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Abstract
The work presented in this master thesis describes a new classification method

using the danger theory (DT) approach under imprecision. The DT is based on the
behavior of dendritic cells (DCs). The hybridization of DCs behavior with fuzzy
set theory leads to the development of the so-called fuzzy dendritic cell method
(FDCM). FDCM proposes to introduce concepts of fuzzy set theory to deal with
imprecision found in the definition of words such as “semi-mature” and “mature”
(the two states of DCs) on which depends the classification procedure in the dan-
ger theory. In addition to this imprecision, our method handles with the crisp
separation between these two states. It allows to smooth such separation using
fuzzy set basics. Experimentations on real data sets show that by alleviating this
crisp separation, our new approach improves the classification accuracy in com-
parison to the standard dendritic cell algorithm.

Key words: Artificial immune systems, Danger theory, Dendritic cells, Fuzzy
set theory.

Résumé
Le travail présenté dans ce rapport décrit une nouvelle méthode de classifica-

tion basée sur la théorie du danger (TD) dans un environnement imprécis. La TD
est fondée sur le comportement des cellules dendritiques (CDs). L’hybridation du
comportement des CDs avec la théorie des ensembles flous aboutit au développement
de la méthode des cellules dendritiques avec des ensembles flous. Cette méthode
propose d’utiliser la théorie des ensembles flous pour traiter l’imprécision présente
dans la définition de certains termes comme “semi-mûr” et “mûr” (les deux états
des cellules dendritiques) sur lesquels se base la procédure de classification dans la
théorie du danger. De plus, notre méthode traite la séparation rigide entre ces deux
états en la lissant, et ce en utilisant les notions de la théorie des ensembles flous.
Des expérimentations ont été effectuées sur des bases de données réelles afin de
voir l’impact du fait de lisser cette séparation rigide. Notre méthode améliore les
résultats de classification par rapport à l’algorithme standard des cellules dendri-
tiques.

Mots clés: Systèmes immunitaires artificiels, Théorie du danger, Cellules den-
dritiques, Théorie des ensembles flous.
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Introduction

Although we are in permanent contact with innumerable germs in the environ-
ment of which some are pathogenic, the infections which we develop are relatively
rare. The reason is that our organism has multiple means of defence which con-
stitute the immune system (IS).

The main task of the IS is discriminating self (defined early in life) and non-
self (anything that comes later, i.e infectious foreign cells and substances). This
process is called “self-nonself discrimination”.

Several artificial immune system (AIS) applications have traditionally per-
formed self-nonself discrimination such as the negative selection algorithm (NSA).
However, in (Stibor, 2006), criticisms of the NSA have been mentioned by em-
phasizing that NSA could not function appropriately because it was based on a
simplified version of the immunological self-nonself theory. It suffers from is-
sues such as false positives, problems with detector generation/holes, the need
for an initial learning phase, etc. Hence, (Aickelin & McLeod, 2003) propose a
relatively newer immunological discovery as a possible alternative known as the
Danger Theory (DT).

The DT overlaps now the way aiming at designing more efficiently a new
foundation of artificial immune systems. The most prominent players of the DT
are the “dendritic cells” (DCs). An apprehension of dendritic cells behavior led to
the development of an inspired immune system algorithm termed the “dendritic
cell algorithm” (DCA).

The DT using the DCA is applied to a wide range of applications such as
anomaly detection (Greensmith & Aickelin, 2006), bot detection (Greensmith &
Aickelin, 2008), syn scan detection (Greensmith & Aickelin, 2007b), etc.
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Indeed, the DCA is used as a classifier for a static machine learning data set
(Aickelin & Cayzer, 2005), as it has been proved that it can process data classifi-
cation, but is at the same time sensitive to the data order. This is due to an envi-
ronment characterized by a crisp separation between normality (the semi-mature
context) and abnormality (the mature context). This absurd separation badly af-
fects the classification task of the algorithm. Besides, the standard DCA uses
imprecise terms such as “mature” and “semi-mature”. These terms control the
classification task of the DCA. Thus, it seems necessary to handle this impreci-
sion. One possible technique for handling imprecision is the fuzzy set theory.

Actually, there are many works dealing with the hybridization of AIS as well
as DT with fuzzy set theory such as the FAIS (Nasraoui & Dasgupta, 2002),
FAIRS (Xu, 2006) and others like in (Polat & Kodaz, 2006), (Jaradat & Langari,
2008), (Visconti & Tahayori, 2008), (Mezyk & Unold, 2009), etc. These works,
generally try to develop several new enhancements by introducing imprecision
into their systems to deal with some of their weaknesses. Other works such as
(Fu & Li, 2008), (Fu & Zhang, 2009) and (Aickelin & Cayzer, 2005) focused on
various aspects such as the definition of imprecise terms like the term “danger”,
the smoothness of some applied crisp hypotheses like the migration threshold and
replacing it by a fuzzy one, etc.

As an inspiration from these works, in this master thesis, we propose to de-
velop a fuzzy dendritic cell method (FDCM), a new classification technique based
on dendritic cells within the framework of fuzzy set theory. Our FDCM aims to
smooth the crisp separation between the semi-mature context and the mature con-
text, since we can neither identify a clear boundary between them nor quantify
exactly what is meant by “semi-mature” or “mature”. Hence, this hybridization
will improve the classification accuracy taking into account the mentioned limita-
tions of the DCA.

Our FDCM differs in some way from the previous works, which are based on
the mentioned hybridization, since it requires specific hypotheses such as work-
ing on a signal database. In addition, our FDCM sheds more light on the DCA’s
context assessment phase.

Dealing with problems under imprecision using fuzzy set theory seems promis-
ing since it allows to handle the complicated systems in simple way. This is the
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main reason why fuzzy set theory is widely applied in various domains. It is ap-
plied to solve a great diversity of problems in engineering, business, medical and
related health sciences, natural sciences, and so on.

This report consists of four chapters belonging to two main parts:

Part I: Theoretical aspects. This part presents theoretical aspects regarding
fuzzy set theory and danger theory which are detailed, respectively, in Chapter 1
and Chapter 2.

Part II: Danger theory based on fuzzy set theory. In this part, Chapter 3 deals
with the definition of our fuzzy dendritic cell method as a new technique associat-
ing the dendritic cell algorithm with the fuzzy set theory. Throughout this Chapter,
the characteristics of this new approach - namely its definition, its objectives and
its representation - are presented. Chapter 4 deals with simulations which have
been performed in order to analyze and evaluate results given by the proposed
fuzzy dendritic cell method. The major results that we have developed in this part
are in (Chelly & Elouedi, 2010).

Finally, a conclusion summarizes all the work presented in this report and pro-
poses further works to improve our method.

An appendix is provided to present the description of data sets used in simu-
lations.



Part I

Theoretical aspects
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Chapter 1

Fuzzy Set Theory

1.1 Introduction
Fuzzy set theory was introduced in 1965 by Zadeh (Zadeh, 1965). It is consid-

ered as a useful theory for modeling and reasoning with imprecision knowledge.

Fuzzy set theory is a mathematical theory where the fuzziness is the ambi-
guity that can be found in the definition of a concept or the meaning of a word
(H. Zimmermann, 1996). Imprecision in expressions like “low frequency”, “high
demand” or “small number” can be called fuzziness.

The applications which may be adapted to fuzzy set theory are wide-ranging.
It is used to solve a great diversity of problems in engineering (Ross, 1995), intru-
sion detection (Shah & Joshi, 2003), sciences (Zadeh, 1994), and so on.

The primary purpose of this chapter is to introduce and to elucidate the fuzzy
set theory. This chapter is organized as follows: Section 1.2 covers the definition
and notations of fuzzy sets. In the next Section, we present the membership func-
tion. Section 1.4 deals with operations on fuzzy sets. Various aspects of fuzzy
relations are then detailed in Section 1.5. Section 1.6 focuses on fuzzy composi-
tion. Section 1.7 introduces hedges of fuzzy systems and finally, we shed some
light on the fuzzy logic concept in Section 1.8. All these concepts are illustrated
by examples.

5



CHAPTER 1. FUZZY SET THEORY 6

1.2 Fuzzy sets: Definition and notations
Throughout this Section, we start first of all by defining the fuzzy set concept

and then we will give the according notations.

1.2.1 Fuzzy set definitions
Fuzzy sets were introduced as an extension of the classical notion of a set. In

the classical (crisp) set theory, a very precise and clear boundary exists to show if
an element either belongs or does not belong to the set. Hence, an element is not
allowed to be in the set and not in the set at the same time.

In contrast, a fuzzy set is a set without a clearly defined boundary. It permits
the gradual assessment of the membership of elements in a set; this is described
with the aid of a membership function which will be explained in details in the
next Section.

Fuzzy sets are based on linguistic variables (Zadeh, 1975), (Tong & Bonis-
sone, 1980). A linguistic variable is a variable whose values are not numbers but
words or sentences. The set of values that it can take is called term set. Each term
set constitutes a fuzzy set in the universe of discourse which contains all elements
that can come into consideration.

Example 1.1 Let us consider an example dealing with the grade of maturity
of a fruit. The universe of discourse related to the grade of maturity is the scale
from 0 to 50. The linguistic variable “maturity” takes three term sets which are
fuzzy sets labeled as “verdant”, “half-mature” and “mature”.

1.2.2 Fuzzy set notations
Let X denote the universe of discourse and its elements are denoted by x, then

a fuzzy set A in X is defined as a set of pairs

A = {(x, µA(x))|x ∈ X}

where µA(x) is called the membership function of x in A. The membership
function maps each element of X to a membership value between 0 and 1 (see
Section 1.3).
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Example 1.2 As mentioned above, the central concept of fuzzy set theory is
that the membership function µ can have values between 0 and 1. This is shown
in Figure 1.1. If an element x of the universe of discourse X lies within fuzzy set
“half-mature”, it will have a value between 0 and 1.

Figure 1.1: Membership functions of a fuzzy set

1.3 Membership functions

1.3.1 Definition
A membership function is a curve that defines how each point in the universe of

discourse is mapped to a membership value (or degree of membership) between 0
and 1 (Goguen, 1967) (Dubois & Prade, 1997).

Let X denote a universe of discourse. Then, the membership function µA, by
which a fuzzy set A is defined, has the form:

µA : X → [0, 1]

where [0, 1] is the interval of real numbers from 0 to 1, inclusive.

The membership function µA(x) quantifies the grade of membership of the el-
ements x to the fundamental set X. An element mapping to the value 0 means that
the member is not included in the given set, 1 describes a fully included member.
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Values strictly between 0 and 1 characterize the fuzzy members.

The grade of membership µA(x0) of a membership function µA(x) describes for
the special element x = x0, to which grade it belongs to the fuzzy set A. This value
is in the unit interval [0, 1]. Obviously, x0 can simultaneously belong to another
fuzzy set B, such that µB(x0) characterizes the grade of membership of x0 to B.
This case is shown in Figure 1.2:

Figure 1.2: Membership grades of x0 in the sets A and B

As we remark, if x0 belongs to the fuzzy set A, then µA(x0) = 0.75. However,
if it belongs to the fuzzy set B, then µB(x0) = 0.25.

Once we have defined the concept of the membership function, we will cover
its properties.

1.3.2 Properties
Throughout this Section, a set of important properties and characteristics of the

membership function will be described (Goguen, 1967) (Dubois & Prade, 1997).

The support

The support of a fuzzy set A in the universal set X is the crisp set that contains
all the elements of X that have a nonzero membership grade in A. That is, supports
of fuzzy sets in X are obtained by Equation 1.1:

S upp(A) = {x|µA(x) > 0,∀x ∈ X} (1.1)
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The core

The core of a fuzzy set A is the crisp set of all points in the universe of discourse
X where the membership function of A is 1 (see Equation 1.2).

Core(A) = {x|µA(x) = 1,∀x ∈ X} (1.2)

The height

The height of a fuzzy set is the largest membership grade attained by any
element in that set (see Equation 1.3):

hgt(A) = suppx∈XµA(x) (1.3)

A fuzzy set A is called normal when hgt(A) = 1, and it is subnormal when
hgt(A) < 1.

The boundary

The boundary of a fuzzy set A is the crisp set of all points in the universe of
discourse X where the membership function of A is between 0 and 1 (see Equation
1.4).

Boundaries(A) = {x|0 < µA(x) < 1,∀x ∈ X} (1.4)

An illustration of all these properties is shown in Figure 1.3.

Figure 1.3: Some characteristics of a membership function
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1.3.3 Membership function representations
The type of representation of the membership function depends on the universe

of discourse. If it consists of many values, or is the base set a continuum, then
linear membership functions are preferred, because of their simplicity and effi-
ciency with respect to computability (Fortuna & Graziani, 2007). Mostly, these
are triangular (Figure 1.4(a)) or trapezoidal (Figure 1.4(b)) functions.

Figure 1.4: Triangular and trapezoidal membership functions

For some applications the modeling requires continuously differentiable curves
and therefore smooth transitions which the trapezoids do not have. Three of these
functions are mentioned on Figure 1.5:

Figure 1.5: Membership functions with smooth transitions

The membership function provides us with a vehicle for developing operations
with fuzzy sets. This will be detailed in the following Section.
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1.4 Operations on fuzzy sets
The basic connective operations in classical set theory are those of intersection,

union and complement. These operations on characteristic functions can be gen-
eralized to fuzzy sets (J. Zimmermann, 2001) (Dubois & Prade, 1997).

Let A and B be two fuzzy sets within a universe of discourse X with member-
ship functions µA and µB respectively. The following fuzzy set operations can be
defined.

1.4.1 Fuzzy complement
The complement of a fuzzy set A is denoted by the fuzzy set Ā. It corresponds

to the Boolean NOT function and is given by Equation 1.5:

c : [0, 1]→ [0, 1]

µĀ(x) = 1 − µA(x) (1.5)

This could be illustrated by Figure 1.6(a) which shows a fuzzy set A and its
complement in Figure 1.6(b).

Figure 1.6: A fuzzy set and its complement

1.4.2 Fuzzy intersection
The intersection of two fuzzy sets A and B corresponds to the Boolean AND

function and is given by Equation 1.6:

i : [0, 1] × [0, 1]→ [0, 1]
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µA∩B(x) = min[µA(x), µB(x)] (1.6)

An illustrative figure is as follows:

Figure 1.7: Intersection of two fuzzy sets A and B

The intersection (the blue color) between the two fuzzy sets A and B in Figure
1.7 contains the elements shared by these sets. Thus, the degree of membership is
the lower membership in both sets of each element.

The fuzzy intersection operator (fuzzy AND connective) can also be repre-
sented as the algebraic product of two fuzzy sets A and B, which is defined as the
multiplication of their membership functions (see Equation 1.7):

µA∩B(x) = µA(x) · µB(x), x ∈ X (1.7)

1.4.3 Fuzzy union
The union of two fuzzy sets A and B corresponds to Boolean OR function and

is given by Equation 1.8:

u : [0, 1] × [0, 1]→ [0, 1]

µA∪B(x) = max[µA(x), µB(x)] (1.8)

The fuzzy union operator (fuzzy OR connective) can also be represented as
the algebraic sum of two fuzzy sets A and B, which is defined by Equation 1.9:

µA∪B(x) = µA(x) + µB(x) − µA(x) · µB(x) (1.9)

Figure 1.8 shows the union (the blue color) of the two previous fuzzy sets A
and B. The union consists of every element that falls into either set.
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Figure 1.8: Union of two fuzzy sets A and B

1.4.4 Fuzzy equality
Two fuzzy sets A and B are equal if they have the same membership function

within a universe of discourse X (see Equation 1.10).

A = B, iif µA(x) = µB(x) (1.10)

1.4.5 Other fuzzy operations
Other operations on fuzzy sets could be mentioned in (Silvert, 1979). They are

the same as for crisp set including the following list.

• Commutativity: A ∪ B = B ∪ A

• Associativity: A ∪ (B ∪C) = (A ∪ B) ∪C

• Distributivity: A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C)

• Idempotency: A ∩ A = A

• Identity: A ∩ ∅ = ∅

• Involution: ¬(¬A) = A

• Transitivity: (A ⊆ B ⊆ C) then (A ⊆ C)

• DeMorgan’s Laws

* ¬(A ∩ B) = ¬A ∪ ¬B

* ¬(A ∪ B) = ¬A ∩ ¬B
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1.5 Fuzzy relations
An important aspect of fuzzy set theory is the ability to relate sets with different

universes of discourse. Thus, we talk about fuzzy relations (Deschrijver & Kerre,
2003). First, relations are explained by a simple example using discrete fuzzy sets.

Example 1.3 Let us describe the relationship between the color of a fruit x
and the grade of maturity y and characterize the linguistic variable color by a
crisp set X with three linguistic terms as:

X = {green, yellow, red}

and similarly the grade of maturity as:

Y = {verdant, half-mature, mature}

The crisp formulation of a relation X → Y between the two crisp sets would
look like this in Table 1.1.

Table 1.1: A crisp set built from two crisp base sets (X and Y)
verdant half-mature mature

green 1 0 0
yellow 0 1 0

red 0 0 1

The zeros and ones describe the grade of membership to this relation. This
relation is now a new kind of crisp set that is built from the two crisp base sets X
and Y. This new set is now called R and can be expressed also by the rules:

(1) IF the color is green THEN the fruit is verdant
(2) IF the color is yellow THEN the fruit is half-mature

(3) IF the color is red THEN the fruit is mature

As can be seen from this example, a relation, which is called a rule or rule
base, can be used to provide a model.

This crisp relation R represents the presence or absence of association, inter-
action or interconnection between the elements of these two sets. This can be
generalized to allow for various degrees of strength of association or interaction
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between elements. Degrees of association can be represented by membership
grades in a fuzzy relation in the same way as they are represented in a fuzzy set.

Example 1.4 Applying this to the fruit example, Table 1.1 can be modified in
such a way that there are now real numbers in [0, 1].

Table 1.2 represents a fuzzy relation and models the connectives in a fuzzy rule
base. It is a two-dimensional fuzzy set and the question now is, how can this set
be determined from its elements?

Table 1.2: A fuzzy relation
verdant half-mature mature

green 1 0.5 0
yellow 0.3 1 0.4

red 0 0.2 1

In order to determine the set from its elements, the elements are generalized.
In the example above, the linguistic terms were treated as crisp terms. For in-
stance, when we represent the colors on a color spectrum scale, the colors would
be described by their spectral distribution curves that can be interpreted as mem-
bership functions, then, a particular color is a fuzzy term. Treating also the grades
of maturity as fuzzy terms, the above relation is a two-dimensional fuzzy set over
two fuzzy sets.

Example 1.5 For instance, we take from the fruit example the relation between
the linguistic terms red and mature, and represent them by the membership func-
tions as shown in Figure 1.9.

A fruit can be characterized by the property red AND mature. This expression
can be re-written in mathematical form using elementary connective operators
for the membership functions by Equation 1.11:

µR(x, y) = min{µA(x), µB(y)} (1.11)

or by Equation 1.12:

µR(x, y) = µA(x) · µB(y) (1.12)
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Figure 1.9: Membership function red and mature

Figure 1.10(a) shows a 3-dimensional view of these two membership functions
and Figure 1.10(b) illustrates the membership function of the relation after apply-
ing the connective operation stated above to (a).

Figure 1.10: Relation between two fuzzy sets

This result combines the two fuzzy sets by an operation that is a Cartesian
product:

R : X n Y→ [0, 1]

It is obvious that the connective operation in a rule for the “→” operation is
simply performed by a fuzzy intersection in two dimensions. For this, both inter-
section operators min or algebraic product can be used.

For the complete rule base R one can combine the relations formed for each
individual rule with a fuzzy union operator, which is the fuzzy OR.
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Example 1.6 When combining rules into a rule base, the example above may
be rewritten as:

(1) IF the color is green THEN the fruit is verdant
OR

(2) IF the color is yellow THEN the fruit is half-mature
OR

(3) IF the color is red THEN the fruit is mature

which describes in a linguistic way a union of three rules.

The combination of the representations of different rules into a representation
of a rule base can be specified by applying the union operator by writing the rule
base with max/min operators as follows (see Equation 1.13):

µR(x1, x2, . . . , xn, µ) = maxR{min{µPr (x1, x2, . . . , xn), µBr (u)}} (1.13)

where µPr (x1, x2, . . . , xn) is the premise of rth rule. This representation is the
standard max/min representation of a rule base. Instead of the max/min repre-
sentation, a so called max-prod representation is also usual where the algebraic
product (see Equation 1.14)

µR(x1, x2, . . . , xn, µ) = maxR{µPr (x1, x2, . . . , xn) · µBr (u)} (1.14)

is used to build the relation between the premise and the conclusion.

1.6 Fuzzy compositions
Throughout this Section, a new fuzzy operation type is introduced. It allows us

to operate with a given fact and a fuzzy relation in order to produce an output that
represents the decision in a fuzzy way (Deschrijver & Kerre, 2003).

This operation is called fuzzy reasoning, which is a special case of the more
general operation called fuzzy composition. We can explain the need for the fuzzy
reasoning method by the following example.

Example 1.7 Taking again the fruit example. It is assumed that one has a
crisp fact: a green fruit. The decision from the rule base is obvious: the fruit is
verdant, and this is similar for the other facts: yellow and red. However, if one
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has a fact like: the fruit is orange, one does not know how to determine which rule
fires the decision and what the decision is.

Let R and S be two relations of the forms:

R : X n Y→ [0, 1]
S : Y n Z→ [0, 1]

These two relations can be composed to one relation T:

T : X n Z→ [0, 1]

This process is known as composition and, using the max and min operators
for union and intersection, one can express the composition operation T = R ◦ S
by the corresponding membership functions (see Equation 1.15):

µT (x, z) = maxy∈Y{min{µR(x, y), µS (y, z)}} (1.15)

Example 1.8 When one takes the above fruit example again with the color-
maturity relation R (Table 1.3) and define for S a maturity-relation (Table 1.4),

Table 1.3: Color maturity relation R
R verdant half-mature mature

green 1 0.5 0
yellow 0.3 1 0.4

red 0 0.2 1

Table 1.4: Taste maturity relation S
S sour tasteless sweet

verdant 1 0.2 0
half-mature 0.7 1 0.3

mature 0 0.7 1

then by applying the max and min operators expressed by Equation 1.15 to the
elements of these two tables, Table 1.5 is obtained.
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Table 1.5: Composition relation T
T = R ◦ S sour tasteless sweet

green 1 0.5 0.3
yellow 0.7 1 0.4

red 0.2 0.7 1

When the fuzzy set S is now interpreted as a rule base and the fuzzy set R as
a fact obtained from some measurement data, then the fuzzy set T is the result of
the reasoning process, which is in this case a relation.

In the same manner as relations can be composed, the one-dimensional facts
can be composed with the rule base to realize the reasoning operation. This can
now be precisely re-formulated.

Let R be the rule base:

R : X n Y→ [0, 1]

its membership function µR(x, y) (see previous Section) and if there is a fact
described by the fuzzy set:

A
′

: X → [0, 1]

and its membership function µA′ (x) , the result:

B
′

= A
′

◦ R : Y → [0, 1]

of the fuzzy reasoning is represented by the membership function (see Equa-
tion 1.16):

µB′ (z) = maxx∈X{min{µA′ (x), µR(x, y)}} (1.16)

Example 1.9 Define the fruit color green as a fact by the singleton:

C
′

= {1 0 0}

where the numbers are the intensity grades of the colors green, yellow and red.
When one calculates the composition T

′

= C
′

◦ R by applying the composition
formula, where in this case the first operand has only one dimension, the fuzzy set
for the maturity
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T
′

= {1 0.5 0}

is obtained. The result is obvious from the first rule of the rule base. When a
different color is taken then included in the rule base entries, say orange as

T
′

= {0 0.5 0.5}

then there is no problem to obtain the value for the maturity

T
′

= {0.3 0.5 0.5}

by applying the composition formula. The reasoning process is now solved.

The fuzzy composition is elucidated in this Section. However, it is still nec-
essary to be closer to the natural language. This could be achieved by the fuzzy
set theory since it offers the appropriate operators. These will be explained in the
following Section.

1.7 Fuzzy set hedges
Another important feature of fuzzy set theory is the ability to define hedges, or

modifiers of fuzzy values. These operations are provided in an effort to maintain
close ties to natural language (Roth & Mervis, 1983). Examples of such opera-
tions are: very, little, more or less, definitly, sort of, somewhat and so on.

The definition of hedges is entirely subjective, but their operation is consistent:
they serve to modify the meaning of a term and to transform membership/truth
values in a systematic manner according to standard mathematical functions.
For instance, hedges very, extremely and slightly are usually defined respectively
as follows:

µveryA(x) = µA(x)2

µextremelyA(x) = µA(x)3

µslightlyA(x) = µA(x)1/3

Example 1.10 We take the fruit example again with the linguistic variable
maturity with its three linguistic terms “verdant”, “half-mature” and “mature”
in the universe of discourse Y. We want to transform the statement “The fruit is
verdant” to “The fruit is very verdant”, “The fruit is extremely verdant” and to
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“The fruit is slightly verdant”.

If the fuzzy set verdant takes µverdant(x) = [1, 0.3, 0] and by applying “very”,
“extremely” and “slightly” hedges then we get the following mathematical func-
tions.

µvery−verdant(x) = µverdant(x)2 = [1, 0.09, 0]
µextremely−verdant(x) = µverdant(x)3 = [1, 0.027, 0]
µslightly−verdant(x) = µverdant(x)1/3 = [1, 0.67, 0]

1.8 Fuzzy Logic
Fuzzy logic is derived from fuzzy set theory (Zadeh, 1990). It underlines modes

of reasoning which are approximate rather than exact (Zadeh, 1989). That is, it
handles the concept of partial truth - truth values between “completely true” and
“completely false”.

Fuzzy logic is based on the fuzzy logic controller (FLC). The structure of the
FLC is shown in Figure 1.11.

Figure 1.11: Fuzzy Logic Controller

The FLC is composed of five boxes which are explained in the next sub-
Sections.

1.8.1 Fuzzification
Fuzzification is the process of identifying the input and output of the system,

defining appropriate IF-THEN rules as well as the membership function.
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1.8.2 Fuzzy rule base
The fuzzy rule base consists of a set of antecedent - consequent linguistic rules

of the form

IF antecedent THEN consequent

These rules express the relations between the input and output.

1.8.3 Fuzzy inference
In order to draw conclusions from a rule base we need a mechanism that can

produce an output from a collection of if-then rules. This is done using the com-
positional rule of inference (CROI). This process evaluates all the rules and deter-
mines their truth values.

There are many methods dealing with the inference process such as max-min
known as the MAMDANI method (Mamdani & Assilian, 1975), max-prod (Kyosev
& Reinbach, 2006) and sum-prod method (Mizumoto, 1990).

1.8.4 Composition
It is the fact of combining all fuzzy conclusions obtained by the inference

process into a single conclusion. Since different fuzzy rules might have different
conclusions, we should consider all rules.

1.8.5 Defuzzification
This step is concerned with converting the fuzzy value obtained from compo-

sition into a “crisp” value. There are many defuzzification methods such as the
centroid method (the center of gravity of the membership function) (Broekhoven
& Baets, 2006) and the maximum method (the maximum truth value) (Lee, 1990).

Example 1.11 Consider an example with two inputs and one output. The
different steps are presented as follows:

• The fuzzification process:

– Assume that we have two inputs (x, y) and one output (z).

– The membership functions are represented in Figure 1.12.
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Figure 1.12: Defining the membership functions value’s of each input

– Suppose that the crisp inputs are x = 0.32 and y = 0.61. We project
both of the inputs in each of the membership functions. Thus we get:
Low(x) = 0.68, High(x) = 0.32
Low(y) = 0.39, High(y) = 0.61

– The rule base is as follows:

* Rule 1: If x is low AND y is low Then z is high

* Rule 2: If x is low AND y is high Then z is low

* Rule 3: If x is high AND y is low Then z is low

* Rule 4: If x is high AND y is high Then z is high

• The inference process:

– Rule1: low(x) = 0.68, low(y) = 0.39 → high(z) = MIN(0.68,0.39) =

0.39

– Rule2: low(x) = 0.68, high(y) = 0.61 → low(z) = MIN(0.68,0.61) =

0.61

– Rule3: high(x) = 0.32, low(y) = 0.39 → low(z) = MIN(0.32,0.39) =

0.32

– Rule4: high(x) = 0.32, high(y) = 0.61→ high(z) = MIN(0.32,0.61) =

0.32

• The composition process:

– Low(z) = MAX(rule2, rule3) = MAX(0.61, 0.32) = 0.61

– High(z) = MAX(rule1, rule4) = MAX(0.39, 0.32) = 0.39
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– We project each of these values on the two membership functions Low
and Hight respectively (Figure 1.13(a)) to get a new membership func-
tion (Figure 1.13(b)).

Figure 1.13: Composition process

• The defuzzification process:
By applying the centroid method we get the following crisp output (see Fig-
ure 1.14):

Figure 1.14: Centroid method for defuzzification
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1.9 Conclusion
In this chapter, we have elucidated the basics of fuzzy set theory which is a

generalization of the classical set theory which offers a natural model to handle
uncertain information. In the first part, we have introduced the basic elements of
this theory. Then, in the second part, we have shed some light on the fuzzy logic.

Fuzzy set theory can be applied in several techniques such as the artificial
immune system, especially the danger theory which will be the object of the next
chapter.



Chapter 2

The Danger Theory

2.1 Introduction
Although we are in permanent contact with innumerable germs in the environ-

ment of which some are pathogenic, the infections which we develop are relatively
rare. The reason is that our organism has multiple means of defence which con-
stitute the immune system (IS).

The main task of the (IS) is to recognize the presence of infectious foreign
cells and substances, known as “non-self” elements and to respond to them by
eliminating them or neutralizing them. The system is able to discern differences
between foreign, and possibly pathogenic, invaders and non-foreign molecules by
a process called “self-nonself discrimination” (Janeway, 1992) which is the basis
of the IS.

The efficient mechanisms of a biological immune system are able to perform
several tasks such as learning (Hunt & Cooke, 1996), classification (Secker &
Timmis, 2003a), optimization (Chun & Hong, 1997), etc. These remarkable char-
acteristics and capabilities have caught the attention of many researchers and have
led to the development of new algorithms inspired by the immune system. These
algorithms gave rise to a new branch of computational intelligence known as Ar-
tificial immune system (AIS) (Hofmeyr & Forrest, 1999) (Hofmeyr & Forrest,
2000).

Nowadays, AIS is emerging as an active and attractive field involving models,

26
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techniques and applications of great diversity (Hart & Timmis, 2005) (Andrews &
Timmis, 2005). Several AIS applications have used the self non-self theory such
as the negative selection algorithm (NSA). Nevertheless, it was proved in (Stibor,
2006) that the NSA has serious limitations such as false positives, problems with
detector generation/holes, the need for an initial learning phase, etc. These issues
arise since the NSA was based on a simplified version of the immunological self-
nonself theory.

In (Aickelin & McLeod, 2003), a new immunological theory came to light as
a possible alternative to the NSA known as the Danger Theory (DT).

The DT is based on the behavior of special cells called the “dendritic cells”
(DCs). This led to the development of an inspired immune system algorithm
termed the “dendritic cell algorithm” (DCA).

In order to understand the danger theory, we have to study, first of all, the
several characteristics and the behavior of our immune system. This will be dealt
with in the following Section. In Section 2.3, we introduce the basic characteris-
tics of the AIS. In Section 2.4, we focus on the classification task covered by the
AIS. We present the danger theory concepts in Section 2.5. Then, in Section 2.6,
we describe the dendritic cells followed by a definition of signals and antigen in
Section 2.7. Section 2.8 emphasizes the dendritic cell model and finally, danger
theory procedures are detailed in Section 2.9.

2.2 Overview of the biological immune system
The immune system is made up of a network of cells, tissues and organs that

work together to protect the body against germs and microorganisms every day. Its
main task is to recognize the presence of infectious foreign cells and substances,
known as “non-self” elements and to respond to them by eliminating them or
neutralizing them. The system is capable of distinguishing the non-self from our
self cells by a process called self-nonself discrimination (Janeway, 1992). Fur-
thermore, it can remember each infection, so that a second exposure to the same
antigen is dealt with more efficiently. Another characteristic is its ability to re-
act faster to any structurally related antigen. This phenomenon is called “Cross-
reactivity” response.
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The biological immune system prevents antigens from harming our body. This
is achieved through several lines of defense of the immune system. Hence, we talk
about a multilayered system. The protection layers can be divided as: physical
barriers such as the skin and the respiratory system; physiological barriers such
as destructive enzymes and stomach acids; and the immune system, which can be
broadly divided into two heads which are Innate Immunity and Adaptive Immunity.
They are interlinked and they influence each other.

2.2.1 The innate immunity
The innate immunity is present at birth. It has the ability to recognize some

microbes and react against them by destroying these pathogens on the first en-
counter. The innate immunity works as follows:

Physiological conditions such as pH, temperature and a variety of chemicals
provide unsuitable living conditions for foreign pathogens. Some specialized cells
have also the ability to capture the foreign microorganism by a process called
“phagocytosis” in order to ingest it. Another aspect of the innate immunity is the
production of proteins, called “cytokines”, allowing cells to communicate with
each other (Mayer, 2005).

The innate immunity protects the body non specifically (in contrast to the
adaptive immunity). It gives the same type of response to any pathogen and it is
not capable of recognizing or producing a specific response to a specific invader
(McEnery, 2008). The innate immunity also plays a leading role in the boost of
the adaptive immunity.

2.2.2 The adaptive immunity
It is also called acquired or specific immunity. It allows the immune system

to launch an attack against any antigen that the innate immunity can not remove.
The adaptive immunity is managed by white blood cells, specifically, T cells and
B cells (Janeway & Travers, 2001).

T-cells are of three types namely T helper cells which are essential to the acti-
vation of B-cells, killer T-cells which bind to foreign invaders and inject poisonous
chemicals into them causing their destruction, and suppressor T cells which inhibit
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the action of other immune cells, thus preventing allergic reactions and autoim-
mune diseases.

B-cells are responsible for the production and secretion of antibodies, which
are specific proteins that bind to the antigen. Each B-cell can only produce one
particular antibody. The antigen is found on the surface of the invading organism
and the binding of an antibody to the antigen is a signal to destroy the invading
cell.

The acquired immunity is subdivided into two heads: the humoral immunity
and cellular immunity (Alder & Pancer, 2005).

Humoral immunity

It is arbitrated by antibodies. The humoral branch of the immune system
involves the interaction of B cells with antigens. This mechanism leads to the pro-
liferation (clones) and differentiation of B cells into antibody secreting “plasma
cells”. These antibodies - by binding to the antigens - facilitate their elimination.
The cloning of B cells also leads to the production of “memory cells”. They are
able to live longer than plasma cells so that they can remember specific intruders
and respond quickly following a second expose to the same antigen (Vos & Lees,
2000).

Cellular immunity

It is based on the activation of T cells and the release of various cytokines
which activate various phagocytic cells, enabling them to phagocytose and kill
microorganisms more effectively. This type of immunity response is especially
important in host defense against intracellular bacteria (Snapper & Mond, 1996).

2.3 Functions of the artificial immune system
The characteristics of the artificial immune system include (Castro & Timmis,

2003):

• Pattern recognition: Cells and molecules of the immune system have sev-
eral ways of recognizing specific antigens (patterns) and they generate ap-
propriate responses. This is accomplished by a recognition mechanism
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based on the chemical binding of receptors and antigens. This binding de-
pends on the molecular shape of cells.

• Feature extraction (noise tolerance): In general, antibodies bind to a por-
tion of the antigen, rather than to the whole antigen. In this way, the immune
system can recognize an antigen just by matching segments of it.

• Learning and Memory: The system can “learn” the structures of pathogens,
so that future responses to the same pathogens are faster and stronger.

• Self-regulation: Depending on the severity of the attack, the response of
the immune system can range from very light and almost imperceptible to
very strong. A stronger response uses a lot of resources to help repel the
attacker. Once the invader is eliminated, the immune system regulates itself
in order to stop the delivery of new resources and to release the used ones.

• Self-protection: By protecting the whole body the immune system is pro-
tecting itself. It means that there is no other additional system to protect and
maintain the immune system

One more important characteristic of the AIS is its ability to offer suitable al-
gorithms like the clonal selection algorithm (Castro & Zuben, 2000) (Castro &
Zuben, 2002) (Kim & Bentley, 2002) and the immune network algorithm (Chun &
Hong, 1997) (Huang, 2002) (Cayzer & Aickelin, 2002b) designed for and applied
to difficult problems such as intrusion detection (Kim & Bentley, 2001) (Breunig
& Albert, 2002) (Shulin & Wenhu, 2002) (Dasgupta & Majumdar, 2002), data
clustering (Younsi & Wang, 2004) (Secker & Timmis, 2003a), classification (Wu
& Chung, 2005), (Greensmith & Cayzer, 2003) and search problems (Tay &
Kwoh, 2005), (Derakhshanfar & Minaei-Bidgoli, 2009), etc. We will focus on
the classification task.

2.4 Artificial immune system classification
AIS offers two main algorithms to do the classification task named the artificial

immune recognition system (AIRS) and the negative selection algorithm (NSA).
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2.4.1 The artificial immune recognition system
The Artificial Immune Recognition System (AIRS) introduced in (Watkins &

Timmis, 2004) exhibited initial success as a classification algorithm.

In AIRS, there are two different populations, the Artificial Recognition Balls
(ARBs) and the memory cells. If a training antigen is presented, ARBs (lympho-
cytes) matching the antigen are activated and awarded more resources. Through
this process of stimulation, mutation and selection a candidate memory cell is
selected which is inserted to the memory cell pool if it contributes enough infor-
mation. This process is repeated for all training instances and finally classification
takes place by performing a nearest neighbor search on the memory cell popula-
tion (Meng & Wang, 2005). This system has been proven to perform well in data
mining tasks and other non-linear classification tasks (Watkins & Timmis, 2004).

Another classification technique which is the fuzzy artificial immune recog-
nition system (FAIRS) which integrates AIRS and a fuzzy classification scheme
called E-algorithm, is developed in (Xu, 2006). FAIRS aims to quickly develop
inference rules (with sufficient flexibility in rule length) for classification tasks.

2.4.2 The negative selection algorithm
The negative selection algorithm is a classification algorithm which uses the

self-nonself principals.

This algorithm creates a set of randomly generated “detectors” which stand
for the system’s normal behavior, then selects those which deviate from normal.
This results in a detector set tuned to only respond to “non-self” or anomalous
strings. In order to explain the functioning of the negative selection algorithm, we
take the following example.

Example 2.1 As mentioned above, the negative selection algorithm (NSA)
starts with defining a set of normal behavior (self set). Then, in the case of classi-
fying a new instance, the NSA verifies the attributes’ values of the new object. If
they belong to the self set (already defined), then the new instance is classified as
normal, else it is classified as anomalous. Let us take a simple example reflecting
the management of bank credits. The self set in this case reflects the possibility of
the client to have a credit. In other words, each client having the same attributes’
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values as in the self set is allowed to have a credit. The self set defined by the bank
is presented in Table 2.1:

Table 2.1: Self set defined by the bank
Client Age Income Number of credit cards Duration of the loan

Client1 25 800 1 20
Client2 30 1000 3 10
Client3 36 1300 3 8
Client4 20 600 1 20
Client5 32 900 2 13
Client6 33 1100 4 9

Once the set of clients having a normal behavior is defined, the NSA is ready
to classify any new instance. Let us consider the classification of the following
object (see Table 2.2):

Table 2.2: Object to be classified
Client Age Income Number of credit cards Duration of the loan

Client7 25 400 1 20

As we remark, the client “Client7” does not belong to the self set since his
attributes’ values are different from those in the self set. Hence, Client7 is not
allowed to have a credit from the bank. He is considered as a non-self.

The negative selection algorithm proved to have a number of shortcomings.
The nature by which the detectors are generated relies on the initial creation of
a sufficient amount of detectors to cover the potential self-nonself feature space.
Obviously, as the dimensionality or size of this feature space increases, the num-
ber of detectors required to fully cover such space increases exponentially. This
has been proven both experimentally (Kim & Bentley, 2001) and theoretically
(Stibor & Jimmis, 2006). In addition to such scaling problems, the algorithm
also is prone to the generation of false alarms. These misclassification errors are
thought to arise partially due to the fact that it is difficult to accurately represent
what is “normal”.
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Hence, a new theory emerged as an alternative to the negative selection paradigm
known as the Danger Theory (DT).

2.5 The danger theory
The Danger Theory (DT), is a new theory which has become popular amongst

immunologists. Its chief advocate is Matzinger (Matzinger, 2001). DT was pro-
posed to explain current anomalies in the understanding of how the immune sys-
tem recognizes foreign invaders.

2.5.1 Basic concepts
As mentioned previously, the immune system discriminates between self and

non-self by attacking foreign antigens and by being tolerant to self. However,
the original self-nonself theory (the NS) did not fit in experimental observations.
Thus, by the mid-1990s, immunologist had made several modifications to the self-
nonself theory which led to the introduction of the danger theory.

The danger theory points out that there must be a discrimination happening
that goes beyond the self-non-self distinction. For instance:

• There is no immune reaction to foreign bacteria in the gut or to the food we
eat although both are foreign entities.

• The human body changes over its lifetime and thus self changes as well.
Therefore, the question arises whether defences against non-self learned
early in life might be auto-reactive later.

• Other aspects that seem to be at odds with the traditional viewpoint are
autoimmune diseases and certain types of tumors that are fought by the
immune system (both attacks against self) and successful transplants (no
attack against non-self).

Matzinger concludes that the immune system actually discriminates “some self
from some non-self” (Matzinger, 2001). The author asserts that the danger theory
introduces not just new labels, but a way of escaping the semantic difficulties of
self and non-self, and thus provides grounding for the immune response. Hence,
we can take care of “non-self but harmless” and of “self but harmful” invaders



CHAPTER 2. THE DANGER THEORY 34

into our system.

The central idea in the danger theory is that the immune system does not re-
spond to non-self but to danger. Thus, just like the self-nonself theory, it funda-
mentally supports the need for discrimination. However, it differs in the answer to
what should be responded to. Instead of responding to foreignness, the immune
system reacts to danger.

2.5.2 Signals under apoptosis and necrosis
Among the many potential definitions for “danger”, is the following one: “dan-

ger is anything that causes cell stress or lytic cell death” (Cayzer & Aickelin,
2002a). We find death in the thymus, the bone marrow and blood, the brain, the
skin, the gut and liver. But this is normal, programmed cell death called “apopto-
sis” and the dying cells are scavenged by specialized cells. This sort of death does
not appear dangerous to the immune system.

In the case of apoptosis, cells that undergo suicide, send out signals to nearby
scavenger cells (phagocytes), which helps prevent the dying cell from releasing
harmful toxins (see Figure 2.1(a)).

However, cells can also die due to “necrosis”; which means that they get killed
accidentally by harmful pathogens.

In the case of necrosis, the cell death is not organized. The disorderly death
does not send signals which inform the nearby phagocytes to engulf the injured
cells. This makes it hard for the cleanup cells (phagocytes) to locate and digest
the cells that die due to necrosis. The cell membrane stores special digestive en-
zymes. Thus, the release of this harmful toxin accelerates unorganized chemical
reaction (see Figure 2.1(b)).

Danger Theory was built on the concept that the intracellular contents released
by damaged cells were actually a form of danger signal that alerted the nearby
antigen-presenting-cells (APCs) - the dendritic cells - and activated them. Only
cells that die due to necrosis would send out alarm signals. Healthy cells and cells
that die due to apoptosis should not. Dendritic cells play the leading role in the
danger theory.
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Figure 2.1: Apoptosis and Necrosis illustrations

2.6 Introducing dendritic cells
Dendritic cells (DCs) are antigen presenting cells playing a leading role in the

DT. They are responsible for capturing, processing and displaying antigens to T-
cells. Furthermore, DCs express receptors on their surfaces to receive signals from
their neighborhood. DCs’ behavior depends on the concentration of the signals
received. Thus, they differentiate into three states termed immature, semi-mature
and mature.

2.6.1 Immature DCs
The DC immature state is the initial maturation state of a DC. Immature DCs

(iDCs) reside in the tissue where they collect signals and antigen which could be
a “safe” molecule or something foreign. Differentiation of iDCs depends on the
combination of the various signals received leading to a full or partial maturation
state.

2.6.2 Semi-mature DCs
In the presence of cell death (apoptosis) and by exposure to safe signals, iDCs

migrate to a terminate semi-mature state known as semi-mature DCs (smDCs).
They also migrate from the tissue to the lymph node.

By the receipt of safe signals, smDCs produce a cytokine in response known
as interleukin-10 (IL-10). This cytokine suppresses T-cells which match the pre-
sented antigen. Hence, causing T-cell tolerance. As a consequence, antigens col-
lected with safe signals are presented in a tolerant context (Greensmith, 2007).
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2.6.3 Mature DCs
iDCs migrate to the mature state if they are more exposed to danger signals and

PAMPs than safe signals. Thus, they are termed the mature DCs (mDCs) drifting
from the tissue to the lymph node.

mDCs produce an inflammatory cytokine termed interleukin-12 (IL-12) which
stimulates T-cells activation in order to be reactive to antigen presentation. More-
over, mDCs produce costimulatory molecules (CSMs) which are known for facil-
itating the antigen presenting process (Medzhitov & Janeway, 2002).

2.7 Signals and antigen
Various signals urge the behavior of the system since they are a reflection of

the state of the environment. There are four categories of signals: PAMPs, danger
signals, safe signals and inflammation. The combination of these different signals
directs the DC population down to two distinct pathways: one causing the activa-
tion of the immune system and one responsible for generating peripheral tolerance
(Greensmith, 2007).

Dendritic Cells process these signals in order to produce their output signals
including a costimulation signal (CSM) which shows that the cell is prepared for
antigen presentation and two context signals, the mature and semi-mature output
signals (Greensmith & Aickelin, 2004).

2.7.1 PAMPs
PAMPs are essential molecules produced by microbes, but not produced by

the host. They are definite indicators of abnormality. In fact, capturing PAMPs
signals with a high concentration by a DC, leads to the production of high values
of both CSM and the mature output signal. Thus, indicating the presence of a
non-host entity.

For instance, in (Greensmith & Aickelin, 2006), the high frequency of net-
working errors is translated as a high value of PAMP signal.
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2.7.2 Danger signals
Danger signals (DS) are signals released as a result of necrosis. They are indi-

cators of abnormality, but with lower value of confidence than PAMPs signals.

The receipt of DS by a DC also causes differentiation to the mature state. Nev-
ertheless, the potency of DS is less than that of PAMP. DS reception causes the
presentation of antigen in a dangerous context.

For example, in (Greensmith & Aickelin, 2006), the amount of packets trans-
mitted per second is measured and forms the DS.

2.7.3 Safe signals
Safe signals (SS) are released as a result of apoptosis. They are indicators of

normality, which means that the antigen collected by the DC was found in a nor-
mal context. Hence, tolerance is generated to that antigen.

The receipt of SS by a DC causes differentiation to the semi-mature state and
the production of CSM in a similar manner as PAMP and DS.

In the situation where tissue contains cells undergoing both apoptosis and
necrosis, the receipt of safe signals suppresses the production of IL-12 in response
to the danger and PAMP signals present in the tissue. This appears to be one of
many regulatory mechanisms provided by the immune system to prevent the gen-
eration of false alarms. This is a key mechanism of suppression of the response to
antigen not directly linked to a pathogen (Greensmith, 2007).

In (Greensmith & Aickelin, 2006), SS can be derived from the rate of sent/received
network packets per second.

2.7.4 Inflammation
Inflammation signals imply the presence of inflammatory cytokines which prove

that there is an increase in temperature in the affected tissue. Furthermore, they
are evidence that a great number of cells are collected in the tissue area under dis-
tress. However, they are insufficient to initiate the maturation of an iDC (Sporri &
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Caetano, 2005).

Inflammation signals have the effect of amplifying the other three categories
of input signals, but they have no efficiency when they are present alone in the
system.

2.7.5 Output signals
After the receipt of the different categories of input signals, DCs produce a set

of three output signals:

1- CSM output: limits the lifespan of a DC, through being assessed against
a migration threshold. If this threshold is exceeded, the state of the cell
changes from immature to either semi-mature or mature. The cell then en-
ters the antigen presentation stage where its context is assessed.

2- Semi-mature output: output incremented in response to safe signals.

3- Mature output: output incremented in response to PAMP and danger sig-
nals; reduced in response to safe signals (Greensmith & Aickelin, 2004).

2.7.6 Antigen
Antigen is the data that are to be classified, with the basis of classification de-

rived not from the structure of this antigen but from the relative proportions of the
different categories of input signals (Greensmith & Aickelin, 2004).

For instance, antigens could be presented by the system calls invoked by run-
ning processes (Greensmith & Aickelin, 2007b), or by the process IDs (Greensmith
& Aickelin, 2006).

2.8 Overview of the DC model
DCs are known to be antigen presenting cells (APCs) with various functional

properties that are interesting and useful to be incorporated into an algorithm.

The different characteristics of DCs are listed below and represented graphi-
cally in Figure 2.2 (Aickelin & Cayzer, 2005):
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- iDCs have the ability to differentiate in two ways, resulting in mature or
semi-mature cells.

- Each iDC can sample multiple antigens within the cell, leading to general-
ization of the antigen context.

- The collection of antigen by iDCs is not enough to cause maturity. Exposure
to certain signals causes the up-regulation of various molecules that initiate
antigen presentation.

- Both smDCs and mDCs show expression of costimulatory molecules, infer-
ring that both types have antigen presenting capabilities.

- The cytokines’ outputs by mature and semi-mature cells are different, pro-
viding contextual information. The concentration of the output cytokines is
dependent on the input signals and can be viewed as an interpretation of the
original signal strength.

In the same section of tissue, DCs have the ability to sample a finite number of
antigens. Thus, an antigen collection threshold is used. Such condition stops DCs
from collecting antigens, leading them to migrate from the tissue to the lymph
node.

The final state of a DC depends on the concentration of input signals received
from the environment. If the concentration of safe signals is greater than the other
three categories of signals then DCs migrate to the semi-mature state. However,
if the concentration of PAMPs and danger signals is greater than the safe signals
then DCs migrate to the mature context.

The same antigen can be presented in both contexts (semi-mature and mature).
So in order to determine the final context of an antigen, it is possible to count how
many times this antigen had been presented in either contexts. If the antigen is
presented more in the mature context than in the semi-mature, then that antigen is
classified as anomalous.
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Figure 2.2: DCs behavior. Cytokines (CKs)

The different properties and behavior of DCs are interesting and useful to solve
real world classification problems. Hence, we talk about a DC inspired algorithm
whose basics are given in the next Section.

2.9 The danger theory procedures
The Dendritic Cell Algorithm (DCA) was first introduced in 2005 (Greensmith

& Aickelin, 2005). It has since been applied to two-class classification of a static
machine learning dataset (Aickelin & Cayzer, 2005) (Greensmith & Aickelin,
2005) (Greensmith & Aickelin, 2007c).

DCA aims at correlating different data-streams in the form of antigen and sig-
nals. In addition, the algorithm attempts to classify groups of identical antigens
as normal or anomalous.

The DCA is not only a classification algorithm. It also allows to know how
anomalous a group of antigen is. This is achieved by the generation of an anomaly
coefficient value termed the MCAV.
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The DCA functions under four levels of abstraction namely the sampling
phase, the signal processing phase, the context assessment phase and the clas-
sification phase.

2.9.1 The sampling phase
Each DC in the system is represented by an object. Throughout the sampling

phase DCs are still in their first state: the immature state. iDCs receive and pro-
cess the set of input signals to produce three output signals (mentioned previously)
through a signal processing function.

iDCs keep collecting antigens until they differentiate to either smDCs or mDCs.
This differentiation depends on a sufficient exposure to signals which is limited by
a migration threshold.

Whilst in the immature state, the DC has three functions which are performed
each time a single DC is updated (Greensmith, 2007):

1 Sample antigen: the DC collects antigen from an external source (in our
case, from the “tissue”) and places it in its own antigen storage data struc-
ture.

2 Update input signals: the DC collects values of all input signals present in
the signal storage area.

3 Calculate interim output signals: at each iteration, each DC calculates three
temporary output signal values from the received input signals.

2.9.2 The signal processing phase
iDCs are responsible for the signal processing procedure which is in the form

of a weighted sum equation (see Equation 2.1):

C[CS M,smDC,mDC] =
((WPAMP ∗

∑
i PAMPi) + (WS S ∗

∑
i S S i) + (WDS ∗

∑
i DS i))

(WPAMP + WS S + WDS )
∗

1 + I
2

(2.1)
Assuming that there are multiple signals per category, PAMPi, DS i and S S i

are the input signal values of category PAMP, danger and safe for all signals (i) of
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that category. WPAMP,WS S and WDS represent the weights used for PAMP, SS and
DS respectively. I represents the inflammation signal. This equation is repeated
three times, once per output signal. This is to calculate the interim output signal
values for the CSM output, the semi-mature output (smDC) and mature output
(mDC) signals. These values are cumulatively summed over time (Greensmith,
2007).

The three output signals generated from the weighted sum equation perform
two roles. The first role is to limit the sampling duration of a DC, hence if the
CSM is greater than the migration threshold (a user defined parameter), iDC mi-
grates to either smDC or mDC. The second role is to determine which final state
the iDC should reach. This is achieved by a comparison of the other two output
values.

The weights used in the signal processing procedure are either derived empir-
ically from the data or are user defined values.

2.9.3 The context assessment phase
Once the iDC has migrated, the cell context has to be fixed. The cell context is

used to label all antigen collected by the DC with the derived context binary value
of 1 or 0.

The cell context is assigned as 0 if the semi mature output is greater than the
mature output. This means that the antigen collected is likely to be normal, else
(if the cell context is assigned as 1) it indicates that the collected antigen may be
anomalous.

2.9.4 The classification phase
After the context assessment to each antigen collected by DCs, the MCAV1 is

generated per antigen type for the classification task.

To perform classification, a threshold must be applied to the MCAVs. This
threshold could be either a user defined parameter which requires some expert
knowledge to define or generated automatically from the data. Hence, if the

1Mean Mature Context Antigen Value
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MCAV is greater than the anomaly threshold then the antigen is classified as
anomalous else it is classified as normal.

2.9.5 The dendritic cell algorithm
The DCA introduced by Greensmith is capable of joining several signals and

antigen to assess the context of each object (Greensmith, 2007). Signals pre-
categorized as “PAMP”, “danger” and “safe” which reflect the input signals of the
system are processed by the algorithm, in order to get three output signals: cos-
timulation signal (CSM), semi-mature signal (smDC) and mature signal (mDC).

A migration threshold is incorporated in the DCA in order to determine the
lifespan of a DC. As soon as the CSM exceeds the migration threshold; the DC
ceases to sample signals and antigens. The DCs differentiation direction is de-
termined by the comparison between cumulative smDC and cumulative mDC. If
the cumulative smDC is greater than the cumulative mDC, then the DC goes to
semi-mature (context=0, DC “thinks” the antigen is normal), otherwise it goes to
mature (contex=1, DC “thinks” the antigen is anomalous).

At the end, the mature context antigen value (MCAV), which reflects the prob-
ability of an antigen in being anomalous, is calculated. An anomalous threshold
is also introduced. Those antigens whose MCAV are greater than the anomalous
threshold are classified into the anomalous category, while the others are classified
into normal category. The major parts of this algorithm are described as follows.
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Algorithm 1 The Dendritic Cell Algorithm
1: input : signals from all categories and antigen
2: output: antigen plus context values
3: initialiseDC;
4: while CSM output signal < migration Threshold do
5: get antigen;
6: store antigen;
7: get signals;
8: calculate interim output signals;
9: update cumulative output signals;

10: end while
11: cell location update to lymph node;
12: if semi-mature output > mature output then
13: cell context is assigned as 0;
14: else
15: cell context is assigned as 1;
16: end if
17: print collected antigen plus cell context;
18: for all antigen in total list do
19: increment antigen count for this antigen type;
20: if antigen context equals 1 then
21: increment antigen type mature count;
22: end if
23: end for
24: for all antigen types do
25: MCAV of antigen type = mature count / antigen count;
26: end for

2.9.6 The DCA: An example
This example consists of sample calculations of both the signal processing and

antigen analysis components for the problem of management of bank credits. The
data set for this example is presented in Table 2.3.
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Table 2.3: Bank database

Client Age Income Number of credit cards Duration of the loan Credit
Client1 24 650 1 30 no
Client2 30 1000 3 10 no
Client3 36 1300 3 8 yes
Client4 20 600 1 20 no
Client5 32 900 2 13 yes
Client6 33 1100 4 9 yes

The dendritic cell algorithm starts by selecting some attributes and pre-categorizing
them as PAMP, DS, SS and inflammation. Then, the obtained data set is trans-
formed into a signal data set which is the second step of the DCA. The signal data
set (we present only 3 instances) is illustrated in Table 2.4.

Table 2.4: Signal data set
Client (antigen) PAMP SS DS

Client1 100 100 0
Client2 0 0 100
Client3 20 50 40

To show the calculations under different input signal conditions, three iter-
ations (cycles) with three sets of signals are shown. The derived output signal
values are used to demonstrate how to perform the MCAV calculation for three
different antigen types (Ag1, Ag2 and Ag3).

In this example, three DCs are required, one for each iteration, termed DC1,
DC2 and DC3 for the purpose of identification. Each DC is assigned an identical
migration threshold value (tm) which is set to 100. The sets of signals used in this
example are presented in Table 2.4. The weights are presented in Table 2.5.
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Table 2.5: Example of weights used for signal processing
PAMP SS DS

CSM 2 1 2
smDC 0 0 1
mDC 2 1 - 1.5

The signal processing equation is the following:

C[CS M,smDC,mDC] = (WPAMP ∗ PAMP) + (WS S ∗ S S ) + (WDS ∗ DS )

The worked example is performed in the following itemized list:

1. The antigen vector (A) is updated:
A = {Ag1; Ag1; Ag1; Ag1; Ag1; Ag2; Ag2; Ag2; Ag2; Ag3; Ag3; Ag3}

2. Cycle l = 0:
DC samples antigen, so DC1 a(m) = {Ag1; Ag1; Ag1; Ag2; Ag2}
DC samples input signals, so DC1 s(m) = {100; 100; 0}
DC calculates output signals, so DC1 outputs:
CCS M = (100 * 2) + (100 * 1) + (0 * 2) = 300
CsmDC = (100 * 0) + (100 * 0) + (0 * 1) = 0
CmDC = (100 * 2) + (100 * 1) + (0 * -1.5) = 300
For DC1, t(m) = 100, therefore this DC has now exceeded its migration
threshold as the value for CCS M is greater than t(m). Also, CsmDC > CmDC

and therefore DC1 is assigned a cell context value of 1, indicating that its
collected antigen may be anomalous.

3. The antigen vector now consists of:
A = {Ag1; Ag1; Ag2; Ag2; Ag3; Ag3; Ag3}

4. Cycle l = 1:
DC samples randomly selected antigen, so DC2 a(m) = {Ag2; Ag2; Ag1}
DC samples input signals, so DC2 s(m) = {0; 0; 100}
DC calculates output signals, so DC2 outputs:
CCS M = (0 * 2) + (0 * 1) + (100 * 2) = 200
CsmDC = (0 * 0) + (0 * 0) + (100 * 1) = 100
CmDC = (0 * 2) + (0 * 1) + (100 * -1.5) = -150
For DC2, t(m) = 100, therefore this DC has now exceeded its migration
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threshold as the value for CCS M is greater than t(m). Also, CsmDC < CmDC

and therefore DC2 is assigned a cell context value of 0, indicating that its
collected antigen is likely to be normal.

5. The antigen vector now consists of:
A = {Ag1; Ag3; Ag3; Ag3}

6. Cycle l = 2:
DC samples antigen, so DC3 a(m) = {Ag1; Ag3; Ag3; Ag3}
DC samples input signals, so DC3 s(m) = {20; 50; 40}
DC calculates output signals, so DC3 outputs:
CCS M = (20 * 2) + (50 * 1) + (40 * 2) = 170
CsmDC = (20 * 0) + (50 * 0) + (40 * 1) = 40
CmDC = (20 * 2) + (50 * 1) + (40 * -1.5) = 30
For DC3, t(m) = 100, therefore this DC has now exceeded its migration
threshold as the value for CCS M is greater than t(m). Even though there are
a mixture of signals and the highest signal value comes from the danger
signal value, CsmDC < CmDC and therefore DC3 is assigned a cell context
value of 0. This is due to the negative weight of the safe signal, which has a
suppressive effect on the other two categories of signal.

7. Now the antigen can be analyzed and MCAV coefficients derived as shown
in Table 2.6.

Table 2.6: Worked example of MCAV output
Antigen Type num presentations num mature presentations MCAV

Ag1 5 3 0.6
Ag2 4 2 0.5
Ag3 3 0 0.0

8. To perform anomaly detection, a threshold must be applied to the MCAVs.
This threshold is a user defined parameter, which requires some expert
knowledge to define and is specific to the application. In this case, the
anomaly threshold is defined by the bank manager and is set to 0.5. There-
fore, client1 (Ag 1) and client2 (Ag 2) are classed as anomalous - they are
not allowed to have a credit - however, client3 (Ag3) is classified as normal
(Greensmith, 2007).
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2.10 Conclusion
In this Chapter, we have briefly introduced the natural immune system; then we

have presented the basics and the characteristics of the artificial immune system.
In the second part, we have focused on the new branch of AIS which is the danger
theory. The main principles and models are elucidated.

Despite the good results provided by the danger theory in a wide range of
applications, several researchers are focusing on improving more and more the
results of this technique, especially, in an environment where imprecision may
exist. Imprecision which could be find in the definition of some words.

The fuzzy set theory presented in the previous Chapter seems to be one of the
appropriate formalisms to cope with imprecision. Thus, our objective will be to
develop what we call a fuzzy dendritic cell method that will be presented in the
following part of this master thesis.
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Chapter 3

Fuzzy dendritic cell method

3.1 Introduction
The danger theory using the dendritic cell algorithm is considered as one of

the most interesting and used techniques in classification tasks. That is why, it
is widely applied to a variety of fields notably in web mining (Secker & Timmis,
2003b), robotic (Greensmith & Aickelin, 2007a), bot detection (Greensmith &
Aickelin, 2008), etc.

However, the standard dendritic cell method does not perform well its classi-
fication task in the case of a disordered contexts (data randomized between class
one and class two). This is because that each DC gathers multiple antigens over a
period of time. If an iDC differentiates to a mDC, then every antigen contained in
that DC is perceived as dangerous (class 2). Similarly, antigens within a smDC are
all perceived as safe (class 1). Other explanations could be the environment which
is characterized by the crisp boundary in the context assessment phase, which may
badly affect the correctness of the classification results, and the use of imprecise
terms such as “semi-mature” and “mature”. Hence, it shows serious limitations.
One possible technique for handling such imprecision is the fuzzy set theory.

In order to deal with problems under imprecision, there are many works intro-
ducing the hybridization of DT with fuzzy set theory such as (Fu & Li, 2008), (Fu
& Zhang, 2009) and (Aickelin & Cayzer, 2005). Thus, we propose to overcome
the limitations of the DCA using the notions of fuzzy set theory. We propose to
develop what we call a fuzzy dendritic cell method (FDCM), a new classification
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technique based on dendritic cells within the framework of fuzzy set theory. Pre-
vious works which are based on such hybridization do not use the same hypothesis
as in our FDCM since we shed more light on the DCA’s context assessment phase.

This Chapter is consecrated to our development related to the presentation of
the danger theory approach under imprecision. Section 3.2 covers the definition
and the motivations of our fuzzy dendritic cell method (FDCM). Section 3.3 deals
with the objectives of our new method. Then, the different parameters of the fuzzy
dendritic cell method are detailed in Section 3.4. Lastly, Section 3.5 sketches an
illustrative example of our fuzzy dendritic cell method.

3.2 Definition and motivations
A fuzzy dendritic cell method is a dendritic cell algorithm in a fuzzy environ-

ment. The crisp context assessment will be represented and handled by the means
of the fuzzy set theory.

As seen in the previous Chapter, in the classical dendritic cell algorithm, the
context assessment of each object relies on a crisp boundary. In other words, in
order to affect the context (semi-mature or mature) to each object, it is necessary
to go by a crisp comparison between the values of these two contexts. Neverthe-
less, such strict comparison ignores the case where the difference value between
the two context values is very low. In such a case, the final context of the object
is hard to be defined.

Another issue with the standard DCA is the imprecision found in the definition
of some words such as “semi-mature” and “mature” which are quantified numeri-
cally. However, we can not affect a precise value to such a term since it is difficult
to fix to what extent can we talk about a semi-mature or a mature context.

To overcome these limitations, we introduce our FDCM where fuzzy set the-
ory can handle these issues. In fact, using fuzzy set theory allows us to alleviate
the already mentioned crisp separation between the contexts as well as offering the
possibility to quantify qualitatively, using linguistic terms, the imprecise words
used by the DCA.
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3.3 Objectives
The objective of this work is to develop a new concept that we will call the fuzzy

dendritic cell method. In addition to the objectives of the standard dendritic cell
algorithm, the fuzzy dendritic cell one aims at ensuring three major objectives:

1. Smoothing the abrupt separation of normality (semi-mature) and abnormal-
ity (mature) using the fuzziness of fuzzy set theory, since there is no clear
boundary between the two contexts.

2. Describing the context of each object using linguistic variables. Fuzzy sub-
sets and the corresponding membership functions describe the context of
the object. In other words, ensuring the induction of the fuzzy set theory.

3. Building a knowledge base, comprising rules to support the fuzzy inference.

This new approach is based on both the dendritic cell algorithm and fuzzy set
theory in order to cope with the crisp problem, hence, smoothing such a case as
well as replacing and describing the context with linguistic variables.

3.4 The fuzzy dendritic cell method parameters

3.4.1 Introduction
As with the standard dendritic cell algorithm, implementing our FDCM falls

to the definition of its fundamental phases, namely, the attribute selection and
categorization phase, the sampling phase, the signal values derivation phase, the
fuzzy context assessment phase and the classification phase. These parameters
must take into account the imprecision/fuzziness encountered in the system.

3.4.2 The attribute selection and categorization phase
The attribute selection is based on the semantic of each attribute. Experts are

supposed to select a subset of attributes (from the initial data set) and categorize
them as PAMPs, danger signals, safe signals and inflammation. Thus, an attribute
reduction is achieved, which is one characteristic of the algorithm.

The general guidelines are presented in the list below:



CHAPTER 3. FUZZY DENDRITIC CELL METHOD 53

- PAMPs: The presence of PAMPs usually indicates an anomalous situation.

- Danger signals: The presence of danger signals may or may not indicate an
anomalous situation, however, the probability of an anomaly is higher than
under normal circumstances.

- Safe signals: The presence of safe signals almost certainly indicates that no
anomalies are present.

3.4.3 The signal value derivation phase
The signal value derivation phase can be broadly divided into two processes.

The first one is about calculating PAMPs and SS and the second one is concerned
with the calculation of DS.

Process for calculating PAMPs and SS

As stated in the general signal selection rules, both the PAMP and safe signal
are positive indicators of an anomalous and normal signal. To achieve this, one
attribute is used to form both PAMP and safe signal. This way, we contrive the
scenario where the algorithm is given a context of either PAMP or safe signal.
Using one attribute for these two signals requires a threshold level to be set: val-
ues greater than this can be classed as a safe signal, while values below this level
would be used as a PAMP signal.

The exact procedure for calculating safe and PAMP signals is given in the
following itemized list:

1. Select a suitable attribute.

2. Calculate the median of all the selected attributes’ values across both classes
of data.

3. For each attribute value determine if it is a PAMP or safe signal: if the
attribute value is greater than the median then this value is used to form a
safe signal. The absolute distance from the mean is calculated and attached
to the safe signal value and the PAMP signal value takes 0 (and vise versa).
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Process for calculating DS

A similar process is used to calculate the values for the danger signals. As
shown in the general signal selection guidelines, the danger signal is less than cer-
tain to be anomalous. This is interpreted as a combination of several attributes,
resulting in a value that may be used as anomalous, though this is not certain. As
part of pre-processing, the mean value for each attribute set is required from the
normal class alone (just class 1, not class 1 and class 2).

This process is explained in the following list:

1. Compute mean values using the values of class 1 for each attribute, not
including class 2 as with the PAMP and safe signals.

2. Take each attribute value in turn and calculate the absolute distance between
the attribute values and the means calculated.

3. Use the calculated distance values in a further calculation to form the single
value for the danger signal, DS. This value is the mean value of the absolute
distances calculated, with the derivation shown in Equation 3.1:

DS =

∑
absolute distances

number of attributes
(3.1)

4. Repeat this process for all entries of the selected attributes.

Once these signals are generated, they result is a set of feature vectors ready
to be presented to the system.

Additionally, three further specifications must be performed:

- Since each antigen in the data set is unique, appearing only once, it has
been proved that this is insufficient for a DCA to function. This is overcome
through the use of an antigen multiplier. In other words, each antigen will
appear n (a user defined parameter) times in the data set.

- The migration threshold has to be defined.

- The different weights have to be defined for each signal.
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3.4.4 The fuzzy process
The fuzzy process consists in the definition of a new model (a fuzzy one) of

the standard dendritic cell algorithm taking into account the fact of alleviating and
mitigating the crisp assessment phase. The fuzzy procedure is composed of four
main steps. This is shown in Figure 3.1:

Figure 3.1: Steps of the fuzzy process

Fuzzy system Input-Output variables

As stated above, our objective is to smooth the abrupt separation between nor-
mality (semi-mature) and abnormality (mature) using fuzzy concepts since there
is no clear boundary between the two contexts. We describe each context of each
object using linguistic variables. Two inputs (one for each context) and one output
are defined.

The semi-mature context and the mature context denoted respectively CS emiMature

and CMature are considered as the input variables to the fuzzy system. The final
state “maturity” of a DC (object), S Maturity, is chosen as the output variable.

All the system’s inputs and output are defined using fuzzy set theory.

CS emiMature = {µCS emiMature(cS emiMature j)/cS emiMature j ∈ XCS emiMature} (3.2)
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CMature = {µCMature(cMature j)/cMature j ∈ XCMature} (3.3)

S Maturity = {S Maturity(sMaturity j)/sMaturity j ∈ XS Maturity} (3.4)

where cS emiMature j , cMature j and sMaturity j are, respectively, the elements of the
discrete universe of discourse XCS emiMature , XCMature and XS Maturity .

µCS emiMature , µCMature and µS Maturity are, respectively, the corresponding membership
functions.

Linguistic variables

Basic tools of fuzzy set theory are linguistic variables. Their values are words
or sentences in a natural or artificial language, providing a means of systematic
manipulation of vague and imprecise concepts. More specifically, a linguistic
variable is characterized by a quintuple (x, T(x), U, G, M), where x is the variable
name; T(x) is the set of names of the linguistic values of each fuzzy variable x,
denoted generically by x and ranging over a universe of discourse U. G is a syn-
tactic rule for generating the names of x values; M is the semantic rule associating
a meaning with each value.

For instance, the term set T (S Maturity) interpreting S Maturity which is a linguistic
variable that constitutes the final state of maturity of a DC, could be

T (S Maturity) = {S emi − mature,Mature} (3.5)

Each term in T (S Maturity) is characterized by a fuzzy subset in a universe of
discourse XS Maturity .

Semi-mature might be interpreted as an object collected under safe circum-
stances, reflecting a normal behavior and Mature as an object collected under
dangerous circumstances, reflecting an anomalous behavior. Figure 3.2 gives an
illustration of S Maturity as a linguistic variable.
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Figure 3.2: Fuzzy membership functions for the Maturity output

Similarly, the input variables CS emiMature and CMature are interpreted as linguis-
tic variables with:

T (Q) = {Low,Medium,High} (3.6)

where Q = CS emiMature and CMature respectively.

Fuzzy and membership function construction

In order to specify the range of each linguistic variable, we have generated all
the semi-mature and mature values, which are the two outputs generated by the
DCA, at the beginning. This generation of these values is done by running once
the standard dendritic cell algorithm. Then, we pick up the minimum and max-
imum values of each of the two generated values to fix the borders of the range.
We assume that the extents and midpoints of the membership functions were de-
termined a priori by the user.

The range of the output variable is determined as follows:

min(range(S Maturity)) = min(min(rangebCMaturec),min(rangebCS emiMaturec)) (3.7)

max(range(S Maturity)) = max(max(rangebCMaturec),max(rangebCS emiMaturec))
(3.8)

A knowledge base, comprising rules, is built to support the fuzzy inference.
The different rules of the fuzzy system are extracted from the information reflect-
ing the effect of each input signal on the state of a dendritic cell which is the
following:
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– Safe signals: in increase in value is a probable indicator of normality. High
values of the safe signal can cancel out the effects of both PAMPs and DS.

– Danger signals: in increase in value is a probable indicator of damage, but
there is less certainty than with a PAMP signal.

– PAMPs: in increase in value is a definite indicator of anomaly.

– Inflammation: has the effect of amplifying the other three categories of in-
put signals, but is not sufficient to cause any effect on DCs when used in
isolation.

From this information, we can generate a set of rules of the fuzzy system. In
fact, the number of rules depends on the number of the membership functions of
each input. The number of rules generated is calculated using Equation 3.9:

NumberO f Rules =

i=x∏
i=1

Number Of Membership (i) (3.9)

The parameter x locates the number of inputs in the system.

Since each linguistic variable is represented using three membership func-
tions, the number of rules generated is a total of nine.

Rule(1): If (CMature is Low) and (CS emiMature is Low) then (S Maturity is Ma-
ture)

Rule(2): If (CMature is Low) and (CS emiMature is Medium) then (S Maturity is
Semi-mature)

Rule(3): If (CMature is Low) and (CS emiMature is High) then (S Maturity is Semi-
mature)

Rule(4): If (CMature is Medium) and (CS emiMature is Low) then (S Maturity is
Mature)

Rule(5): If (CMature is Medium) and (CS emiMature is Medium) then (S Maturity

is Semi-mature)

Rule(6): If (CMature is Medium) and (CS emiMature is High) then (S Maturity is
Semi-mature)
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Rule(7): If (CMature is High) and (CS emiMature is Low) then (S Maturity is Ma-
ture)

Rule(8): If (CMature is High) and (CS emiMature is Medium) then (S Maturity is
Mature)

Rule(9): If (CMature is High) and (CS emiMature is High) then (S Maturity is Ma-
ture)

Let us consider Rule (2) as an example: if the CMature input is set to its first
membership function “Low” and the second input CS emiMature to its second mem-
bership function “Medium”, then the “Semi-mature” context of the output S Maturity

is assigned. This could be explained by the effect of the safe signals (which lead
to the semi-mature context) on the judgement of the state of the output, since the
high values of the safe signal can cancel out the effects of both PAMPs and DS
(which lead to the mature context). The same reasoning is affected to the rest of
the rules.

The generated list of rules allows the reasoning over statements in the presence
of vagueness, since we cannot exactly quantify what we mean by “SemiMature”
or “Mature”. It is also a solution to smooth such absurd separation between the
two contexts.

Concerning the shape of the membership functions, it is a triangular one. It
depends on three scalar parameters a, b, and c, as given by Equation 3.10:

f (x, a, b, c) =


0 x ≤ a

x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c

0 c ≤ x

(3.10)

The parameters a and c locate the “feet” of the triangle and the parameter c
locates the peak. An example is illustrated in Figure 3.3.
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Figure 3.3: Three membership functions of the linguistic variable “SemiMature”
in the range [0 16]

To summarize, the fuzzy system is composed of two inputs and one output.
The range of both inputs is generated by using the standard DCA, after that, the
range of the output is fixed. All the linguistic variables are represented by trian-
gular shape membership functions.

Selecting the fuzzy inference properties

The fuzzy dendritic cell method is based on the “Min-Max” inference method.
This choice is based on the following reasons:

- The “AND” operator is applied between the linguistic values in the condi-
tion part of the rule. Hence, this is mapped as a “Min” operator. It is the fact
of selecting the minimum value among the condition memberships of each
rule. It could be described as a chain which depends on the lowest value.

- Rules must be combined in some manner in order to make a decision.
Hence, the “OR” operator is applied between them. It is mapped as a “Max”
operator.

Furthermore, the FDCM is based on the “centroid defuzzification” method
which is the most popular (the center of gravity of the membership function).
This method is the greediest in calculation but gives the most precise results which
justify our choice. The centroid defuzzification method is given by Equation 3.11.

N∑
i=1

(µ(i) ∗ output(i))/
N∑

i=1

(µ(i)) (3.11)
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where µ(i) is the truth value of the result membership function for rule i, out-
put(i) is the value (for rule i) where the result membership function is maximum
over the output variable fuzzy set range and N is the number of rules.

To summarize, the fuzzy dendritic cell method is based on the Mamdani infer-
ence method and the centroid defuzzifacation mechanism.

The fuzzy context assessment

After defining the fuzzy model, we proceed to the execution of the signal pro-
cessing phase which is the same as in the standard dendritic cell algorithm seen in
the previous Chapter. The outcome of this phase is two different contexts (semi-
mature and mature) to compare. These two values represent now the inputs of our
new fuzzy method.

Once the inputs are fuzzified and the output (centroid value) is generated, the
cell context has to be fixed.

The difference between the context assessment phase in the standard dendritic
cell algorithm and the fuzzy context assessment phase in this new approach re-
sides in the comparison of the two contexts. In fact, in our method, the output is
compared to the middle of the output range. This could be explained as follows:

- If the centroid value generated is greater than the middle of the output range
then the surface of the “Maturity” output can be described as skewed to
the right (positive asymmetry). In other words, the area of the “Mature”
membership function is greater than the “Semi-Mature” one. Therefore,
the final state/context of the object is “Mature”. Thus, it indicates that the
collected antigen may be anomalous.

- If the middle of the output range is greater than the centroid value generated
then the surface of the “Maturity” output can be described as skewed to the
left (negative asymmetry). In other words, the area of the “Semi-Mature”
membership function is greater than the “Mature” one. Hence, the final
state/context of the object is “Semi-Mature”. This means that the antigen
collected is likely to be normal.
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Figure 3.4: An illustrative schema of the context assessment

Figure 3.4 shows an example of the application phase of three rules of two
input values [0.3 0.6], so the generation of the centroid value results in (0.6). As
we remark, the middle of the output range (0.5) is lower than the centroid value
(0.5 < 0.6). As shown in the figure, the surface of the “Maturity” output is skewed
to the right. Hence, the final context of the object is “Mature”.

3.4.5 The classification phase
The classification phase is the same procedure explained in the previous Chap-

ter (see Section 2.9). However, we will explain further how the anomaly threshold
could be generated automatically from the data.

To perform anomaly detection, a threshold must be applied to the MCAVs.
The distribution of data between class one and class two is used and reflects the
potential danger rate. The calculation displayed in Equation 3.12 shows this pro-
cess. In this equation, an is the number of anomalous data items, tn is the total
number of data items and at is the derived anomaly threshold.

at =
an
tn

(3.12)

If the MCAV is greater than the anomaly threshold then the antigen is classified
as anomalous else it is classified as normal.
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3.5 The FDCM: An example
In this Section, we give an example in which we explain how our new approach

FDCM could be used. We keep the same example of the management of bank
credits. Assume that the initial data set is given by Table 3.1:

Table 3.1: Initial data set

Client Age Income Number of credit cards Duration of the loan Credit
Client1 36 1300 3 8 yes
Client2 32 900 2 13 yes
Client3 33 1100 4 9 yes
Client4 20 600 1 20 no
Client5 24 650 1 30 no
Client6 30 1000 3 10 no

3.5.1 The attribute selection and categorization phase
As mentioned previously, the attribute selection and categorization phase is

based on the experts knowledge.

Assume that experts select the attributes Age, Income and Duration of the loan
for the FDCM functioning. We also assume that they select the attribute Income
to derive the PAMP and safe signal and the rest of the attributes (Age and Duration
of the loan) to calculate the danger signal values. Each data item is mapped as an
antigen. Hence, Table 3.2 represents the reduced data set.
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Table 3.2: Reduced data set after attribute selection
Antigen (Client) Age Income Duration of the loan

Ag1 36 1300 8
Ag2 32 900 13
Ag3 33 1100 9
Ag4 20 600 20
Ag5 24 650 30
Ag6 30 1000 10

3.5.2 The signal values derivation phase
Process for calculating PAMP and safe signals

The attribute Income is chosen to derive PAMP and safe signals and its median
value is set to 950. For each attribute value, we determine if it is a PAMP or safe
signal.

For instance, for Ag1, the first attribute value (1300) is higher than (950), then
the resultant signals are a PAMP of value (1300-950=350) and a SS value of 0.
For Ag4, the attribute value (650) is lower than (950), then the resultant signals
are a SS of value (950-650=300) and a PAMP value of 0.

The same process is used to calculate the values for the rest of the instances.

Process for calculating DS

In order to calculate the DS, first, the mean values are calculated across the
values of class 1 for each attribute chosen, not including class 2 as with the PAMP
and safe signals. The two attributes selected for this experiment are:

* Age, mean = 33.6667

* Duration of the loan, mean = 10

Then, we take each attribute value in turn and calculate the absolute distance
between the attribute values and the means shown in Table 3.3:
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Table 3.3: Process of calculating the absolute distance
Age Duration of the loan

attribute set (Ag1) 36 8
means 33.6667 10

absolute distance 2.3333 2

The calculated distance values are used in a further calculation to form the
single value for the danger signal, DS. This value is the mean value of the absolute
distances calculated in the block above, with the derivation shown in Equation 3.1:

DS = 2.3333 + 2
2 = 2.1667

This process is repeated for all entries of the selected attributes.

Following the generation of the signals, the result is a set of feature vectors
shown in Table 3.4. Note how if the value of PAMP is greater than zero, the value
for the safe signal is set to zero.

Table 3.4: Signal feature vectors
Antigen (Client) SS PAMP DS

Ag1 0 350 2.1667
Ag2 50 0 2.3333
Ag3 0 150 0.8333
Ag4 350 0 11.8333
Ag5 300 0 14.8333
Ag6 0 50 1.8333

After the derivation of the different signals, we process by calculating the three
output signals CSM, smDC and mDC for each object (detailed in the previous
Chapter).

3.5.3 The fuzzy process
Assume that the values of the two inputs (Semi-mature and Mature) are the

following for the first object: x (mDC) = 8; and y (smDC) = 9.
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Inputs and output descriptions

As mentioned previously, each input is represented by three triangular member-
ship functions. However, the output is represented by two triangular membership
functions. The range of the three linguistic variables is set to [0 25] (we assume
that after the generation of all the smDC and mDC, the min and max values are
set to 0 and 25). The extents of the different membership functions are parameters
given by the user. The inputs and the output of the system are the following:

– The range of the first input named “Mature” is set to [0 25]. The “Mature”
input is represented by three membership functions “Low”, “Medium” and
“High” defined respectively by the following ranges [0 5 10], [7.5 12.5 17.5]
and [15 20 25].

– The range of the second input named “SemiMature” is set to [0 25]. The
“SemiMature” input is represented by three membership functions ”Low”,
“Medium” and”High” defined respectively by the following ranges [0 5 10],
[7.5 12.5 17.5] and [15 20 25].

– The range of the output named “Maturity” is set to [0 25]. The “Matu-
rity” output is represented by two membership functions “Semi-Mature”
and “Mature” defined respectively by the following ranges [0 8 15] and [10
18 25] .

The fuzzy system description

The characteristics of the fuzzy model are listed below:

– The fuzzy model named “FDCM example” is composed of two inputs, one
output and nine rules. It is based on the min-max aggregation method and
the centroid deffuzification method.

How to calculate the values of the membership functions of the inputs

Let us take the example of the first input. The different equations of its three
membership functions “Low”, “Medium” and “High” are respectively the follow-
ing:
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f (x, 0, 5, 10) =


0 x ≤ 0

x−a
b−a 0 ≤ x ≤ 5
c−x
c−b 5 ≤ x ≤ 10

0 10 ≤ x

f (x, 7.5, 12.5, 17.5) =


0 x ≤ 7.5

x−a
b−a 7.5 ≤ x ≤ 12.5
c−x
c−b 12.5 ≤ x ≤ 17.5

0 17.5 ≤ x

f (x, 15, 20, 25) =


0 x ≤ 15

x−a
b−a 15 ≤ x ≤ 20
c−x
c−b 20 ≤ x ≤ 25

0 25 ≤ x

The three membership functions are represented graphicly by Figure 3.5.

Figure 3.5: An illustrative schema of three membership functions on the “Mature”
input

Since x = 8, then by fitting this value to the three equations, we get the follow-
ing vector [0.4 0.1 0].
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0.4 = 10−8
10−5 since 5 ≤ x = 8 ≤ 10

0.1 = 8−7.5
12.5−7.5 since 7.5 ≤ x = 8 ≤ 12.5

0 since x = 8 ≤ 15

The same process is applied to calculate the value of y. Thus we obtain the
following vector: [0.2 0.3 0].

Rules’ application

Since the value of the membership function “High” is set to zero for both vectors
generates of the two inputs, we look for the rules where these linguistic variables
are not accorded. Hence, we apply the following rules:

1. If (Mature is Low) and (SemiMature is Low) then (Maturity is Mature) (1)

2. If (Mature is Low) and (SemiMature is Medium) then (Maturity is Semi-
Mature) (1)

4. If (Mature is Medium) and (SemiMature is Low) then (Maturity is Mature)
(1)

5. If (Mature is Medium) and (SemiMature is Medium) then (Maturity is Semi-
Mature) (0.15)

After that, we apply the Mamdani method by taking the min between the condition
of each rule and the max between the rules in order to generate one output value.
This is achieved as follows:

1. min(0.4 , 0.2) = 0.2 (Mature)

2. min(0.4 , 0.3) = 0.3 (Semi-Mature)

4. min(0.1 , 0.2) = 0.1 (Mature)

5. min(0.1 , 0.3) = 0.1 (Semi-Mature)

Now we apply the max operator:

- max(0.2 , 0.1) = 0.2 (Mature)
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- max(0.3 , 0.1) = 0.3 (Semi-mature)

Figure 3.6 demonstrates the application phase of the rules and the generation of
the centroid value which is 11.6.

Once the centroid value is generated, the final context of the object could be
fixed (as mature or semi-mature). This is achieved by the comparison of the mid-
dle of the output range (middle = 25/2 = 12.5) and the centroid value 11.6.

As we remark, the middle of the output range is greater than the centroid value
(12.5 > 11.6). As shown in Figure 3.6, the surface of the “Maturity” output is
skewed to the left (negative asymmetry) which means that the area of the “Semi-
Mature” membership function is greater than the “Mature” one. Hence, the final
context of the object is “Semi-Mature”.

Figure 3.6: An illustrative schema of the centroid value generation
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3.5.4 The classification phase
Once the context is fixed for all the objects, the classification phase (seen in

the previous Chapter) has to be executed. Thus, we have to calculate the anomaly
threshold at:

at = 3
6 = 0.5

We suppose that each antigen (client) is repeated 10 times and the first client is
detected in the mature state 3 times. Then, we can conclude that client1 is allowed
to have a credit (normal) since (0.3=3/10<0.5). The same reasoning is applied to
the rest of the instances.

3.6 Conclusion
In this Chapter, we have developed the fuzzy dendritic cell method as a new

technique associating the dendritic cell algorithm with the fuzzy set theory. We
have detailed the characteristics of this new approach namely its definition, objec-
tives and representation.

In the next Chapter, we will present the implementation for checking the per-
formance of our FDCM comparing to the standard DCA. Then, we will show
different results obtained from simulations and that have been performed on real
database.



Chapter 4

Implementation and simulation

4.1 Introduction
Implementing and testing our fuzzy dendritic cell method (FDCM) is impor-

tant since it allows us to have an idea concerning the effectiveness of our method
as well as its performance compared to the standard dendritic cell method of
(Greensmith & Aickelin, 2005).

Hence, we have implemented both methods with Matlab V7.1: the FDCM
as well as the approach of (Greensmith & Aickelin, 2005). Then, we have per-
formed simulations on several two-class real databases obtained from the U.C.I.
repository (Asuncion & Newman, 2007). Different results carried out from these
simulations will be presented and analyzed in order to assess the effectiveness of
our method.

This Chapter is composed of two parts. The first one deals with the imple-
mentation of our fuzzy dendritic cell method where the major variables and pro-
grams are detailed. The principal algorithms are also exposed. The second one is
consecrated to the simulation phase where the results obtained from different ex-
perimental tests are exposed and analyzed in order to evaluate our method. Note
that the objective of these simulations is to prove that our method improves the
classification accuracy in the case of successive class transitions compared to the
standard DCA.

71
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4.2 Implementation

4.2.1 The framework
As mentioned above, in order to ensure the implementation of our FDCM, we

have developed our program with Matlab V7.1. Obviously, we have implemented
the standard DCA that we have detailed in Chapter 2. Then, we replace its crisp
context assessment phase by the new fuzzy one detailed in Chapter 3. The inputs
of our program are mainly:

1. The signals feature vector, where signals are pre-categorized and pre-processed
as “PAMP”, “danger” and “safe” (the selected attributes).

2. The antigens feature vector.

3. The weights for the signal processing.

4. The migration threshold to control the life-span of the DC that it stops sam-
pling antigens.

5. The fuzzy system comprising the different membership functions, the rule
base and the fuzzy inference process.

6. The anomaly threshold which is applied to the MCAVs: values exceeding
the threshold results in the classification of an antigen as “anomalous” and
vice versa.

The outputs of our program are:

1. A list of anomalous objects (antigens) and another for the normal ones.

2. The mature context antigen value (MCAV) which reflects the probability of
an antigen in being anomalous.

4.2.2 Main variables
In this Section, we present the major variables that we have used in our programs

to implement the FDCM:

• data: includes the attribute values of all the objects of the learning set.
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• all-values: is a cell array representing the different values calculated to form
the PAMP, DS and SS of each attribute.

• number-attributs: is the number of attributes selected by the user in order to
pre-categorize them as PAMP, DS and SS.

• parameters: are user defined values to fix the feet and the peak of each
triangular membership function.

• Mature-input-range: is the range of the first linguistic variable “Mature”
(first input of the fuzzy system).

• SemiMature-input-range: is the range of the second linguistic variable “Semi-
Mature” (second input of the fuzzy system).

• Maturity-input-range: is the range of the linguistic variable “Maturity” (the
output of the fuzzy system).

• Low-membership-function: represents the “Low” membership function of
both inputs Mature and SemiMature.

• Medium-membership-function: represents the “Medium” membership func-
tion of both inputs Mature and SemiMature.

• High-membership-function: represents the “High” membership function of
both inputs Mature and SemiMature.

• Mature-membership-function: represents the “Mature” membership func-
tion of the output Maturity.

• Semi-mature-membership-function: represents the “Semi-mature” member-
ship function of the output Maturity.

• RuleBase: represents the rule base of the fuzzy system.

4.2.3 Main programs
In this subsection, we will present the major programs that we have developed

to construct our software. These programs can be regrouped according to their
use into distinct parts:
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The detection phase for input data and DC population

• load-data: opens an existing database file and loads it into the variable data.

• calculate interim output signals: at each iteration, each DC calculates
three temporary output signal values from the received input signals which
are the CSM, the semi mature output and the mature output.

• update cumulative output signals: the DC collects values of all input sig-
nals present in the signal storage area.

• record outputs: at each iteration, both the semi mature output value and
the mature output value are summed and recorded.

The fuzzy process construction phase

• get-max: picks up the maximum value of a vector.

• get-min: picks up the minimum value of a vector.

• create-rule-base: generates a rule base using the different parameters of
the fuzzy system.

The fuzzy context assessment phase

• eval: performs the fuzzy inference calculations.

4.2.4 The fuzzy dendritic cell method
In this section, we will present the major algorithms relative to our method

to ensure the classification of different instances, namely the detection phase for
input data and DC population, the fuzzy process construction phase, the fuzzy
context assessment phase for output list and the generation of MCAV coefficient
algorithms.

Algorithm: Detection-Inputs
input: database-file-path, signals-feature-vector, antigens-feature-vector, weights,
migration threshold
output: Semi-vector, Mat-vector
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1: begin
2: (*define the data set*)
3: [data, all-values, number-attributes]← load-data (database-file-path);
4: (*process for recording the outputs Semi-vector and Mat-vector*)
5: initialise DCs;
6: while CSM output signal < migration Threshold do
7: get antigen;
8: store antigen;
9: get signals;

10: calculate interim output signals;
11: update cumulative output signals;
12: record outputs;
13: end while
14: Cell location update to lymph node;
15: end.

Algorithm: Fuzzy-System-Construction
input: Semi-vector, Mat-vector, parameters, rule-base, term-sets, linguistic-variables
output: fuzzy-system

1: begin
2: (*defining ranges*)
3: MaxS← get-max (Semi-vector);
4: MinS← get-min (Semi-vector);
5: MaxM← get-max (Mat-vector);
6: MinM← get-min (Mat-vector);
7: MinMaturity← get-min [MinS, MinM];
8: MaxMaturity← get-max [MaxS, MaxM];
9: (*defining the characteristics of the first input Mature*)

10: Mature-input-range← [MinM, MaxM];
11: Low-membership-function← [parameters];
12: Medium-membership-function← [parameters];
13: Hight-membership-function← [parameters];
14: (*defining the characteristics of the input SemiMature*)
15: SemiMature-input-range← [MinS, MaxS];
16: Low-membership-function← [parameters];
17: Medium-membership-function← [parameters];
18: Hight-membership-function← [parameters];
19: (*defining the characteristics of the ouput Maturity*)
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20: Maturity-input-range← [MinMaturity, MaxMaturity];
21: Mature-membership-function← [parameters];
22: Semi-mature-membership-function← [parameters];
23: (*defining the rule base*)
24: RuleBase← create-rule-base (term-sets, linguistic-variables);
25: end.

Algorithm: Fuzzy-Context-Assessment
input: fuzzy-system, Semi-vector, Mat-vector
output: Antigen and their context (0/1)

1: begin
2: i = 0;
3: for all values in Semi-vector and Mat-vector do
4: mature← Semi-vector(i);
5: semi-mature←Mat-vector(i);
6: centroid-value← eval ([mature semi-mature], fuzzy-system);
7: (*comparing the centroid-value of each object with the middle of the output range

of the fuzzy system*)
8: if centroid-value < middle-of-Maturity-output then
9: cell context is assigned as 0;

10: else
11: cell context is assigned as 1;
12: end if
13: i = i + 1;
14: end for
15: end.

Algorithm: The generation of MCAV coefficients for each antigen type sam-
pled by the FDCM
input: total list of antigen plus context values per experiment
output: MCAV coefficient per antigen type

1: begin
2: for all antigen in total list do
3: increment antigen count for this antigen type;
4: if antigen context = 1 then
5: increment antigen type mature count;
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6: end if
7: end for
8: (*defining the MCAV for each data instance*)
9: for all antigen types do

10: MCAV of antigen type = mature count / antigen count;
11: end for
12: end.

4.3 Simulations and results

4.3.1 Experimental setup
The implementation of our fuzzy dendritic cell method will be useful in the

simulation phase. It is crucial to mention that in addition to the classification of
the instances using FDCM, our objective is to look at the impact of smoothing the
abrupt (crisp) separation between normality (semi-mature) and abnormality (ma-
ture).

Hence, we have performed several tests and simulations on real databases ob-
tained from the U.C.I repository of Machine Learning databases (Asuncion &
Newman, 2007).

Different results carried out from these simulations will be presented and ana-
lyzed in order to evaluate our proposed method.

4.3.2 Evaluation criterion
In order to evaluate our method, and as done with the standard DCA, we have

based our evaluation on accuracy. In fact, the accuracy of a classification method
is determined by measuring the number of instances it, correctly, classifies among
the total number of testing instances presented to the classifier. Hence, we will
use the Percent of Correct Classification (PCC).

The PCC represents the percent of the correct classification of the testing in-
stances which are classified according to the induced fuzzy dendritic cell method.
It is given by Equation 4.1:

PCC =
number of well classified instances
total number of classified instances

∗ 100 (4.1)
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Hence, to compute the PCC, we have to compare for each object, its real class
(in the initial ordinary database) to the class given by the FDCM. The number of
well classied instances corresponds then to the number of objects for which, the
class obtained from the algorithm concordes with the real class.

Obviously, a PCC equal to 100% qualifies an excellent classifier, whereas a
PCC equal to 0% corresponds to a null classifier.

An equivalent criterion, also used in the literature, measure the proposition of
incorrectly classified instances. This is knows as the error rate (r=1-PCC).

4.3.3 Validation procedure
In our simulations, in order to obtain an unbiased estimation of the PCC, we have
used a method called: cross validation.

This method divides a given data set into n parts, (n - 1) parts will be used as
the training set and the remaining part will be used to test the induced FDCM. The
procedure is repeated n times, each time using another (n - 1) parts as the training
set and another part as the testing set.

The parameter n represents the number of folds of the cross validation proce-
dure. In our simulations we have used the 10-folds-cross-validation. Obviously,
in each fold, we compute the corresponding PCC and the final PCC is given by
the mean of the computed PCCs.

4.3.4 Simulations on the real databases
Description of databases

For the evaluation of our proposed FDCM, we have used real two-class databases
obtained from U.C.I repository of Machine Learning databases (Asuncion & New-
man, 2007).

In Table 4.1, a brief description of these databases is given. A detailed de-
scription is given in Appendix A at the end of this report.
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Table 4.1: Description of databases
Database Ref ] instances ] attributes

Mammographic Mass MM 961 6
Pima Indians Diabetes PID 768 8

Blood Transfusion Service Center BTSC 748 5
Wisconsin Breast Cancer WBC 700 9

Haberman’s Survival HS 306 4
SPECTF Heart SPECTF 267 44

Experimental results

Previous examinations with DCA, in (Aickelin & Cayzer, 2005), show that the
DCA is sensitive to the data order since it does not perform well its classification
task in the case of a disordered contexts. These misclassifications occur exclu-
sively at the transition boundaries. As a result, the DCA makes more mistakes
when the context changes multiple times in a quick succession. One possible
explanation of such limitation is the crisp separation between the two contexts
(semi-mature and mature) which affects badly the correctness of the classification
results.

Applying such algorithm to a database where its instances are randomized be-
tween class one and class two, decreases dramatically the classification accuracy.

Let us remind that the aim of our method is to improve the classification accu-
racy even in the case of contexts’ change. This will prove that our FDCM does not
depend of the class transitions. In fact, smoothing the absurd separation between
normality and abnormality using fuzzy set theory allows to handle the drawbacks
of the DCA.

Thus, our experimentations are based on randomizing each time the data set
between the two classes.

The order of the data items varies according to experiments. Experiment 1
uses all class 1 items followed by all class 2 items (ordered database). The rest of
the experiments uses data from class 1 and class 2 that is randomized once, then
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20 times, then 60, 70, 90, 120, 140, 160, 200, and finally 300 times successively.
Each experiment is performed 10 times.

So if we increase each time the number of randomization (R) from one ex-
periment to another, this will lead to a database randomized more between the
two classes, so to successive transitions (class of data instances changes multiple
times). Such randomization allows us to prove that our FDCM, unlike the DCA,
does not depend on these class transitions and that it is able the improve the clas-
sification accuracy in such cases.

In all the mentioned databases, each antigen is unique, appearing only once.
However, in (Aickelin & Cayzer, 2005), it was proved that this is insufficient to
the functioning of the algorithm. This is overcome through the use of an antigen
multiplier which reflects the number of antigen copies produced.

For our simulations, each antigen is copied ten times using an antigen multi-
plier giving 9610, 7680, 7480, 7000, 3060 and 2670 antigen presentations for all
the mentioned data sets.

In order to determine the final class label of each antigen, an anomaly thresh-
old must be applied to the MCAVs. As shown in Chapter 3, the different thresholds
are calculated using Equation 3.12.

The threshold for classification is set to 0.3, 0.9, 0.6, 0.65, 0.2647 and 0.6 to
all the mentioned data sets. Items exceeding the threshold are classed as class 2,
with lower valued antigen labeled as class 1.

These classifications are compared with the labels presented in the original
data sets so the classification accuracy can be measured.

Results: Table 4.2 summarizes the different results relative to all the mentioned
databases. This Table presents a comparison between the DCA and our FDCM
in terms of Percent of Correct Classification (PCC) after comparing them with all
the original data sets.
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From Table 4.2, we can conclude that our fuzzy dendritic cell method has
given good results. In fact, by randomizing the values of R, the PCC of our FDCM
is better than the one given by DCA. Hence, such randomization of the values of
R generally affects badly the classification accuracy of the DCA, which is not the
case with our FDCM.

For instance, by applying the DCA to the Haberman’s Survival database and
with the variation of the different values of R, the PCC varies from 16,66% to
17,64%. Whereas, with our FDCM, the PCC varies from 82,02% to 93,8%. This
is explained by the appropriate use of the fuzzy set theory in the case of a random-
ized context.

Note that in the case of an ordered database (E1), the PCC of the DCA is gen-
erally better than the PCC of our FDCM (except for the PID database) since fuzzy
set theory is more appropriate to handle cases of randomization than ordered data
sets.

A comparison between our FDCM and the DCA in terms of PCC for all the
mentioned databases is illustrated in Figure 4.1.

From Figure 4.1 and Table 4.2, we can conclude that in most cases when the
context changes multiple times in a quick succession, it is more appropriate to
apply FDCM than the standard DCA since the former produces more accurate re-
sults.

Furthermore, regarding to the computational complexity, let us remind that the
computational complexity of the DCA is O(n2). In order to calculate it, the algo-
rithm is divided into two main parts: the detection phase, having a complexity of
O(n), where the context of each object is assigned and the analysis phase, having
a complexity of O(n2), where the MCAVs are generated.

The difference between the DCA and our FDCM resides in the detection
phase. Although our FDCM uses a fuzzy context assessment, the detection phase
keeps the same complexity of O(n). This is because our FDCM only uses elemen-
tary instructions of O(1). Hence, this allows the FDCM to have a computational
complexity of O(n2).

As we remark, our FDCM achieves the same computational complexity as the
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DCA even by adding the fuzzy technique and getting the min-max boundaries
generated by DCA which is another important characteristic of our method.

Figure 4.1: Comparing FDCM and DCA PCCs
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To summarize, with the variation of the parameter R, our fuzzy dendritic cell
method gives better results than the standard DCA in terms of classification accu-
racy without increasing complexity.

4.4 Conclusion
In this Chapter, we have outlined our proposed method: the FDCM. We have

thus presented the main variables and the major implemented programs. We have
also detailed the basic algorithms relative to our method.

Next, we have presented the experimental results obtained from several sim-
ulations which are based on different types of randomization. These experiments
show that our approach gives better results than the standard version of this method.
Note that the major results of this work are developed in (Chelly & Elouedi, 2010).



Conclusion

The classification procedure handled by the standard dendritic cell method in
danger theory is based on a crisp comparison between the semi-mature output
value and the mature output value generated by the algorithm. However, such
crisp separation affects badly the classification task. Another limitation of the
standard DCA is the fact of using imprecise terms such as “semi-mature” and
“mature”. In order to solve these issues, we propose to alleviate this crisp com-
parison as well as to handle this imprecision using the basics of fuzzy set theory.

In this master thesis, we have developed a fuzzy dendritic cell method (FDCM)
which is based on both the dendritic cell algorithm and the fuzzy set theory. This
hybridization allows the standard DCA to be more effective in terms of classifica-
tion accuracy in the case of disordered contexts.

At first, we have used the fuzzy set theory to smooth the abrupt separation be-
tween normality (semi-mature) and abnormality (mature), since there is no clear
boundary between the two contexts.

The second step was the description of the context of each object using linguis-
tic variables. Fuzzy subsets and the corresponding membership functions describe
the context of each object. In other words, ensuring the induction of the fuzzy set
theory.

Finally, we have built a knowledge base, comprising rules to support the fuzzy
inference.

In our work, we have performed simulations on several real databases obtained
from the U.C.I. repository in order to evaluate the performance of our fuzzy den-
dritic cell method comparing it with the standard DCA.
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Results of experimentations show that our fuzzy dendritic cell method per-
forms well in most cases. There is a significant improvement of classification
accuracy of FDCM, unlike the DCA, in the case of a high rate of class random-
ization.

Another important characteristic of our fuzzy dendritic cell method is its abil-
ity to increase the classification accuracy without increasing complexity even by
adding the fuzzy technique and getting the min-max boundaries generated by
DCA.

Finally, it is important to mention that regarding the encouraging results ob-
tained in this work, we could propose further works that may be done to improve
our method.

As future works, we intend to further explore this new instantiation of the
DCA. This investigation will involve an automatical generation of the weights
needed for the functioning of the FDCM since they are given by experts.

Another line of research could be the application of rough sets for the selection
of attributes. Moreover, since the DCA is applied only to problems with two
classes, we aim to extend the application area of this algorithm to problems with
multi classes. It would also be interesting to focus on the application of our FDCM
to different domains, especially to intrusion detection problem.
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Appendix A

Data bases used for simulations

A.1 Introduction
For making simulation, we have used these six two-class static databases: the

Mammographic Mass database, the Pima Indians Diabetes database, the Blood
Transfusion Service Center database, the Wisconsin Breast Cancer database, the
Haberman’s Survival database and the SPECTF Heart database (Asuncion & New-
man, 2007) to evaluate our method. These databases are presented in this ap-
pendix.

A.2 Mammographic Mass database
1. Title: Mammographic Mass Database

2. Sources:

(a) Original owners of database: Prof. Dr. Rudiger Schulz-Wendtland In-
stitute of Radiology, Gynaecological Radiology, University Erlangen-
Nuremberg Universittsstrae 21-23 91054 Erlangen, Germany.

(b) Donor of database: Matthias Elter Fraunhofer Institute for Integrated
Circuits (IIS) Image Processing and Medical Engineering Department
(BMT) Am Wolfsmantel 33 91058 Erlangen, Germany. matthias.elter@iis.fraunhofer.de
(49) 9131-7767327

(c) Date received: October 2007.
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3. Relevant Information:

This data set is used to predict the severity (benign or malignant) of a mam-
mographic mass lesion. It contains a BI-RADS assessment, the patient’s
age and three BI-RADS attributes together with the ground truth (the sever-
ity field) for masses that have been identified on full field digital mammo-
grams collected at the Institute of Radiology of the University Erlangen-
Nuremberg between 2003 and 2006. Each instance has an associated BI-
RADS assessment ranging from 1 (definitely benign) to 5 (highly sugges-
tive of malignancy) assigned in a double-review process by physicians.

4. Number of Instances: 961

5. Number of Attributes:
5 attributes + goal field = 6

6. Attribute selection and categorization:

* Attribute used to generate the PAMP and SS: Shape

* Attributes used to generate the DS: BI-RADS assessment, Age and
Margin

7. Weights used for signal processing:

PAMP SS DS
CSM 0 3 0

Semi-output 0 0 1
Mature-output -0.52 0 0.1

8. The anomaly threshold: 0.3

9. Class Distribution:
Benign: 516 (53.7%)
Malignant: 445 (46.3%)
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A.3 Pima Indians Diabetes database
1. Title: Pima Indians Diabetes Database

2. Sources:

(a) Original owners: National Institute of Diabetes and Digestive and Kid-
ney Diseases

(b) Donor of database: Vincent Sigillito (vgs@aplcen.apl.jhu.edu) Re-
search Center, RMI Group Leader Applied Physics Laboratory The
Johns Hopkins University Johns Hopkins Road Laurel, MD 20707
(301) 953-6231

(c) Date received: 9 May 1990

3. Relevant Information:

All patients in this database are females at least 21 years old of Pima Indian
heritage. ADAP is an adaptive learning routine that generates and executes
digital analogs of perceptron-like devices.

4. Number of Instances: 768

5. Number of Attributes:
5 attributes + goal field = 6

6. Attribute selection and categorization:

* Attribute used to generate the PAMP and SS: Age

* Attributes used to generate the DS: Plasma glucose concentration a 2
hours in an oral glucose tolerance test, Diastolic blood pressure (mm
Hg), Triceps skin fold thickness (mm) and 2-Hour serum insulin (mu
U/ml).

7. Weights used for signal processing:
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PAMP SS DS
CSM 2 2 1

Semi-output 0 3 0
Mature-output 1 0 -0.13

8. The anomaly threshold: 0.9

9. Class Distribution:
Tested negative for diabetes: 500 (65,1%)
Tested positive for diabetes: 268 (34,9%)

A.4 Blood Transfusion Service Center database
1. Title: Blood Transfusion Service Center Database

2. Sources:

(a) Original Owner and Donor Prof. I-Cheng Yeh Department of Informa-
tion Management Chung-Hua University, Hsin Chu, Taiwan 30067,
R.O.C. e-mail:icyeh ’at’ chu.edu.tw TEL:886-3-5186511

(c) Date Donated: October 3, 2008

3. Relevant Information:

This study adopted the donor database of Blood Transfusion Service Center
in Hsin-Chu City in Taiwan. The center passes their blood transfusion ser-
vice bus to one university in Hsin-Chu City to gather blood donated about
every three months. 748 donors are selected at random from the donor
database. These 748 donor data, each one included R (Recency - months
since last donation), F (Frequency - total number of donation), M (Mone-
tary - total blood donated in c.c.), T (Time - months since first donation),
and a binary variable representing whether he/she donated blood in March
2007 (1 stand for donating blood; 0 stands for not donating blood).

4. Number of Instances: 748

5. Number of Attributes:
4 attributes + goal field = 5
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6. Attribute selection and categorization:

* Attribute used to generate the PAMP and SS: F (Frequency - total num-
ber of donation)

* Attributes used to generate the DS: R (Recency - months since last
donation), M (Monetary - total blood donated in c.c.) and T (Time -
months since first donation)

7. Weights used for signal processing:

PAMP SS DS
CSM 2 2 1

Semi-output 0 3 0
Mature-output 1 0 0.02

8. The anomaly threshold: 0.6

9. Class Distribution:
He/She donated blood: 178 (23,8%)
He/She did not donate blood: 570 (76,2%)

A.5 Wisconsin Breast Cancer database
1. Title: Wisconsin Breast Cancer Database

2. Sources:

(a) Dr. William H. Wolberg (physician) University of Wisconsin Hospi-
tals Madison, Wisconsin USA.

(b) Donor: Olvi Mangasarian (mangasarian@cs.wisc.edu) Received by
David W. Aha (aha@cs.jhu.edu).

(c) Date: 15 July 1992.

3. Relevant Information:
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The database reflects a chronological grouping of data. This grouping in-
formation is the following:
Group 1: 367 instances (January 1989)
Group 2: 70 instances (October 1989)
Group 3: 31 instances (February 1990)
Group 4: 17 instances (April 1990)
Group 5: 48 instances (August 1990)
Group 6: 49 instances (Updated January 1991)
Group 7: 31 instances (June 1991)
Group 8: 86 instances (November 1991)
So the total = 699 points (as of the donated datbase on 15 July 1992).

4. Number of Instances: 699

5. Number of Attributes:
9 attributes + goal field = 10

6. Attribute selection and categorization:

* Attribute used to generate the PAMP and SS: Clump thickness

* Attributes used to generate the DS: Epithelial cell size, Cell shape,
Bare nuclei and Normal nucleoli

7. Weights used for signal processing:

PAMP SS DS
CSM 2 2 1

Semi-output 0 3 0
Mature-output 2 0 0.75

8. The anomaly threshold: 0.65

9. Class Distribution:
Benign: 458 (65.5%).
Malignant: 241 (34.5%).
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A.6 Haberman’s Survival database
1. Title: Haberman’s Survival Database

2. Sources:

(a) Donor: Tjen-Sien Lim (limt@stat.wisc.edu)

(b) Date: March 4, 1999.

3. Relevant Information:

The data set contains cases from a study that was conducted between 1958
and 1970 at the University of Chicago’s Billings Hospital on the survival of
patients who had undergone surgery for breast cancer.

4. Number of Instances: 306

5. Number of Attributes:
3 attributes + goal field = 4

6. Attribute selection and categorization:

* Attribute used to generate the PAMP and SS: Number of positive ax-
illary nodes detected

* Attributes used to generate the DS: Age of patient at time of operation
and Patient’s year of operation

7. Weights used for signal processing:

PAMP SS DS
CSM 2 2 1

Semi-output 0 3 0
Mature-output -0.56 0 0.1

8. The anomaly threshold: 0.2647

9. Class Distribution:
The patient survived 5 years or longer: 225 (73,5%)
The patient died within 5 year: 81 (26,5%)
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A.7 SPECTF Heart database
1. Title: SPECTF heart Database

2. Sources:

(a) Original owners: Krzysztof J. Cios, Lukasz A. Kurgan University of
Colorado at Denver, Denver, CO 80217, U.S.A. Krys.Cios@cudenver.edu
Lucy S. Goodenday Medical College of Ohio, OH, U.S.A.

(b) Donors: Lukasz A.Kurgan, Krzysztof J. Cios

(c) Date: 10/01/01

3. Relevant Information:

The data set describes diagnosing of cardiac Single Proton Emission Com-
puted Tomography (SPECT) images. The database of 267 SPECT image
sets (patients) was processed to extract features that summarize the original
SPECT images. As a result, 44 continuous feature pattern was created for
each patient.

4. Number of Instances: 267

5. Number of Attributes:
44 attributes + goal field = 45

6. Attribute selection and categorization:

* Attribute used to generate the PAMP and SS: F14S (count in ROI 14
in stress)

* Attributes used to generate the DS: F8S (count in ROI 8 in stress),
F13R (count in ROI 13 in rest), F13S (count in ROI 13 in stress), F15R
(count in ROI 15 in rest), F15S (count in ROI 15 in stress), F18S (count
in ROI 18 in stress), F20R (count in ROI 20 in rest), F20S (count in
ROI 20 in stress), F21R (count in ROI 21 in rest), F21S (count in ROI
21 in stress), F22R (count in ROI 22 in rest) and F22S: continuous
(count in ROI 22 in stress).

7. Weights used for signal processing:
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PAMP SS DS
CSM 2 2 1

Semi-output 0 3 0
Mature-output -1 0 1.9

8. The anomaly threshold: 0.6

9. Class Distribution:
Benign: 55 (20,6%)
Malignant: 112 (79,4%)

A.8 Conclusion
In this appendix, we have shown the description of the data sets which we have

been used in the simulation phase.
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