max(a,x)
mR([x, y])dydx. (1.28)

– Commonality :

qR([a, b]) =
⁄

x=a

x=≠Œ

⁄
y=+Œ

y=b

mR([x, y])dydx. (1.29)

4.3 Combination of continuous belief functions

To combine two continuous belief functions, there exists many combination rules, the most
famous and used one is the conjunctive combination rule presented in the last section but
transposed to the continuous domain.
Given two bbd mR

1 , mR
2 induced by two distinct pieces of evidence. For the conjunctive rule of

combination, the product mŸ
1 ([a1, b1)], mR

2 ([a2, b2)] is allocated to the interval [a1, b1]fl [a2, b2] =
[a1 ‚ a2, b1 · b2] which may be empty.

mR
1ü2 =

⁄
a

x=≠Œ

⁄
y=+Œ

y=b

mR
1 ([x, b])mR

2 ([a, y])dxdy

+
⁄

a

x=≠Œ

⁄
y=Œ

y=b

mR
1 ([a, y])mR

2 ([x, b])dxdy

+ mR
1 ([a, b])

⁄
a

x=≠Œ

⁄
y=Œ

y=b

mR
2 ([x, y])dxdy

+ mR
2 ([a, b])

⁄
a

x=≠Œ

⁄
y=Œ

y=b

mR
2 ([x, y])dxdy (1.30)
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or equivalently, this combination can be expressed with the communality function :

q1ü2([a, b]) = q1([a, b])q2([a, b]) (1.31)

4.4 Belief function associated to a pignistic probability

As we stated in the previous sections, when a decision must be made, according to Smets, we
must build a probability function using the pignistic transformation. For a basic belief density
bbd related to its density function f , the relation for the pignistic probability function becomes
for a < b :

BetP ([a, b]) =
⁄

x=Œ

x=≠Œ

⁄
y=Œ

y=x

y · b ≠ x ‚ a

y ≠ x
f([x, y])dydx (1.32)

The notations ‚ represents a function that gives the maximal of two reals, and · reflects
the minimum of these reals.
The pignistic density transformation leads to a pignistic density Betf which is defined by for
each interval [a,b] in R :

BetP ([a, b]) =
⁄

b

a

Betf(x)dx (1.33)

Belief functions having a prescribed pignistic probability are called isopignistic where belief
densities are having the same Betf . This set of isopignistic densities is denoted : BIso(BetP )
Within the belief functions theory, we need a method to build a density from the pignistic den-
sity. In this case, we apply the least commitment principle. As we have already said, it suggests
to favour among all the isopignistic belief densities, the one that maximizes the commonality
function. The q-least committed belief function is a consonant belief density, Which means that
each focal interval is contained by the following one.

Smets shows that this q-least committed density generated from the pignistic transformation
is a graphe having a bell shape form like shown in Figure 1.2 :
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1.4 Continuous belief functions

Figure 1.2 – Smets : A Bell Shape distribution.

Figure 1.3 – Vannobel : Index function for continuous belief functions.

4.5 Graphical presentation of continuous belief functions

In (Vannobel 2012), proposed a graphical representation of the continuous belief functions
using an index function in Smets formalism.

Let’s consider betf a probability density associated to a bell shape distribution like presented
in Figure ?? The focal intervals [a

i

, b
i

] are defined by alphacuts of the pdf such as :

betf(a
i

) = betf(b
i

) = –
i

(1.34)

Vannobel,(Vannobel 2010, 2012) considers the horizontal cuts of the betf
i

as consonant pdfs

betf
i

in case of nested intervals. Thus, he can define a single bbd’s expression for a hole family of
pdf . In the case of symmetrical pdfs like Gaussian, focal intervals are defined such as m(X) ”= 0,
and can be labeled by an index z such that Az = [Az≠, Az+] with :
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Figure 1.4 – Vannobel :Intersection and union of focal intervals resulting from two Gaussian pdf .

z = | x ≠ µ |
‡

, z œ R+ (1.35)

Az≠ = µ ≠ ‡z, Az≠ œ [�≠, µ] (1.36)

Az+ = µ ≠ ‡z, Az+ œ [µ, �+] (1.37)

The Figure 1.4, illustrates the domain representing the focal intervals corresponding to a
pdf Betf , ordered according to the label z

4.6 Continuous belief function using a multivalued mapping

Nguyen introduced in (Nguyen 1978) the notions of a source constituted by a probability
space and a multivalued mapping which is able to define the lower probability. Let’s consider
(X,A), (S,B), (P (S),B) as a measurable space, P (S) the collection of all subsets of the set S

and a multivaluated mapping where

� : X æ P (S) (1.38)
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1.4 Continuous belief functions

This function � can hold at the same time two notions : On one hand, it defines both of the
lower and upper probability, on the other hand, considers random sets. We can say that � as
a multivalued mapping is strongly measurable with respect to the spaces (A,B).

Nguyen, considers a source (X, A, P ),� : X æ P (S), and while assuming the propriety of
strong measurability presented above, he can propose that the lower probability measure Pú is
deduced from the probability distribution of � considered as a random set.
Moreover, he supposes that � is a measurable mapping, then it is a random set by specifying
its probability distribution . Thus the probability distribution of a random set � is precisely
the basic probability assignment.
We say that there is a correspondence established between belief functions on a source S and
the probability distribution of random sets. This relation can be expressed by if we want to
construct we only need to construct its density on P (S) which is already defined .

Doré et al. in (Doré 2011) proposed a similar approach founded on an index function that
can be assumed as �. This function can describe the set of focal elements of a continuous belief
function. In this case, every index has its own probability measure where there is an allocated
weight to a set of focal elements using a credal measure.

Smets formalism takes into consideration only to closed intervals, in (Dor’2010) extended
his work ti continuous belief functions where focal elements are not represented by intervals.
He uses –cuts to measure to area of the portions of multimodal distributions.
In order to build these continuous belief functions he defined two cases involving the source of
information :

– Objective source : usually intended to give information in a probabilistic frame, ap-
plying then the principle of maximal necessity. (Dubois 2001, 2004) suggests to use the
most committed possibility distribution checking two conditions : The first one needs
a possibility value higher than the probability (�(X) Ø P (X)). The second condition,
claims that the same ordering between two events : P (A) Ø P (AÕ) ∆ �(A) Ø �(AÕ).
See Appendix A for the relation between the belief functions theory and the possibility
theory.

– Subjective source : An expert models a phenomena using a probability, Doré uses this
transformation to associate to a probability a belief function. Supposing that an expert’s
opinion can be subjective
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5 Conclusion
We started this chapter by clarifying the di�erence between imprecision and uncertainty

by giving some definitions and examples. Then, we have introduced many important concepts
relative to the belief functions theory. We have presented the necessary theoretical background,
by showing its strength in modeling imprecise, uncertain or incomplete information. Dealing
with all these imperfections no matter how many sources we combine is an e�cient manner to
provide the best information in the process of decision making. However, discrete belief functions
are unable to express continuous phenomena, so for that reason, continuous belief functions
were introduced. We have presented the formalism of Smets for representing continuous belief
functions on the extended set of reals. We also showed how model the basic belief densities
within this chapter. Based on this description, we are now able to define continuous belief
functions. In the next chapter, we will consider belief functions on the set of extended reals of
Smets to build our continuous belief functions and develop our approaches.
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Chapter 2

Similarity between continuous belief functions

Knowing ignorance is strength. Ignoring knowledge is sickness
LaoTse(500B.C.)

Based on the formalism of Smets, we will use this method to build our continuous belief
functions. In this chapter we will introduce a distance to measure the similarity between two
probability density functions. Di�erent proprieties will be presented that this measure must
satisfy. Moreover, we will make a comparison between our proposal and a distance computed
using a classical scalar product. We will show that we new way to measure the similarity measure
between continuous belief functions based induced by normal and exponential distributions.
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1 Introduction

The concept of similarity is considered an attractive topic for many research fields and the
comparison of objects represents a fundamental task in many real-world application areas such
as, decision making, medicine, meteorology, psychology, molecular biology, data mining, case-
based reasoning, etc.
Obviously, comparing these pieces of information could be of a great interest and should be
accomplished e�ectively in order to solve many problems in the presence of imperfect data.
Terms such as closeness, a�nity, resemblance, etc. can be considered as expressing the degree
of similarity between objects or pieces of information.
Terms such as distance and divergence can be thought of as expressing dissimilarity. We can
find many of these words in the literature and generally, they are expressing the same thing
with a possibly slight semantic di�erences.
This chapter is organized as follows : Section 2 presents the di�erent views of similarity, some are
based on a divergence measure and some use a distance. Moreover it presents the properties that
a distance should satisfy. After showing that existing similarity measure are not entirely able
to measure a distance between continuous belief functions represented by probability density
functions , we propose, in Section 3 , a distance that take into account the nature of these
functions. We illustrate our proposed method and apply it to two types of distributions : A
normal and an exponential distributions in section 5.

2 Similarity Vs Distance

2.1 The divergence of Kullback-lieber

The divergence of Kullback-lieber (or DKL) was introduced in (Kullback 1978) "Information
Theory and Statistics" is a non-symmetric measure of the di�erence between two probability
distributions P and Q ; Typically P represents the "true" distribution of data, observations,
or a precisely calculated theoretical distribution. The measure Q typically represents a theory,
model, description, or approximation of P .
The K-L divergence is not a true metric for example, it is not symmetric. Generally D

KL

(PÎQ) =
D

KL

(QÎP ).
For the discrete case, KullbackLeibler divergence is defined as follows :
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D
KL

(P Î Q) =
ÿ

i

P (i)Ln
p(i)
q(i) (2.1)

It represents the average of the logarithmic di�erence between the probabilities P and Q,
where the average is taken using the probabilities P . The equation (??) is accurate only if
P (i) > 0, and Q(i) > 0.

For the continuous case, the KullbackLeibler divergence is represented as :

D
KL

(P Î Q) =
⁄ +Œ

≠Œ
p(x)Ln

p(x)
q(x)dx (2.2)

Let’s consider X ‘æ N1(µx

, ‡
x

) and Y ‘æ N2(µy

, ‡
y

) where N1 and N2 are normal distribu-
tions. In order to measure the divergence between N1(µx

, ‡
x

), we use the following equation 1 :

D
KL

(X Î Y ) = (µ1 ≠ µ2)
2‡2

+ 1
2(‡2

1
‡2

2
≠ 1 ≠ Log2(

‡2
1

‡2
2
)) (2.3)

This DKL satisfies the following properties :
P1. Non negativity D

KL

(P Î Q) Ø 0

D
KL

(P Î Q) = 0, if and only if P = Q, almost every time.

P2. Additivity D
KL

(P Î Q) = D
KL

(P1 Î Q1) + D
KL

(P2 Î Q2)

2.2 Distances

Recently, distances between belief functions, have intrusted a large number of researches, in
order to quantify interactions between them. Within the evidential theory, several approaches
have been defined like Ristic and Smets who proposed a distance based on Dempster’s conflict
factor. Other researchers, proposed geometrical (Euclidian) distances, like Fixsen and Mahler,
Jousselme and al. In the technical literature, two main areas can be distinguished regarding
the use of distances according to (Jousselme 2012).
The first one is for algorithm evaluation and optimization like classification algorithms, belief
functions approximation, and also for some properties estimation for combination rules. The
second use of the distances is to refer to an agreement between information sources essentially

1. http ://www.allisons.org/ll/MML/KL/Normal/
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for clustering, discounting...
In our case, a distance will be considered as a measure of similarity like introduced as the
agreement.

In order to quantify how much two or more objects are di�erent, we use a distance to
measure the similarity between the belief functions.

The measure of Jaccard is a matric whose elements are considered, for all A, B œ 2�\ÿ

J(A, B) = | A fl B |
A fi B

(2.6)

In (Diaz 2006), the authors proposed to replace J(A, B) by an other function of similarity
S where the matrix becomes :

D(A, B) = 2 | A fl B |
| A | + | B | (2.7)

where | A | and | B | denote respectively the cardinalities of A and B.
Otherwise, in (Diaz 2006), the author showed a distance between two bbas, in order to measure
the similarity between them, has to consider the resemblance of the mass distributions of the
focal elements and also the proximity of the set being compared to the frame of discernment
itself including the ignorance.

Perry and Stephanou presented in (Perry and Stephanou 1991) a distance that measures
the di�erence between the information present during the combination. Here, they see how
closely an evidence matches a pre-defined prototype. The distance between two belief functions
is measured by the di�erence in the amount available when considered separately and when
they combined.
According to them, the similarity between two focal elements represents the degree to which the
two focal elements have attributes in common which would tend to make them indistinguishable.
They defined the similarity between A and B as :

Sim(A, B) = {A fl B}
{A fi B} (2.8)

Once the similarity Sim(A, B), they determined a distance that measure the divergence
where it takes into consideration the information change when combining the belief functions.
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Their work for classifying sensors ’ information is based on three elements which are (1) the
combination of the belief function using the Dempster’s rule. (2) a degree of prototype that
typifies a class, and finally (3) a belief measure of divergence.

2.3 Basic proprieties of a distance

Here we will namely consider a distance as a similarity measure.
In our case, comparing uncertain pieces of information comes down to comparing conti-

nuous belief functions represented by probability density functions. Hence, we need a measure
to quantify the amount of similarity two or several belief functions represented by their distri-
butions.
An important question must be considered : what are natural properties that such measures
should satisfy ?

Let’s consider f1 and f2 two distributions on R. A belief similarity measure or a distance
denoted d(f1, f2) should satisfy the following basic properties :

Property 1. Non-negativity

d(f1, f2) Ø 0

Namely, a distance (or similarity measure) between two distributions must never be nega-
tive.

Property 2. Symmetry

d(f1, f2) = d(f2, f2)

The distance between f1,f2 must be strictly the same.
Property 2 can be extended to the reflexivity d(f1, f1) = 0

Property 3. Upper bound

’f
i

, d(f
i

, f
i

) = 1

This property implies a full dissymmetry, a maximal contradictory between the distributions

Property 4. Lower bound and Non-degeneracy

’f
i

, d(f
i

, f
i

) = 0
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This property implies a total similarity between the distributions.

Property 5. Triangle inequality

d(f1, f2) Æ d(f1, f3) + d(f2, f3)

2.4 Scalar product

On a defined set, a distance can be measured with a scalar product between two vectors f

and g. A scalar product has a symmetric and a bilinear form, and is considered positive when
having the following proprieties :

P1. Symmetry Èf, gÍ = Èg, fÍ

P2. Non negativity Èf, fÍ > 0

P3. the zero vector Èf, fÍ = 0 ∆ f = ≠æ0

We have Èf, fÍ = ÎfÎ2 which is the square norm of f .

To measure a distance using a scalar product, we use the following expression :

d
SP

(f, g) =
Û

1
2(ÎfÎ2 + ÎgÎ2 ≠ 2Èf, gÍ)) (2.17)

2.5 Distance of Jousselme

Jousselme et al. in (Jousselme 2001), apply a classical similarity measure to achieve the
comparison of the focal elements of two bbas, in order to define a distance in a vector space
generated by the focal elements. A bba i can be seen as a vector ≠æm in the mentioned vector
space and the normalized distance

The distance can be viewed as the most appropriate distance to measure the dissimilarity
between two bbas m1, m2 according to (Jousselme 2001) after making a comparison of distances
in belief functions theory. for two bbas : m1, m2 on 2� :

d(m1, m2) =
Û

1
2((≠æm1 ≠ ≠æm2)T D(≠æm1 ≠ ≠æm2) (2.18)

Where D is a 2N ú 2N is a matrix whose elements are D(A, B) = |AflB|
|AfiB| . |A fl B| is a measure
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2.3 A distance between continuous belief functions

of the conflict between A and B. If |AflB| = 0, means that A and B have no object in common
which means that they are in great conflict.
Jousselme presents an other expression for her distance defined as :

d(m1, m2) =
Û

1
2(Îm1Î2 + Îm2Î2 ≠ 2Èm1, m2Í)) (2.19)

and Èm1, m2Í is the scalar product defined by :

Èm1, m2Í =
nÿ

i=1

nÿ

j=1
m1(Ai

)m2(Aj

) |A
i

fl A
j

|
|A

i

fi A
j|

(2.20)

where n = |2�|.

Therefore, d(m1, m2) is considered as an illustration of the scalar product where the factor 1
2

is needed to normalize d and guarantee that
0 Æ d(m1, m2) Æ 1.

According to (Jousselme 2010, 2012) this metric distance respects all the properties expected
by a distance and it can be considered as an appropriate measure of the di�erence or the lack
of similarity between two bbas.
This distance is based on the dissimilarity of Jaccard defined as :

Jac(A, B) = |A fl B|
|A fi B| . (2.21)

Moreover, d(m1, m2) can be called a total conflict measure, which is an interesting property
to measure the total conflict based on a measurable distance like presented in (Martin 2008).

3 A distance between continuous belief functions

Traditional distances that are used for the discrete case are totally useless due to the nature
of the continuous belief functions. First of all, and as presented previously a scalar product is
able to compute a distance between two bbd. To handle the problem in regard to the nature of
these functions, a scalar product is defined on R by :
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Èf, gÍ =
⁄ +Œ

x=≠Œ

⁄ +Œ

y=≠Œ
f([x, y])g([x, y])dxdy (2.22)

3.1 Mathematical expression

In this section, we will present a new method to measure the similarity based on Jousselme’s
distance using Smets’ formalism on continuous belief functions. Founded on the properties of
belief functions on real numbers, we are now able to define a distance between two densities in
a interval I.

Èf1, f2Í = (2.23)
⁄ +Œ

≠Œ

⁄ +Œ

y

i

=x

i

⁄ +Œ

≠Œ

⁄
y

j

=+Œ

y

j

=x

j

f1(xi

, y
i

)f2(xj

, y
j

)”(x
i

, x
j

, y
i

, y
j

)dy
j

dx
j

dy
i

dx
i

The scalar product of the two continuous pdfs is noted : Èf1, f2Í with a function ” defined
as ” : R ≠æ [0, 1]

”(x
i

, x
j

, y
i

, y
j

) = ⁄(Jmax(x
i

, x
j

), min(y
i

, y
j

)K)
⁄(Jmax(y

i

, y
j

), min(x
i

, x
j

)K) (2.24)

where ⁄ represents the Lebesgue measure used for the interval’s length and

”(x
i

, x
j

, y
i

, y
j

) is an extension of the measure of Jaccard applied for the intervals in the case
of continuous belief functions.

Ja, bK =
Y
]

[
ÿ, if a > b

[a,b], otherwise.
(2.25)

Therefore, the distance between two probability functions is defined by the following equa-
tion :

d(f1, f2) =
Û

1
2(Îf1Î2 + Îf2Î2 ≠ 2Èf1, f2Í) (2.26)
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2.3 A distance between continuous belief functions

In fact, this distance can be used between more than two belief functions.
Let’s consider ‡f a set of bbds. We measure the distance between one bbd and the n ≠ 1

other ones by :

d(f
i

, ‡f) = 1
n ≠ 1

nÿ

j=1,i”=j

d(f
i

, f
j

) (2.27)

3.2 Algorithm implementation

In this section, we present the implementation steps of continuous belief functions. To this
end, we have developed programs in MATLAB.
The implemented functions are used to perform simulations of a distance that measure the
similarity between them. Di�erent results carried out from these simulations will be presented
and analyzed in order to evaluate our proposed method.

Basic belief densities induced by normal distributions

In this part, we will focus on a normal probability density function, as presented in (Ristic
and Smets 2004) . The focal sets of the belief functions are the intervals [µ ≠ x, µ + x] of R,
with µ : the mean of the normal distribution and x œ R+ and ‡ : the standard deviation. We
consider a normal distribution N(x; µ; ‡), with x Ø µ :

Ï(x) = 2(x ≠ µ)2 1
‡

Ô
2fi3

e
(x≠µ)2

2‡ , (2.28)

where Ï(x) is the basic belief density associated to the Gaussian, when we apply the principle
of least commitment where x is the representation of the intervals previously mentioned.

This function is null at x = µ, increases with x and reaches a maximum of 4/(‡e
Ô

2fi) at
x = µ +

Ô
2‡, then decreases to 0 at x goes to infinity like presented in (Smets 2005) .

3.3 Implementation of continuous belief functions

In order to represent our belief densities according to a normal and an exponential distri-
bution, we have to create our own distributions.
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Chapter 2. Similarity between continuous belief functions

Implementation of a continuous belief function induced by a normal distribution

First of all, we have to define a function that will be called : "Mass norm", where we are
able to compute our generated mass functions.
Within this function, we generate the normal distribution of the bbds defined by a mean, a
standard variation and a discretization step.
To model our distribution, we use the equation (2.28), that guarantees a symmetric normal dis-
tribution. After that, we allocate the mass function bbd.M representing our probability density
function and then create di�erent vectors :

– bbd.X : a vector having the di�erent x of the bbds

– bbd.Y : a vector having the di�erent y of the bbds

Afterwards, we focus on the distance counting. Every distribution, bbd1 and bbd2 is charac-
terized by respectively (X1, Y1), (X2, Y2). We put [X1, X2], [Y1, Y2] into two di�erent vectors,
in order to count the x and y representing our two bbds. Having those vectors, we measure
our function ” by calculating term by term using the equation (3) the di�racts rations of the
intersection of the intervals on their union.
These measures are assigned in a matrix which contains all the ratios of the lengths. To make
this distance operate in the continuous case of belief functions and using MATLAB, we replace
the integrals present in equation (2.23) by a double sum to be able to have a formula that will
measure the similarity of continuous belief functions. Finally, we implement our distance based
on Jousselme’s using the formalism proposed by Smets to generate our distance. In that specific
case, we are automatically dealing with consonant belief functions

Basic belief densities induced by exponential distributions

In this section, we will suppose that the probability distribution follows an exponential
density. The expression used for a the probability density is the following :

f(y) = y

◊2 e
≠y

◊ (2.29)

It is obtained when we use the Least Commitment Principle presented in Section 4.2, on a
set of basic belief densities associated to the exponential distribution, where ◊ is the mean and
the focal elements are in the intervals [0, x].
To implement a continuous belief function induced by an exponential distribution, we apply
the same method except that we use equation (2.29) to obtain the needed mass function.
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2.4 Similarity evaluation

pdf 1 2 3 4
µ 0 0 4 4
‡ 1 0.5 1 0.5

Table 2.1 – Probability density distributions

Figure 2.1 – Four pdfs following normal distribution.

As mentioned in the previous section, the result of our work is a distance between two or
several bbds.

In the next section we will consider the cases of two di�erent kinds of distributions : the
first one is a normal representation and the second is an exponential one. We will use these
distributions to deduce the di�erent bbds and then we are able to measure the distance between
two or several continuous belief functions.

The aim is to have a probability distribution that includes uncertainty, that will be modeled
by the basic belief densities.

4 Similarity evaluation
In figure 2.1 we consider four pdfs having normal distributions like presented in table 2.1

In this section, we will measure and compare the similarity of the four distributions presented
in Figure 2.1 using two methods. The first one will be based on the divergence of Kullback-
Lieber presented in equation (2.3). In the second one, we will use our distance in equation (2.26)
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Chapter 2. Similarity between continuous belief functions

D
KL

f1 f2 f3 f3
f1 0 0.324 16.5 16
f2 0.625 0 16.625 16
f3 16 16.5 0 0.5
f4 16.25 16 0.625 0

Table 2.2 – Distances measured using the divergence of Kullback-Lieber.

developed for continuous belief functions induced by normal distributions, then we will measure
the average of the obtained distances like shown in equation (2.27).

4.1 The divergence of Kullback-Lieber for similarity of normal dis-
tributions

We applied the divergence of Kullback-Lieber for the fours pdfs of the table 2.1
According to the properties of this divergence, we do not need to have a normalized value.

When the distributions like f1 and f2 have closed values of means and standard deviation, so
the divergence between them is not high. Contrary to f3 and f4 where they are characterized
by biggest means than µ1, where µ3 = µ4 = 4 > µ1 = 0, we are in the presence of a huge
dissimilarity between the distributions.
More D

KL

is high, more important is the divergence.
We also notice that the means of our evidential distributions play a role in measuring the simi-
larity using the divergence of Kullback-Lieber. Moreover, this divergence measure as mentioned
before, is not a distance, and confirmed by the fact that the similarity is not taken into account.
When we compare D

KL

(f1, f2) = 0.324 is di�erent from D
KL

(f2, f1) = 0.625.
This asymmetry is confirmed for the divergence between all the distributions where D

KL

(f
i

, f
j

) ”=
D

KL

(f
j

, f
i

)

4.2 A continuous distance for similarity of normal distributions

First of all, we measure the distance between f1 and the rest of the pdfs using equation
(2.26). We also completed all the distances between a pdf and the other ones. Next, the average
of the distance between all the bbds was computed according to equation (2.27) and presented
in table 2.3.

According to the Figure 2.1, the smaller is the distance, the more similar are the distribu-
tions. The distance between f1 and f4 is the biggest one. In other words, those two distributions
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2.5 A distance between two continuous belief functions

d f1 f2 f3 f4
f1 0 0.3873 0.7897 0.8247
f2 0.3873 0 0.8247 0.8434
f3 0.7897 0.8247 0 0.3873
f4 0.8247 0.8434 0.3873 0

Table 2.3 – Distances measured using the distance for continuous belief functions.

Average distance Value
d(f1, ‡f) 0.634
d(f2, ‡f) 0.680
d(f3, ‡f) 0.667
d(f4, ‡f) 0.685

Table 2.4 – Averages of the continuous distance.

are the farest from each other comparing to the distance between (f1, f2), and (f1, f3).

Otherwise, according to the obtained measures, we can say that f2 is the most similar
distribution to f1 as it is the case between f3 who f4.

Once all the distances between the 4pdfs computed we are able to determine their averages
using equation (2.27). The resulats are shown in the above table :
We notice that all the averages have close values. When we use the divergence of Kullback-

Lieber, we can suggest that the di�erence between the means of the distributions plays an
important role in similarity measurement according to the resulting values in table 2.2. This
can be shown by the divergence values obtained between pdf1 and pdf3, pdf4.

5 A distance between two continuous belief functions

In this part, we will make a comparison between two distances. One is measured using a
classical scalar product and the other is our adaptation of Jousselme’s distance for two and
several continuous belief functions. On one hand, we start by exploring belief densities induced
by normal distributions, then on the other hand we will focus on the case of exponential
distributions
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Chapter 2. Similarity between continuous belief functions

Figure 2.2 – Distance using a classical scalar product.

5.1 Belief densities induced by normal distribution :

In Figure 2.2, 2.3, we fix µ1 = 0, ‡1 = 0.5, and for the second pdf , 0 Æ µ2 Æ 10 with a step
0, 5 and 0.1 Æ ‡1 Æ 3 with a step =0.1.
For the normal distribution, we only use focal elements where y = 2µ ≠ x if µ1 ”= µ2, then the
distance based on the classical scalar product is null. Else, y = 2µ = x, so the scalar product
presented in the continuous domain is :

⁄ +Œ

y=µ

f(y)g(y)dxdy. (2.30)

Classical Scalar Product for belief densities induced by normal distribution

For the second part of this analysis, we consider the distance presented in equation (2.26)
for continuous belief functions.
The figure 2.2 shows the behavior of the resulting distance based on a classical scalar product.
At the beginning we notice a remarkable drop in the value of the distance until reaching a null
value followed by a discontinuity in the 3D representation. This discontinuity occurs after dea-
ling with similar distributions (µ1 = µ2, ‡1 = ‡2) and having a distance based on the classical
scalar product where d = 0.
We also notice that when the two probability densities have only same means (µ1 = µ2 = 0)
the distance d > 0, we can say that the standard deviation must certainly paly an important
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2.5 A distance between two continuous belief functions

Figure 2.3 – Distance using Jaccard based on scalar product.

role when computing this similarity measure.
When ‡1 > ‡2, the value of the distance can be considered as high even d > 1. Like the second
pdf has rising values until ‡1 = ‡2,the distance drops until becomes null. Otherwise, when the
di�erence between the standard deviation grows when ‡2 > ‡2, the resulting distance using a
scalar product also grows but still remains small comparing the case where ‡1 > ‡2.

Based on that, we can say that using a distance based on a classical scalar product is
almost useless in the case of measuring the similarity because it gives us a bad representation
of a distance.

Continuous distance for belief densities induced by normal distribution

As stated in the previous section, a distance based on a classical scalar product is not the
best way to measure the similarity between two probability density function. That’s way use
will use the distance presented in equation (2.26)

By varying the values of µ2 between [0, 10] and ‡2 in [0.1, 3] with a step of 0.5 we obtain
figure 2.3.

Having pdf2 with changing values , we notice di�erent behaviors of our continuous distance
based on Jaccard measure. First of all, when ‡1 > ‡2, we have a high value related to our dis-
tance that decreases as long as ‡2 increases. The distance still decreasing until reaching a null
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Chapter 2. Similarity between continuous belief functions

value when ‡1 = ‡2. In this special case when the standard deviations are equal, same situation
for the means, we are dealing with total similar distributions that generates a distance with a
null value.
Once ‡1 < ‡2, the di�erence between these two parameters rises, so does the distance. This
growth involves both of µ2 and ‡2. But, it is really the standard deviation that really plays an
important role. We notice even whenµ2 reaches its maximal values, creating thus a big di�e-
rence between the means of the two distributions, this does not have a remarkable impact on
the similarity measure.
Contrary, the gradual increasing values of ‡2, do really influence the obtained result. When we
are making the distance having its maximal value, which value is normalized, responding then
to the properties presented for a distance. Every time, when the value of the distance grows in
figure 2.3, the similarity between the two distributions drops.

Comparing to the results obtained with a distance based on a classical scalar product, we
observe that our distance takes into consideration the standard deviation, that does have a real
impact when computing this measure of similarity.

The di�erence between them, is the function ” presented in (17). ”, that allows us to have
a more specific distance between two belief functions and use wisely the mean to have a better
measure of the distance.
It is more useful, then and accurate to use our distance proposed in equation (2.26). This
distance responds to the properties from Proprety 1 to preoprety 6, including : normalization,
upper and lower bound and also the similarity.

5.2 Belief densities induced by exponential distributions

We measure the distance between two exponential distributions according to a classical
scalar product definition, and our adaptation of Jousselme’s distance for continuous belief
functions.

Figures 2.4 and figure 2.5 show respectively the results obtained after computing the two
distances. We are dealing with two exponential distributions f1, f2, where ◊1 = 1 and ◊2 œ
[0.1, 10] with a discretization step = 0.1.
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Figure 2.4 – Distance using Jaccard based on scalar product.

Classical Scalar Product for belief densities induced by exponential distributions :

At the beginning of figure 2.4, when ◊1 = 1 and ◊2 = 0.1, the distance based on classical
scalar product has the highest value. When the value of ◊2 increases, the distance between the
distributions decreases continually until it makes a discontinuity when ◊1 = ◊2 where it has a
null value, this means that f1 = f2.

After that, the value of ◊2 gets far from ◊1, the probability distribution f2 becomes di�erent
from f1 and that generates a non null distance that increases suddenly just when ◊2 gets bigger,
then the distance based on classical scalar product decreases and gets stable and reaches a value
near to 0.4. Based on these observations, the distance using the classical scalar product is not
really adapted for continuous belief functions because it creates a discontinuity, and except the
point where ◊1 = ◊2, the variation of this distance does not reflect the di�erence between ◊1

and ◊2.

Continuous distance for belief densities induced by exponential distributions :

The behavior of the distance in figure 2.5 is starting at the highest value d(f1, f2) = 0.6
with the similar exponential distribution presented previously.

When the value of ◊2 gets closer to ◊1, d(f1, f2) decreases and reaches a null value where
f1 = f2 (the distributions are similar to each other). Unlike the distance based on classical
scalar product, the increase of d(f1, f2) is gradual as ◊2 gets bigger values, the distance grows
continually.

45



Chapter 2. Similarity between continuous belief functions

Figure 2.5 – Distance using Jaccard based on scalar product.

6 Conclusion
In this chapter, we have provided an analysis of natural properties that a distance between

belief functions should satisfy. We have also shown di�erent methods used to measure the
similarity between these functions. We proposed a distance for continuous belief functions
based on the proposal of Jousselme using the formalism of Smets. To do so, we simulated both
normal and exponential distributions to show that our continuous similarity measure satisfies
all properties for a distance. Moreover, this analysis led us to the conclusion that the standard
deviation of a normal distribution representing a continuous belief function has an impact on
the similarity measure.
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Chapter 3

The inclusion of continuous belief functions

After defining a relation of similarity based on a distance, we will focus on an other situa-
tion characterizing continuous belief functions. In this chapter we will propose two forms of
inclusion : The strict and the partial inclusion between continuous belief function induced by
normal distributions also based on the formalism of Smets.
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1 Introduction

Characterizing the nature of the relation that exists between belief functions can be consi-
dered as an important step in multiple tasks as information fusion and conflict managing. As
already proved in the discrete case, the two more or several belief functions are included in each
other, the less they are in conflict. It is an important step that will be considered when com-
bining di�erent sources of information and will have an impact during the process of depiction
making.

In this dissertation, we emphasize on two types of inclusions between continuous belief
functions : the strict and the partial inclusion. In a given or simulated distributions describing
our pfds,

The rest of the chapter is organized as follows : Section 2 presents the notion of inclusion
for the conflict measurement between discrete belief functions. Next we will present our second
approach for defining a relation of inclusion between continuous belief function by presenting
both of the partial and the strict inclusion. Here,we will introduce the proprieties that this
relation should satisfy, the mathematical expression. Later, in section 4 we will illustrate by
using normal distributions. Finally we will make an overview between the measure of inclusion
and the distance presented in the previous chapter.

2 The inclusion within discrete belief functions

In this section we will present the notion of inclusion between discrete belief functions used
for the aim of conflict measure.

Recently Martin (Martin 2012) defined a degree of inclusion as involved in the measurement
made in order to determine the conflict during the combination of two discrete belief functions.
He presented an index of inclusion has binary values where Inc(X1, Y2) = 1 si X1 ™ Y2 and 0
otherwise with X1, Y2 being respectively the focal elements of m1 and m2. This index is then
used to measure the degree of inclusion of the two mass functions and defined as :

d
inc

= 1
|F1||F2|

ÿ

X1œF1

ÿ

Y2œF1

Inc(X1, Y2) (3.1)

‡
inc

(m1, m2) = max(d
inc

(m1, m2), d
inc

(m2, m1)) (3.2)

48



3.3 The inclusion within continuous belief functions

Where d
inc

is the degree of inclusion of m1 in 2 and inversely.
This inclusion is used as a conflict measure for two mass functions, using it like presented :

Conf(m1, m2) = (1 ≠ ‡
inc

(m1, m2)d(m1, m2)) (3.3)

where d(m1, m2), is the distance of Jousselme presented in section

3 The inclusion within continuous belief functions
Let’s consider the following proprieties that the measure of inclusion between continuous

belief functions should satisfy.

3.1 Proprieties

The inclusion defined between two intervals A and B in a set I satisfies the following requi-
rement :

Property 1. Non-negativity

Inc(f1, f2) Ø 0

Namely, the inclusion of a distribution in the other must never be negative.

Property 2. asymmetry

”
Inc

(f1, f2) ”= ”
Inc

(f1, f2), ’f1 ”= f2

no need for the inclusion to be symmetric ....

Property 3. Upper bound

Inc(f
i

, f
i

) = 1

This property implies a total inclusion of a distribution on the other.

Property 3. lower bound

Inc(f
i

, f
i

) = 0

This property implies the absence of any intersection or inclusion of a distribution on the
other.
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3.2 The strict inclusion

Definition

In this section, we will define the strict inclusion between two continuous belief functions
represented by two basic belief densities bbd.
We use these distributions to deduce first a degree of inclusion between the bbds and then we
are able to measure the inclusion of our continuous belief functions.
Let’s consider two continuous pdfs : f1 and f2. If one of the distributions is included in an other
distribution, then we define to measure the strict inclusion the following equation :

IncStr(f1, f2) =
⁄ +Œ

≠Œ

⁄ +Œ

y1=x1

⁄
x1=+Œ

x2=≠Œ

⁄
y2=+Œ

y2=x2
(3.8)

”
IncStr

([x1, y1], [x2, y2])f1([x1, y1])f2([x2, y2])dy2dx2dy1dx1

Where X = [x1, y1], Y = [x2, y2] are the considered intervals and ”
IncStr

(X, Y ) is the degree
of inclusion that will allow us to measure the inclusion of the first interval in the second one.
We will consider that ”

IncStr

(X, Y ) having binary values :

”
IncStr

(X, Y ) =
Y
]

[
1, if X ™ Y

0, otherwise.
(3.9)

If we are in presence of two distributions that do touch each other, there is an intersection
between them. The ”

IncStr

(X, Y ) will have the value 1, and the strict inclusion will be weighted
by the masses of our continuous belief functions. Otherwise ”

IncStr

(X, Y ) will be null.

3.3 The partial inclusion

Considering two bbds represented by two intervals X and Y : We say that X is partially
included in Y or inversely, if and only if their intersection is di�erent of ÿ.
To represent the partial inclusion we define :

IncPar(f1, f2) =
⁄ +Œ

≠Œ

⁄ +Œ

y1=x1

⁄
x=+Œ

x

i

=≠Œ

⁄
y

i

=+Œ

y2=x2
(3.10)

”
IncP ar

([x1, y1], [x2, y2])f1([x1, y1])f2([x2, y2])dy2dx2dy1dx1

50



3.4 Inclusion between two continuous belief functions

with ”
IncP

(X, Y ) is the degree of partial inclusion :

”
IncP ar

([x1, y1],[x2, y2])=
max(0,min(y2, y2)≠max(x1, x2))

y1 ≠ x1
(3.11)

Where ”
IncP

(X, Y ) representing the length of the intersection of the two probability density
functions f1 and f2 on the length of f1 if we are measuring IncPar(f1, f2) and the length of f2

if we have to calculate the partial inclusion of f2 in f1 : IncPar(f2, f1)

4 Inclusion between two continuous belief functions
To illustrate both of the strict and partial inclusion, which are two forms of relation between

two continuous belief functions that are induced using a normal distribution. We decided to fix
the value of the first distribution pdf1, where, it is characterized by its mean µ1 = 0 and its
standard deviation ‡1 = 1. For the second distribution pdf2, we will vary the values of µ2 in
[0, 5] and ‡2 in [0.1, 3].
Here, our purpose is to see the behavior of the inclusion when we modify one of the pdfs, and
the parameters that infer in the obtained results.

4.1 Strict inclusion between belief densities induced by normal dis-
tributions

This strict inclusion is a natural approach, that allows us to perceive if there exists any
intersection between two distributions, how they behave and the parameters that interfere du-
ring this process. In this case, when a degree of inclusion has binary values of 0 and 1, we will
study this property between two continuous belief functions.

At the beginning of the experimentation, when µ1 = µ2 and ‡1 > ‡2, we remark no inter-
section between the two distributions. In other words, there is then no inclusion. This situation
is expressed by IncStr(f1, f2) = 0 like shown in Figure 3.1. This value is due to the fact that
the degree of our strict intersection ”

IncStr

(X, Y ) = 0 havs presented in the equation (3.9).

The more the value of the second standard deviation grows, the more di�erence between
‡1 and ‡2 develops. Here, the strict inclusion between the two distributions, which generates a
growth in the behavior of the obtained curve. We are then, in the presence of a growth of the
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Figure 3.1 – Strict inclusion of two belief normal distributions .

strict inclusion of pdf1 in pdf2 due to the variation of the second distribution.
Otherwise, we notice in Figure 3.1, relative to the strict inclusion, that it is not the gap between
the means µ1 and µ2 that generates this growth. It is the di�erence between both the standard
deviations, that is in the origin of this growing phenomenon of inclusion. As shown when ‡1 > ‡2

and µ2 having its maximal value with µ2 = 5, the strict inclusion is null. This value is due to
the fact that the degree of strict inclusion ”

IncStr

(X, Y ) = 0, which can be explained by the
non-existence of any intersection between pdf1 and pdf2.
The part of the curve where the di�erence between the two standard deviations is low and
at the same time the di�erence between the means is high. We have a small growing strict
inclusion for example when µ2 = 3 and ‡2 = 1, 5, the strict inclusion IncStr(f1, f2) = 0, 1. At
the meantime, even when µ1 = µ2 = 0 ‡1 = ‡2 = 1, there is an intersection between the two
distributions and IncStr(f1, f2) > 0. Moreover, when the gap between ‡1 and ‡2 gets higher,
the curve increases, generating a bigger strict inclusion between pdf1 and pdf2, until rising its
maximal value where IncStr(f1, f2) = 1, with ”

IncStr

(X, Y ) = 1. In this specific case, we are in
presence of a total inclusion of the first distribution pdf1 in the second one pdf2.
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3.4 Inclusion between two continuous belief functions

Figure 3.2 – Partial inclusion of two belief normal distributions

4.2 Partial inclusion between belief densities induced by normal dis-
tributions

The partial inclusion is defined in order to give us the proportion of the intersection between
two pdfs.

During this experimentation, we keep the same values used for the strict inclusion, in which,
the first pdf µ1 = 0 and its standard deviation ‡1 = 1. For the second distribution pdf2, µ2 in
[0, 5] and ‡2 in [0, 3]. We then obtain the result shown in Figure 3.2.
As long as ‡1 > ‡2, the partial inclusion is null, then there is no inclusion between the dis-
tributions. We notice that, when we are dealing with similar distribution where µ1 = µ2 = 0
and sigma1 = sigma2 = 1, the value of the partial inclusion is inconsiderable. It is possible to
state that when we are in presence of two distributions having the same values, there is not
necessarily any total inclusion between them.
We also take note, as the di�erence between ‡1 and ‡2 rises, due to the of pdf2, the figure
obtained grows faster, and reaches its maximal value IncPar(f1, f2) = 1, generating a curve
more arched than the strict inclusion
When the di�erence between µ1 and µ2 increases because of the variation of pdf2, the partial
inclusion reaches a value of IncPar(f1, f2) = 0.85, which becomes lower when the gap between
two standard deviations is the highest (‡2 = 3), we obtain the maximal value for the partial
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inclusion :IncPar(f1, f2) = 1 like presented in Figure 3.2.
In this specific case, we witness of a full and total inclusion of pdf1 in pdf2. This is similar to
what we have presented regarding the strict inclusion.

Here we have non-negative inclusions, that respect the lower and upper bounds where the
values are [0, 1]. Besides, the property of asymmetry is also respected because, the inclusion
(what ever is strict or partial) of a distribution in the other does not necessarily involve the
inverse case with the same value.

In order to focus on the role played by the growing standard deviation of pdf2, we will deal
a particular case for the partial inclusion. We keep the values of the first distribution, and we
decide to have µ1 = µ2 = 0, and make ‡2 vary between [0, 3], we then obtain Figure ??.

As presented, as long as ‡1 > ‡2, the value of the inclusion is null, and gradually when
‡2 rises, the inclusion has a similar behavior and increases too until reaching IncPar = 1.
Finally, we can assure that it is not the mean of the normal distribution that has an impact on
the characterization of the relation of inclusion between pdf1 and pdf2, but it is the standard
deviation or the di�erence between ‡1 and ‡2 that a�ects on both the strict and partial inclusion.
When IncPar = 1, we have a total inclusion of the first distribution pdf1 in the second one
pdf2, this situation is considered as a strict inclusion where, pdf1 is fully included in pdf2.

Comparing the results obtained in Figure 3.1 and Figure 3.2, where we have the same values
for the two distributions, we notice that the partial inclusion reaches the maximal value faster
that the strict one. Besides, its area is bigger and larger. The partial inclusion is dominating.
Based on the curve representing the partial inclusion, when we decide to modify and make
only ‡2 change, we can assure that it is the standard deviation that infers on the intersection
between two distributions. The di�erence between the means µ1 and µ2, even when the latter
is growing does not really have a considerable impact on the relation of inclusion between pdf1

and pdf2.

5 Inclusion and asymmetry

In order to develop the propriety of asymmetry previously exposed, we will use the distri-
butions presented in the previous chapter in table 2.1. In this regard, we will consider the case
of the partial inclusion. The partial inclusion is dominating and can be a special case of the
strict inclusion that’s why we will focus on it.
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3.6 Inclusion and similarity

IncP pdf1 pdf2 pdf3 pdf4
pdf1 0 0.5498 0.0253 0.0013
pdf2 0.9595 0 0.0041 1.9 e≠007

pdf3 0.0253 0.8247 0 0.9595
pdf4 0.0041 1.9 e≠007 0.5498 0

Table 3.1 – Partial inclusion and asymmetry.

Using the equation (3.10), we measure the partial inclusion of the four pdfs we obtain the
following results :

The propriety of asymmetry between two continuous belief functions can be confirmed when
we observe the measures of inclusion in the table 3.1.

Obviously, the partial inclusion of a distribution with itself gives us a null value, which is
a natural result. Otherwise, IncP (pdf1, pdf2) = IncP (pdf3, pdf4) , which are the highest values.
This situation of a large inclusion of pdf1 in pdf2 and pdf3 in pdf4 consolidates what is shown
in Figure 2.1.
Meanwhile, for the case of inclusion of pdf1 in pdf4 and pdf4 in pdf1, where the di�erence
between the means is very important we are dealing with very small values, this confirms what
we have already witnessed in the previous section. In other words the distributions do not have a
remarkable impact on the measurement of the partial inclusion. This situation is corroborated,
when IncP (pdf2, pdf1) = IncP (pdf3, pdf4) = 0.9595. Knowing that ‡1 = ‡3 and ‡2 = ‡4, when
computing these partial inclusions, the di�erence between the standard deviations is maximal,
generates a considerable value.

6 Inclusion and similarity

Within this section, we will study the impact of the similarity of two continuous belief
functions when we include the notion of inclusion between them. Based on the results obtained
in table 2.3 and table 3.1, we will explain the way similarity influences on the relation of
inclusion.
We have already shown that when we measure the similarity between continuous belief functions
induced by normal distribution that the mean does not have a real impact on the resulting
distance. It is the standard deviation with a high value characterizing a distribution that plays
a remarkable role for identifying this relation. So is the case, when we are dealing with the
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inclusion.
For the same values of pdf1 and the variation of pdf2, we obtained Figure 3.2 for the partial
inclusion and Figure 2.3 for the distance between continuous belief function. We already proved
that the similarity measure is symmetric, contrary to the inclusion. We notice that as long as
the distance between two pdfs grows and gets next to its maximal value (d = 1), the value of
the partial inclusion drops. We also can say that when the distributions are similar the value
of the inclusion increases. Then, like it is the standard variation that influences both of these
phenomenon, we can say that these relations are very tied.

7 Conclusion
In this chapter, we have emphasized the evaluation of the relation of inclusion between

continuous belief functions induced by a normal distribution. We have defined two forms of
inclusions : the strict and the partial one. Before that, we have provided all preliminary things
that will allow us to experiment this kind of relation. We have also provided the approach on
which the evaluation of the inclusions will be based.
Besides, we have also shown the way we have built our distributions and how we were able
to measure the intersection, then the degree of inclusion (”

IncStr

, ”
IncP ar

), and finally how to
calculate the inclusion.
The obtained results have shown that the standard deviation does really have an important
impact on how a normal distributions can recover a second one. When the value of ‡2 increases,
the covering rises too and reaches the biggest value of 1. Moreover, comparing both relations,
we can say by analyzing the figures that the partial inclusion dominates the strict one on its
area, the speed of growth, the appearance.
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Conclusion and perspectives

In this report, we have defined two methods to characterize relations in an uncertain envi-
ronment, namely the belief functions theory. In this work, we proposed two relations between
continuous belief function. These approaches have been respectively named a distance bet-
ween continuous belief functions and, strict and partial measurement for uncertain continuous
distributions.

For each one of these approaches, we have provided the di�erent component of the building
procedures : the construction of the distributions, values of the means, standard deviations.
Moreover, we have provided the mathematical expressions and the di�erent properties that
each measure should satisfied.

Using the formalism of Smets, continuous belief functions are defined by closed intervals.
To achieve that, we have build our functions by inducing them with normal(gaussian), or
exponential distributions.

For every approach proposed, we have proposed a function so called ”. This important
function has an essential role when defining a relation between probability density functions.
within our continuous distance, this ” function measures the intersection of intervals divided
by their union. It is the extension Jaccard applied for evidential distributions.
After analyzing the behavior of our distance between two normal distributions, we can say that
the value of standard deviation has a remarkable impact one similarity measure. The inclusion
measurement, also has its own ” function. Nevertheless, it has a di�erent interpretation in this
case because it takes in consideration the length of the intersection of tow intervals on the
length of one of them. It depends on the fact that if we want to have the inclusion of f1 in f2

or f2 in f1.
Anyway, once this measure applied for the case of normal distributions, we noticed that the

means are not as important as the standard deviations. This latter, plays a fundamental role
when computing both of the strict and partial inclusion.
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Defining and analyzing these relations between continuous belief functions induced by normal
distributions helped as to conclude that the standard deviation do have a remarkable influence
on these measures.

Information fusion is a field of research well explored. During the combination of belief func-
tion, we have to deal with an important phenomena which is the conflict. A conflict between two
experts : the contradiction contained in the response expressed as mass of two functions (Yager
1983). Then the global conflict is considered as the sum of partial conflicts from the empty
intersections of focal elements of di�erent experts combined.
Martin (Martin 2008), instead of having to conflict as the global conflict generated by the mass
of ÿ, after the combination of evidences, he defined a measure able to quantify the conflict
between an expert and n other experts expressing their beliefs on the same observation. This
conflict is then expressed by a distance between the experts. If their opinions are far from each
other, he considers that they are in conflict. This conflict measure is based on Jousselme’s dis-
tance. In order to model the conflict, Martin and Osswald (2006, 2007) proposed a combination
rule that deal with partial conflict named PCR6 Proportional conflict Redistribution. This rule
can manage the conflict generated between s experts. This rule redistributes the masses of focal
elements proportionally to their initial masses.

Recently, Destercke and Burger (2012), revisited the notion of conflict. Considering that
Dempster’s rule of combination plays a central role. After defining some proprieties of conflict
between sets, they extend it to belief functions where conflict should not be measured according
to some unverified (in)dependence assumption between sources. To Do so, they propose two
solutions if dependence structure

– Consider sets of possible dependencies.
– Consider the least-commitment principle.
For the continuous belief function, a distance is considered as a similarity measure. Then we

are unable in that case to consider it as conflict measure. As future work, we consider di�erent
tracks of refinement that we classify into two major research directions :

– Defining a conflict between continuous belief functions : finding a new way to define and
weight the conflict between our beliefs based on these relations

– Modeling the conflict, see is the standard deviation does also have an impact as it is the
case for similarity and the inclusion measures
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Appendix A

In this appendix, we recall some other theories handling imperfect information. We will start
by presenting the fundamental concepts of the probability theory then the possibility theory.

1 Probability theory
Probability theory is surely the oldest theory allowing to model uncertainty and deal with

imperfect information. Probability theory could have two main interpretations :
– The frequentist probability : The probability of an event is the ratio of the number of

favorable cases to the number of all possible cases.
– The Bayesian probability : The probability of a event is the degree of confidence that

someone grants to the occurrence of a realization of an event A.
Here are presented some important concepts in probability theory :

Probability measure : A probability measure P is defined as :
P : 2� ‘æ [0, 1]
P (ÿ) = 0
P (�) = 1
’A, B œ 2�, P (A fi B) = P (A) + P (B) ≠ P (A fl B).

Probability distribution : is a function defined
P : � ‘æ [0, 1]
q

X™� P (X) = 1.
Equiprobability : guarantees the same probability to all possible realizations of an event

where ’x
i

œ � :

P : � ‘æ [0, 1]
p(x1) = p(x2) = ... = p(x

N

) = 1
n

.
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Probabilistic conditioning : The probability of the realization of an event B can change
according to an other event A using :

P (A|B) = P (AflB)
P (B) .

Bayes Theorem : is a mathematical representation of how the conditional probability of
event A given B is related to the converse conditional probability of B given A :

P (A|B) = P (BflA)úP (A)
P (B) .

2 Possibility theory
Possibility theory represents a non-classical uncertainty theory, first introduced by Zadeh

in (Zadeh, 1978) and then developed by several authors,e.g., Dubois and Prade.

Possibility theory o�ers a flexible tool for representing imperfect information that is un-
certain and imprecise such as expressed by humans. Before presenting the basics of possibility
theory, let us first give some meanings of the term possibility :

– feasibility or realizability is the first interpretation of possibility, as we can say "it is
possible to finish this work".

– plausibility refers to the degree to which an event can occur as in the sentence it is possible
that it will rain this night.

– Logically consistent with the available information(i.e. not contradicting) :
Possibility distribution : denoted fi a function which associates to each element Ê of the

universe of discourse � a value from a given possibilistic scale L such as :

fi ‘æ L

Ê ‘æ fi
x

(Ê)

Necessity measure (N or Nec) : expresses the necessity of the event A : the certainty
degree that the value of x belongs to A.
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3 Belief functions theory and links with possibility theory

N(A) = min
ÊœA

(1 ≠ fi(Ê))

Possibility measuredenoted � : the possibility degree of A, it evaluates to what extent it
is possible that the actual value of x belongs to A.

It is important to mention that there are many other important concepts in possibility
theory which have not been presented above (e.g. discounting, Non specificity, information
fusion etc.).

3 Belief functions theory and links with possibility theory
Dubois and Prade showed that when focal elements F

i

of a given basic belief assignment
m are nested (representing consonant belief functions), a possibility distribution fi can be re-
covered from m. They proved that a belief function is a necessity measure (bel = N) and a
plausibility function is a possibility measure (pl = �)

Let m be a basic belief assignment with nested focal elements : F1 µ F2 µ, ...F
n

The
possibility distribution fi is derived using the following equation (Dubois Prade, 1986) :

fi(x
i

) =
nÿ

j=i

m(F
i

).
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In this appendix, we make an analysis of two important functions. ”(x
i

, x
j

, y
i

, y
j

) which has
been used for the distance. The second one is ”

IncP ar

([x1, y1], [x2, y2]) for the partial inclusion.
We will define more precisely these two ” functions because of the role played when measuring
both of the similarity and the inclusion.

4 The distance measurement

We have defined in chapter 2 a distance that is able to measure the similarity between
two or several belief function. The equation used for that aim is equation (2.26). Within this
equation, we used the factor 1

2 for normalization issues. Besides, a scalar product between
the probability density functions belongs to this distance expressed by : Èf1, f2Í. Within this
measure, we introduced a ” function defined by :

”(x
i

, x
j

, y
i

, y
j

) = ⁄(Jmax(x
i

, x
j

), min(y
i

, y
j

)K)
⁄(Jmax(y

i

, y
j

), min(x
i

, x
j

)K)

where ⁄ is considered as the measure of Lebesgue wich is length of a bounded interval I
(open, closed, half-open) with endpoints a and b where (a < b) is defined by : ⁄ = b ≠ a.

– Jmax(x
i

, x
j

), min(y
i

, y
j

)K) is the expression of the intersection of two intervals defining
our pdfs.

– Jmax(y
i

, y
j

), min(x
i

, x
j

)K is the intervals union.
Our function ”(x

i

, x
j

, y
i

, y
j

) takes into account, the intervals lengths, their intersection and
also their union.

We will study the behavior of our ” function for the simulation presented in chapter 2,
dealing with two distributions. For the first one we fix the mean µ1 = 0 and the standard
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Figure A.1 – ” of the distance.

deviation ‡1 = 0.5. For the second distribution, we make its parameters increase for the mean
µ2 œ [0, 10] and ‡2 œ [0, 3].

We obtain the result shown in figure A.1.

As we have witnessed in chapter 2, as long as the value of the standard deviation ‡2 increases,
we obtain the same behavior for the ”. When di�erence between µ1 and µ2 is maximal and
meanwhile ‡1 > ‡2, ” function for the distance does not have a considerable value. Contrary,
when the di�erence between the standard deviation is the highest, here in this specific case, we
notice that the value of ” is very close to 1.

5 The partial inclusion measurement
As presented previously, we have also defined a ” function for both of the partial and strict

inclusion. The strict inclusion is defined by :

”
IncStr

(X, Y ) =
Y
]

[
1, if X ™ Y

0, otherwise.

Hence, if an intersection exists between the intervals, ”
IncStr

= 1, otherwise its value is null.
It is not interesting to study this case. On the other hand, we will focus on the ”

IncP ar

behavior.
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5 The partial inclusion measurement

Figure A.2 – ” of the partial inclusion.

To do so, we obtain the figure A.2 using the following equation :

”
IncP ar

([x1, y1],[x2, y2])=
max(0,min(y2, y2)≠max(x1, x2))

y1 ≠ x1
(3)

max(0, min(y2, y2)≠max(x1, x2) represents the intervals intersection. The other part of this
equation depends on the fact if we want to measure the inclusion of f1 in f2 or the contrary.
Then we have the length of the chosen interval.

As we have stated, it is this ”
IncP ar

function that plays an important role when measuring the
partial inclusion. Besides, wa can confirm the fact that its is the di�erence between the standard
deviations that interferes in the behavior of our obtained function, which a�ects directly the
value of the partial inclusion.
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