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Abstract

In semantic web environment, ontologies have become used to represent a domain of discourse
to facilitate knowledge sharing and information exchange. Many languages have been devel-
oped to represent ontologies, among them the web ontology language (OWL) which cannot
capture the uncertainty about the concepts in a domain. To address the problem of modeling
uncertainty in semantic web, we propose in this master thesis, a tool called BeliefOWL based
on an evidential approach. It focuses on translating an ontology into an evidential network
by applying a set of structural translation rules and then belief masses will be assigned to the
different nodes in order to propagate uncertainties. The originality of our contribution consists
in applying the Demspter-Shafer theory in two tasks: the ontology representation and reasoning.

Résumé

Dans le web sémantique, les ontologies sont utlisées pour représenter un domaine afin de fa-
ciliter le partage des connaissances et 1’échange de l'information. Beaucoup de langages ont
été développés pour représenter ces ontologies parmi lesquels on cite le langage OWL qui est
incapable de tenir compte de l'incertitude. Dans le but de traiter le probleme de modélisation
de cette incertitude dans le web sémantique, nous proposons dans ce mémoire un outil nommé
BeliefOWL qui est basé sur la théorie de I’évidence et qui cherche a transformer une ontologie
en un réseau évidentiel en appliquant un ensemble de regles structurelles, par la suite des masses
seront attribuées aux différents noeuds du réseau afin de permettre de réaliser une propagation.
L’originalité de notre contribution réside dans I'application de la théorie de 1’évidence dans
deux taches a savoir la représentation d’une ontologie et le raisonnement.
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Introduction

1.1 Motivation and Purpose

With the emergence of the semantic web, the vision to the web have changed. In fact
it becomes not only a way for interchanging documents but also a way for making
the information understandable by machines. The interchange of this information is
not so easy. The data is located in distributed and heterogeneous systems so the fo-
cus today is how to assure an information sharing and the integration between systems.

To make the information sharing and the communication between machines possible
and efficient, two main problems that can occur must be solved: the information re-
trieval and the interoperability (Wache et al., 2001). The former one consists in finding
the most suitable source containing the information needed whereas the latter can be
viewed as bringing together heterogeneous and distributed computer systems and make
the data well interpreted. In order to achieve semantic interoperability in an hetero-
geneous information system, the meaning of the information interchanged has to be
understood across the systems. Ontologies are required as the most important compo-
nent in helping to achieve the semantic integration interoperability and reconciliation.

Ontologies are structured in a formal vocabulary of terms describing the concepts re-
lated to a specific domain. Moreover an ontology specifies the relations existing between
these concepts. This taxonomy helps the applications to explore the content of the in-
formation shared. To represent this structure of concepts and make it understood by
machines, many languages have been developed among them the web ontology lan-
guage OWL (Antoniou and Van Harmelen, 2004). In addition to the static structure
of an ontology which is one of the first concerns of the ontology research, the ontology
reasoning is another important task that should be carried across an ontology enabling
systems to infer implicit knowledge.

OWL, developed as a vocabulary extension of the RDF (Resource Description Frame-
work), is a semantic markup language for publishing ontologies on the World Wide
Web. The OWL is based on crisp logic and is unable to handle incomplete or partial
information about the concepts or the properties related to a domain. Taking into
account the uncertainty aspect in an ontology representation and even in reasoning
seems to be an important problem to address. Many researchers applied uncertainty
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theories (probability theory, fuzzy sets, possibility theory...) to represent the ontol-
ogy and reason across it. Some of them have chosen to translate an ontology into a
Bayesian network as a formalism to capture the uncertain information in order to en-
able the inference later (Ding, 2005), (Yang and Calmet, 2005). This choice of Bayesian
networks is justified by the fact of structural similarity existing between an ontology
and a bayesian network as well as the probabilistic reasoning capability of this kind of
networks.

Most of the works are based on probability theory but the introduction of the Dempster-
Shafer theory and considering its advantages encourage some researchers to apply it in
the ontology research tasks such as in ontology mapping (Nagy et al., 2006), (Laamari
and Ben Yaghlane, 2007) but few are those who use it for ontology representation and
reasoning. At this stage, we are interested to use this theory and especially we are
encourage to work with the evidential networks which are viewed as effective and more
appropriate graphical representation for uncertain knowledge.

The main purpose of this master is to study the ontology representation approach based
on the evidential theory. This dissertation addresses the extension of OWL ontology
with belief functions as well as the translation of this ontology into an evidential network
in order to propagate beliefs later. It describes the design of our tool BeliefOWL as an
approach to handle the uncertainty inherent to the main ontology research tasks.

1.2 Master Contributions

Once we explore the background material of the ontology representation and reasoning
based on the probability theory and fuzzy sets theory, we will define the theoretical
aspect of our approach by addressing the issues that encourage us to propose our
BeliefOWL tool. This tool is able to extend an ontology with belief information and
to translate an ontology into an evidential network by applying a set of structural
translation rules. The different steps leading to our tool will be described in detail and
an algorithm will be presented as well as an illustrative application will be given.

1.3 Master Organization

In Chapter 2 we provide a brief introduction to the ontology research area in particular
the ontology representation, the ontology reasoning and the ontology mapping in order
to get a general idea of this area and have the knowledge of the basics of these tasks.
Our work is based on the ontology in particular those written with the OWL. For that
purpose a detailed description of this language will be given.

Chapter 3 is devoted to present the uncertainty field. It focuses especially on the pre-
sentation of the Bayesian network as a graphical model used in the semantic web to
facilitate the reasoning tasks later. In addition to that, we present in this chapter the
works dealing with uncertainty in the ontology representation and reasoning and using
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probability and fuzzy sets as an uncertainty approaches.

We present in Chapter 4 the motivations that incite us to propose our tool. We also
describe the different steps leading to the tool, how we include the uncertainty in on-
tology representation and ontology reasoning. We then propose our architecture and
our algorithm in addition to an example illustrating it.

Finally, Chapter 5 gives a summary of the results obtained in this dissertation and
suggests what direction future research could go.



1. Introduction




Web Ontology Preliminaries

2.1 Introduction

Day after day the field of ontology research is knowing changes. It is a dynamic domain
that grows and matures because the users’ needs are changing, the questions for which
the researchers are trying to find an answer to shifts as well. The issues and the first
challenges in the ontology research concerned at the beginning the theoretical aspect
but nowadays the focus is more oriented to the real-world and how the ontologies have
to be used in large-scale applications.

In (Noy and Klein, 2004), the authors traced the evolution of ontology research by
pointing that the first concern in this area was devoted to define the term ”Ontology”
and to specify the requirements that an ontology must satisfy. Later, the research fo-
cused on developing representation languages for the ontologies in order to represent
them and to enable the applications to explore the content of the information. Having
a static structure of an ontology represented by a specific language is not enough. The
need to do reasoning tasks across the ontology to infer implicit knowledge seems to be
a crucial interest in the ontology research and is one of the issue addressed in this area.
At this stage, the main focus is on how to manipulate a single ontology by representing
it formally and assuring reasoning tasks but with the appearance of a large number of
ontologies, the interchange and the communication between them is essential, for that
purpose many tools such as Glue (Doan et al., 2004), QOM (Ehrig and Staab, 2004),
Omen (Mitra et al., 2005)... have been developed to assure the alignment between the
ontologies which becomes one of the challenge addressed by the ontology research.

The aim of this chapter is to trace the evolution of the ontology research field by defining
the ontology concept as well as presenting the different ontology modeling languages.
A special concern will be devoted to the introduction of the Web Ontology Language
(OWL) which is considered as the most descriptive one and selected as the underlying
formal ontology language for our work. Inferring implicit knowledge and improving
systems by making them able to do reasoning tasks is one of the topic addressed in
this chapter. We will focus on the importance of the reasoning and the purposes of
handling it as well as the different reasoning tasks that can be held across an ontology.
In addition to these two ontology research’s axes, a brief introduction to the ontology
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mapping is given.

In this chapter, we will focus on the different steps of the evolution of the ontology
research. In section 2.2 we will introduce the notion of semantic web and we will give
the different definitions of the ontology concept as exposed in the literature, then in
section 2.3 the different languages used to represent ontologies will be presented by
concentrating especially on the OWL. Section 2.4 is devoted to expose the different
reasoning tasks that can be done across an ontology. Finally we will give a brief
presentation of ontology mapping in section 2.5.

2.2 Semantic Web and Ontology

2.2.1 Semantic Web

The current World Wide Web (WWW) is a syntactic web where the web pages are
designed to be read by humans and not by computer programs which search for the
information in response to users’ queries without processing the semantics of the in-
formation manipulated. Although the WWW helped in assuring information exchange
between applications but it still cannot assure the interoperation without some pre-
existing agreements. To solve this problem, the new generation of the web, the Se-
mantic Web, will add semantic information to the web resources in order to make their
content understandable by machines and to assure that software agents can read web
pages easily and carry out sophisticated tasks for users. In fact, ”the Semantic Web is
not a separate web but an extension of the current one, in which information is given
well-defined meaning, better enabling computers and people to work in cooperation”
(Berners-Lee et al., 2001).

The Semantic Web is an effective tool for globalizing knowledge representation and
sharing on the web. To create such an infrastructure, two important technologies for
developing the semantic web are used: XML (eXtensible Markup Language) and the
RDF (Resource Description Framework) where the XML allows users to annotate their
web pages by adding arbitrary structure without explaining the meaning which will be
expressed by RDF in the form of triples.

The Semantic Web can be viewed as a globally accessible database but with semantics
provided for information exchanged over Internet. To introduce the concept of ontology,
one of the basic component of the Semantic Web, let’s consider the following example.
Suppose that we have access to a variety of databases with information about students.
If we want to find a student with a particular identifier, his inscription number for
example, we need to know in each database the field representing this number to get
access to the student’s information. A problem may occur when the databases are not
using the same identifier. One of them uses the identity number to identify a student.
So a program that wants to use information across the two databases has to know that
the two terms are being used to mean the same thing, the same student in our case.
The solution is to create collections of information called ontologies. By the use of
ontologies, the computers are able to manipulate the terms in an effective way that is
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meaningful to the user.

With the emergence of the Semantic Web and the use of ontologies, the machines are
able now to process the information, to exchange the knowledge with other programs
and to answer users queries whose results do not reside on a single web page.

In this section, we gave a general overview of the Semantic Web. The basic components
of this infrastructure, namely the ontologies and the two technologies XML and RDF
will be described much more in detail in the next subsections.

2.2.2 Definitions of Ontologies

Many definitions have been given to the term Ontology because there is no universal
agreement on the meaning of it. The notion of ontology is a branch of philosophy
which considers the nature of being and existence. Later, ontology has been suggested
as a reusable model in the artificial intelligence to facilitate information exchange and
knowledge sharing.

According to (Gruber, 1993) “an ontology is an explicit specification of a conceptual-
1zation”. In this definition conceptualization characterizes an abstract model in which
the concepts related to a particular domain were identified and explicit specification
refers to an explicit definition of the different concepts, the relationships between them
and the constraints on their use related to the abstract model.

Another definition was given by (Borst et al., 1997) who considered an ontology ”as a
formal specification of a shared conceptualization” where formal refers to the fact that
ontology should be machine readable and shared reflects the notion that an ontology
contains knowledge used and reused across different applications.

Based on a technical view and following (Uschold and Gruninger, 2004), ” an ontol-
ogy represents many different kinds of things in a given subject area. These things
are represented in the ontology as classes (concepts) and are typically arranged in a
lattice or taxonomy of classes and subclasses. FEach class is typically associated with
various properties (slots, roles) describing its features and attributes as well as var-
ious restrictions on them (facets, role restrictions). An ontology together with a set
of concrete instances (individuals) of the class constitutes a knowledge base.

In (Ehrig and Sure, 2004), an ontology O is defined formally as a tuple:

O := (C, He, Re, Hg, 1, Rr, A)

This tuple consists of the following: Concepts C' are arranged in a subsumption hier-
archy Ho. Relations Ro exist between single concepts. Relations can also be arranged
in a hierarchy Hp. Instances I of a specific concept are interconnected by property in-
stances Ry. Additionally, one can define axioms A which can be used to infer knowledge
from already existing one.
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2.2.3 Categories of Ontology Application Scenarios

Ontology is a shared model containing vocabulary related to a specific domain and it
is used in order to facilitate the communication between people and applications. Four
main categories of ontology application scenarios have been identified by (Uschold and
Gruninger, 2004):

e Neutral Authoring: An organization can benefit greatly from non-interoperable
tools and formats to develop its own neutral ontology for authoring and then de-
velops translators from this ontology to the terminology required by the various
target systems. The advantages of this method are knowledge reuse, maintain-
ability and long term knowledge retention.

e Common Access to Information: To assure an interoperation and an informa-
tion sharing between the different agents, ontology can be used as agreed standard
to translate between the different formats and representations that evolved inde-
pendently. This kind of use of ontologies assure interoperability and makes the
use of the knowledge more effective.

¢ Ontology-Based Specification: There is a growing interest in the idea of ”On-
tology Driven Software Engineering”. The main idea is to create an ontology that
specifies the different things that the software system must address, then this on-
tology is used as a (partial) set of requirements for building the software. This
scenario ensures greater interoperation, facilitates the maintenance and reduces
costs.

e Ontology-Based Research: In this case, ontology is used as a repository where
the information is structured in order to facilitate search. This kind of use sup-
ports the organization and classification of repositories of information at a higher
level of abstraction than it is commonly used today. This scenario gives a better
access to the information.

2.3 Ontology Representation

Ontologies play a prominent role in helping applications to get access to the infor-
mation. In order to assure this, ontologies are supposed to be structured in a formal
vocabulary giving the possibility to the applications to explore the content of the in-
formation instead of just presenting it to humans.

In order to support the usage of the ontologies in many areas (e-commerce, search
engines, web service...), an ontology language OWL (Web Ontology Language) was
designed as a major formalism for the representation of the information particularly in
the semantic web. OWL is considered as a sophisticated language due to the fact that
it was not designed in a vacuum. In other words, this language was developed based
on several communities including the Description Logics, the RDF and the existing
ontology languages which have an influence on the OWL.



2.83. Ontology Representation 9

2.3.1 Influences on OWL

Each of the influences listed above (Description Logics, RDF and ontology languages)
will be described in detail in this subsection showing how these communities have an
effect on the design of the OWL to make it more expressive than its predecessors of
languages.

Description Logics

In recent years, Description Logics (DLs) inspire the development of ontology languages
and are considered as their logical basics and inference mechanisms. For that purpose,
we will define this family of formalisms by stating its origins and its basics, namely its
semantic and the reasoning mechanisms.

Description logics are a family of formalisms for knowledge representation and reason-
ing. In fact, they are used to provide descriptions of the world as well as to enable
applications to find implicit consequences of its explicitly represented knowledge.

The DLs are originated from semantic networks and frame-based systems which are two
non logic based approaches for representing knowledge. In fact, these network-based
systems aim at representing the domain of discourse by using a network which specifies
the set of individuals and their relationships. These systems were not satisfactory be-
cause of their lack of formal logic based semantics. For that purpose DLs are developed
to refer on the one hand, to concept description and on the other hand to the logic
based semantics (Nardi and Brachman, 2003).

To describe a domain, DLs use concepts, roles and individuals.

e Concepts denote classes of objects. There are two kinds of concepts: primitive
concept whose instances are determined entirely by the user who provides only
necessary conditions and defined concept which is specified by giving necessary
and sufficient conditions. A primitive concept will be introduced to the system
by writing an expression of the form <identifier> C <necessary conditions>. For
example the concept ”Person” can be a primitive concept and can be introduced
as a subclass of another primitive concept "Mammal” by stating that Person
C Mammal. When there is no specific necessary condition to be expressed, we
can use the concept THING which is a superconcept of all other concepts in the
hierarchy. For example we can state that Mammal — THING. On the other side,
NOTHING is used to express that a concept is a subconcept of all other concepts
in the hierarchy. Concerning the defined concepts, they are introduced in the
form of: <identifier> = <necessary and sufficient conditions>.

e Roles are used to express binary relationships between two concepts. One of the
key characteristic features of DLs resides in the constructs for establishing these
relationships. We distinguish between two restrictions: value restrictions and the
number restrictions where the former expresses the limitation of the value of the
role’s filler and the latter provides minimum and maximum on the number of
fillers of a role.
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e Individuals are generally asserted to be instances of concepts and have roles
filled with other individuals.

The semantics of a DL are expressed by an interpretation I = (A rr ) which consists
of a domain of values A ! and an interpretation function .f.. This function maps every
concept to a subset of A T and maps every role and attribute to a subset A I x A ! and
every individual to an element of A /. An interpretation I is a model of a concept C if
C! is non empty. An interpretation I is a model of an inclusion axiom C C D if C! C D',

The main inference task on concept expressions in DLs is subsumption typically ex-
pressed as C C D. Determining subsumption is the problem of checking whether the
concept denoted by D (the subsumer) is considered more general than the one denoted
by C (the submee). Another inference task on concept expressions is concept satisfi-
ability which is considered as a special case of subsumption and consists of checking
whether a concept does not necessarily denote the empty concept. The concept satis-
fiability can be reduced to subsumption by considering that the subsumer is an empty
concept which means that a concept is not satisfiable.

There are two main strategies used in description logics to calculate subsumption and
they are detailed in (McGuinness, 1996):

e The first approach, Structural Translation, is implemented in two phases: nor-
malization and comparison. In order to determine if A subsumes B, B is first nor-
malized. During normalization, a structured form is completed using information
that has been told to the system about B. This told information is used along
with rules of inference to try to derive additional information and to eliminate re-
dundant parts. Once B is normalized, the syntactic form of B is compared to the
syntactic form of A to check subsumption. The subsumption in this method will
easily be sound but hard to be complete due to high computational complexity.

e The second approach, Tableau Method aims to make the subsumption complete.
In this case, the basic inference consists on determining if a concept is inconsistent
or not, and relies on the observation that C is subsumed by D if and only if C
M D is not satisfiable, or C is not subsumed by D if and only if there exists a
model for C M D. This method tries to generate such a finite model by using an
approach similar to first-order tableaux calculus with a guaranteed termination.
If it succeeds then the subsumption relationship does not hold, if it fails to find
a model then the subsumption relationship holds.

Within a knowledge base, we distinguish between intensional knowledge (general knowl-
edge about the problem domain) which is usually thought not to change and extensional
knowledge (specific to a particular problem) which is usually thought to be dependent
on a single set of circumstances. A DL knowledge base usually includes two compo-
nents:

e TBOX (terminological KB) contains intensional knowledge in the form of a ter-
minology. It consists of concepts and roles defined for a domain and a set of
axioms used to assert relationships (subsumption, equivalence...). For example,
a woman can be defined as a female person by writing this declaration:
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Woman = Person M Female

e ABOX (assertional KB) contains extensional knowledge , specific knowledge of the
individuals of the domain of interest. It includes a set of assertions on individuals
by using concepts and roles in TBOX. For example to state that the individual
Jeanne is a female person we write:

Female M Person(Jeanne)

XML

HTML was designed as a language to be applied for defining the presentation of the
information on the web. But with the increase amount of information available on the
web, a need to define the structure of information was desired in order to facilitate
automated processing of web content. For that purpose XML has been developed and
considered as the basic language for the semantic web. It helps the users to define their
own tags to describe the structure of the web documents.

RDF

XML is a tag-based language, it describes the structure of the information exchanged
on the web but fails to define the semantics in a way understandable by machines. For
that reason, RDF has been proposed as a solution to fill up the hole. It is an XML based
language defined to add meta-information to the web documents to describe resources
(an entire web page, a part of a web page or an object that is not directly accessible via
the web). These resources are described through RDF graph composed of RDF triples
(subject, predicate, object) as shown in the figure where:

Predicate

Figure 2.1: RDF graph

e Subject is a resource described with or without URI (Uniform Resource Identi-
fier).

e Predicate defines attributes or relations used to describe a resource.

e Object is a resource described with or without URI or a literal (string or fragment
of XML)
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RDFS

It is built on top of the RDF to lift the limit of it. In fact RDF allows modeling objects
with defined semantics, in the sense that it models RDF classes and properties hier-
archically. It declares subclasses and subproperties relations and provides range and
domain constraints. RDFS provides main features for representing knowledge but it is
a limited language and a more expressive power is demanded to represent ontological
knowledge.

In (Antoniou and Van Harmelen, 2004), the authors listed the main features not ex-
pressed in RDF'S that should be taken into consideration by an ontology language:

e Local scope of properties: In RDFS we can not declare range restrictions applied
to some classes only.

e Disjointness of classes: Sometimes we wish to state that two classes are disjoint.
For example, the two classes bedAndBreakfast and hotel are disjoint but with the
RDFS we can only express the subclass relationships, e.g. bedAndBreakfast is a
subclass of accommodation.

e Boolean combination of classes: It allows to build new classes by combining other
classes using union, intersection and complement.

e Cardinality restrictions: It gives the possibility to place restriction on how many
distinct values a property may or must take. For example, we wish to state that
a destination has at least one accommodation and two activities.

e Special characteristics of properties: Giving some more information about proper-
ties is interesting to state that a property is transitive, unique or even the inverse
of another one.

OIL and DAML+OIL

OIL ! (Ontology Inference Layer) and DAML+ OIL 2 are richer languages developed
to handle with the limited expressivity of the RDF and RDFS. DAML~+OIL was devel-
oped as an extension of the RDF(S) with powerful concepts for describing ontologies.

Compared to RDF(S), DAML+OIL has some additional features. In fact it allows the
classes to be specified as logical combinations of other classes or as enumeration of
objects as well as making the description of the properties more specific (transitive,
symmetric, functional...), in addition to the possibility of adding cardinality restriction
to limit the number of statements with the same subject and predicate. But the major
extension over RDFS is that DAML4OIL is able to provide restrictions on properties
through the datatypes.

The figure above presents the most important markup languages illustrating the rela-
tionships existing between them. As shown, the OWL is an extension of the DAML+OIL

http:/ /www.ontoknowledge.org/oil /
*http://www.daml.org/2001/03/daml+oil-index
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and is built upon the RDF(S) with more descriptive power.

]OIL DAML+OIL OWL \
| RDFS |
| Others | RDF |

XML

Figure 2.2: XML Markup Languages

This language will be described in detail in the next subsection because it is the most
important one for the representation of ontologies and it is also the underlying formal
ontology language for our work.

2.3.2 Web Ontology Language

The OWL is developed by the World Wide Web Consortium (W3C) Web Ontology
Working Group and has to fit into the semantic web vision of existing languages: XML,
RDFS, DAML+OIL and to overcome the lack of their expressivity. In fact:

e XML provides a syntax for structured documents without semantics on the mean-
ing of these documents.

e XML Schema is used to restrict the structure of XML documents and extends
XML with datatypes.

e RDF is a data model for the objects ("resources”) and the relations between them
providing simple semantics for this data model.

e RDF Schema is a vocabulary for describing properties and classes of RDF re-
sources.

OWL was designed to add vocabulary about the properties and classes. In an OWL
ontology, we can describe classes, properties, individuals and axioms used to associate
class and property identifiers with specification of their characteristics. OWL has three
increasingly-expressive sublanguages: OWL Lite, OWL DL and OWL Full.

In the following we describe in detail the notion of classes, properties and individuals.

e Classes: A class provides a way to put together the different resources with
similar characteristics. Every OWL class is associated with a set of individuals
(class extension). These individuals in a class extension are called instances of
the class.

OWTL classes are described through class description that can be combined into
class axioms.
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— Class description: We distinguish different ways of describing a class. A
named class is defined by an identifier through 7"rdf:ID”.

<owl:Class rdf:ID="Accommodation” > ‘

An anonymous class is represented by placing constraints on the class ex-
tension. This second kind describes a class containing exactly the enumer-
ated individuals, or a class of individuals satisfying a property restriction or
even a class that satisfies boolean combinations of class descriptions.

* Enumeration: To enumerate the individuals that are instances of a class
we use “owl:OneOf”

<owl:Class>
<owl:oneOf rdf:parseType="Collection” >
<AccommodationRating rdf:ID="0OneStarRating” >
<AccommodationRating rdf:ID="#TwoStarRating” >
< Jowl:oneOf>
< /owl:Class>

x Property restrictions: It describes an anonymous class, namely a class of
all individuals that satisfy the restriction. It is introduced in the OWL
ontology through ”owl:restriction”.

We depict two forms of restrictions: value constraint and cardinality
constraint. The former puts constraints on the range of the prop-
erty. It can be introduced by (owl:AllValuesFrom, owl:some ValuesFrom,
owl:has Value).

<owl:Class rdf:ID="City” >
<rdfs:subClassOf>
<owl:restriction>
<owl:someValuesFrom rdf:resource = ”#LuxuryHotel” />
< Jowl:restriction>
< /rdfs:subClassOf>
< Jowl:class>

The latter puts constraints on the number of values that a property can
take. To allow only a specific number of values for a property, OWL
provides three constructors(owl:mazCardinality, owl:minCardinality,
owl:cardinality).
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<owl:Class rdf:ID="#Destination” >
<owl:Restriction >
<owl:onProperty>
<owl:objectProperty rdf:about="hasAccomodation” >

< /owl:onProperty>
<owl:minCardinality rdf:datatype="http://www.w3.org/

2001/XMLSchemaint” >1
< /owl:minCardinality >
< Jowl:Restriction>
< /owl:Class>
x Intersection, Union, Complement: An anonymous class can be described
by logical operations on classes by introducing (owl:intersectionOf,

owl:unionOf, owl:complementOf)

<owl:Class rdf:ID="#BudgetHotelDestination” >
<owl:equivalentClass >
<owl:Class >

<owl:intersectionOf rdf:parseType="Collection” >
<owl:Class rdf:about="#Budget Accommodation” />
<owl:Class rdf:about="#Hotel” />
< Jowl:intersectionOf >
< Jowl:equivalentClass >
< /owl:class >

— Class axioms: They give more information about the characteristics of a
class. OWL contains three language constructors for combining class de-
scriptions into class axioms: "rdfs:subClassOf” (the class extension of a class
description is a subset of the class extension of another class description)

<owl:Class rdf:ID="Sunbathing” >
<rdfs:subClassOf >
<owl:Class rdf:about="#Relaxation” >

< /rdfs:subClassOf>
< Jowl:Class>

owl:equivalentClass (a class description has exactly the same class extension
as another class description) and owl:disjointWith (a class extension of a
class description has no members in common with the class extension of

another class description)

<owl:Class rdf:ID="Hotel” >
<owl:disjoint With>
<owl:Class rdf:about="#Campground” >
< /owl:disjoint With>
< /owl:Class>
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e Properties: Two main categories of properties can be defined: objectProperties
(owl:objectProperty) that link individuals to individuals and dataTypeProperties
(owl:dataTypeProperty) which link individuals to data values. Property axioms
can be used to define additional characteristics of properties.

The following constructors supported by OWL, allow to define property axioms.

— RDF Schema constructs: We note rdfs:subPropertyOf an axiom to arrange
properties in a hierarchy and mention that a property is a subproperty of
another one. In addition to this axiom, rdfs:domain is another property
axiom that can be defined to link a property to a class description asserting
that the subjects of the property must belong to the class extension of the
mentioned class description. Finally, rdfs:range is defined to link a property
to either a class description or a data range.

<owl:ObjectProperty rdf:ID="hasContact” >
<rdfs:range rdf:resource="#Contact” >
<owl:domain rdf:about="#Activity” >

< /owl:ObjectProperty>

— Relations to other properties: We distinguish other constructors used to re-
late two properties. owl:equivalentProperty stating that two properties have
the same property extension and owl:inverseOf defining inverse relation be-
tween properties (in both directions from domain to range or from range to
domain)

<owl:ObjectProperty rdf:ID="hasActivity” >
<owl:inverseOf rdf:resource="#isOffered At>
<rdfs:range rdf:resource="#Activity” >
<owl:domain rdf:about="#Destination” >

< Jowl:ObjectProperty>

— Global cardinality constraints on properties: There exists property axioms
that specify restrictions on property cardinality such as owl: Functional Property
defines that a property can have only one value y for each instance x and
owl:InverseFunctional Property determines that the object of a property state-
ment uniquely determines the subject (some individual).

<owl:FunctionalProperty rdf:ID="hasZipCode” >
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchemaint” />
<rdf:type rdf:resource="http://www.w3.0rg/2002/07 /owlDatatypeProperty” />
<rdfs:domain rdf:resource="Contact” />

< /owl:FunctionalProperty >

— Logical characteristics of properties: To describe logical features on proper-
ties, one can introduce the following property axioms: owl: Transitive Property
and owl:SymetricProperty.
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e Individuals: An individual is introduced by declaring it to be a member of a
class. To tie an individual to a class we use rdf:type. Some constructors can be
used to state the identity of individuals: owl:sameAs (used to equate individuals
defined in different documents to one another), owl:differentFrom (used to state
that two references refer to different individuals) and owl:allDifferent (used to
define that a list of individuals are all different)

<AccommodationRating rdf:ID=""ThreeStarRating” >
<owl:differentFrom >
<AccommodationRating rdf:ID="TwoStarRating” >
<owl:differentFrom rdf:resource="#OneStarRating” />
<owl:differentFrom rdf:resource="#ThreeStarRating” />
<AccommodationRating >
< Jowl:differentFrom >
< /AccommodationRating >

We will be interested in this dissertation on the classes and the constructors related to
them, in particular on the named classes introduced in an ontology by "rdf:ID” and the
anonymous one described by logical operators (”owl:intersectionOf”, ”owl:unionOf”)
and the one described through constructors like ( “rdfs:subClassOf”, ”owl:equivalentClass”,

“owl:disjoint With”).

2.4 Ontology Reasoning

Ontologies are finding, more and more, their ways in many applications such as e-
commerce (McGuinness, 1999), search engines and grid services. Not only they serve
as the foundation of the semantic web, but also they are applied in knowledge manage-
ment systems, information integration...

In fact an ontology is not just used to build a static structure, a taxonomy where
different concepts are interrelated to each other but to enhance systems as well with
reasoning tasks and to improve queries possibilities in order to infer implicit knowledge.
Answering queries over ontology classes and instances helps to find more general classes
and to retrieve individuals that match to a given query.

2.4.1 Purposes of Reasoning

We mean by reasoning over an ontology any mechanism for making explicit a set of
facts that are implicit in an ontology. Many purposes incite to do reasoning tasks, we
single out the most important ones:

e Validation: As mentioned earlier, an ontology is a representation of the domain
that we are modeling. To get a coherent representation and a correct one, an
ontology must be valid. Reasoning is very important for validation and it is done
for example through a consistency checking which consists on verifying that the
ontology is modeling correctly the domain.
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e Analysis: Once we are sure that the ontology is valid and it is a well representa-
tion of the domain of discourse, we can reason over it by deducing facts about the
domain which help to collect new information and to infer implicit knowledge.

2.4.2 Reasoning Tasks

Many ontology reasoning tasks can be done over an ontology. Among them we mention:

e Ontology consistency: Ontology can not be treated as static and the knowl-
edge represented in an ontology should not be considered as fixed because due
to changes and modifications that can occur. These modifications concern the
domain representation, correction of the design and change in the user’s require-
ment. So these update can change an ontology from a consistent state to an
inconsistent one.

A consistency state should be assured by having reasoners able to detect and to
resolve inconsistency. In (Haase and Stojanovic, 2005), the authors distinguish
three forms of ontology consistency: structural consistency, logical consistency
and user-defined consistency.

— Structural consistency: This notion of consistency ensures that the ontology
conforms to the ontology language constraints imposed by this language.
Structural consistency can be enforced by verifying a set of structural con-
ditions related to the ontology language in use. As an example of structural
conditions we can state ”The complement of a class must be a class”.

— Logical consistency: An ontology is logically consistent if it does not contain
contradicting information, it conforms to the underlying formal semantics of
the ontology language.

— User-defined consistency: A lack of definitions of consistency may be not
captured by the ontology language which lead to additional conditions de-
fined explicitly by some applications or users to assure the ontology consis-
tency. As an example users could require that classes can only be defined as
a subclass of at most one of other class.

e Concept satisfiability: It is another typical reasoning task. It verifies whether
a concept does not necessarily denotes the empty concept.

e Concept subsumption: One of the basic inference task is concept subsump-
tion. The aim of a subsumption is to check whether a concept (the subsumer)
is considered more general than another one (the subsumee). In other words,
"subsumption checks whether the first concept always denotes a subset of the set
denoted by the second one”.

e Concept equivalence: A concept A is equivalent to concept B if A and B
subsume each other.

e Concept disjointness: Two concepts are disjoint if they don’t have a common
instance.
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To assure the tasks listed above, a variety of reasoners exists. Among them, we mention:
FACT++, RACER, PELLET.

o FACT++ 3: It is the new generation of the well-known FACT OWL reasoner. It
uses the established FACT algorithm but with a different internal architecture.
It is implemented using C+-+.

e RACER *: It is an optimized tableau reasoner for the DL SHIQ(D). Besides basic
reasoning tasks as satisfiability and subsumption, it offers the possibility to answer
to queries. It is implemented in the Common LisP Programming Language.

e PELLET®: It is a Java based OWL DL reasoner. It provides functionality to
validate ontology species, check consistency of ontologies, classify the taxonomy,
check entailments and answer queries.

2.5 Ontology Mapping

Ontologies are considered as a key factor to enable interoperability among heteroge-
neous systems and semantic web applications. In fact tasks are located on distributed
and heterogenous systems that demand support from more than one ontology. To as-
sure the communication between these information sources, a mapping between their
ontologies must be built.

Ontology mapping, also called ontology alignment is defined as “the task of establishing
a collection of binary relations between the vocabulary of two ontologies.” (Kalfoglou
and Schorlemmer, 2003)

According to Ehrig and Staab, the mapping can be defined more formally by the fact
of "Given two ontologies O1 and Oz, mapping one ontology onto another means that
for each entity (concept C, relation R, or instance 1) in ontology O1, we try to find a
correspondence entity which has the same intended meaning in ontology Oy ”(Ehrig and
Staab, 2004).

2.5.1 Categories of Ontology Mapping

Depending on the application to be held, the authors in (Choi et al., 2006), depicted
three main categories for ontology mapping:

e Mapping between an integrated global ontology and local ontologies:
In this case the global ontology contains a shared vocabulary for the specification
of the semantics and all the local ontologies are related to the global one. This
category maps a concept found in one ontology over other ontologies.

3http://owl.man.ac.uk/factplusplus
“http://www.racer-systems.com
http://www.mindswap.org/2003/pellet /index.shtml
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e Mapping between local ontologies: In this category each information source
is represented by its own ontology. Each source can be developed without respect
to other sources. In this kind of mapping changes over sources are simple and
can be done easily.

e Mapping in ontology merge and alignment: In this case, the ontology map-
ping establishes correspondence among local ontologies to be merged or aligned,
and determines the sets of overlapping concepts, synonyms, or unique concepts
to those sources.

2.5.2 Ontology Mapping Process

In (Ehrig and Staab, 2004), the ontology mapping process is introduced. It subsumes
all the mapping approaches as presented on Figure 2.3. This process has as input
two ontologies to be mapped. In the following we describe each step mentioned in the
process.

Iteration @ ﬂ‘
B

Similarity Inter -

Computation pretation

J k Similarity J

Aggergation Output

@ Feature
@ Engineering

Search Step

Input
P Selection

Figure 2.3: A Canonical Mapping Process Inspired by CRISP-DM.

1. Feature engineering: The initial representation of ontologies are transformed
into a format more adequate for the similarity calculations.

2. Selection of next search steps: A restricted subset of candidate concepts pairs
is chosen in order to compute the similarity.

3. Similarity computation: Determination of the similarity values between can-
didate mappings based on their definitions in ontologies.

4. Similarity aggregation: The aggregation of the different similarity values for
one candidate pair into a singled aggregated similarity value.

5. Interpretation: Derives mapping between entities using for that the individual
or aggregated similarity values.

6. Iteration: Several algorithms perform an iteration over the whole process in
order to bootstrap knowledge.
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In this master, we will focus on the following points:

e Concerning the ontology engineering tasks, we concentrate on the ontology rep-
resentation and ontology reasoning. We will consider the ontologies written in
OWL language because it is the most sophisticated one.

e A special focus will be devoted to some of the OWL constructors especially those
related to the classes of an ontology.

e We will be interested in outlining the similarities existing between the OWL
ontology and the graphical models used for representing domains of discourse.

2.6 Conclusion

In this chapter we presented in detail the ontology research area which is knowing evo-
lution day after day. We focused on three main concerns: the ontology representation
by defining the main languages used to represent the ontology and in particular the
OWL, the ontology reasoning by defining the main reasoning tasks that can be held
across the ontology and finally we gave a brief introduction to the ontology mapping.
OWL is a sophisticated language but is unable to represent partial information, so
dealing with uncertainty for representing ontologies is an issue to be addressed. Taking
into account the uncertainty aspect and its importance in the semantic web field will
be discussed in detail in the next chapter.
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Uncertainty for the Ontology
Research

3.1 Introduction

The new vision of the web aims at enabling applications to share information which is
structured in a machine understandable way. To fulfill this task, ontologies have proved
to be a powerful tool and a successful one to capture the knowledge about concepts and
their relations. As mentioned in chapter 2, many ontology definition languages have
been developed to define ontologies in a formal way. Among them we mentioned the
OWL based on crisp logic where a sentence in OWL is either true or false and nothing
in between. However, real domains contain uncertainty knowledge or imprecise infor-
mation. Taking into account these uncertainties in the ontology is crucial.

This chapter is devoted to the uncertainty for the web ontology language. It concen-
trates on describing some works proposed for extending OWL web ontology language
with uncertainty theories (probability theory and fuzzy sets theory). Some works do
not focus only on this extension but try also to give an approach for the construction
of a graphical model showing how the uncertain information is represented in order to
do reasoning tasks later.

This chapter is organized as follows: We first introduce the different models used to
express uncertainty (section 3.2), a special concern will be devoted to the probabilistic
graphical models (section 3.3). A description of some works extending OWL web
ontology language is given in section 3.4 and section 3.5 where the former concentrates
on those dealing with the probability theory and the latter with the fuzzy sets theory.

3.2 Models for Handling Imperfect Knowledge

In (Smets, 1997), the author considers imperfection as the most general label that
includes imprecision, inconsistency and uncertainty which are the major forms of im-
perfect data.

Focusing on the main differences between these terms, Smets precises that imprecision
and inconsistency are related to the content of information whereas the uncertainty is

23
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induced by lack of information.

In fact, imprecision ”“covers cases where the value of a variable is given but not with
the precision required” (Smets, 1991). We note two main categories of imprecision: im-
precision without error and imprecision combined with error. In the former, we evoke
vagueness (referring to something not clearly explained or expressed that can be un-
derstood in different way) and missing data (something which is lost, not present). In
the latter, the data can be incorrect, inaccurate or invalid. The second aspect of im-
perfection, inconsistency, describes information with parts that are contradicting each
other.

Finally, uncertainty “is partial knowledge of the true value of the data. It results in
ignorance (etymologically not knowing). It is essentially, if not always, an epistemic
property induced by a lack of information. A major cause of uncertainty is impreci-
sion in the data”(Smets, 1997). One can distinguish between objective and subjective
uncertainty. The objective uncertainty is linked to the information itself whereas the
subjective one depends on the observer’s opinion about the true value of the data.

The imperfection with its various aspects (imprecision, inconsistency and uncertainty)
must be taken into account to guarantee a complete representation and an accurate
one of the real world. For this purpose, a model must be used to represent imperfect
knowledge. An appropriate one has to be chosen carefully not in a random way because
every context has its own model representing it.

In the last years, many new models have been developed to deal with imperfection. Al-
though the well-known one, the probability theory, is successful in many applications,
it is not the unique one that can cope with all the aspects of imperfection. Among these
models to handle the imperfect knowledge - in addition to the probability theory -we
mention the theory of belief functions (Shafer, 1976) proposed to handle uncertainty,
the theory of fuzzy sets (Zadeh, 1978) and the theory of possibility (Dubois and Prade,
1988) which are devoted to model imprecision.

In this master, we will use the theory of belief functions as a model to cope with
uncertainty in ontology modeling and reasoning. The basic concepts of this theory will
be presented in the next chapter.

3.3 Probabilistic Graphical Models

As mentioned before, we are interested in modeling ontologies taking into account the
uncertain information. To assure this, a formalism should be used to capture the in-
formation, make it more explicit and represent it in order to enable ontology reasoning
tasks later.

As a formalism, many researchers have suggested graphical models. A graph model
is defined as a mathematical structure that specifies the different connections between
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the variables. It is considered also as a picture that provides an intuitive description of
the problem. Graphical models are powerful in representing problems by transforming
the complex one into an easily, clear and well understood representation.

A well-known graphical model, the Bayesian network has been used so much for rep-
resenting uncertain knowledge. A detailed description of this network will be given in
the next subsections.

3.3.1 Bayesian Network Definition

The Bayesian networks, also called Bayesian belief networks, belief networks or proba-
bilistic causal networks, are widely used for representing knowledge under uncertainty
(Pearl, 1988). Before defining the Bayesian networks formally, some basic concepts
from graph theory are reviewed.

A graph G is a pair (V,E) where V = {X},...,X,,} is a non-empty finite set of variables,
called wvertices or nodes and E is a set of some pairs of nodes in 'V called edges.

We distinguish between undirected graph and directed graph. The former is a graph
where an arc is drawn between two nodes without a causality meaning between the
two of them and the latter is a graph where an arc from one node to another can be
informally interpreted as indicating that the first node causes the second. This kind of
graphs are more appropriate for representing conditional relations.

Among the directed graphs, we mention the DAG (directed acyclic graph) which is a
directed graph without any cycles (a cycle is defined as a path starting and ending with
the same node).

These elements facilitate to define the Bayesian networks. A Bayesian network is a
graph where:

e A set of random variables makes up the nodes of the network.
e A set of directed links connects pairs of nodes.

e Each node has a Conditional Probability Table (CPT) that quantifies the effects
that the parents have on the node.

e The graph is a DAG.

In addition to this definition provided by (Russel and Norvig, 1995), the Bayesian net-
work can be viewed as a graph representing two major information: a qualitative infor-
mation and a quantitative one (Williamson, 2005). Williamson considers the Bayesian
network as a graph which consists of a qualitative component and a quantitative one.

e The qualitative component is a DAG G = (V,E) where V and E are respectively
the vertices and directed edges in the graph.
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e The quantitative component contains a set of probability specifications P. For
each variable X € V, P specifies the probability distribution of X.

Each of these two components will be detailed in the following.

3.3.2 Qualitative Level

The qualitative level describes how the information is structured on a Bayesian net-
work. In fact, the information is represented by a DAG where the nodes correspond
to variables and the edges reflect the existence of direct causal influences between the
linked variables.

Evidences

Evidence is information about a certain situation via observation. A node is an evidence
node if the variable represented by this node is observed. There are three types of
evidences that can be applied to a Bayesian network:

e Hard Evidence: It is an instantiation of a variable X; (with X; = x;). It means
that a node X; is instantiated to a particular state x; with a probability value
equal to 1 and with a probability value of 0 in all other states (Butz and Fang,
2005).

e Soft Evidence: It means that E # e. In other words, the set E of variables does
not take on value e (Butz and Fang, 2005).

e Virtual Evidence: It is the likelihood of a variable’s distribution. The likelihood
is presented by the probability of observing X; being in state x; if its true state
is 2 (Ding, 2005).

d-separation

Interdependencies between variables in a Bayesian network can be determined by the
network topology. It is illustrated by the notion of d-separation which shows how a
change of certainty in one variable may change the certainty for other variables. We
depict three types of connections in the Bayesian networks: serial connection, diverging
connection and converging one as shown in the following figure.
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Figure 3.1: Serial, diverging and converging connections in a DAG

e Serial connection: The influence of an evidence e can be transmitted unless
any variable in the connection is instantiated. (X; and X3 are d-separated by
Xs)

e Diverging connection: The influence of an evidence e can only be transmitted
to the parents of X7 unless its state is known.

e Converging connection: The influence of an evidence e can only be transmitted
to the parents of X if either X or one of its descendants has received an evidence
(is instantiated).

If two nodes X and X5 are d-separated by a set of variables, then a change of certainty
of X1 have no impact on the belief of X5. In other words, X; and X, are independent
of each other given the set of variables. So the belief on a node X is only influenced
by its parents, its children, and all the variables sharing a child with Xj.

3.3.3 Quantitative Level

We focused on the previous subsection on the network structure, how the information
is structured (the variables and the relations between them). The quantitative level
describes how the variables in a Bayesian network are related to each other quantita-
tively through the probability distributions (prior and conditional).

Prior Probability

The prior probability can be viewed as a subjective assessment of an expert. It de-
scribes what is known about a variable X in the absence of any other evidence.

The prior probability of a variable X independent on any other variables is expressed
as P(X). The prior probability of a set of variables X7,...,X,, in a conjunction is rep-
resented as P(X7,...,X,,) and expressed by the joint probability distribution (JPD) of
these variables.
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Conditional Probability

Conditional probabilities are used when some evidence has an influence on the variables
of a Bayesian network. If we have two variables X and Y and X depends on Y then the
conditional probability is written as P(X | Y) which can be expressed by the application
of the Bayes’ theorem as:
— PYX)P(X)

P(X | Y) = Z0P0PCO
In order to represent the quantitative information of P(X | Y), the Conditional Probabil-
ity Table (CPT) is introduced and describes the uncertainty of the causal relationships.
A conditional independence assumption is made for the Bayesian networks:

P(X; | m, S) = P(X; | m)

where S is any set of variables excluding X;, m; and all descendants of Xj;.

Under this assumption, the graphical structure of the Bayesian network allows a rep-
resentation of interdependencies between variables. The JPD introduced in the prior
probability subsection can be obtained through multiplying the conditionals of each
variable as follows:

P(X1,....X,) = P(X1,....X5—1)...P(X2 | X1)P(X7)
This distribution can be formulated by applying the following chain rule:
P(Xl, N Xn) :Hi P(XZ ’ Pa(Xi))

where Pa(X;) is the parent set of X;.

3.3.4 Bayesian Reasoning

The main purpose of constructing a Bayesian network is to use it for reasoning, by
computing the posterior probability distribution for query variables by given observa-
tions. There are two main types of BN inference tasks: belief updating (also called
probabilistic inference) and belief revision (MAP explanation)(Guo and Hsu, 2002).
These tasks start with evidence e but differ on what are to be inferred.

e Belief updating: Its objective is to calculate the posterior probability P(X | E)
for query nodes X given some observed values of evidence node E.

e Belief revision: Its aim is to find the most probable instantiation of some
hypothesis variable given the observed evidence. Belief revision for the case when
the hypothesis variables are all non-evidence nodes is known as most probable
explanation (MPE). An explanation for the evidence is defined as a complete
assignment {X; = z1,...,X,, = x,} that is consistent with evidence E. Computing
a MPE means finding an explanation such that no other explanation has higher
probability.

Researchers have developed exact algorithms and approximate ones to these reasoning
tasks. A brief overview is given below and for a detailed survey readers may refer to
(Guo and Hsu, 2002).
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e Exact Reasoning: The approaches of exact reasoning are based on exploration
of the causal structures in Bayesian networks to assure an efficient computa-
tion. There are various categories of exact inference algorithms. Among them we
mention: the polytree algorithm (Pearl, 1988) which is based on local message
passing and works for polytrees (single connected BNs). This algorithm is exact
and its complexity is polynomial. The polytree algorithm has been extended to
work for multiply connected with additional processing: the clustering. It trans-
forms a multiply connected network into a clique by clustering the triangulated
moral graph of the underlying undirected graph, then performs message propa-
gation over the clique tree (Lauritzen and Spiegelhalter, 1988). The algorithm’s
complexity is exponentional in the size of the largest clique of the transformed
undirected graph.

e Approximate Reasoning: Faced with the problem of applying the exact algo-
rithms with large complex networks, approximate inference algorithms have been
proposed. They aim at giving fast, accurate approximations to posterior proba-
bilities in Bayesian networks by reducing the time and space complexity. We list
some of the approximate reasoning algorithms: stochastic simulation algorithm
and loopy belief propagation.

3.3.5 Features of Bayesian Networks

The Bayesian networks possess the following features (Bruyninckx, 2002):

e Counsistency: The reasoning results in Bayesian networks do not change and do
not depend on how the available information is processed.

e Unique: Bayesian networks lead to unique conclusions. From the prior knowl-
edge, only one result can be obtained.

Another features have been selected. They underly the major capabilities of the
Bayesian networks, what they can offer to the user. In (Glymour, 2001), three utilities
are mentioned:

e Predication: The use of bayesian networks for predication is clear due to the
fact that they can do forward reasoning.

e Control: It is referred also as diagnosis. The underlying technique is backward
reasoning.

e Discovery: The structure of the network for representing a domain application
can be discovered from experiments, observations, data and backward knowledge.

3.4 Probabilistic Web Ontology Languages

To handle uncertainty in semantic web, two different directions of researches exist. The
first carries about representing probabilistic information using an OWL or RDF(S)
ontology by proposing a special vocabulary for representing this kind of information.
In this category we will be interested in presenting Fukushige’s approach (Fukushige,
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2005). The second direction of works concerns those interested in uncertainty modeling
and reasoning by extending DLs with Bayesian networks. It includes frameworks that,
in addition to representing probabilistic information, they use a graphical model to do
reasoning tasks. We will present the following frameworks:

e BayesOWL (Ding, 2005): It augments and supplements OWL for representing
and reasoning with uncertainty based on Bayesian networks.

e OntoBayes (Yang and Calmet, 2005) : It uses OWL as the underlying ontology
modeling language and extends it with additional annotations according to the
semantics of the Bayesian networks.

e PR-OWL (Costa et al., 2005): It extends OWL by using multi-entity Bayesian
network.

e OWL-QM (Pool et al., 2005): It extends OWL to support the representation of
probabilistic relational models (PRM).

These different researches are the main focus of this section.

3.4.1 BayesOWL
Definition

BayesOWL (Ding, 2005) is a probabilistic framework proposed to deal with uncertainty
in the ontology engineering tasks (ontology modeling, ontology reasoning, ontology
mapping). This framework has been used first in a single ontology showing how to rep-
resent uncertainty knowledge by translating an ontology into a Bayesian network and
how to support ontology reasoning tasks across ontologies as probabilistic inferences.
To guarantee an interoperability between applications and an information sharing, un-
certainty is becoming more prevalent in concept mapping between two ontologies. For
this purpose a methodology based on BayesOWL was suggested for automatic ontology

mapping.

Objectives

The proposed framework tried to overcome some issues that can occur during the on-
tology engineering tasks (Ding et al., 2005).

e In ontology modeling, one can be interested not only in knowing if a class A is a
subclass of B but also to have information about the degree of overlap or inclusion
between the two classes.

e In ontology reasoning, the main problems to be solved are how close two concepts
are to each other and the degree of similarity between them even if they are
not subsumed by each other. In addition to that, another issue may occur on
how to improve the over generalization caused by inputting noisy and uncertain
description to an ontology reasoner.
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e Dealing with uncertainty in concept mapping between ontologies is crucial, in fact
a concept defined in one ontology can only find partial matches to one or more
concepts in another ontology.

To overcome these issues and to deal with uncertainty, BayesOWL was suggested as a
framework that converts an OWL ontology into a Bayesian network.

The choice of this probabilistic model is justified by two main reasons:

- It is an efficient model to enable probabilistic reasoning capability because the Bayesian
networks support any inference in the joint space due to the joint probability distribu-
tion.

- The DAG of a Bayesian network and the RDF graph of an OWL ontology are simi-
lar. In fact both of them are directed graphs and direct correspondence exists between
nodes and arcs (Ding et al., 2005).

The framework

First, BayesOWL is proposed to address representation and reasoning with uncertainty
within a single ontology.

A- Representation

The ontology is extended by additional classes to markup probabilistic information.
Then, a directed acyclic graph is constructed from the modified ontology. Finally, once
the network structure is obtained showing the different nodes and the relations between
them, conditional probability tables are built for each node.

In the following we describe each of these steps in detail.

1. Encoding probability in ontology

Web ontology language OWL is based on crisp logic and it can not handle the
uncertainty aspect. To add this uncertain information, ontology has to be rep-
resented as probability distributions (prior probability, conditional probability),
referred also as probabilistic constraints.

In (Ding and Peng, 2004), the authors provided a solution to make these proba-
bilistic constraints expressed in the form of owl statements. In fact classes in an
ontology will be considered as random variables of two states (True and False).
For example, a class A will be treated as a random binary variable of two states a
and a. P(A=a) is interpreted as the prior probability that an arbitrary individual
belongs to class A and P(a|b) as the conditional probability that an individual of
class B also belongs to class A.

These two kinds of probabilities are encoded by adding two owl classes ”Prior-
Prob” and ”CondProb”. A prior probability is defined as an instance of class
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”PriorProb” which has two properties "hasVariable” and “hasProbValue”. A
conditional probability is defined as an instance of class "CondProb” which has
three properties “has Condition”, "hasVariable” and "hasProbValue”.

. Structural translation rules

We distinguish two main aspects in a Bayesian network: the qualitative aspect
and the quantitative one. In this subsection, we will focus on the qualitative
level, i.e. how the network is constructed. In fact the ontology is converted into a
network structure (a directed acyclic graph) by following set of structural trans-
lation rules.

The general principle underlying these rules is that all classes specified as ”subject”
and “object”’ in RDF triple are translated into nodes in the Bayesian network
and if the two classes are related by ”a predicate” then an arc is drawn between
the two nodes.

Two kinds of nodes are represented in a DAG: Concept nodes for concept classes
and L-nodes which are created during the translation modeling relations between
the class nodes that are related by OWL logical operator.

The set of structural translation rules proposed by (Ding et al., 2004) focuses on
class axioms (defined by rdfs:subClassOf, owl:equivalentClass and owl:disjoint With)
and logical relations among the concept classes (defined by owl:unionOf, owl:inter-
sectionOf, and owl:complementOf).

These rules are summarized as follows:

e Every concept class is mapped into a binary variable in the Bayesian network.

e Constructor "rdfs:subClassOf” is represented by a directed arc from the
parent super class node to the child subclass node.

e A concept class C defined as the intersection of concept classes C;(i=1,- - - ,n)
using constructor “owl:intersectionOf” is mapped into a subnet in the trans-
lated Bayesian network with one converging connection from each C; to C
and one converging connection from C and each C; to an L-Node called
LNodelntersection.

e A concept class C defined as the union of concept classes C;(i= 1,---n)
using constructor “owl:unionOf” is mapped into a subnet in the translated
Bayesian network with one converging connection from C to each C; and
one converging connection from C and each Cj; to an L.-Node called LNode-
Union.

e If two concept classes C7 and Cy are related by constructors “owl:comple-

0

mentOf”, ”owl:equivalentClass” or "owl:disjoint With”, then an L-Node (na-
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med LNodeComplement, LNodeEquivalent, LNodeDisjoint, respec-
tively) is added to the translated Bayesian network, and there are directed
links from C; and Cy to this node.

3. CPT construction

In this subsection, we will focus on the quantitative aspect on how to assign
conditional probability tables (CPT(s)) to each node once the DAG is constructed.

e CPT for L-Nodes
The CPT for an L-node is determined by the logical relation it represents
so that when its state is “true”, the corresponding logical relation holds
among its parents. We recall that there are five types of L-Nodes: ” LNode-
Complement”, " LNodeDisjoint”, ” LNodeEquivalent”, ” LNodelntersection”,
”"LNodeUnion”. The corresponding CPTs related to these logical operators
are built as follows.

— LNodeComplement: The complement relation between two concepts
(' and C5 can be obtained by ” LNodeComplement = True iff ¢;caVéyes”

Table 3.1: CPT of LNodeComplement

C1 C2 True | False
True | True | 0.000 | 1.000
True | False | 1.000 | 0.000
False | True | 1.000 | 0.000
False | False | 0.000 | 1.000

— LNodeDisjoint: The disjoint relation between two concepts C7 and
(5 can be realized by ”LNodeDisjoint = True iff ¢163 V é1¢0 V 61627

Table 3.2: CPT of LNodeDisjoint

C1 C2 True | False
True | True | 0.000 | 1.000
True | False | 1.000 | 0.000
False | True | 1.000 | 0.000
False | False | 1.000 | 0.000

— LNodeEquivalent: The equivalence relation between two concepts Cy
and Cs can be realized by "LNodeEquivalent = True iff cjco V ¢163”
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Table 3.3: CPT of LNodeEquivalent

C1 C2 True | False
True | True | 1.000 | 0.000
True | False | 0.000 | 1.000
False | True | 0.000 | 1.000
False | False | 1.000 | 0.000

— LNodelntersection: The relation that C is the intersection between
two concepts C and Cs can be obtained by ”LNodelntersection = True
iff ceiea V Ecéien V eciéa V ec16”

Table 3.4: CPT of LNodelntersection

C1 C2 C True | False
True | True | True | 1.000 | 0.000
True | True | False | 0.000 | 1.000
True | False | True | 0.000 | 1.000
True | False | False | 1.000 | 0.000
False | True | True | 0.000 | 1.000
False | True | False | 1.000 | 0.000
False | False | True | 0.000 | 1.000
False | False | False | 1.000 | 0.000

— LNodeUnion: The relation that C is the union of two concepts C7 and
(5 can be realized by ” LNodeUnion = True iff ccicoVecicoVeeiéaVee ™

Table 3.5: CPT of LNodeUnion

C1 C2 C True | False
True | True | True | 1.000 | 0.000
True | True | False | 0.000 | 1.000
True | False | True | 1.000 | 0.000
True | False | False | 0.000 | 1.000
False | True | True | 1.000 | 0.000
False | True | False | 0.000 | 1.000
False | False | True | 0.000 | 1.000
False | False | False | 1.000 | 0.000
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The situation in which all the I.-Nodes in the translated Bayesian network
are true, states as 7, so the CPTs for concept nodes should be constructed
in the subspace of 7 to get a joint probability distribution consistent with
all the given probabilistic constraints.

e CPT for concept nodes

A method based on IPFP (Iterative Proportional Fitting Procedure (Vomlel,
1999)), SD-IPFP algorithm (Ding, 2005) is used to approximate the CPTs
for the concept nodes. This algorithm tries to overcome some difficulties
that may occur when trying to determine the CPTs.

The CPTs for the concept nodes are in the form of P(X¢ |7) which should
be consistent with the probabilistic constraints.

Two main difficulties may occur:

— The constraints are not given in the form of CPT.
— CPTs are given in the general space of X = X U X, but constraints

are for the subspace of 7 (Notice that X¢ is a set for the concept nodes
and X, a set for the L-Nodes) .

The goal is to construct CPTs for each node C; in X¢ such that the joint
probability distribution of X in the subspace of 7 is consistent with all
the given constraints and Q(X¢c|7) to be as close as possible to the initial
distribution.

To construct the CPT of the L-Nodes, the algorithm SD-IPFP should be
applied as follows:

R(Ci|O¢;
Q(k:)(cz‘\WCi) = Q(kfl)(CiMC’i)'%-a(kfl)(ﬂ'Ci)

where a1y (i) = Qi) (T)/Qk—1)(T) is the normalization factor.
B- Reasoning
In addition to the ontology modeling, the BayesOWL supports the ontology reasoning
tasks as probabilistic inferences in the translated Bayesian network.

The most important ones are listed in the following:

e Concept satisfiability checks if a concept represented by a description e exists
by determining if P(e| 7) = 0.

e Concept overlapping determines the degree of the overlap or inclusion of a
description e by a concept C which is measured by P(elc,7).

e Concept subsumption finds the most similar concept C to a given description e
defining for that a similarity measure between e and C based on Jaccard coefficient
(Van Rijsbergen, 1979).
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B- Mapping concepts

It is becoming essential to map between concepts in ontologies to assure the semantic
integration between the different applications. In (Pan et al., 2005), the authors de-
veloped a methodology to assure the ontology mapping. The idea is based on a way
to allow two Bayesian networks to exchange beliefs via variables that are similar but
not identical. The BayesOWL aims at providing a better solution to other approaches
proposed by:

e Describing how the mapping shall be done for pair similar concepts.

e Allowing the mapping between two variables (A in a first Bayesian network and
B in the second one via semantic linkage).

e Permitting two kinds of mapping ”1 to n” mapping and ”"m to n” mapping where
the former maps one variable in one Bayesian network to multiple similar ones
in another one and the latter is used when multiple variables in one Bayesian
network need to be mapped.

3.4.2 OntoBayes
Definition

Due to the fact that agents act in a dynamic and open environment which is character-
ized by an incomplete and imprecise information, OntoBayes (Yang and Calmet, 2005)
has been proposed to enable them to act under uncertainty.

OntoBayes is an ontology-driven uncertainty model which represents uncertain infor-
mation in a Bayesian network structure by extending OWL and annotating it with
Bayesian probability as well as dependency relations.

In (Yang and Calmet, 2005), the researchers justified their choice of the Bayesian
network by the fact that it is the most well known graphical model for the representation
of probabilistic knowledge but it can not be used to represent knowledge in complex
domains for this purpose OntoBayes has been suggested. And the ontological model is
unable to express the domain specific uncertainty.

Knowledge representation

The OntoBayes focuses especially on the knowledge representation under uncertainty
and it follows three main steps. The model is constructed by first integrating probabil-
ities in OWL, then specifying the dependency relations to finally construct the model.
We summarize in the following the different steps:

1. Probability annotated OWL

To make the ontology able to express uncertainty information, the OWL has to
be extended by specifying probability annotated classes.
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To reach this goal, three classes were defined:

e "PriorProb” identifies the prior probability and has a datatype property
"probValue”

e "CondProb” identifies the conditional probability and has a datatype prop-
erty "probValue” which expresses the probabilistic value.

e "FullProbDist” identifies the full disjoint probability distribution and has
two object properties’hasPrior” and “hasCond”.
The former specifies the relation between classes ”FullProbDist” and ”Pri-

orProb” and the latter specifies the relation between classes ”FullProbDist”
and “condProb”.

2. Dependency annotated OWL

Once the random variables are specified and annotated with probabilities, depen-
dency relations between these variables have to be identified.

To markup the dependency information, an additional property element<rdfs:de-
pendsOn> is added to the ontology.

The random variables specified in an OntoBayes are either datatype property or
object property and the dependency is specified between these properties and not
between classes to avoid errors and confusions that may occur.

3. Graphical representation of OntoBayes

Once the probabilistic information is added to the OWL and dependency relations
between properties are determined, the OntoBayes can be represented graphically.
Two kinds of graphs are represented: the owl graph and the Bayesian graph. The
former is a directed graph visualizing classes and relations between them and built
on the RDF graph. The latter shows clearly the dependency relations between
properties and is extracted from the owl graph by representing separately all the
dependency triples from an OntoBayes ontology and then all the triples will be
merged.

3.4.3 Other Related Works
PR-OWL

In order to handle with the lack of a principled means to represent and reason about
uncertainty, a probabilistic ontology approach PR-OWL has been proposed.

PR-OWL (Costa et al., 2005), the probabilistic ontology language, is implemented
based on the probabilistic ontologies and uses the MEBN (Multi- Entity Bayesian net-
works), as its underlying logic basis. In fact, the probabilistic ontologies are used to
describe knowledge about a domain and the uncertainty regarding that knowledge in a
principled, structured and sharable way that can be read and processed by computer.
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A MEBN is a formalism for representing knowledge by combining first order logic with
Bayesian probability. The figure above gives an overview of a PR-OWL MEBN Theory
concepts.

MTheory hasMFrag

hasNode

hasPossibleValues hasProbDist ProbDist

Entity

Figure 3.2: Overview of a PR-OWL MEBN Theory Concepts.

MEBN logic represents the world as a set of entities with attributes related to other
entities. The features of entities and the different relationships between them are rep-
resented through random variables. A probabilistic ontology consists of at least one
individual of class MTheory that is formed by a collection of MFrags. Individuals of
class MFrag represent the nodes which can be input, resident and context. Like in
Bayesian networks, each individual of class Node is a random variable and has a set of
possible states. The object property hasPossibleValues links each node to its possible
states, which are individuals of class Entity. The random variables have unconditional
or conditional probability distributions which are represented by class ProbDist and
linked to its respective nodes via the object property hasProbDist. In order to spec-
ify the conditional probabilities, the PR-OWL uses the class CondRelationship which
expresses the n-ary relation because in OWL only binary relations can be directly con-
structed.

According to (Costa et al., 2006), the PR-OWL provides the following key features:

- The PR-OWL is compatible with OWL DL. It makes use of additional language
markups at the level of OWL DL to integrate the probability into ontologies.

- The expressivity of MEBN helps to model complex problems with Bayesian networks.
- The PR-OWL is flexible. In fact it can be used for different Bayesian probabilistic
tools based on different probabilistic technologies.
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OWL-QM

OWL-QM (OWL Quiddity*Modeler) (Pool et al., 2005) is an extension of OWL for
eliciting and representing PRM ( Probabilistic Relational Model) which is a model that
alms to express the uncertainty about the values of attributes of objects.

In fact a PRM is based on a relational schema which is a set classes C = {C1,...,Cy },
where each class C' is associated with a set of propositional attributes A(C) and a set
of relational attributes or reference slots R(C). An instantiation I of a schema is a set
of objects, each object belonging to some class C with all propositional and relational
attributes of each object specified. A PRM encodes a probability distribution over the
set of all possible instantiations I of a schema (Friedman et al., 1999). Some attributes
for the instances can be assigned values, other attributes are uncertain and part of the
PRM definition is a specification of the parents of a given attribute, and a specification
for how to construct a conditional probability distribution for an attribute of an in-
stance which depends on the values for its parents attributes (Pool et al., 2005). PRM
is considered as a more expressive model in comparison to the Bayesian networks it
expresses much more information (Friedman et al., 1999).

QM is the representation language for PRM provided by IET ! and is based on frames.
OWL-QM extends OWL with a number of PRM constructs to represent quiddity facets
(properties of associations between properties and classes) and slot-chains (lists of ref-
erence slots that specify the relation between instances of some classes and the re-
lationships by which they are related to the attributes of another). An OWL class
” ProbabilisticRelationship” is defined to represent the causal relations by using three
object properties: “parentPR”, "childPR” and ”slotListPR”. In addition to that, a set
of vocabularies are used to define the probability distributions or tables in a probabilis-
tic relationship. In fact a probability distribution is defined by creating an instance
of ”ConditionalProbabilityTable” in which the probability values will be stored. The
values in a conditional probability are contained in instances of "CPTCell”, each of
which is linked to a ConditionalProbabilityTable via the cptCell property.

Fukushige’s approach

The work of Fukushige (Fukushige, 2005) proposed a vocabulary for representing prob-
abilistic knowledge in a RDF graph and a corresponding probability calculation frame-
work using RDF and Bayesian network.

This framework distinguishes three kinds of probabilistic information encoded in RDF:
probabilistic distribution (conditional and unconditional probabilities), observations
(observed data) and probabilistic beliefs (posterior). The aim of this work is to de-
scribe probabilistic relations in a way that is both semantic web compatible and easy
to map to a Bayesian network.

In (Fukushige, 2004), the framework for probability calculation is presented. In fact

nformation Extraction and Transport is a service company specialized in Bayesian Networks solutions
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the different steps are summarized in the following:

- Describe the problem by a RDF graph using the proposed vocabulary.

- Convert the graph into a Bayesian network, and export it to a Bayesian network store.
- Describe the observation by a RDF graph.

- Convert the observation graph into a query for a Bayesian reasoner on the store and
hand it to the reasoner.

- Do the calculations on the reasoner and import the result back to the RDF store and
merge.

3.4.4 Comparison

This section presents a comparison between the two frameworks BayesOWL and On-
tobayes which are the basis for our work.

Similarities
The two models BayesOWL and OntoBayes presented earlier have some points in com-
mon in fact both of them use the probability theory to express uncertainty information

and model it in a Bayesian network. The two models translate an owl ontology into a
Bayesian network and add classes to the owl file to annotate it with uncertainty.

Differences

The table above summarizes the major differences between the two frameworks based
on the following criterion (random variables, nature of random variables, dependency
relations and ontology engineering tasks).
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Table 3.6: Major differences between BayesOWL and OntoBayes

Criterion BayesOWL OntoBayes
Random Variables Unable to represent multivalued | Represent multivalued random variables
random variables. that are discrete
The considered random variables
are binary one either true or false
Nature of random Classes Object property or datatype.
variables property.
Dependency relations Use a set-theoretic approach A property element
based rules to model the <rdfs:dependsOn> is added
dependency relations to markup dependency
between variables. information.
Domain specific method is A common dependency modeling
proposed. method is proposed.
Ontology engineering This model focused on This model focused only on
tasks dealing with uncertainty in including uncertainty in
the three main tasks: domain domain modeling
modeling, ontology (knowledge representation).
reasoning, and concept
mapping between ontologies.

3.5 Fuzzy Web Ontology Languages

Besides the probabilistic approaches presented above, there are also other researchers
who adopt the fuzzy sets theory as an uncertainty approach in ontology representation
and reasoning. A brief description of Fuzzy OWL (Stoilos et al., 2005) and FOWL
(Gao and Liu, 2005) will be presented in the following.

Fuzzy OWL

Fuzzy OWL (f-OWL) is a method proposed by (Stoilos et al., 2005) for extending OWL
with fuzzy sets theory in order to represent and reason with uncertainty information in
the semantic web. The fuzzy extension of OWL DL focuses on OWL facts by adding
degrees. For that purpose the f~-OWL introduces an additional element < owlz:degree>
to express the fuzziness degree added to the facts.

Once the uncertain information is represented, a reasoning task must be provided for
f-OWL which will be realized through the combination of the syntactical extensions
with the f~SHOIN. The f~SHOIN extends SHOIN to the fuzzy case by letting concepts
and roles denote fuzzy sets of individuals and relations among them respectively. In
f-SHOIN, the fuzzy knowledge base contains:

- Fuzzy TBox: a finite set of fuzzy concept axioms.
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- Fuzzy RBox: a finite set of fuzzy role axioms.
- Fuzzy ABox: a finite set of fuzzy assertions.

FOWL

The work presented in (Gao and Liu, 2005) extends OWL language by encoding fuzzy
constructors, axioms and constraints in order to map them to fuzzy DL. The extended
OWL can represent fuzzy ontology as well as resolving fuzzy inference questions by
constraint propagation calculus. In addition to the vocabularies, the authors present
some rules for translating OWL to FOWL because from the viewpoint of fuzzy set,
some common OWL concepts are also special fuzzy concepts.

3.6 Conclusion

In this chapter, we recalled the different models used for handling uncertainty and a spe-
cial concern was devoted to the probabilistic graphical models with a whole description
of the Bayesian networks. The major part of this chapter focused on the presentation
of the different researches for handling uncertainty in ontology representation and rea-
soning based on two different approaches: probabilistic one and the fuzzy sets theory.
These two approaches fail on representing ignorance which is resolved by applying the
Dempster-Shafer theory. The concepts related to this theory and the different issues
that motivate us to propose the development of our tool will be presented in the next
chapter.



BeliefOWL: An Evidential Extension
to OWL

4.1 Introduction

To represent a domain of discourse correctly, uncertainty aspect should be taken into
account since the real life is full of inconsistent, inaccurate and uncertain informa-
tion. Most of the ongoing research in the field of applying uncertain representation
and reasoning to the semantic web focuses on fuzzy logic and probability approaches
as presented in the previous chapter. However not all the problems of uncertainty lend
themselves to one of these approaches and the development of Bayesian networks as
graphical models to represent this uncertainty can not handle with the situations where
we are called to represent ignorance which can be resolved by applying the Dempster-
Shafer theory (Shafer, 1976).

Due to the advantages of the Dempster-Shafer theory, we intend in this chapter to
present our framework BeliefOWL as a way for representing uncertainty in the OWL
ontology and propagating beliefs based on directed evidential network (Ben Yaghlane,
2002). We aim at this chapter to present the Dempster-Shafer theory as an approach for
handling uncertainty in the semantic web as well as to describe the graphical structure
of the directed evidential network as a model to represent knowledge under uncertainty
by the use of the belief functions. Without omitting that a whole description of our
framework’s architecture will be presented. We will give in detail the different steps
that have lead us to construct our framework as well as the algorithms that we traced.

Before presenting the BeliefOWL, we will expose in section 4.2 the necessary back-
ground material related to the Dempster-Shafer theory its preliminaries as well as a
brief introduction to the directed evidential network as a graphical model for repre-
senting uncertain knowledge and propagating beliefs. Section 4.3 will be devoted to
the enumeration of the different observations that motivate us to investigate in the
ontology representation and reasoning. Our framework BeliefOWL will be described
in detail in section 4.4 by presenting the different steps leading to it as well as the Be-
liefOWL algorithm which will be given in section 4.5. Finally, an example illustrating
the different steps of our framework will be viewed in section 4.6.

43
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4.2 FEvidential Modeling and Reasoning

4.2.1 Belief Function Theory Preliminaries

Belief function theory, also known as Dempster-Shafer theory and theory of evidence,
has been proposed for modeling someone’s degrees of belief (Shafer, 1976). This theory
provides a way to assign a belief to a single element of a set of values in the purpose to
model uncertain information and to assure reasoning. In addition, this theory allows
to represent uncertainty for knowledge representation because beliefs can be assessed
to a set of hypothesis rather than to each one. As opposed to the classical probabilistic
theories, the theory of evidence can represent the different levels of abstraction making
it possible to distinguish between uncertainty and ignorance. Finally, the Dempster’s
combination rule provides an interesting method to combine the effect of different evi-
dences to establish new belief.

In order to model uncertainty using the belief function theory, some used concepts have
to be defined.

Definition 4.1 Basic Belief Assignment. Let O be a finite set of elementary
hypotheses, called the frame of discernment. We denote by 2° the set of all the subsets
of ©.

A basic belief assignment(bba) is a function defined by :

(i) m:2% —[0,1],

(i1) m(0) =0,
(i) Y m(A) =1.
ACO

The value m(A) quantifies the part of belief that supports a subset of hypotheses. m(A)
cannot support any more specific hypothesis by lack of information.

A focal element of m is defined as the subsets A of the frame of discernment © such
that m(A) # 0.

Definition 4.2 Belief Function. The belief function bel is defined as follows:

(i) bel : 29 —0,1],

(if) bel(A) = > m(B),YA C ©.
BCA

The value bel(A) expresses the total belief fully allocated to the subsets A of ©.
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Definition 4.3 Plausibility Function. The plausibility function pl is defined as
follows:

(#) pl:2° —10,1],

(i) pl(A) = > m(B),VAC®.
B A#£D

The value pl(A) expresses the maximum amount of belief that might support the subset
A.

Definition 4.4 Combination.

The @ symbol represents Dempster’s rule of combination in its normalized form and
© represents the conjunctive combination, i.e., the same operation as Dempster’s rule
of combination except the normalization is not performed.

The Dempster’s rule of combination (as well as its conjunctive form) is applicable to
combine belief mass functions that are on the same ©. Given m; and mso, the rule can
be written as: VA C O,

> B c=ami(B)m2(C)

miga(A) = 1 =35 cepmi(B)ma2(C)

Definition 4.5 Generalized Bayesian Theorem (GBT).

Suppose we have two distinct variables X and Y defined on the spaces ©x and Oy,
respectively. Given that X is the parent of Y, let bel [x;] be the additional information
representing conditional belief function induced on the space Oy given x; element of
Ox.

If we want to compute bel™ [y](z) for any x COx and y COy, we derive this belief from
the generalized bayesian Theorem(GBT).

For given belief function bel, (Smets, 1993) defines a function

b: 29 —[0,1]
b(A) = bel(A) + m(0)

For any any x COx and y COy, the GBT permits to build the belief function belX [y](x)
by:
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Definition 4.6 Disjunctive Rule of Combination (DRC).

The disjunctive rule of combination (DRC) is used to compute bel¥ [z](y) for any x
COx and y COy. Indeed, the DRC permits to build the belief function bel [x](y)by :

belY[ ]( ):bY[x]( )—bY[ 1(0)
Yiz)(y) = b [z

X, €T

4.2.2 Directed Evidential Network

In the following, we present the directed evidential network with conditional belief
functions (DEVN) (Ben Yaghlane et al., 2003) which is a generalization of the evidential
networks described in (Xu, 1995).

Graphical structure

The directed evidential networks with belief functions (DEVN) are models introduced
by (Ben Yaghlane et al., 2003) to represent knowledge under uncertainty by using the
belief functions.

To define this network, one can distinguish between two levels:

e Qualitative level: The DEVN is a directed acyclic graph (DAG) where the nodes
represent variables and the directed arcs link between nodes and describe condi-
tional dependence relations between these variables.

e Quantitative level: The relations are expressed by conditional belief functions for
each variable given its parents.

Each variable X in this network has a set of possible values, called frame of discern-
ment, and the parents of X are denoted by Pax.

Two kinds of belief functions are depicted to represent uncertainty in the DEVN: the
prior belief function and the conditional belief function. The former denoted as bel%
concerns the root node where (Payx # (}) and the latter denoted by bel™ [Pa x| expresses
the belief function of a node X given the value taken by its parents.

Inference

The propagation algorithm to be applied depends on the nature of the network we are
working with.

e Propagation algorithm for singly-connected evidential network (Ben Yagh-
lane and Mellouli, 1999):
The key idea of this algorithm is inspired from Pearl’s algorithm (Pearl, 1988).
It consists on two steps:
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— Initialization Process: In this step, the a priori belief functions of each
variable representing a node of the network is computed using propagation
method.

— Updating Process: This step is performed when a new observation is intro-
duced at a given node. In fact, arriving at a node X, the algorithm computes
all the incoming messages as well as a calculation of wx value, Ax value, new
marginal belX and all outgoing messages is done.

e Propagation algorithm for multiply-connected evidential network :
In (Ben Yaghlane, 2002), the authors proposed a computational data structure
Modified Binary Join Tree to maintain the (in)dependence relations of the original
directed evidential network with conditional belief functions. The propagation
process is performed by using the generalized Bayesian theorem (GBT) and the
disjunctive rule of combination (DRC).

4.3 Motivation and Overview of BeliefOWL

Based on the background material discussed in the previous chapters, we depict in this
section the main motivations that encourage us to propose BeliefOWL as a framework
for ontology representation and reasoning under uncertainty. In fact:

e Modeling uncertainty in ontology engineering tasks (in our case ontology repre-
sentation and ontology reasoning) is necessary in nowadays research because it
allows to overcome the difficulties arising from the crisp logics of the OWL lan-
guage which is not able to handle incomplete or partial knowledge. Taking into
account the uncertainty aspect in ontology representation permits to strengthen
the OWL with additional expressive power to quantify the uncertainty of classes
and relations. In ontology reasoning, handling uncertainty enables to support
inference tasks by using inference procedures to compute the degree of overlap or
inclusion between two concepts.

e Belief function theory provides a well developed mathematical model to deal with
uncertainty. It is a suitable theory to express the total ignorance or the partial
one about information concerning classes and relations within an ontology.

e The directed graphs and particularly the directed evidential network are effective
and more appropriate graphical representations for uncertainty knowledge. In
addition to that, the use of conditional belief functions provides a more natural
representation of the uncertainty in the relationships among the variables of a
graph.

In the following sections, we will present our framework BeliefOWL in detail, describing
the different steps to be followed to contribute to our tool.
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4.4 Presentation of BeliefOWL

We resume in this figure the different steps followed leading to our framework.

Evidential Ontology
OWLOntology mmmjp  BeliefExtensiontoOWL g~ Extractionofbefnformtion

Structural Translation Rules

DAG of the network

Conditional Belief Tables Attribution

Directed Evidential Network
(DEWN)

Inference and Reasoning Tasks

Figure 4.1: BeliefOWL Framework

As shown in the figure 4.1, the BeliefOWL has as input an OWL ontology and as output
an evidential network. To obtain this network, we will follow some steps that will be
described in detail through this chapter.
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In Belief extension to OWL, we will focus on how to make an ontology, expressed on
crisp logics, able to represent uncertain information, a partial ignorance or a total one
by including belief masses. Once the evidential information has been included, it will
be used later for the construction of the conditional beliefs of every evidential network’s
nodes. This network will be get through a conversion of our OWL ontology by applying
some structural translation rules and then conditional belief tables will be constructed.
Finally some reasoning tasks will be held across the directed evidential network.

4.4.1 A Belief Extension to OWL

In chapter 2, we presented that an OWL ontology can define classes (named or anony-
mous), properties (object properties, datatype properties) and individuals (instances
of a class). In this master we will focus only on including uncertain information for
classes. In other words, the belief masses will be attributed to the different classes of
an OWL ontology.

For this purpose, we have to define some new classes able to represent and to introduce
this uncertain information. Two types of evidence are encoded into the original ontol-
ogy: prior evidence and conditional evidence. These evidences, expressed in the form
of mass functions, are provided by domain experts.

e Prior evidence: We define two classes to express the prior evidence <beliefDistri-
bution> and<priorBelief>. The former is used to enumerate the different masses
of the elements of the frame of discernment of a variable. It has an object property
< hasPriorBelief> that specifies the relation between classes <beliefDistribution>
and <priorBelief> indicating that the instances of <priorBelief> are elements
of one instance of <beliefDistribution>. The latter expresses the prior evidence
and has a datatype property <massValue> which enables to assign a mass value
between 0 and 1 to an element of the frame or to a set of elements.

Example:

Let X and Y be two variables formalizing two classes (sunbathing and relaxation
where the former is a subclass of the latter one) of a given ontology. These vari-
ables can have two possible values either true or false.

Let 0x = {Ts, Fs} be the frame for X and 0y = {7}, F,} be the frame for Y.
In order to represent the prior evidence, let beléf and beléf be two prior belief
functions over fx and 6y, respectively and be given by their respective mass

functions mg and mg. We suppose that we have the following masses related to
the variable Y. m{ ({T,}) =0.5, m} ({F,}) =04, m} ({6y}) =0.1

The following table encodes how the prior evidence was integrated.
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<beliefDistribution rdf:ID= "bel(Y)” >
<hasPriorBelief rdf:resource = "# m(7T;) />
<hasPriorBelief rdf:resource = ”# m(F,) />
<hasPriorBelief rdf:resource = "# m(fy) />

< /beliefDistribution>

<PriorBelief rdf:ID= "m(7})” >
<massValue>0.5</massValue>

< /PriorBelief>

<PriorBelief rdf:ID= "m(F; )" >
<massValue>0.4< /massValue>

< /PriorBelief>

<PriorBelief rdf:ID= "m(fy )" >
<massValue>0.1</massValue>

< /PriorBelief>

e Conditional evidence: It’s defined through two main classes <beliefDistribution>
and<condBelief>. The former is the same as in the case of prior evidence
but has an object property <hasCondBelief> indicating the relation between
classes<beliefDistribution> and < CondBelief>. The latter identifies the condi-
tional evidence and has a datatype property<massValue>.

Example:

Let’s consider the following conditional beliefs. We adopt the notation m[X](Y)
to represent the conditional mass m(Y | X).

m[{Ts}]({Tr}) = 0.6, m[{Ts}]({HY}) = 0.4, m[{Fs}]({Fr}) = 0.92,
m[{T:}]({0y}) = 0.08.

The corresponding integration is represented by the following table.

<beliefDistribution rdf:ID= "bel[X](Y)” >
<hasCondBelief rdf:resource = ”# m|
<hasCondBelief rdf:resource = ”# m|
<hasCondBelief rdf:resource = ”# m|
<hasCondBelief rdf:resource = ”# m|

< /beliefDistribution>

<condBelief rdf:ID="m[{7Ts}|({T}})" >
<massValue>0.6< /massValue>

< /condBelief>

<condBelief rdf:ID= "m[{T,}]({0y })” >
<massValue>0.4< /massValue>

< /condBelief>

<condBelief rdf:ID= "m[{ Fs}|({F,.})”" >
<massValue>0.92< /massValue>

< /condBelief>

<condBelief rdf:ID= "m[{T}]({0y })” >
<massValue>0.08</massValue>

< /condBelief>
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Through this integration step, we augmented the ontology with prior belief masses and
conditional belief masses, we obtained an evidential ontology. This extension of OWL
is not enough to get an evidential network, some other steps should be followed to
be able to construct the different nodes of the network and the dependency relations
among them. It will be the main focus of the next subsection.

4.4.2 Constructing an Evidential Network

As mentioned before, we distinguish in an evidential network two levels: a qualitative
level and a quantitative one. In this subsection, we are interested on the qualitative
one: on how to construct the DAG of the belief network from an OWL ontology by
specifying the different kinds of nodes that have to be created in addition to the defi-
nitions of the relations between these nodes.

To handle that we will specify the OWL statements to be converted to a node. In fact
we are interested in classes, in some class axioms and boolean combinations that may
exist between the different classes.

The classes are introduced by <owl:class>, are described through class axioms (<owl:equi-
valentClass>,<rdfs:subclassOf>, <owl:disjointWith>) and a set of boolean combina-
tions of classes exists to specify OWL logical operators describing the nature of the
relations between classes such as (<owl:unionOf>, <owl:intersectonOf>).

We will focus on each of these OWL statements showing how the nodes are constructed
and how the arcs are created.

We have to mention that all the examples given below are extracted from the ontology
travel.owl! which is an ontology for a semantic web of tourism.

OWL statement <owl:class>
A named class described by a class identifier "rdfs:ID” is mapped into a variable node
in the translated evidential network. This node is represented via the different mass
functions related to that variable.

Example 1: A named class ” Accommodation” defined as ” <owl:class rdf:ID="Accommo-
dation” /> is represented as:

Figure 4.2: Single Class

"http://protege.cim3.net/file/pub/ontologies/travel /travel.owl
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OWL statement <rdfs:subClassOf>
When two classes are related to each other by a constructor <rdfs:subClassOf>, a di-
rected arc is drawn from a superclass node to the child subclass node.

Example 2: The following example shows that the class ”Safari” is a subclass of the
two classes ” Adventure” and ”Sightseeing”.

<owl:Class rdf:ID= "Safari” >
<rdfs:subClassOf rdf:resource="#Adventure”/ >
<rdfs:subClassOf rdf:resource="#Sightseeing” / >
< Jowl:Class>

This statement can be mapped into a subgraph in the translated evidential network as
shown in the following figure:

Figure 4.3: ”rdfs:subClassOf”

OWL statement <owl:disjoint With>

When two classes are related to each other by a disjoint relation (owl:disjointWith), a
new node is created in the translated evidential network and a directed arc is drawn
between the two classes and the node added.

Example 3: The following example shows that the classes " Adventure” and ”Relax-
ation” are disjoint with the class ”Sports”.

<owl:Class rdf:ID= "Sports” >
<owl:disjoint With>
<owl:class rdf:about="#Adventure” / >
< Jowl:disjoint With>
<owl:disjoint With>
<owl:class rdf:about="#Relaxation” / >
< Jowl:disjoint With>
< /owl:Class>

The following example shows the representation of this statement in the subgraph of
the evidential network.
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NodeDisjointRelax_Sport NodeDisjointSport_Advent|

Figure 4.4: ”owl:disjoint With”

OWL statement <owl:equivalentClass>
When two classes are equivalent to each other by a (owl:equivalentClass) statement, a
new node is created in the translated evidential network and a directed arc is drawn
between the two classes and the node added.

Example 4: The following example shows that the class ”QuietDestination” and
”FamilyDestination” are equivalent to each other.

<owl:Class rdf:ID= " QuietDestination” >
<owl:equivalentClass rdf:resource="#FamilyDestination” / >
< Jowl:Class>

The following example shows the representation of this statement in the subgraph of

the evidential network.

NodeEquivalentQuietDest_FamilyDest

Figure 4.5: ”owl:equivalentClass”

OWL statement <owl:intersectionOf>

A class C may be defined as the intersection of some classes C;(i,. . . ,n) through <owl:inter-
tionOf>. This statement can be represented in the translated evidential network by an
arc from each C; to C and another one from C and each C; to a new node created for
representing the intersection.

Example 5: The example above shows that the class "Booking” is the intersection of
the two classes "BudgetAccommodation” and ”Hotel”.
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<owl:Class rdf:ID= "Booking” >
<owl:intersectionOf rdf:parseType = ” Collection” >
<owl:class rdf:about="#BudgetAccommodation” / >
<owl:class rdf:about="#Hotel” / >
< Jowl:intersectionOf>
< Jowl:Class>

The statement <owl:intersectionOf > can be mapped into a subgraph in the translated
evidential network as shown in the following figure:

BudgetAccommodation

J

NodelntersectionBudget_Booking_Hotel

Figure 4.6: ”owl:intersectionOf”

OWL statement <owl:unionOf>
A class C may be defined as the union of some classes C;(i,. . . ,n) through <owl:unionOf>.

This statement can be represented in the translated evidential network by an arc from
C to each C; to C and another one from C and each C; to a new node created for

representing the union.

Example 6: The following example shows that the class ”DestiantionOffers” is the
union of the two classes ”Sports” and ” Adventure”.

<owl:Class rdf:ID= " DestinationOffers” >
<owl:unionOf rdf:parseType = ” Collection” >
<owl:class rdf:about="#Sports” / >
<owl:class rdf:about="#Adventure”/ >
< Jowl:unionOf>
< /owl:Class>

The statement <owl:unionOf > can be mapped into a subgraph in the translated

evidential network as shown in this figure:
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DestinationOffers

NodeUnionDest_Adv_Sports

Figure 4.7: ”owl:unionOf”

At the end of this step and by the application of the previous rules, the network is con-
structed: the nodes are specified and the different arcs between the nodes are drawn.

The obtained network is a directed acyclic graph even by adding the nodes expressing
the logical operators between classes, the cycle is not formed. Only the use of the con-
structor ”rdfs:subClassOf” can lead to a cycle. In fact, in an ontology two classes can
be subclasses of each other (a class D is a subclass of a class E and E is a subclass of
D) and by the application of the rule related to this OWL statement we can get a cycle.

To avoid this situation, the two classes (for example E and D) can be considered as
equivalent and thus we apply the rule related to the ”owl:equivalentClass”.

In addition to that all arcs in the network are directed: when two classes are related
to each other by a class axiom or by a logical operator, an arc is drawn between the
different nodes and when they are not related by an axiom, the corresponding nodes
are d-separated with each other.

4.4.3 FEvidence Attribution

In the previous step, and by applying the structural translation rules, we constructed
the DAG of our network. To complete the translation, the remaining issue is to assign
masses for each node of the network. Considering the DAG that we have got, we can
depict two kinds of nodes:

e ClassesNodes: We define classesNodes as the nodes representing the different
classes of our taxonomy and defined by <owl:class>.

e ConstNodes: We mean by these nodes those related to the constructors of our
taxonomy (owl:intersectionOf, owl:disjoint With, owl:equivalentClass and owl:unionOf)
without considering <rdfs:subClassOf> because this kind of constructor is not
represented by a specific node.
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Masses distribution depends on the kind of nodes we are working with. In fact for
the classesNodes, we attribute the masses given into the evidential ontology which is
created after the extension of the OWL ontology with belief information. The prior
belief functions and the conditional ones will be extracted from this evidential ontology
to be assigned to the corresponding nodes. Concerning the constNodes, masses will
be attributed according to the constructor we are talking about. In fact if we have a
node created to depict an intersection between two classes, the mass will be attributed
by applying the Dempster’s rule of combination. Concerning the node representing an
union, the disjunctive rule of combination will be applied in that case.

Once our evidential network is constructed and the masses are assigned to each node
a propagation process can be performed. It’s the objective of the next section.

4.4.4 Inference in the Network

One important task to do across a network is to perform a propagation process. In
most of the cases, the network obtained is a multiply-directed evidential network. A
propagation process has been proposed in (Ben Yaghlane, 2002) and an algorithm has
been applied in (Trabelsi, 2007).

This algorithm consists on transforming the initial directed evidential network into
a modified binary join tree. In order to make inference efficiently in this graphical
structure, two rules are proposed to be applied: the disjunctive rule of combination
(DRC) and the generalized Bayesian Theorem (GBT).

4.5 BeliefOWL Algorithm

In this section, we present our algorithm for the BeliefOWL as a tool proposed to
translate an OWL ontology into an evidential network after including mass functions.
4.5.1 Algorithm Overview

The BeliefOWL algorithm follows five major steps leading to a translation of an OWL
ontology into a belief network. This is resumed by the following figure:
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masses functions
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Structural Translation
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Figure 4.8: BeliefOWL Algorithm

1. The validation step: It is an important step which verifies that the given ontology
is syntactically correct and semantically consistent.

2. The preprocessing step: Once we are sure that the ontology is valid, some major
information concerning the ontology’s classes should be collected. We will be
interested in mentioning for each class its superclasses, its subclasses, the classes
that are disjoint with, or equivalent to that class, as well as the classes that are
described through logical operations (intersection and union).

3. Establishing structural translation rules: At this stage the ontology will be trans-
lated to an evidential network by applying the different rules mentioned in section

4.4.2.
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4. Assigning mass distributions: At this stage we are interested on the quantitative
level so mass distribution functions will be assigned to the nodes of the created
DAG.

5. Belief propagation and reasoning tasks: We propagate uncertainties through the
evidential network and do some reasoning tasks such as concept satisfiability and
concept subsumption.

In this dissertation, the validation step will not be detailed because it is an easy step
and it can be done through APIs available to check the syntax and the semantics of an
ontology. But we are interested on the next steps which will be described in detail.

4.5.2 Preprocessing Step

This step is mainly devoted to collect information of the different classes of an ontology.
This collection helps later on to construct the DAG of the network. For that purpose,
this step is very important and consists on specifying for each class of the ontology its
superclasses, its subclasses, the classes that are equivalent to it as well as those that
are disjoint with it without omitting those obtained through an intersection or an union.

This step requires as input the path of the ontology O which has been tested to be
correct syntactically and semantically consistent. Once the ontology is read, a task of
(describeClasses algorithm) is performed. We will not detail this algorithm because it
is realized through an available API.

Algorithm PRE-PROCESSING.

1. If pathy #“7 and test Then
Read(O)
End If

2. DescribeClasses(O).

4.5.3 Structural Translation Step

This step has as input the information collected for each class in the previous step
(the preprocessing) and the rules described in section 4.4.2. Based on this input, two
procedures will be executed: createNode and addLink which consist respectively on
creating the nodes of the DAG and adding the links between them leading to the
generation of the DAG of the evidential network.
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Algorithm Structural Translation.

For each cls do
If cls is a named class then
createNode(cls)
elself cls is an anonymous class then
If cls.hasSubClasses = true then
createNode(cls)
for each cls; € listSubClasses
createNode(cls;)
addLink(cls, cls;)
End For
elself cls.isDisjointWith = true then
createNode(cls)
for each cls; € listDisjointClasses
createNode(cls;)
createNode(nodeDisjoint)
addLink(cls, nodeDisjoint)
addLink(cls;, nodeDisjoint)

End For
elself cls.isEquivalent = true then
createNode(cls)
for each cls; € listEquivalentClasses
createNode(cls;)

createNode(nodeEquivalent)
addLink(cls, nodeEquivalent)
addLink(cls;, nodeEquivalent)
End For
elself cls.isIntersectionClass = true then
createNode(cls)
createNode(nodelntersection )
addLink(cls, nodeIntersection)
for each cls; € listIntersectionClasses
createNode(cls;)
addLink(cls;, cls)
addLink(cls;, nodelntersection)
End For
elself cls.isUnionClass = true then
createNode(cls)
createNode(nodeUnion)
addLink(cls, nodeUnion)
for each cls; € listUnionClasses
createNode(cls;)
addLink(cls, cls;)
addLink(cls;, nodeIntersection)
End For
End If

End For
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4.5.4 Assigning Mass Distributions

The masses are provided by an expert. These masses are given in the evidential on-
tology. So, once we get the DAG of the network, the masses are attributed as follows.
Concerning the classesNodes, we extract the masses from the ontology and they are
assigned to the corresponding node: If it is a root node then a prior mass will be at-
tributed, if it is another node belonging to the set of classNodes then a conditional
belief is assigned. Concerning the constNodes the masses attribution depends on the
logical relation it holds. If it is an intersection a Dempster’s rule of combination will
be applied and if it is an union the disjunctive rule of combination will be computed.

4.5.5 Inference Step

To do the propagation of beliefs in the multiply-connected evidential network, we will
use the BeliefNet tool proposed in (Trabelsi, 2007) which allows belief propagation in
this kind of network.

4.6 Application

Throughout this dissertation, we used examples extracted from the travel.owl ontology.
In this section we choose to use a simple taxonomy ontology, nature.owl, because we
are only interested in some specific constructors. From this ontology, we will illustrate
the different steps of our tool BeliefOWL.
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<? xml version ="1.0">
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns”
xmlns:rdfs="http://www.w3.0org/2000/01 /rdf-schema”
xmlns:xsd="http://www.w3.org/2001/XMLSchema”
xmlns:owl="http://www.w3.org/2002/07 /ow]”
xmlns ="http://www.cs.umbc.edu/zdingl /owl/nature.owl” >
<owl:Ontology rdf:about ="http://www.cs.umbc.edu/zdingl /owl/nature.owl” >
<owl:versionInfo” >v1.0< /owl:versionInfo>
<owl:Class rdf:ID="Animal” >
<owl:Class rdf:ID="Male” >
<rdfs:subClassOf rdf:resource="#Animal” />
< /owl:Class>
<owl:Class rdf:ID="Female” >
<rdfs:subClassOf rdf:resource="#Animal” />
<owl:disjointWith rdf:resource="#Male” />
< Jowl:Class>
<owl:Class rdf:ID="Human” >
<rdfs:subClassOf rdf:resource="# Animal” />
< /owl:Class>
<owl:Class rdf:ID="Man” >
<owl:intersectionOf rdf:parseType="Collection” />
<owl:Class rdf:resource="#Human” />
<owl:Class rdf:resource="#Male” />
< /owl:intersectionOf>
< Jowl:Class>
<owl:Class rdf:ID="Woman” >
<owl:intersectionOf rdf:parseType="Collection” />
<owl:Class rdf:resource="#Human” />
<owl:Class rdf:resource="#Female” />
< /owl:intersectionOf>
< /owl:Class>
<owl:Class rdf:ID="#Human” >
<owl:unionOf rdf:parseType="Collection” />
<owl:Class rdf:resource="#Man" />
<owl:Class rdf:resource="#Woman” />
< Jowl:unionOf>
< /owl:Class>
</rdf:RDF>

This taxonomy shows that we have six concepts: ”Animal”, ”Male”, "Female”, ”Hu-
man”, "Woman” and "Man”. These concepts are related to each other by different
constructors. In fact:

e "Male”, "Female” and ”Human” are subclasses of the concept ” Animal”.

e The concept "Man” is the intersection of ”Male” and "Human”. It is the same
case of ”Woman” which is the intersection of "Female” and ”Human”.
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e "Human” is the union of ”Woman” and ”Man”.
e "Male” and ”"Female” are related to each other by a disjoint constructor.

Having a general overview of the taxonomy we can construct the DAG of our network
by applying the set of structural translation rules. The figure above shows the different
nodes of the DAG as well as the relations existing between them.

Woman

- ‘

Nodelnter_1
Nodelnter_2

\

NodeDisjoint

Figure 4.9: DAG of the evidential network.

Once the DAG of the evidential network is constructed, the corresponding a priori and
conditional belief functions will be assigned to the different classNodes.

We adopt a simple notation of the different nodes as shown in the following table:

We suppose that each variable corresponding to a specific node can only have two states
either true or false. We assign the following masses:
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Table 4.1: Notation

Node Notation
Animal A
Human H
Male M1
Man M
Woman %Y
Female F
a a a a
a 0.4 ml (05 0 h (01 O
m(A)=a |05 m[A(Ml)= ml | 0 0.6 m[A(H)= h | 0 05
04 \ 0.1 0,0 \0.5 0.4 0, \0.9 0.5
a a f f ml  ml
f /08 0 w (075 0 m (075 0
m[AJ(F)= f | 0 06 m[F|(W) = @ 0 05 m[MI)(M)=m | 0 0.5
0y \0.2 04 O \0.25 0.5 0 \0.25 0.5

4.7 Conclusion

In this chapter, we have presented a theoretical aspect of our BeliefOWL tool. This tool
deals with uncertainty in ontology representation and ontology reasoning based on the
belief functions theory. An algorithm have been traced to present the different steps
leading to our tool. At the end of the chapter we presented an example illustrative
showing the translation of an OWL ontology into a directed evidential network as well
as a propagation of beliefs is performed by using the BeliefNet tool.
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Conclusion and future work

With the development of semantic web, ontologies have become used to represent a
specific domain of discourse by capturing the knowledge about concepts and their re-
lations. To facilitate information sharing, a formal language, OWL, is well used but
it fails to represent partial information. Dealing with uncertainty in ontology engi-
neering tasks (ontology modeling, ontology reasoning and ontology mapping) seems to
be crucial. Many researchers took into account that it is very interesting to represent
imprecise information or a vague one, they proposed approaches for combining the web
ontology language OWL with probability theory or the fuzzy set but fewer are those
who considered the advantages of the Dempster-Shafer theory for representing uncer-
tain information in an ontology or to use a formalism such as the directed evidential
network for propagation.

In this dissertation, we proposed an approach for representing uncertainty in seman-
tic web field. We used the evidential theory for uncertainty representation and the
directed evidential network as a graphical model for inferring about new knowledge.
We described the architecture of our tool BeliefOWL able to translate an ontology
into a directed evidential network by applying a set of rules in order to present every
constructor and class of an ontology into a corresponding node. Once the network is
constructed, further reasoning tasks can be done across it.

In our future work, we will tend to investigate different improvements to our tool. In
this master thesis, we worked with a taxonomy. In fact we translated only the classes,
the class axioms (rdfs:subClassOf, owl:equivalentClass and owl:disjoint With) as well as
the logical relations among the concept classes (owl:unionOf and owl:intersectionOf).
Further work can carry about the properties and individuals which are not represented
in this work. The masses that are assigned to the different nodes are extracted from an
evidential ontology where the prior beliefs are given by an expert, so this assignment
can be done automatically in the future through a learning process.

This work can be ameliorated in order to be applied in real life domains such as bank-
ing, medicine,...

Finally, we hope that this master thesis can contribute to put forward research work
on the uncertainty in ontology engineering tasks based on the belief functions theory.
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