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Abstract:

Organizations providing services to their customers through a public infrastructure such as the
Internet have excessive security requirements. Existing intrusion detection and response sys-
tems partially meet essential requirements of appropriate detection and effective countering of
increased attacks. In this thesis, we propose an adaptive cost-effective intrusion detection and
response (idrs) framework. The selective combination of detection models ensures adaptiveness
of the analysis component in this framework. Within the improved process of this component,
the selection step dynamically determines appropriate detection model combinations using an
integrated criterion (performance and data dependent factors). The combination step also uses
an improved evidential fusion method to aggregate participating detection models at the deci-
sion level. Furthermore, the designed cost-effective response component of our idrs framework
relies on compliant risk management model to information security standards. The proposed
risk model integrates two main and interdependent parts, namely assessment and treatment
parts. The former quantitatively assesses inflicted damages by detected threats; while the latter
determines cost-effective defense strategy against these, using optimization techniques. Addi-
tionally, our idrs framework proposes both structural and functional enhancements for future
idrs systems through respectively its improved CIDF inspired architecture and the idrs life cycle.
Moreover, it is expandable and can be easily integrated into any computing environment or any
risk-driven information security management system. Detection results of our prototyped analy-
sis function are remarkably better than those of the KDD winner; the best one exceeds 93% of
detection. Initial results generated by risk driven response component also show great decision
support to information security management.

Keywords:

Intrusion detection and response, Adaptive analysis, Risk driven response, dynamic selec-
tion, evidential fusion, risk assessment, risk treatment.
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ABSTRACT

Organizations providing services to their customers through a public infrastructure such as the
Internet have excessive security requirements. Existing intrusion detection and response systems
partially meet essential requirements of appropriate detection and effective countering of
increased attacks. In this thesis, we propose an adaptive cost-effective intrusion detection and
response (idrs) framework. The selective combination of detection models ensures adaptiveness of
the analysis component in this framework. Within the improved process of this component, the
selection step dynamically determines appropriate detection model combinations using an
integrated criterion (performance and data dependent factors). The combination step also uses an
improved evidential fusion method to aggregate participating detection models at the decision
level. Furthermore, the designed cost-effective response component of our idrs framework relies
on compliant risk management model to information security standards. The proposed risk model
integrates two main and interdependent parts, namely assessment and treatment parts. The former
quantitatively assesses inflicted damages by detected threats; while the latter determines cost-
effective defense strategy against these, using optimization techniques. Additionally, our idrs
framework proposes both structural and functional enhancements for future idrs systems through
respectively its improved CIDF inspired architecture and the idrs life cycle. Moreover, it is
expandable and can be easily integrated into any computing environment or any risk-driven
information security management system. Detection results of our prototyped analysis function
are remarkably better than those of the KDD winner; the best one exceeds 93% of detection.
Initial results generated by risk driven response component also show great decision support to
information security management.
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General introduction

GENERAL INTRODUCTION

1 Overview

With the rapid growth of the Internet, multiple new business opportunities, such as service
providers, and carriers have emerged. These modern businesses have entirely founded their
activities on the public infrastructure. They take advantage of public IP networks to reduce
their infrastructure-related cost. Moreover, they can reach a large number of consumers across
the world and serve them easier, faster and more efficiently. However, networks and
applications which are business critical and essential part of their strategies are becoming

increasingly exposed to various security threats.

Security threats have the potential to cause harm to organization’s infrastructure and
information assets. Threats may be initiated by multiple internal and external sources. They
may be caused by employees’ actions that unwillingly targeted organization’s networks or
applications. Different environmental or natural events can also cause various losses to an
organization. However, the most harmful threats to the organization’s assets are those
initiated by malicious entities, which benefit from universal connectivity offered by current
public infrastructure identically to modern businesses. Deliberate actions carried by these
entities have multiple implications on business critical components and information assets of

an organization.

The latest class of threats targeting information assets includes most prominent security
breaches. Intrusive actions or attacks of this class are mounted by malevolent entities that
share same benefits of public infrastructures with modern businesses. Intruders or malicious
entities have the ability to carry out multiple attacks on selected target relying on the universal
connectivity and the open environment of the Internet. To achieve their objectives, they use
several attacking methods and tools widely available and readily reachable on the Internet.
Moreover, they exploit various inherited vulnerabilities or weaknesses in business critical

applications and public IP based networks to perform their malicious actions.

Attacks on organization assets have many sources. Organized criminals, individual spies,
disgruntled employees and hackers are the most untrustworthy entities who are able to mount

multiple attacks on business infrastructure. These groups have several motivations. They are
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able to cause various damages to target assets. Organized crime attacks seek business critical
information to ensure financial gain for intruder. The most common organized attacks are
fraud and theft which are perpetuated in majority by legitimate and authorized system users.
Industrial espionage aims at collecting proprietary data of an organization for the benefit of
another. Industrial spies seek to improve competitive advantages of their organization relying
on stolen manufacturing or product development information. Disgruntled employees are the
most familiar with organization’s applications. Multiple events trigger destructive behaviour
of these entities such organization downsizing which leads them to create mischief and
sabotage the organization infrastructure. Malicious hackers are insider or outsider entities to
the organization. They use different means to gain unauthorized access to organization

networks and compromise integrity and confidentiality of business critical information.

Intruders use numerous means to reach their objectives. Scan or probe is the most used attack
category for exploration and information collection on the target computer or network.
Sniffing is another passive threat that allows intruder to gain unauthorized access to the target
using information contained in sniffed traffic. Spoofing and masquerade are mounted by
intruder to break into the target by pretending to have the identity either of legitimate
computers or users. Hackers can actively affect victim resources. They can use more prevalent
and harmful active attack such as denial of service and malicious code. Denial of service
attacks flood business critical resources by an overwhelming traffic and make them
unavailable. Malicious code attacks have the potential to interrupt services, destroy data and
use resources of the target. Simple implementation of these attacks and rapid propagation of
their behaviors make them an appropriate support and convenient tool to realize hacker

objectives.

Intruder attacks exploit multiple inherited and supported vulnerabilities in the target systems.
These security faults lead to various exploits and inflict variable losses to the organization.
The consequences or impacts of exploiting these weaknesses range from simple interruption
to complete damage of the target resources. They can be simple to quantify such as business
operations interruption or identity theft but difficult to estimate their associated losses.
Multiple institutions, organizations and government agencies such as CSI/FBI (Computer
Security Institute/Federal Bureau Investigation) and Mi2g have estimated, based on a firm

sample, financial losses of computer and network attacks.

The tenth CSI/FBI computer crime and security survey, in 2005, is among the most

referenced and detailed security reports. It was conducted on 699 security practitioners from
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multiple organizations in different activity sectors. The total loss of these organizations due to
attacks on their information technology resources was estimated to 131 millions dollars.
Mobile code attacks remain the main source of the greatest loss with 32% of the overall
reported losses. Attacks on proprietary information and unauthorized access have comparable
effects on surveyed organizations. The inflicted damage by each of these attacks was
estimated by nearly 24% of the overall loss. In this survey, websites attacks have also shown
an exponential increase. In fact, 95% of surveyed organizations have reported more than 10
incidents on their websites. However, 5% only of organizations have experienced more than
10 websites incidents, as stated in 2004 survey [141], [142]. In a recent survey, CSI institute
has reported that mobile code infection remains the most common threat. Furthermore, web
attacks, including phishing, and different variants of denial of service attacks were
respectively ranked in this report among most experienced threats by surveyed organizations.
Additionally, the cost of cyber crime report of Ponemon institute, conducted on about 2000
companies in different countries, states that the number of attacks was increased by 42% from
70 to 204 attacks. Moreover, 50% of mounted attacks per week are successful. In this report
also, variable estimates of cyber crime costs were presented depending on countries. It ranges
from 53.3 million dollars, in the United Kingdom, to 58.9 million dollars, in the United States
[304], [324]".

The worldwide financial losses of digital attacks were estimated to more than 225 billion
dollars in 2004 by the British company Mi2g. In the same year, attacks by malicious code
have caused financial losses that exceeded 17 billion dollars as stated by Computer
Economics. However, financial damage of the same attack type was evaluated to more than
14 billion dollars in 2005 [83]. Moreover, according to [68], 9.3 million persons across the
world were victim of identity theft in 2005. The global financial loss of this attack type was

more than 52 billion dollars.

The success of these attacks depends on which flaws are exploited. The intruder attacking
process starts each time by locating the most appropriate holes in the target system to infiltrate
within. In fact, various vulnerabilities are supported in computer or networks software or
hardware. Design or specification flaws are readily exploitable by the intruder because they

persist even if hardware or software is perfectly implemented. They represent the most

' 2010/2011 CSI survey and Ponemon Cost of cyber crime study of 2012 are respectively available at :

www.GoCSI.com and www.ponemon.org/data-security
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common issues of multiple attacks. Coding and configuration errors instead induce other
types of vulnerabilities respectively at development and use stages of software or hardware.
With the new business environment and expansion use of web applications, CERT (Computer
Emergency Response Team/ Coordination Center of Carnegie Mellon University, Pittsburgh)
has reported more than six million exploitable vulnerabilities in 2005. This number was

nearly the double of reported and documented vulnerabilities of 2004 [70], [386].

In addition to design, coding and configuration vulnerabilities, there are other serious flaws
that help intruders to achieve their objectives. Actually, lack of appropriate security controls,
failure to implement good security practices and complete reliance on primitive security
measures of operating systems are most common origins of reported dramatic financial losses
of organizations connected to public networks. Moreover, low information security budget
(13% of information technology budget according to PriceWaterHouseCoopers survey [386]),
increased sophistication of attack tools and wide availability of information to hackers may

lead to unauthorized access, fraud, identity theft and more devastating attacks.

To thwart emergent threats, modern business firms have to implement the most appropriate
security controls to insure confidentiality of customer information, preserve their market place
and guarantee continuity of their business operations. The security solutions required for these
should address the challenges and opportunities of universal connectivity insured by today
public information technology infrastructure. Moreover, it should be double-folded to prevent
and detect attacks on organization assets. The integrated security solution for today’s
organizations should combine multiple complementary security mechanisms. It should use
security principles such as defense-in-depth and allow numerous services at each level within
information technology infrastructure. An integrated security solution includes also various
prevention mechanisms against attacks such as authentication, encryption, access control and
filtering. However, these security technologies are not sufficient to rule out increased and
highly sophisticated today’s attacks. Thus, integrated security solutions rely on attack
detection mechanisms to reinforce security of organizations and allow them a holistic security

system to protect against variety of threats and reduce their risks.
2 Motivations

Intrusion detection is a critical dimension of any integrated security solution. Intrusion
detection systems (ids) can prevent, detect and counteract mounted attacks. Available ids

systems suffer from various weaknesses at different levels including design, implementation
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and deployment. Considerable efforts of research groups in this field focus on ids design in
order to ensure an appropriate structure on which rely other activities or system development
life cycle. These efforts were rewarded by an appealing organization of ids components in the
case of CIDF working group, as discussed in chapter 1. Such structure is known as the
Common Intrusion Detection Framework (CIDF). The latter was based on a functional
criterion to identify different idrs (intrusion detection and response system) components,
namely event collection, analysis, response and database components. It has also proposed the
common architecture of an idrs relying on these components and links between them to
resolve overlapping functions in existing ids.

Recently, with increasingly complicated detection environments and sophisticated attacks,
idrs systems, even those CIDF based, require core improvements to meet new requirements.
Existing detection environments impose structural enhancements to ids. Besides, detection
and response against mounted attacks on these environments need multiple revisions of the
corresponding components and their adopted methods.

CIDF based ids systems lack model generation component. Such component is required to
satisfy requests of A-boxes, logs analysis component in CIDF framework, and Site Security
Officer (SSO) that concern detection models of an ids. It solely focuses on construction,
evaluation and validation of detection models to be included in log data analysis tasks.
Additionally, when new datasets on expected behavior of the monitored system or intrusive
actions of attackers become available, this component is useful also to update built detection
models.

Additionally, CIDF based ids systems use static knowledge. Indeed, knowledge about attacks,
vulnerabilities and others entities are directly encoded within ids processes. Ids knowledge in
this context are neither revised by considering recently available information nor stored to be
shared with other ids components or security systems. Therefore, knowledge base component
is required to save and maintain ids knowledge up-to-date. Moreover, it ensures knowledge
availability to idrs components and other security systems.

Ids components, including event collection, analysis, response and database, were
investigated in previous researches. However, log analysis component has gained
considerable attention. In fact, the analysis and detection problem of ids systems was studied
for years in intrusion detection field. Initial solutions to this problem were based on the single
detection model approach. The latter was deemed insufficient to detect anomalous actions of
intruders or identify normal activities of monitored system or both. Additionally, detection

mechanisms based on this approach are ineffective specifically when dealing with various
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attack types due to confusing nature of intrusive event sequences, as stated in [201]. Few
recent works have also discussed the multimodel approach for log analysis [102], [135], [139]
[204], [222], [254], [288], [330]. This approach has given rise to other difficulties closely
related to detection models, their construction, selection and combination. Integrated analysis
mechanisms based on this approach require model generation component, as discussed before.
These mechanisms often rely on static subsets of detection models. Additionally, they include
detection models built using the same technique [102], [135], [254]. Therefore, they inherit
same drawbacks of single model based components. Indeed, for both cases, a single facet of
normal or intrusive events catches sight of the considered learning or datamining technique,
while other aspects (sequence, association, nonlinearity ...) are left uncovered or discarded by
generated detection models. This increases the sensitivity of generated detection models to
slight changes in normal or intrusive behaviors, hence affects performances of ids systems. To
overcome these shortcomings, multiple heterogeneous techniques may be involved in
generating detection models [139], [204], [222], [288], [330]. The resultant integrated
components are capable to capture various aspects that concern normal and intrusive events.
Additionally, they are suitable to boost ids accuracy and precision.

In existing detection environments, collected log data are in flux and consequently reported
events. These environments allow also various log types that differently trace intrusive and
normal events. Log types are identified relying on their sources as well specificities of logging
facilities. They may be issued from several sources including network interfaces, hosts,
routers, and firewalls. They may also include variable subsets of features depending on
specificities of sensors, as discussed in [221]. Unfortunately, the majority of existing
integrated components take account a single log data type, most often network or host logs.
Although, they use static combinations of detection models, even heterogeneous, they are
ineffective to existing environments. Thus, a dynamic and adaptive component seems well
adapted to these. It focuses on several log types that differently report security state of the
monitored system. Furthermore, it dynamically selects best combinations of detection models
to analyze the current state. Such approach to design adaptive analysis components is useful
to decrease confusion and chance of eluding malicious events. Additional improvements are
also required by this to meet objectives of high security systems and ensure accurate and
precise decisions to other ids components including the response component.

Despite its importance for idrs systems, response components have attracted few research
works in this field. The majority of previously designed ids are passive and lack response

component. Existing active ids allow various responses against detected attempts or attacks.
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Their responses range from simple alert to complex reactions. Notification components
merely alert the SSO about detected attacks. They may also provide lists of applicable
security controls regarding detected attacks. These response components ensure increased
flexibility to the SSO in order to choose and implement appropriate controls, whenever
required. Additional improvements have been conducted on notification components by
integrating expert systems. These systems save encoded expert knowledge and possible
control lists. They provide the SSO with appropriate control combinations depending on
detected attacks. Different proposals have been also presented in order to improve reactions of
these components. They have devised sophisticated response components, R-boxes, capable
to automatically select and implement security controls [290], [306].

Response components discussed above are based on encoded expert knowledge. They form
different groups relying on consistency of represented knowledge and their automation levels.
However, these components fail to appropriately meet requirements of existing detection
environments for two main reasons. On one hand, they partially use information forwarded by
analysis components. They solely focus on output labels, even though analysis component
decisions include additional details such as confidence levels or likelihoods of detected
malicious events. On the other hand, their reactions are similarly implemented to counteract
attacks mounted on critical servers or personal printer regardless of a realistic damage
appraisal or appropriate ranking of computing environment assets.

Recent enhancements of expert system based responses have devised highly intelligent
components. These components are cost based. They use several cost factors including
response, operation and penalty costs, to design appropriate responses with respect to the
mounted attacks and target system. Additionally, they involve determined costs in assessing
appropriateness degrees of designed responses. Moreover, the decisions to select and
implement most appropriate responses in these components depend exclusively on trade-offs.
Damage-response, disruption-effectiveness or cost-benefit trade-offs are commonly adopted
by cost sensitive response components [225], [369], [388]. Although, these components
dynamically generate appropriate responses against detected attacks, they use constant costs
such as penalty and damage costs. Furthermore, they require additional improvements that
concern decision criteria and damage cost assessment. Therefore, risk based response may be
a promising approach to overcome existing component failure. Such approach is useful to
conduct thorough and realistic assessment of damages inflicted by detected attacks. It allows
also the integration of environment dependent parameters that concern assets, vulnerabilities

and security controls, to the risk model and hence the designed response component
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3 Problem statement

Existing ids are facing different problems that are crucial to their future success. Ids problems
including previously discussed lead to several structural and functional shortcoming in
designing these security systems. Within an integrated security solution, ids systems are
supposed to interact with included systems but their structure is not designed so. Existing ids,
even those based on CIDF framework, lack required component to use or share knowledge
with other security systems such as vulnerability assessment or security management systems.
Moreover, as architectures of ids systems support their functionalities, preparation tasks are
integrally neglected by ids designers. Such tasks concern detection model generation and
updating. They express new requirements of ids systems, thus they are extremely useful
specifically for those using multiple detection models. Although, detection model generation
is critical to ids process, similarly to data preprocessing and analysis, a dedicated component
to this task was commonly unforeseen in the majority of existing ids architectures, including
CIDF.

Additionally, the multimodel approach has recently gained an increased insight in designing
analysis and detection components for ids systems. The proposed analysis components using
such approach rely on subsets of detection models to cope with underlying failure of those
single model based. However, they, in turn, support many shortcomings that concern two
main problems. On one hand, they exclusively focus on single log data, even though existing
detection environments allow different useful log types. On the other hand, these components
use static subsets of detection models, while processed event sequences are continually
changing. Additionally, they consider neither conflicts nor uncertain decisions of detection
models.

Recently, the idea of intelligent response has attracted the attention of ids designers. More
research efforts have been devoted to improve this critical component to idrs systems. These
works have devised cost based response components. The latter rely on trade-offs between
involved cost factors to design and select appropriate reactions. However, many of cost
factors included by these components are assumed constant which is inconsistent and
ineffective to existing detection environments. Additionally, intelligent response components
require explicit and detailed processes to assess different costs, design responses and select
appropriate ones.

To overcome these drawbacks, associated to ids design and deployment, it is essential to

enhance existing ids architectures by additional components to meet new requirements of
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future ids as well as their deployment environments. Moreover, analysis and detection
components of ids require several improvements to dynamically and adaptively process
collected log data and assess current security state of the monitored system. Furthermore,
response components involve more advanced enhancements to design risk driven reactions
capable to counteract effects of detected attacks regarding target assets. Thus, in this thesis,

we address the issues of adaptive analysis and risk driven response in idrs systems.
4 Main contributions

This research thesis contributes to intrusion detection and security management fields at
different level. Its main contributions that fall under three essential areas are summarized by:

— Expandable CIDF inspired idrs architecture: the proposed idrs architecture extends that
of CIDF framework by two additional components. The generation component puts
emphasis on the necessity of preparation tasks, including detection models
construction and updating, for future idrs systems. The knowledge base component
instead provides idrs components with required knowledge about generated detection
models, security controls, supported vulnerabilities and assets of the monitored system.
Besides, it reinforces cooperation and knowledge sharing between idrs and other
security systems. Moreover, the proposed idrs life cycle explicitly presents processing
steps of different components within the idrs architecture. The designed architecture
and life cycle serve as the foundation of our idrs framework that complements research
and normalization efforts in this field.

— Adaptive analysis and detection component: the designed analysis component takes
account of several log types that differently report current security state of the
monitored system. It dynamically selects best combinations of detection models to
conduct a thorough analysis of current state. Afterward, it hierarchically fuses selected
models to derive the combined detection decision. The selection and fusion steps of the
adaptive component represent the core extensions of the typical analysis process. The
former uses an integrated criterion that includes data and model dependent factors, to
select appropriate combinations. The latter relies on an enhanced evidential fusion
method to combine selected detection models at the decision level.

— Risk driven response component: the designed response component is solely based on
a risk management model. The proposed risk model complies with security standards
and guidelines including ISO 27005, FIPS 65 and NIST SP800-30. Additionally, its

two parts of risk assessment and risk mitigation are based on a quantitative approach.



General introduction

The assessment part identifies and determines risk parameters including exposure,
severity of supported flaws and effectiveness of deployed controls. Then, it estimates
the basic risk of the computing environment due to mounted attacks. Afterward, the
mitigation part treats reached risk relying on an appropriate minimization program. It
selects the best security strategy to mitigate current risk from those incrementally and
iteratively designed using return on security investment criterion. The designed and
selected security strategies meet both objectives of minimizing inflected risk by
mounted attacks to an acceptable level and reducing security investment cost to an

imposed level
5 Thesis outline

The thesis is structured as follows. Chapter 1 and Chapter 2 review information security
literature. Chapter 1 presents main security concepts, principles and controls. Chapter 2 solely
focuses on ids, their components, taxonomies, normalization efforts and data modeling
methods experimented in previous works. Chapter 3 introduces our idrs framework and
briefly discusses proposed CIDF improvements. Chapter 4 details multimodel analysis
component proposed within the idrs framework. Chapter 5 presents our information security
risk management model on which relies the response component of the idrs framework.
Chapter 6 presents a detailed illustrative example that stresses validity and effectiveness of
our idrs framework. Finally, the conclusion enumerates main findings of this work and
discusses future directions of researches in this field and others within the information

security domain.
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CHAPTER 1

BACKGROUND OF INFORMATION SYSTEM SECURITY
AND INTRUSION DETECTION

1.1 Introduction

Internet services have submerged all activity domains of today’s organizations. Moreover,
multiple organizations have entirely based their business activities on these infrastructures
which expose their information systems to a high risk level. The risks are related to various
weaknesses in designing or bugs in implementing or configuring these services. Organizations
should identify and mitigate these risks to protect their critical information systems and thus
preserve their business continuity. Moreover, they should implement appropriate security

controls or measures both to detect known attacks on their resources and avoid others.
1.2 Terminology

- Asset: Assets “generally include information, hardware, software, and people. Asset values
are determined based on the impact to the organization if the asset is lost. Critical assets are

those that are essential to meeting an organization’s mission and business objectives” [20].

- Security policy :“is some statement about what kind of events are allowed or not allowed in
the system. An explicit policy consists of rules that are documented (but not necessarily
correctly enforced), while an implicit policy encompasses the undocumented and assumed

rules which exist for many systems” [233].

- Vulnerability:“A flaw or weakness in a system's design, implementation, or operation and

management that could be exploited to violate the system's security policy” [20].

- Threat:“is defined as anything that may compromise an asset. This could be a person, such
as an employee or a hacker, or it could be a competitor or anyone else with deliberate intent to

compromise an asset. Threats also include anything that results in accidental disruption to an
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asset (such as a natural disaster), the means of access to do so, or any outcome or consequence
that results in an unwanted effect such as disclosure, modification, destruction, loss, or

interruption” [20].

- Attack: “connotes an action conducted by an adversary, the attacker, on a potential victim.
From the perspective of the administrator responsible for maintaining a system, an attack is a
set of one or more events that has one or more security consequences. From the perspective of
a neutral observer, the attack can either be successful-an intrusion-or unsuccessful-an
attempted or failed intrusion. From the perspective of an intruder, an attack is a mechanism to

fulfill an objective” [20].

- Intrusion: “refers to an actual illegal or undesired entry into an information system.
Intrusion includes the act of violating the security policy or legal protections that pertain to an
information system” [20]. An intrusion defined in [233] as “is a successful event from the

attacker’s point of view and consists of:
1) An attack in which vulnerability is exploited, resulting in

2) A breach which is a violation of the explicit or implicit security policy of the system”

[233].
- Incident:“is a collection of data representing one or more related attacks. Attacks may be
related by attacker, type of attack, objectives, sites, or timing” [20].

1.3 Information security services

Security consists of processes, mechanisms and controls designed to protect private
information and critical resources of an organization. Information security main mission is to

fulfill the following three goals:

— Confidentiality: limits the use and disclosure of information to legitimate and

authorized entities whose job can’t be performed without private information.

— Integrity: preserves accuracy and reliability of information. Any modification of

information should be performed by authorized entities.

— Availability: ensures accessibility to resources when needed. Resources should be

available to legitimate and authorized users.

12
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Additional services can be included such as authenticity, non-repudiation and access control
to reinforce organization’s security. Such services are required for protecting different

exploitation environments (computing systems, E-commerce, etc.).

1.4 Attack taxonomies

Systems, networks and sensitive information of an organization are exposed to multiple,
natural, accidental and intentional threats. Flooding, quakes or other natural threats have
various implications on availability of organization resources. Accidental threats are generally
caused by employees or insider entities to the organization. Data entry clerks, system
operators and programmers make unintentional errors which, directly or indirectly, induce
various security problems. Intentional threats are based on multiple accidental errors or
vulnerabilities of the target system. They are mounted by malevolent insider or outsider
entities. These malicious entities have various objectives and use different means or attacks to

achieve them.

Computer and network attacks are related sequences of actions mounted by malicious entities
with clear goals. The initial goal of an intruder, who mounts such intrusive actions, is the
violation of the security policy of the victim. These malicious adversaries have multiple
objectives that vary from simple information on specific resources to complete destruction of
these. They can reach fixed goals relying on different attack models or scenarios. Attack
models focus on supported design, implementation or configuration flaws of the hardware or

software of the victim environment. They depend as well on skills of attackers.

Attacks targeting computing environment resources have been structured into different
classes. The proposed attack taxonomies have been based on several criteria including
exploited vulnerabilities and attackers’ objectives. Furthermore, these taxonomies have to
meet multiple requirements such as exhaustiveness and simplicity. Following principles are

most relevant to discriminate between different taxonomies [164], [322]:
— Mutually exclusive: identified classes should not overlap
— Exhaustive: determined classes should cover all possible cases.
— Unambiguous: clear and precise classes regardless of who is classifying.

— Repeatable: reproduces expected results in the same classification regardless of who

is classifying
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—  Useful: should be useful to the security industry and security solution development.
— Simple: simple to understand either by security experts or others

— Determinism: classification procedure should be clearly defined and provide results

in a finite time

These criteria and others [158] impose clear definitions of used terms and well structured

decision processes of the designed taxonomies.

Various attack taxonomies have been proposed in [11], [158], [164], [195], [232], [322].
Many of these taxonomies partially meet these principles. They mainly focus on
vulnerabilities, attacker objectives and defense mechanisms in determining different attack
classes. Vulnerabilities supported by the target victim environment were considered in
Landwehr et al.” work as security flaws in computer programs [211]. The proposed taxonomy
by Landwehr and his colleagues aims at identifying problematic aspects in system designing
process. Thus, it seems to be designed to assist the system designer and programmer to
develop more secure systems [195]. In this taxonomy, security flaws are categorized
according to three dimensions as stated by Lindqvist et al.[232]: genesis (how the fault was
introduced?), time of introduction (when the fault was introduced?) and location (where the
fault manifest?) [18], [232].These dimensions have been extended in Krsul and Bishop works
[49], [199] by other features that characterize vulnerabilities in order to classify security flaws

associated with different abstraction levels.

Attack-centric taxonomies are the most used in security literatures. They concentrate on
intruder or the entity who mounts the attack. Implicitly, they thought of exploited security
flaws in conjunction with intruder’s methods in defining attack categories. Multiple attacks
categories have been defined by these taxonomies based upon attack techniques, results,

sources and processes.

Defense-centric taxonomies focus on defender goals rather than attacker objectives. They
address to the other side of security problem and try to categorize attacks based on means to
defend against them. These taxonomies focus on required security controls for a defender
side. Moreover, they offer useful tools that help defender to predict performance of

implemented detectors.

14



CHAPTER 1: Background of information system security and intrusion detection

1.4.1 Vulnerability classifications

Based on three dimensions proposed by Landwehr et al., Aslam’s taxonomy of faults defines
three main classes of operation, environmental and coding faults. Coding faults are introduced
during the software development. Operational faults are associated to improper software
installation or misconfiguration. Environmental faults manifest when software is deployed in
an environment which is inappropriate. Operation and coding faults, in turn, are subdivided
into other classes as depicted by the figure 1.1. Detailed descriptions of the identified fault
classes can be found in [27], [211].

1) Operation faults (Configuration errors)
la) Object installed with incorrect permissions
1b) Utility installed in the wrong place
1c) Utility installed in incorrect setup parameters
2) Environmental faults
3) Coding faults
3a) Condition validation error
3al) Failure to handle exceptions
3a2) Input validation error
3a2a) Field value correlation error
3a2b) Syntax error
3a2c) Type and number of input fields
3a2d) Missing input
3a2e) Extraneous input
3a3) Origin validation error
3a4) Access rights validation error
3a5) Boundary condition error
3b) Synchronization error
3b1) Improper or inadequate serialization error
3b2) Race condition error

Figure 1.1 : Aslam’s Taxonomy
Bishop and Krsul have analyzed Aslam’s taxonomy [49], [199]. Bishop has illustrated by a
sample of UNIX operating system vulnerabilities that Aslam taxonomy supports overlapping
classes and thus taken flaws can be assigned to multiple classes at the same time. Moreover,
he states that this taxonomy does not meet neither well defined decision process nor
uniqueness. Bishop shows also that Aslam’s taxonomy focuses solely on vulnerabilities at the
implementation level and therefore, lacks high-level categories to classify design faults [49].
He has developed a vulnerability taxonomy that focuses on the underlying causes rather than
descriptions of flaws. The proposed taxonomy uses six main axes or dimensions for

classifying vulnerabilities:
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— Nature of vulnerability or the condition that causes it (validation, synchronization,

naming, implementation)
—  Time of introduction
— Exploitation domain: gains through the exploitation of vulnerability (access level, ...):
—  Effect domain: the effect of vulnerability

— Minimum number: minimum number of components required for exploiting the

vulnerability.
—  Source: the source of identification of vulnerability.

Krsul has constructed his own attack taxonomy based on security fault of Aslam and critical
points of Bishop. This taxonomy uses extend dimensions compared to those presented by
Aslam to classify software vulnerabilities. It includes dimensions such as cause (which cause
has induced the fault?), type (which operation type is faulty?), removal (process steps to
remove the fault) and threat (potential threat of the fault). Krsul’s taxonomy distinguishes four

categories of vulnerabilities [18], [199]:
— Design: focuses on vulnerabilities at high level classes.
—  Environmental assumption: vulnerabilities associated with programmer assumptions.
—  Coding fault: assumptions on variable length
—  Configuration: focuses on error

Krsul and Bishop taxonomies main goal consists of providing useful descriptions of possible
exploits for intrusion detection. Moreover, these taxonomies aim at helping software
designers by presenting different techniques both to find and avoid various weaknesses at

multiple steps of software life cycle [49].

1.4.2 Attack-centric taxonomies

Attack centric taxonomies are based on attacking techniques, processes, results or other attack
dependent criteria in identifying different classes. Involved categorization criteria within these

taxonomies and determined attack classes are discussed in the following sections.
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1.4.2.1 Attack techniques

One of the earliest attack taxonomy was proposed by Neumann and Parker of the SRI
laboratory [274]. It was based on about three thousand incidents collected over a period of
twenty years. Neumann and Parker’ taxonomy categorizes misuse techniques into nine
categories. The table 1.1 presents different attack categories according misuse techniques

defined by Neumann and Parker [232].

Neumann and Parker stated that their classes don’t meet the uniqueness requirement because
the majority of recently detected computer misuses involve techniques from different
categories. In [164] and [232], Neumann and Parker taxonomy was criticized because its
classes are not logical and intuitive. Moreover, relationships between classes are not
explained either by an additional structure which may lead to difficult acceptance and limited
use of this taxonomy. However, Neumann and Parker’s taxonomy is suitable to classify a

large number of attacks because it relies on an extended data sample.
1.4.2.2 Attack results

Several taxonomies have been proposed based on attack results or attacker targets. Cohen
categorizes attack objectives into three categories [314]:
—  Corruption: unauthorized modification of information

— Leakage: unauthorized divulgation of information

— Denial: computer or network services cannot be accessed by authorized and legitimate

users.

This taxonomy focuses on security disruptions from the point of view of the three main
security services (integrity, confidentiality and availability). Other works use same categories
or define new ones in terms of different security services such as secrecy, accuracy and

authenticity [164].
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Table 1.1: Neumann and Parker misuse taxonomy [232]

Class Description

NP1 External misuse Generally non technological and unobserved,
physically separate from computer and
communication facilities, for example visual

spying.

NP2 Hardware misuse a) Passive, with no (immediate) side effects.

b) Active, with side effects

NP3 Masquerading Impersonation; playback and spoofing attacks etc.
NP4 Setting up subsequent misuse Planting and arming malicious software.
NP5 Bypassing intended controls Circumvention of existing controls or improper

acquisition of otherwise denied authority.

NP6 Active misuse of resources Misuse of (apparently) conferred authority that
alters the system or its data.

NP7 Passive misuse of resources Misuse of (apparently) conferred reading
authority.
NP8 Misuse resulting from inaction Failure to avert a potential problem in a timely

fashion, or an error of omission, for example.

NP9 Use as an indirect aid in committing | a) As a tool in planning computer misuse etc.

ther mi . . o .
other misuse b) As a tool in planning criminal and/or unethical

activity.

DARPA (Defense Advanced Research Projects Agency) and Luke have proposed two
different taxonomies of attack results. These taxonomies focus respectively on first and the
end goal of an attacker. DARPA’s taxonomy is simple and widely used in the intrusion
detection field. It was adopted in simulation of data sets for intrusion detection systems
evaluation because defined attack categories are convenient for specifying system capabilities.
DARPA attack categories are depicted in Table 1.2 [90], [154], [190]. The first four classes
form DARPA reduced taxonomy which is the most adopted in intrusion detection literature

and also used in this report.

Luke has proposed attack implementation taxonomy based on attacks primary objectives. As
he has stated: “an attack implementation is a specific way that an act is done” [322]. Luke’s
taxonomy distinguishes eight categories of attack objectives. These categories are

summarized by the table 1.3 [322].
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Table 1.2: DARPA Attack Taxonomy

Main
Sub-category
category Description Description
1. DOS Denial-of —service 1.1 crashing Using a single malicious
attacks have a goal of event (or a few packets)
limiting or denying to crash a system, e.g. the
services to authorized teardrop attack
entities (user, computer,
network) 1.2 consumption Using a large number of
events to exhaust network
bandwidth or system
resource, e.g. synflood
2. U2R User-to-Root allow 2.1 local By first logging in as a
attacker who had legitimate user on a local
previously a user-access system, e.g., buffer
to gain a super-user overflow on local system
access on system or programs such as eject
computer
2.2 remote From remote host, e.g.
buffer overflow of some
daemon running suid root
3.R2L Remote-to-Local attacks | 3.1 single A single event, e.g.
aim at illegally gaining guessing passwords
local access to a
computer or network by | 3.2 Multiple Multiple events, hosts, or
an attacker who had had days, e.g. the multiple
only remote access attack
4. PROBE | Illegally, gaining 4.1 simple Many of probe within a
knowledge on the short period of time, e.g.
existence or fast port scan
configuration of a
computer system or 4.2 stealth Probe Events are distributed
network sparsely across long time
windows, e.g. slow port
scan
Data Data attacks allow an attacker access to some piece of information (file or

directory) that was impossible according to stated security policy. These attacks are
generally classified as U2R and R2L but are considered as data attacks.
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Table 1.3: First objective based attack taxonomy

Main category

Description

Gain unauthorized use

Gain unauthorized control or use of
target resources

Access unauthorized data

Allow attackers to read or obtain
unauthorized data from the target

Masquerade as a normal
software but to have abnormal
uses

Programs that hide their true identities
to perform unusual and unseen activities
in order to violate the security policy:
backdoors or torjan horse programs

Deny of service

Intentional impair of normal function of

target resources

Unauthorized
code

Propagate malicious code spreading of harmful

Solicit a user Concerns unwanted attack designed to

convince system users to perform
harmful actions.(spam, virus, social
engineering)
Improperly gain information | Describes any attack that collects
that could be used for further | potentially useful information for
attacks further harmful attacks
Violate a local account Unauthorized break of limitations

restrictions placed upon a local account

1.4.2.3 Attack process

Howard’s taxonomy focuses on the operational sequence of tools, access and results that links
between the attackers and their objectives. In his process-based taxonomy, Howard has
defined multiple categories of attackers, tools, access levels, results and objectives. He has

divided entities carrying attacks into six categories [164]:

—  Hackers: they break into computers primarily for the challenge and status of obtaining

access.

— Spies: they break into computers primarily for information which can be used for

political gain.

—  Terrorists: they break into computers primarily to cause fear which will aid in

achieving political gain.
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—  Corporate raiders: employees of one company break into computers of competitors for

financial gain.

—  Professional Criminals: they break into computers for personal financial gain (not as a

corporate raider).
— Vandals: they break into computers primarily to cause damage.

When these intruders mount an attack, their primary motivation, as stated by Howard, is one

of the following:
— Challenge, status
— Political gain
— Financial gain
— Damage

Different means are used by attackers to gain access to the target system. Howard has defined

six possible classes of attacking tools:
—  User command: typed shell commands or using a graphical interface

—  Script or programs: Scripts or Trojan horse programs or cracking programs triggered

by an intruder to exploit different vulnerabilities.

— Autonomous agent: initiated by attackers to exploit vulnerabilities independently to

who use the system (computer virus or worms).
— Toolkit: Software package of commands, scripts and autonomous agents

— Distributed tools: tools associated with different hosts by an attacker to mount a

coordinated attack.

— Data tap: physical attack tool which focuses on electromagnetic devices such as

computer memory or network cables to reveal saved or exchanged data.

Intruders use one or more of these tools to exploit design, implementation or configuration
vulnerabilities and achieve their goals. They can gain unauthorized access to target resources
and control processes, files and exchanged data with the victim. Moreover, they are able to

implement other security disruptions.

The complete attack taxonomy that uses five stage process is presented by figure 1.2 [164].
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Attackers Tools Access Results Objectives
Hackers User Implement'aFion Unauthorized Files Corruption Challenge,
g
Command Vulnerability Access Procesy  [Patain of Status
Spies mip|  SCTIPLOT Design mip( Unauthorized —mis Transit || Information
Program Vulnerability Use Disclosure of Political
Terrorists Autonomous Configuration Information Gain
Agent Vulnerability Theft of S
Corporate Service Flnaqmal
Raiders Toolkit Denial-of- Gain
Professional service Damage
o Distributed
Tool
Vandals
Data Tap

Figure 1.2 : Howard’s attack taxonomy

Howard’s taxonomy was largely criticized in several works. It was considered as an attempt
to derive a process-based taxonomy because it focuses solely on attack rather than attacking
stages. Howard’s taxonomy fails also to define mutually exclusive classes. This is the case of
script or program and toolkit classes of tools categories. Moreover, different other classes of
attackers are indistinguishable, from the point of view of the user, such as terrorist and

vandals, spy and professional criminal and other entities [158].

Howard’s taxonomy was then refined to develop Sandia attack taxonomy of Sandia
laboratory [164]. Howard has revised attack stages and proposed new terms such as action
and target to describe them. However, all weaknesses of the first are supported in the

improved version of the Sandia taxonomy as stated in [158].

Another attack taxonomy based on attacking process was proposed by the Department of
Defense (DoD). DoD taxonomy divides attacks into four categories according to attack
models. An attack model defines a scenario that combines several entities (people, data,
knowledge, software and hardware) to achieve intruder objectives. The four attack models

considered in DoD taxonomy are: probe, infrastructure, authorized and factory model [314].

— Probe model: Probe attack model focuses on information collection or gathering

attacks to identify opportunities of potential attack that can damage target system.

— Infrastructure model: Infrastructure attack model concentrates on attack designed to

persuade entities in target systems to cause harm that affects infrastructure attributes.

— Authorized access models: Authorized access models are concerned with insider

entities which have authorizations to access system resources.
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— Factory model: Factory attack model focuses on entities in the target systems
(hardware and software) that can indirectly cause damage. Tools designed to mount

such attacks have always an embedded malicious code.
1.4.2.4 Other attack-centric taxonomies

Multiple attack taxonomies have been proposed based on abuse methods, types of disruption

and other criteria. Some of these taxonomies are summarized in following sections
a) Lindquist and Jonsson’s Taxonomy

Lindquist and Jonsson have refined SRI computer abuse methods model of Neumann and
Parker. They have proposed two dimensions based attack taxonomy that includes techniques
and results dimensions. Lindqvist and Jonsson’s taxonomy uses misuse techniques proposed
at the origin by Neumann and Parker, specifically, NP5, NP6 and NP7 technique categories
given in table 1.1. These categories were subdivided into different classes in Lindqvist and

Jonson’s taxonomy as summarized by the table 1.4 [232].

Table 1.4: First dimension of intrusion techniques

Misuse technique Lindqvist and Jonsson classes

categories
NP5 Capture
Bypassing intended Password attacks )
Guessing
controls
Spoofing privileged programs
Utilizing weak authentication
NP6 Exploiting inadvertent write permission

Active misuse of
resources

Resources exhaustion

NP7 Manual browsing

Passive misuse of

Using a personal tool
resources

Automated searching
Using a publicly available tool

Lindqvist and Jonsson’s taxonomy includes different intrusion results that mainly concern
confidentiality, integrity and availability services. According to this taxonomy, attack
objectives are divided into three categories of exposure, DOS and erroneous outputs [232].

These categories and their sub-classes are presented in Table 1.5.
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Table 1.5: Second dimension of intrusion results

Results
Classes
Categories
Exposure . Only user information disclosed
P Disclosure of y
confidential . .
. . System  (and user) information
information :
disclosed
Access as an ordinary user account
Service to ]
unauthorized | Access as a special system account
entities
Access as client root
Access as server root
DOS Selective Affects a single user at a time
Affects a group of users
Unselective Affects all users of the system
Transmitted | Affects users of other systems
Erroneous Affects a single user at a time
outputs Selective
Affects a group of users
Unselective Affects all users of the system
Transmitted | Affects users of other systems

b) DARPA extended taxonomy

Kendall has proposed an attack taxonomy that was reduced to five classes by DARPA team,
as previously discussed, to develop a testbed of intrusion detection systems evaluation.
Kendall’s taxonomy focuses on two main aspects in attacks: transition between privilege
levels and actions performed by attacks. The first dimension distinguishes five main classes of

privilege or access levels:
— Remote network access (R): minimal access to the target via interconnected networks.

— Local network access (L): ability to read and write to local network where the target is

located.

— User access (U): normal access and use of the system.
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— Root or super-user access (S): allows super-user or administrator total control of

system software.

— Physical access (P): allows operator to manipulate physical component of the systems

(hard disk, etc.).

In addition, Kendall has defined five possible ways or means of transition between access

levels, these are:

— Masquerading (m): the attacker hides his true identity and convinces the target to

believe him as a legitimate user with higher privilege.

— Abuse of features (a): causing a system failure either by making its resources too busy

or by imitating privileged actions to gain a higher access level
— Implementation bug (b): exploitation of bugs in trusted programs
— System misconfiguration (c): exploitation of error in security policy configuration

— Social engineering (s): attacker uses indirect means to let the human operator of the

system reveals secret information.

Different actions can be performed in each privilege level. For the second dimension, Kendall
has used five main categories of actions. Table 1.6 presents actions categories and their

descriptions [190].

Kendall has illustrated how to classify and describe different attacks in DARPA database
using a string representation of attack privilege, transition and action performed. For example,
password cracking attack is represented by the string “U-use (intrusion)” according Kendall’s
taxonomy. The string representation of password cracking attack states that “user with a local
account (U) uses a program which attempts to decrypt an entry in password file”. Attacks
descriptions and classification process of Kendall’s taxonomy are illustrated by figure 1.3

below [190].
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Table 1.6: Action categories in Kendall’ taxonomy

Action category Specific type Description
Probe(Machines) Determine types and numbers of
machines on a network
Probe(Services) Determine the services of a particular
Probe system supports
Probe(Users) Determine the names or other
information about users with accounts on
a given system
Deny(Temporary) Temporary Denial of Service with
automatic recovery
Deny Deny(Administrative) Denial of Service requiring
administrative intervention
Deny(Permanent) Permanent alteration of a system such
that a particular service is no longer
available
Intercept(Files) Intercept files on a system
Intercept
Intercept(Network) Intercept traffic on a network
Intercept(Keystrokes) Intercept keystrokes pressed by a user
Alter Alter(Data) Alteration of stored data
Alter(Intrusion-Traces) Removal of hint of an intrusion, such as
entries in log files
Use(Recreational) Use of the system for enjoyment, such as
Use playing games or bragging on IRC

Use(Intrusion-Related)

Use of the system as a staging area/entry
point for future attacks

1. Initial privilege level

Remote Network
Local Network
User Access

2. Method of transition

masquerading
abuse feature

Superuser Access
Physical Access

implementation bug
misconfiguration
social engineering

Remote Network | 3.a
Local Network New

o User Access level
Superuser Access

Probe(...) 3b

Deny(...) Action
» Intercept(...)

Alter(...)

Use(...)

Figure 1.3 : Attacks description in Kendall’s taxonomy
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¢) Raggad’s Taxonomy

Raggad’s taxonomy relies on three main axes to classify attacks on organization resources.
Each attack is assigned to one of the proposed categories based on its source, implication on

the target and attack models to carry out intrusive actions.

Raggad uses five types of entities initially identified by Whitten, Bentley and Barlow [408] in
system analysis and design. The following entities are considered in Raggad’s taxonomy as
the origin of any attack on information technology resources:

— People: people in the target system (input data, receive output ...).

— Activities: sequences of steps (data flows, security controls ...) defined for the target

system.
— Technology: technology evolution (impact on target system).
— Data: data and information flows in target system.
— Networks: network requirements at different locations in the target system.

These entities have the ability to cause different types of harms to the target system. Raggad’s
taxonomy uses three types of disruptions, those introduced by Cohen [81]. Figure 1.4

illustrates causal links between the origin and impact of an attack.

|Security disruption|

[ Effects ]

/\

Information Information Service
corruption leakage denial

[ Disruption origin ]

People | | Activities | | Networks | | Technology |

Figure 1.4 : Security disruption classes by (impact, origin) pairs [314]
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An attack induces an entity to cause one of security disruptions. DoD attack models form the
third dimension of Raggad’s taxonomy to describe the attacks. The proposed taxonomy
adopts a cube form to represent attack where each axis corresponds to one of the included

dimensions.

Raggad has proposed a security and information assurance framework relying on this
taxonomy. Based on the three dimensions, he has identified sixteen different information
security systems to rule out attacks on confidentiality, integrity and availability of target

system resources [314].
d) Multi-dimension attack taxonomy

Hansman [158] has proposed a multidimensional computer and network attack taxonomy. He

has fixed the first four dimensions of his taxonomy, which are:
— Attack vector: it provides descriptions of attacks and simplifies their classification.

— Target of attack: it defines different hardware and software components either of

computer or network that can be targeted by an attack.

— Vulnerabilities: it presents the implementation and configuration of vulnerabilities that

can be exploited by an attack.
— Attack payload: it defines possible results of an attack.

For each of these dimensions, Hansman has defined different classes. Complete taxonomy
and detailed classes associated with each dimension can be found in [158]. Furthermore,
Hansman taxonomy is extensible and can support additional dimensions such as damage, cost,

propagation and defense to reduce classification ambiguity and define precise subclasses.
1.4.3 Defense-centric taxonomy

Defense-centric taxonomy is based on defender goals rather than attacker objectives. In fact,
Killourhy and his colleagues have agreed that the attack-centric taxonomies are useful for
defender because they inform him on groups of attacks that can be ruled out together.
However, defense-centric taxonomies are more helpful from the point of view of defender
because they allow him to know whether his detectors have correctly thwarted given attack or
not. The authors emphasize that defense-centric taxonomies are much more useful than
attack-centric when defender is faced with new attacks. In this situation, is more useful, from

the defender and information owner viewpoints, to trigger the most competent detector, if the
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new attack falls into one of known attack categories, than analyzing the goal and tools used by

intruders.

In their work, Killourhy et al. have performed two main experiments. The first experiment
concentrates on attacker behaviors. Twenty five attacks have been carefully selected for this
experiment to exploit different vulnerabilities supported in used testbed. During
experimentation of these attacks, sensors implemented in the testbed log all sequences of
system calls generated either by intrusive actions or vulnerable programs. The second
experiment focuses on system normal behavior where sensors collect system calls invoked by
system expected activities. Intrusive and normal sequences of system calls are analyzed by
authors to identify attacks manifestations. These specific sequences of system calls or
manifestations resume attacks performed actions to exploit inherited vulnerabilities. Killourhy

and co-works have organized the set of identified attack manifestations into four types:

Foreign symbol: a manifestation contains a system call that never appears in normal

sequences.

— Minimal foreign sequence: a manifestation contains a specific sequence that never
appears in normal records but all of its proper sub-sequences are included in normal

sequences.

— Dormant sequences: a manifestation contains a sequence which partially matches

normal sequences.

— Non anomalous sequence: sequence in attack manifestation that fully matches normal

sequences.

Defense-centric taxonomy of Killourhy et al. was based on the four types of manifestation

sequences. It defines following mutually exclusive attack classes:
— Class 1 (FS): attack manifestation that contains one or more foreign symbols.

— Class 2 (MFS): attack manifestation that contains no foreign symbol but supports one

or more minimal foreign sequences.

— Class 3 (DS): attack manifestation that supports neither foreign symbols nor sequences

but contains a dormant sequence.

— Class 4 (MNA): attack manifestation entirely similar to normal sequence and contains

no foreign symbol or sequence and no dormant sequence.
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Killourhy et al. have shown that their taxonomy meets requirements of acceptable taxonomy.
Moreover, they state that defense-centric taxonomy was successful in predicting whether
detector is capable to detect a given attack or not, based on its classification results. They
consider that defense-centric taxonomy is an accurate predictor and more useful than attack-
centric taxonomy for defenders [195]. However, defense-centric taxonomy is neither intuitive
nor simple to use. It requires highly skilled and experimented users to classify attacks. In
addition, it allows insufficient results when new unseen attacks are classified because
implementation of new detectors to defend against them requires detailed information on
intrusions sources, tools, results and exploited vulnerabilities. The most important
shortcoming of this taxonomy is the complete reliance on a single type of log data, system
calls, that induces different problems in identification of manifestation using other types of

audit data.

1.5 Attack trends

Attacks are continually evolving as a result of rapid changes in the technology environment.
They become real threats to private corporations and governmental services. Moreover,
entities carrying attacks have shown, last years, many changes in their malicious activities due
to multiple factors such as increased vulnerabilities of new technologies, dependence of
critical infrastructures to public network security and wide availability of automated and

sophisticated attack tools.

The migration from private to public network has reduced costs and improved the market
place of modern businesses. However, this shift from proprietary to standardized systems with
common vulnerabilities has dramatically increased the number of attacks. Moreover, new
vulnerabilities are increasingly discovered due to rapid changes in information technology
resources (wireless network, web applications ...). According to CERT, new discovered
vulnerabilities are doubling each year [69], [70]. In 2005, Symantec report states that 59% of
discovered vulnerabilities are associated with web applications and 73% of the overall are
easily exploitable [379]. In addition, attackers have an enormous capacity to exploit either
newly discovered flaw in reduced time. The time-to-exploit, the period between discovering
and exploiting the vulnerability by an intruder, was estimated to six days in Symantec report.
Whereas, system developers report vulnerabilities and their patches after one year to internet

security coordination centers such CERT and CVE (Common Vulnerability Exposure).
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Increased reliance on the Internet has been propagated to public administrations. Multiple
services associated with transportation, financial transactions, healthcare and others are
managed over public networks. Security of the critical infrastructures of these governmental
services and the Internet systems are becoming interdependent. Any attack that targeted
Internet systems can cause dramatic damage to society critical services. The wide availability
of automated and highly sophisticated attack management tools provide hackers more
opportunities to launch various prevalent attacks that flood networks and tie up mission-
critical resources. The most known form of advanced infrastructure attacks is distributed
denial of service (DDOS). DDOS uses an array of connected systems, either private corporate
or governmental systems, to cause enormous damage to single or multiple sites. Recently,
university’s networks and Asymmetric Digital Subscriber Line (ADSL) address blocks are
becoming the most attractive sites to launch these attacks because they are simple to

compromise and easy to remotely control them.

Attack tools are becoming more and more automated and sophisticated. Automated probing
tools are able to scan the Internet for vulnerable systems in reduced time. Moreover, they can
use the discovered flaws to speed up their propagation and implement more harmful patterns.
Attack tools are also capable to self-initiate additional attacks with different behaviors each
time. In addition, they allow skilled or beginner hackers to easily launch distributed attacks
and readily compromise vulnerable systems on different platforms. Available tools such as a
hacker toolkit allow intruders to manage and coordinate a large number of attack tools

implemented on multiple systems across the world.

Attack tool developers use sophisticated techniques. These techniques focus on stealthy
behavior or anti-forensic feature that makes hacker’s intrusive activities difficult to discover
and track. Stealthy attacks leave signs indistinguishable to system normal activities in log
data which induces multiple ambiguities in forensic analysis and increases the complexity of
the security expert mission. Attack tools for mounting such confusing attacks are upgradeable.
They can self-initiate varying patterns attacks. Behaviors of performed attacks can change

either randomly or according to its decision process or intruder’s instructions [70].

As depicted in figure 1.5, attack tools evolution has influenced attacker skill. First attacks
were manually implemented. Based on their expertise, attackers develop their own
methodology which allows them to compromise tens to hundreds of systems. Twenty years
after, widespread automated and sophisticated attack tools assist them to mount devastating

attacks on thousands of sites across multiple platforms.
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Figure 1.5 : Attacks sophistication versus attacker’s technical knowledge [11]

To thwart sophisticated attacks and reduce risks of organizations, multiple security controls
should be simultaneously deployed. Various security countermeasures either to avoid or

detect attacks on organization resources are presented in the following sections.
1.6 Attack prevention

Various security techniques are integrated in the organization’s security package to prevent
multiple attacks on confidentiality, integrity and availability of assets. Encryption
mechanisms preserve confidentiality of the exchanged data. Authentication techniques
establish identities of entities. They ensure the divulgation of exchanged encrypted messages
and the usage of system resources only by legitimate users. Authentication allows basic
requirements for others security techniques such as access control. Access control
mechanisms organize and control access and use of system resources by users with respect to
privilege levels and authorizations assigned to them. An extended list of security controls may
be found in [148] and the annex A of the ISO 27001 [173]. Some of these controls and their

usefulness are discussed in the next sections
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1.6.1 Authentication

Authentication is a critical component in preventive part of any integrated security solution.
Authentication technique is the first mean of the Site Security Officer (SSO) to discriminate
between legitimate and malicious entities that try to access to system resources. It focuses on
users, computers, processes and also messages. Authentication techniques use something
known, possessed or inherited by entities to authenticate them. The following sections present

different authentication techniques which concentrate on system users.
1.6.1.1 Password authentication

Password authentication is the most common and widely used technique. Authentication
systems based on password have multiple significant problems. Well-known vulnerabilities
associated to password selection and usage are at the origin of many shortcomings of these
systems. System users often select weak passwords that can be easily divulgated or stolen by
an intruder. Moreover, when users interact with authentication server anyone has the ability to

snoop these passwords when keying it in. This is one form of social engineering attack tool.

Two other intrinsic problems are usually associated with password-based authentication
systems including password sharing and management. In password authentication systems,
the same information is shared between users and the authentication server. Authentication
server administrator or SSO can use these passwords because he has a full access to the
password file. Moreover, if passwords are saved or exchanged in plaintext any third party is
able to intercept the conversation between clients and the authentication server by a simple
sniffer and divulgate them. Password management, selection, modification and protection are

other serious security problems of password-based authentication systems.

Multiple solutions have been proposed to improve robustness of authentication system based
on simple and static password. The majority of actual systems never use manually generated
password but they support a password generator. The latter provides extended and difficult to
divulgate passwords. These passwords are randomly generated and correctly tested before

assigning them to users.

Another solution has been proposed to rule out password reuse and replay attacks. This
solution is based on dynamic password or one-time password (OTP). OTP technique ensures
password change at each authentication. It is based on shared password list, between user and

server, or saved last session password to compute the next one. Cryptographic techniques are
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also used to develop strong password authentication protocols. Systems based on these
protocols focus on secret information protection either in transit or when saved on the

authentication servers [186].
1.6.1.2 Token-based authentication

Tokens are physical devices used by system users as authentication support or authenticator.
They can be USB tokens, smart cards or password generating tokens. Authentication tokens
are usually used by two factors-based authentication systems. In two-factor authentication, a
token has a unique identity in addition to user PID (personal identifier) or a static password.
This information cannot be divulgated because user has no permission neither to access nor to
modify them. Moreover, if the user tries improperly to modify this information, the token

becomes unusable for further authentication trial.

Two-factor authentication is performed in two steps. In the first step, user introduced PID is
compared with information saved on the token. In the second step, token identifier is verified
using the one saved by the authentication server. These two steps are interdependent; if the

first fails the second is dropped.

The majority of token-based authentication systems implement these authentication steps
either in the given or the inverse order. However, they can be distinguished by inherited
features of used devices. For instance, USB token has the ability to save digital certificates,
whereas, password generating token allows random generation of password required in a
second step. Moreover, smart card can store and process data using its microprocessor. It can
be programmed to perform different strong verifications needed for high-level security

systems.

Token based authentication defends against multiple attacks initially possible with static
password. However, other weaknesses of static passwords persist also in token based method
such as the usage of static PID and loss of token. Furthermore, this solution ensures token
authentication rather than user possessing it. Any entity that disposes of a stolen token and

knows the associated PID can authenticate himself as the owner of the token [186], [334].

1.6.1.3 Biometrics

Biometrics focuses on physical or behavioral characteristics of an individual person that

distinguishes him among others. These unique characteristics associated with each person are
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adopted in biometric authentication system to authenticate him. Physical and behavioral
features used in biometric authentication include fingerprints, retina pattern, hand geometry,
handwritten signature and voice pattern. Biometric authentication systems dispose of
databases of users’ reference profiles. A reference profile collects biometric information of a
user according to desired physical or behavioral feature and serves as his authenticator. When
a user initiates a new session on the target system, biometric feature scanner extracts user
profile. Extracted and reference profiles are compared and if they completely mach one

another, the user is allowed to access to the target.

Biometric authentication has circumvented many inherited weaknesses of previous
authentication systems. An important advantage of biometrics is that physical and behavioral
features are neither transformed nor stolen. Biometrics ensure that user identity is never
forgotten. However, efficiency of biometric authentication depends solely on selected feature.
Other technical difficulties such as imperfection of selected feature and profiles extraction or
comparison affect the performance of biometric authentication systems. In addition, different
feature patterns change, under natural or psychological conditions like speech and face

patterns, indirectly affect the efficiency of biometric systems [186].
1.6.2 Access control

Multi-user environment requires the implementation of access control systems to organize
access and defend against unauthorized use of shared resources. Multiple approaches can be
adopted to control access to system resources. They are based on different access models and
use several policies. At a lower level, access mechanisms such as access control lists, ACL, or

capabilities lists are used to implement access control systems.
1.6.2.1 Access control models

Access control models provide a basic framework for resource protection. They allow basic

components required to the formal definition of access control policies.
1.6.2.1.1 Access control matrix model

Access matrix model was proposed by Lampson. It was improved by Denning et al. This
model allows generalized descriptions of access control mechanisms associated with
operating systems. Denning et al. improved model was based on three main components

organized as a matrix structure [143], [334]:
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— Passive objects: a set of resources to be protected and their types (file, host......). For
each object type is associated a set of allowed operations

— Active subject: a subject is an entity wishing to access and perform an operation on
an object. Active subjects, users or processes, are also considered as objects that
require protection.

— Access rules: the set of access rules defines allowed operations for each pair (subject,
object). These rules state subjects’ access rights or allowed operations on each

object.
1.6.2.1.2 Lattice security model

The lattice security model is an extension of the access matrix proposed in [143]. It is inspired
by the military classification system and its structured security levels. The lattice based model
focuses on the information flow between security classes in the computer system.
Specifically, it concentrates on confidentiality classes. Lattice based model defines three main

concepts:

— Set of security classes: objects, users and processes are assigned to security classes.

— Classes-combination operator: an associative and commutative binary operator that
determines the result class for any binary function on two operand classes.

— Flow relation: relation defined on two security classes. It specifies permitted

information flows between these classes.
In lattice based model, Denning has added the following extensions to the matrix model:

— Each object is assigned a security class (unclassified, confidential, secret and top
secret). The security class of an object concerns its content.

— Each subject is assigned a clearance that specifies allowed security classes to be
accessed.

— Each pair (object, subject) is labeled with allowed classes for the subject and

information content classification for the object.

Other extensions have been proposed for the lattice model such as the BLP model (Bell and
LaPadulla model) that aims at the reinforcement of access control policies by concentrating
on mandatory access rules. Additional access control models have been developed. They
define new concepts or focus on different environments or security services. Role-based and

SPM (Schematic Protection Model) are two access control models proposed by Shandhu
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[334]. The role-based model focuses on other concepts rather than subject and object, such as
task, action and responsibility. SPM model was designed for organizing access in distributed
systems. The Biba access control model uses BLP basic concepts, but it concentrates on data

integrity rather than information confidentiality [143], [186].
1.6.2.2 Access control policies

Access control policies are based on model components to define different rules for
controlling who can perform which operation on what object. Access control rules determine
access decision when dealing with authority delegation or access right revocation. Access
control policy allows different security levels. The suitable access control policy should
satisfy security requirements of the target system. Within the same system, different security
policies can be integrated. However, they ensure required security level only if all conflicts

between them are resolved.

The most known and used access control policies are discretionary and mandatory policies.
1.6.2.2.1 Discretionary policy

Discretionary access control policy organizes access to system resources on the basis of users’
identities and their authorizations. Authorizations are explicitly attributed by objects or
resource owners to each user or group of users. For each access request to a specific object,

user authorizations are checked to grant or deny his demand.

Discretionary access control policy is widely used in industrial and commercial systems
because it offers required flexibilities (policy can be easily modified by object owner).
However, it supports multiple shortcomings. It doesn’t ensure any consistency with the local
policy because each owner has the flexibility to define and modify access control policy on
his resources. Moreover, it imposes any constraints on information flow within the system.
Therefore, authorized users have the ability to copy information form one object to another

and reuse the copy without owner authorization.
1.6.2.2.2 Mandatory policy

Access to resources in mandatory policy is organized based on subject and object
classifications. Each object in the system is assigned to a security level that reflects the
sensitivity of its content. The clearance associated with each user reflects his trustworthiness

to not divulgate sensitive information to the low clearance subject. Security classes in
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mandatory policy can be unclassified, confidential, secret or top-secret. In this hierarchy, each

class dominates itself and all other classes below it.

Each subject is authorized to access an object depending on access model (read, write), his
clearance and the classification of the object. Each access should satisfy following mandatory

rules:

— Read down: The subject’s clearance should dominate the object’s security level in
reading
—  Write up: the subject’s clearance should be dominated by the object’s security level
in writing.
These two rules allow mandatory policy to prevent information flows from high level
sensitivity classes to low levels. Moreover, they ensure information flows with higher levels

or within the same level of the hierarchy.

Discretionary or mandatory policies are recognized as standards of the DoD’s orange book.
Both have been integrated in role-based policy to define access control rules that concentrate

on roles rather than objects and subjects.

Access control policies can be implemented using different mechanisms such as ACL or
capabilities lists. These access control mechanisms focus respectively on objects or subjects.
They allow respectively a list of authorized operations for each subject or a list of capabilities
on each object. Other access control mechanisms not included in this work use different data

structures to implement access control rules (authorization relation, etc.) [143].
1.6.3 Cryptography

Cryptography is the only known security technique to defend against passive attacks such as
message release and traffic analysis. Associated with other security protocols, cryptography
can be used as a countermeasure against active attacks. Encryption controls only ensure
confidentiality of data and information flows. They can support other security services such as
integrity, authenticity and non-repudiation. Cryptography is based on two primitive operations

as illustrated in figure 1.6: encryption and decryption [157].

— Encryption: is the operation that consists of performing mathematical transformation
or different computations on readable message (M) using secret or public

information (e) to generate meaningless message or a cryptogram(C).
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— Decryption: is the operation of recovering the initial message using its cryptogram. It

consists of applying the inverse transformation or computations on the first

unintelligible message (C) using the same secret or other private information (d) to

regenerate the initial intelligible message (M).

E.(m)=c
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Figure 1.6: Two party communication using encryption [157]
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Encryption system based on these two operations can be divided into secret key or public key

cryptosystems. Symmetric encryption algorithms allow communicating entities to share the

same secret key as depicted by figure 1.7. The shared secret key in symmetric cryptosystems

is used both for encryption and decryption.
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Figure 1.7: Two-party communication using symmetric encryption [157]

Symmetric cryptosystems are widely used because they are simple and efficient in terms of

computation time. However, they support multiple weaknesses. They require a secure channel
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for exchanging secret key between entities. In addition, secret key should be kept secure to

preserve confidentiality of previously exchanged messages.

Public key encryption avoids all previous problems as illustrated by figure 1.8. It involves a
pair of key (public and private keys (e,d)) associated to each entity. The public key is
published to everyone who wants to communicate with the entity. The private key remains
secret and not revealed to any other entity. Data are generally encrypted under the control of
the public key and never decrypted only using the corresponding private key. In asymmetric
cryptosystem, it is computationally unfeasible to deduce the private key from the associated

public key. Moreover, each entity has a key pair different and independent to other entities’

pairs.
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Figure 1.8: Encryption using public-key cryptosystem [157]
Compared to symmetric encryption, public key cryptosystems are more secure and
appropriate for safeguarding and exchanging confidential information. However, they are not
always effective such as for exchanging large amount of data; they are more costly than
symmetric systems in terms of computation and communication loads. Asymmetric
cryptosystems have induced other difficulties than those associated to symmetric
cryptosystems. Public key authenticity and revocation are among the most known

shortcomings of using asymmetric encryption.

The most known and used cryptosystems are DES (Data Encryption Standard) and RSA
(Rivest, Shamir and Adleman). These algorithms are recognized as standards of respectively

symmetric and asymmetric cryptography. They use keys of different lengths; 64 bits for DES
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and 512 bits or more for RSA. DES key length was extended to 128 bits or more in the AES
standard (Advanced Encryption Standard). Encryption algorithms of two classes, secret and

public key based, have been adopted in multiple authentication systems and e-commerce

protocols such as SSL/TLS [186].

1.7 Intrusion detection

With the increased reliance and wide connection to public networks, classical security
measures fail to satisfy assurance requirements of modern business environments. They try to
determine legitimate users abusing their privileges. Additionally, they focus on minority of
known breaches to the target system. Multiple other weaknesses in security policy, software
or hardware can be exploited by inside or outside entities to increase their privileges or
divulgate sensitive information. Preventive security controls can’t thwart attacks mounted by
these entities. Intrusion avoidance mechanisms are required to monitor and detect the increase

of privileges and abnormal behaviors of system users.

An intrusion detection system (ids) tries to detect attackers’ breaches to the monitored
systems and legitimate users misusing their privileges. It focuses on known and potential
security faults that can be exploited by an intruder. Its main goal is to discover any violation
of the security policy not prevented by classical security measures. An intrusion detection and
response system (idrs) has the ability to passively or actively respond to detected attacks. It
also serves as a quality controller that highlights possible flaws in security design or
management of the target system. Moreover, they report detected attacks and allow useful
information about them. This information is helpful for the SSO in revising both

organization’s security policy and configuration [147], [176].

The National Institute of Standard and Technology (NIST) defines intrusion detection as “the
process of monitoring the events occurring in a computer system or network and analyzing
them for signs of intrusions” which represent any “attempts to compromise the
confidentiality, integrity, availability or to bypass the security mechanisms of a computer or
network” [176]. An ids is defined as a system that attempts to identify “individuals who are
using a computer system without authorization (i.e.: crackers) or those who have legitimate
access to the system but abusing their privileges (i.e.: insider threat)” and “any attempts of
these”. It is based on three main components (data gathering, data processing and response
unit) to detect “any set of actions attempting to compromise confidentiality, integrity or

availability of a resource” [33]. To achieve these objectives, an ids is based upon a multi-step
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process. Furthermore, it has to meet several requirements. Many of these requirements and ids

generic process are discussed in the next two sections

1.7.1 Desired characteristics of intrusion detection systems

As stated by Miller et al. and Spafford et al. [160], [366], an ids has to satisfy different

characteristics. These desired features of an ids are related to its detection principles, design,

performance and environment. The most common characteristics are the following:

Continuously running with minimum human assistance: Administrator or SSO
should be able to monitor ids status.

Fault tolerance: an ids must recover its previous state when accidental or intentional
system crash occurs.

Resistance to subversion: an ids has to rule out malicious activities against its
components and periodically verify their integrity.

Minimal overhead when running: an ids should not affect other normal applications
performances.

Configurability: an ids must be highly configurable to ensure simple and easy
implementation of monitored system security policies.

Adaptability to changes as well as in system or user behavior: stored patterns also
must be regularly updated.

Scalability: in an extended network, an ids must monitor all hosts’ activities and
detecting different attacks against them.

Graceful degradation: ids components must be independent, autonomous and
cooperative to eliminate complete system breakdown when an intruder targeted one
of them.

Dynamic reconfiguration: when an administrator modifies his system architecture,

the ids must be adaptable and able to implement configuration changes.

Additional features such as visualization of system activities, tracking and tracing of attacks

can be appended to this list and others discussed in [72], [93], [192], [217], [315]. These

requirements concern a single or multiple components that implement different steps of an ids

process. The latter and its main processing steps are discussed in the following section.

1.7.2 Intrusion detection and response process
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An idrs process consists of the following three main steps:

— Data collection and preprocessing: gathering log data from different sources (router,
firewall, application...) and within multiple monitoring levels in the system
(networks, host, application). The collected data are preprocessed and formatted as

required for analysis components. This step relies on different types of sensors.

— Data analysis: in this step, data forwarded by sensors are processed by analysis
engine or detector to capture intrusive events based on saved patterns. These events

concern a signal or multiple actions of potential intrusions.

— Response: when the detector raises an alarm, active response component reports
complete information on the detected attack, deployed countermeasures and assists
SSO in choosing convenient controls or implements appropriate ones. It may be
autonomous in that it is capable to select the most appropriate set of actions, to
counter detected attack, and implement them. Passive response component instead,

simply, alerts SSO on the detected malicious actions.

The three step process of collect, analyze and respond, of an idrs can be implemented by
components of the architecture given in figure 1.9 [217]. In this generic architecture, ids
detector interacts with three information sources. The sensors provide detector with
information on system activities. Configuration information allows the detector to evaluate
the actual state of the system. Knowledge base saves possible patterns, of known intrusive or
normal activities, needed for performing the detector process. The response component
receives information on system configuration and detector outputs. This information is
required not only to implement appropriate corrective actions, but also to generate a complete

report on the detected attack [93], [217].

Based on their data collection, analysis and response components, intrusion detection systems
have been classified into different categories. The main ids taxonomies proposed by Debar et

al. and Axelsson are presented in the next section.
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Figure 1.9 : Generic architecture of an idrs [93]

1.7.3 Intrusion detection systems classification

The most common and widely used ids taxonomies were proposed by Debar et al. and
Axelsson [30], [94]. The first ids classification proposed by Debar et al. was based on ids
characteristics. It focuses on detection methods, behavior on detection, audit source locations
and detection paradigm of an ids. It categorizes research prototypes and commercial intrusion
detection systems into four classes. Identified classes are further refined using different
additional criteria in the revised and enhanced taxonomy [94]. Considered properties in the
improved taxonomy were extended by detection paradigm of an ids to separate between state
and transition based monitoring capabilities of these systems. Moreover, Debar et al. have
refined data sources of ids to include applications log data and ids alerts (figure 1.10). Main

ids classes of both taxonomies will be presented below.

Debar et al. revised taxonomy defines following classes of ids systems as presented in figure

1.10 [94]:

—  Detection method: this property is concerned with the central component of an ids,
its analysis engine. The data analyze engine of an ids can be either behavior or

signature based.

- Behavior based: Behavior or anomaly based ids extracts normal or valid behavior
of the system using on non intrusive log data. It assumes any deviation, to the
expected behavior of the monitored system, exceeding a prespecified threshold as

an intrusion.
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- Knowledge based: Knowledge, misuse, signature or also policy based ids disposes
of a knowledge base of known attacks and vulnerabilities of the monitored system.
These ids raise an alarm only if logged activities match one of saved attack

signatures or attempt to exploit known vulnerabilities.

— Behavior on detection: This characteristic focuses on response component of an idrs.

According this property, an idrs allows a passive or active reaction :

- Passive: Passive idrs only alerts SSO on that an attack has taken place. It

implements no countermeasures to defend against detected malicious activities.

- Active: Active idrs triggers corrective actions when an attack is detected (changes

file permission, generate script for system patching, restore system, ...)

— Audit source location: this property concerns data collection components of ids.
Sensors of an ids collect audit data of a single host, network, application or service or

other resources of the monitored system.

- Host-based: Host-based ids processes log data generated by a single machine.
Host-based sensors collect sequences of system calls, user commands or syslog

information, as discussed in chapter 6.

- Network-based: Network-based ids analyses network traffic log data. Network-
based sensors extract log data from management information base (MIB associated
to the Simple Network Management Protocol, SNMP) or sniffed network traffic,

using different sniffers.

- Application-based: Application-based ids processes log data generated by a single
application. Sensors of these ids filter network traffic and extract log records of a

specific service (HTTP-sensor, FTP-sensor, ...).

- Intrusion detection alerts: This type of ids focuses on correlation of different alerts

generated by other ids.
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Figure 1.10: Debar et al. revised ids taxonomy
Detection paradigm: This characteristic focuses on detection mechanisms of an ids.
An ids evaluates state or transition between system states as secure or insecure.
Moreover, its evaluation can be based on either system observations or complete

simulation of system states and transitions.

- State based ids concentrates on system state either secure or insecure. It evaluates

system states based on vulnerability knowledge base and reference configuration
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of the system. It identifies insecure states when the configuration is changed or one

of the vulnerabilities is matched.

- Transition based ids evaluates the transitions between states either secure or
insecure. It focuses on specific events that trigger system transition from secure

and insecure states.

State and transition analysis for these ids can be performed in non-perturbing or
proactive way. Non-perturbing analysis of observations is similar to the
vulnerability assessment process where each state or transition is checked against
known vulnerabilities. The state or transition is insecure if single vulnerability is
matched otherwise it is secure. Proactive analysis instead actively triggers events
to exploit vulnerabilities. Generated state or transition of simulated system is

compared to real one to check whether it is secure or not.

— Usage frequency: This property focuses on the detector of an ids. It describes how an

analysis engine processes log data.

- Continuous ids performs a real time analysis of any activity in the system

immediately after it takes place.

- Periodic ids performs a batch analysis of log data. The state of monitored system is

evaluated using all logged data within a prespecified time window.

Axelsson work was inspired by Debar et al. taxonomy. However, Axelsson thought of the
detection method property as the most discriminating factor between ids. This property was
distinguished to all other ids characteristics. It was taken as a root node in the tree structure of
Axelsson’s taxonomy. Based on the detection principle, Axelsson’s taxonomy classifies ids as
anomaly, signature or signature inspired systems. Signature inspired systems rely on
compound detectors which use both attack signatures on normal behavior patterns. All three

classes of ids are then divided either into programmed or self learning subclasses.

Axelsson has proposed a second taxonomy that deals with other ids characteristics. Included
characteristics are deduced from ids desired properties, presented above in section §1.7.1.
Axelsson has used different terms than those integrated in Debar et al. taxonomy. He has
treated an extended number of ids desired properties in this taxonomy. Ids characteristics of

Axelsson’s taxonomy are the following [30]:

— Time of detection: real-time and postponing detection.
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—  Granularity of data processing: continuously of batch processing.
—  Source of audit data: network data or host based data.

— Response to detected intrusion: passive or active.

— Locus of data processing: centralized or distributed.

— Locus of data collection: centralized or distributed.

—  Security: the ability to defend against attack on ids.

— Degree of interoperability: the degree of operation with other ids.

Intrusion detection systems classifications are required both to identify capabilities of ids and
reinforce organization’s security. They are required in choosing appropriate ids, according to
the security posture that assesses the current security position of the monitored system.
Moreover, they are useful to provide insight into possible improvements and extensions of
available detection systems. Different research surveys have discussed additional

requirements of intrusion detection systems including [72] and [217].
1.7.4 Intrusion detection normalizing activities

Motivated by the idea of systems interoperability, DARPA and IETF (Internet Engineering
Task Force) have assigned two workgroups to normalize respectively design and

communication between idrs.
1.7.4.1 Common Intrusion Detection Framework workgroup

The workgroup of DARPA has developed the Common Intrusion Detection Framework
(CIDF). CIDF was proposed to standardize ids architectures. Moreover, it uses common

protocols and application programming interfaces (API) to interoperate different ids.
An ids architecture based on CIDF consists of four main components:

— Event generator boxes (E-boxes): collect and format event from the target

environment and send them to A-boxes.

— Analysis engines (A-boxes): analyze the messages of E-boxes and forward their

conclusion either to R-boxes or other A-boxes.

— Response engines (R-boxes): consume A-boxes messages to carry out required

corrective actions.
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— Event database (D-boxes): store messages exchanged between all CIFD components

for further use.

All the four black boxes exchange data in a standard format called GIDO (Generalized
Intrusion Detection Object). GIDO are represented using the standard common format defined
for CIDF. E-boxes events, A-boxes conclusions and R-boxes corrective actions are encoded

and formatted into GIDO before they are forwarded to other components.

CIDF components interact and cooperate for detecting and responding to attacks. E-boxes
generate GIDO using collected events from the environment they are specialized in. E-boxes
formatted events are forwarded to A-boxes components. A-boxes analyze received objects
and produce new ones that support its analytical conclusions. R-boxes consume A-boxes
GIDO to carry out different corrective actions. D-boxes save all components outputs for

further use.

GIDO are defined using CISL API (Common Intrusion detection Specification Language).
CISL proposed by CIDF workgroup is flexible and extensible language. It is based upon
expression types capable to represent event data, analysis results and response directives from
different ids. Thus, it allows required flexibilities to interoperate multiple idrs in different

stages of the intrusion detection process [58].
1.7.4.2 Intrusion Detection work group

Intrusion Detection Work Group (IDWG) was created within IETF to define a common data
format and procedures for improving information sharing and cooperation between ids and
other systems interacting with them. It has found that CIDF specification is not suitable to be
an internet standard for exchanging information between ids. In addition, proposed protocols

and exchange format are not in concordance with XML standards.

IDWG has defined a specification language based on XML that describes Intrusion Detection
Message Exchange Format (IDMEF). IDMEEF is a standard encoding format for information
and alerts exchanges between ids components. Furthermore, it is useful for interoperating
different commercial systems and ids research prototypes and normalizing exchanged alerts

between them (alerts correlation and aggregation).

IDWG has proposed also IDXP protocol (Intrusion Detection eXchange Protocol) to transport

IDMEF objects. IDXP is an application level protocol to exchange intrusion detection
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messages. It is based on other protocols that allow authenticity and confidentiality of

exchanged messages [58], [94], [308].

1.8 Conclusion

In this chapter, we have introduced multiple information security concepts. Based on theses
concepts, we have presented different attack types that aim at compromising the three main
security services namely confidentiality, integrity and availability discussed before. We have
analyzed attack future trends based on different evolution factors including attacker skill and
tools sophistication. To defend against these attacks, we have presented different prevention
and detection security countermeasures. Various cryptosystems, authentication techniques and
access control models and policies have been discussed to avoid attacks against organization
resources. The attack detection solution presented in this chapter focuses mainly on idrs. We
have presented the generic architecture of an idrs and its components. Based on these
components, we have discussed many idrs categories of Debar et al. taxonomies. Different
normalization efforts which concentrate on idrs components have been also presented in this
chapter. The next chapter will focus on analysis and response mechanisms of an idrs. Several
detection models and response strategies used respectively by analysis and reaction

components of an idrs will be studied and summarized in this part.
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CHAPTER 2

RELATED WORK: INTRUSION DETECTION ANALYSIS
AND REACTION MECHANISMS

2.1 Introduction

Analysis mechanisms of existing intrusion detection systems have been based on a wide
variety of statistical, artificial intelligence, data mining, signal processing and other
techniques [11], [79], [89] [400], [403], [415]. However, machine learning and data mining
techniques are the most extensively applied in misuse and anomaly detection. They may be
categorized into three main classes depending on their learning approaches. Techniques based
on supervised learning approach require complete training datasets in which data instances are
structured into groups relying on their output labels or values. Semi-supervised analysis
techniques use partially labeled training datasets where instances of the target output only are
predefined. The last category concerns unsupervised techniques that require no prior
knowledge on output values. They are given with unlabeled datasets from which

representative models of discovered useful patterns are derived.

Response mechanisms of ids are broadly categorized into passive or active. Passive response
mechanisms simply alert the SSO on mounted and detected attack and eventually provide
them with a detailed detection report. Active response mechanisms instead have defensive or
preventive reactions against intrusive activities. They are capable to select corrective actions
and implement or assist the SSO in implementing them. Multiple classes of active reactions
are identified by developed taxonomies such as in [67], [368]. They include static, dynamic
and cost sensitive classes identified based on the criterion of response selection methods.
Proactive and delayed are also two classes of active response determined depending upon the

deployment time criterion.
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For these two components of an irds, multiple analysis techniques and response strategies
have been experimented. Techniques of supervised and unsupervised learning categories are
commonly adopted by analysis mechanisms of existing ids. Furthermore, cost sensitive
response mechanisms either proactive or reactive have gained great attention, the last decade.
In this chapter, many of existing analysis mechanisms and their adopted techniques are
reviewed. Moreover, several designed response mechanisms and their response processes and

cost metrics are presented in this chapter.
2.2 Main techniques of intrusion detection analysis mechanisms

Machine learning techniques are widely adopted in designed analysis and detection
mechanisms of ids. Other data mining techniques also are extensively applied in analysis and
detection steps of the ids process. This section presents a structured review of several previous
ids experiments, their analysis processes and experimental results, relying on their adopted
techniques. Subsequent sections will respectively summarize commonly applied supervised

and unsupervised machine learning and data mining techniques in intrusion analysis.
2.2.1 Supervised machine learning techniques

Supervised techniques focus on hidden relationships between input and output variables. They
aim at extracting and describing them by mappings between used variable. Learned
knowledge of these techniques will serve to build concise models and predict right output
values of the input instances. Depending on involved techniques, derived predictive models
are explicitly or implicitly expressed by different forms including decision trees or neural

networks or probability vectors.

Supervised machine learning algorithms form two main categories, of classification and
regression, based on their tasks. Classification methods focus on categorical output features.
Their constructed learners, called also classifiers, serve to predict output classes of given data
instances. Classification techniques are the most applied by analysis mechanisms of existing
intrusion detection systems. Regression methods instead concern continuous outputs. Their
built regressors or regression models are involved in predicting real valued outputs of the

input data observations.

This section specifically focuses on supervised classification methods that have gained
increased attention in the intrusion detection field. Furthermore, several analysis engines

involving these methods are also surveyed in the current section.
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2.2.1.1 Decision trees

Decision trees are one of the most commonly adopted supervised learning techniques in
applied fields as well as in research. A decision tree is a hierarchical model that includes
decisions and their consequences. It consists of decision and leaf nodes and branches or
edges. A decision node corresponds to a test attribute. An edge specifies a possible outcome
of the corresponding test attribute. A leaf or terminal node represents a class label. In the tree
structure, the root is the top decision node that has no incoming branch. However, internal

decision nodes have both incoming and outgoing edges.

The decision tree construction process consists of two main phases. Attribute selection is the
first phase of the tree building process. It is required to reduce the complexity of the learning
task and optimize the decision process. Such phase is involved by different other learning
algorithms specifically when dealing with highly dimensional feature space. In decision trees,
attribute selection phase identifies relevant features that will serve as decision nodes. It can
be based on various selection criteria including information gain and gain ratio [310], [311].
The gain ratio criterion was proposed by Quinlan using the Shannon Entropy. Given that a
data set D and an attribute A, the amount of information required to identify class label of an

instance in D corresponds to the D entropy which is estimated as follows:

Entropy(D)=- " p,log,(p;) (2.1)

i=1
where p; corresponds to the probability that a given instance of D belongs to the class C;;
p, = |Cl.‘ D| / |D |,i =1.n, |D| and|Cl.,D| are respectively cardinalities of the set D and instance
subset of class C; in D.

The information amount regarding data partitions of D, D;, j=1,..., m, defined based on the

values of A, aj, j=1,..., m, is determined by:

Entropy (D) =- i @ Entropy(Dj) 2.2)

= D)

The information gain due to the use of data partitions of A is estimated by the difference

between information requirements before and after involving these partitions. It is given by:

Gain(D,A) = Enterpoy(D)- Entropy, (D) (2.3)
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The gain ratio of A corresponds to its normalized information gain using split information
values. The latter represents potential information generated by splitting D with respect to m

outcomes of the test attribute A. Split information and gain ratio are evaluated as follows:

e o), (o)

Splitl, D)=- 1 11 2.4

pltnfoA( ) ; |D| ng |D| ( )
Gain(D,A)

GainRatio(D,A) = 2.5)

SplitInfo , (D) (

In the feature selection phase of the decision tree construction process, the most relevant

attribute has the highest gain ratio.

In the second phase of tree building, the most relevant feature is taken as root node of the tree
structure. The branches of this node are determined using the training set. Each branch defines
a new sub-tree. The root node of the sub-tree corresponds to the most appropriate attribute of
those remaining with respect to the adopted feature selection criterion. Its outcomes are
evaluated based on a given data partition. This process relies on the top-down approach in
building decision trees. It starts from the root node and then recursively performs to create

descendent nodes until satisfying the stopping criteria such as tree size.

Classification of a new example using generated decision tree is initiated at the root node. The
value of the root feature in the given instance is tested and the convenient edge leading to the
appropriate sub-tree is selected. By moving down to the next root node of the new sub-tree,
the same decision process is recursively executed until branching on a leaf node. The latter is

considered as the most appropriate class associated to the given example.

Various algorithms have been developed for decision tree induction. ID3 and C4.5 are among
the most known top-down based decision tree algorithms. They were proposed by Quinlan
[311]. They use respectively information gain and gain ratio as feature selection criteria. ID3
is the predecessor of C4.5. Both algorithms have been widely applied in the intrusion

detection field for implementing misuse as well as anomaly detection systems.

In their signature based intrusion detection system, Ye et al. have adopted machine learning
techniques specifically decision trees. Layered classifier of Ye et al. consists of two levels of
induced decision trees. Decision trees of both levels provide intrusion warning values to
determine whether a processed system call sequence is normal or intrusive. Low level

decision trees correspond to single event classifiers. They are built using only system call logs
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and a single predictor feature which is the event type attribute. The induction algorithm for
low level classifiers processes a single event each time to grow the tree structure. Decision
nodes for building low level decision tree classifiers are chosen from 284 possible system
calls of the Solaris operating system. Leaf nodes correspond to normal and different attack

classes. They determine intrusion warning values of processed system call sequences.

Upper level decision trees or state-ID classifiers are generated using preprocessed system call
training set. For these classifiers, original data sets are transformed into state sets using data
preprocessing techniques including moving window technique. The latter identifies different
states of a system call data set by considering the timestamp of each call and an observation
window of fixed size. Determined states represent distinct fixed size sequences of system
calls. They will serve as test features of the upper level decision tree classifiers. In the
proposed two level classifier, Ye et al. use single event classifiers to determine states for
upper level decision trees. However, in this case identified states may correspond to

sequences of system calls of variable lengths.

Ye et al. have tested different variants of single event, state-ID and layered classifiers using
the DARPA 98 and simulated system call data sets. In these variants, test attributes outcomes
are either binary or multi-valued respectively when testing on existence or occurrence count
of a given system call or state within processed sequences. Separately conducted tests for
single event and state-ID classifiers show that the tree structure of the latter is more
appropriate than the former. State-ID classifier allows also simple classification rules.
Moreover, it outperforms single event decision trees in terms of classification and false alarm
rates. For less than 20% of false alarm rate, it ensures near 90% as a classification rate which
exceeds the double in the case of low level classifiers. However, its performance is less good
than tested variants of layered classifiers. The count variant of layered classifier has better
performance than the existence variant, single event and state ID classifiers. It nearly achieves

95% of the classification rate for less than 5% of false alarms [419].

Ben Amor et al. have conducted different experiments that aim at comparing the
appropriateness of the decision tree and naive Bayesian network techniques for intrusion
detection field. The main findings of these experiments state that on one hand decision tree
classifiers have better performances than naive Bayesian networks in identifying normal and
DOS attack instances. On the other hand, naive Bayesian networks outperform decision trees
in terms of probe attack detection rate. However, both types of detection models fail in

identifying U2R and R2L attack instances [41]. Tabia has extended these experiments to
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improve decision tree and naive Bayesian detection models and then their capabilities to
detect unknown attacks. He has proposed two types of improvements to decision tree
generation algorithms. The first enhancement focuses on relaxing feature selection measure in
order to construct decision trees with extended numbers of test nodes and leaves. The Tabia’s
extension uses second ranked feature as a root node of built tree or sub-tree instead of the
attribute associated with highest gain ratio as in C4.5 algorithm of Quinlan. The second
improvement concentrates on stopping criteria and pruning options. The relaxations of
stopping criteria and pruning options aim at generating large decision trees that fulfill the
main requirement of separation between normal and attack instances. Tabia’s extension with
its two improvements generates large decision trees called compatible decision trees. The
latter are capable to reduce classification error and increase testing probabilities of new

unseen events previously confused with normal events.

Tabia has experimented compatible decision trees and compared them to those standard,
generated using the original standard C4.5 algorithm. Using a training set extracted form the
simulated web traffic, built decision trees by standard and relaxed versions of C4.5 algorithm
include respectively 144 and 5105 test nodes. Testing results confirm better accuracy of
compatible decision trees compared to that standard. Furthermore, compatible decision trees
remarkably outperform standard trees in terms of new attack detection rate. They are capable

to detect 88.51% of new attack instances instead of 6.9% for standard trees [381].

Wu et al. have also adopted decision tree techniques in designing their detection and
traceback mechanism of DDOS, distributed DOS. In this class of attacks, intruders are based
on two entity types namely handlers and agents to mount their coordinated intrusive actions.
They manage multiple intermediary agents or handlers that in turn control an extended
number of agents or zombies. The latter serve as supports of DDOS attacking tools. DDOS
attacks process consists of two main stages. The control stage focuses on identifying
vulnerable hosts on the Internet and determining handler and agent hosts. The attack stage
exploits communication links initialized in the latter stage and implements the coordinated

attack using zombies’ tools indirectly launched by attackers through their handlers.

Detection and traceback mechanism of Wu et al. performs in two steps. On one hand, the
detection module identifies malicious traffic generated by DDOS attacking entities. On the
other hand, the traceback module reconstructs attacking path based on the spoofed IP address
and closest router to the victim. The DDOS detection module uses decision tree classifiers

built using features and traffic signature data sets, the preprocessed data packets within a
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single minute time interval. Possible leaves of decision tree classifiers include normal and
four types of DDOS attacks namely, TCP, SYN, UDP and ICMP flooding. When analyzing
preprocessed traffic, DDOS detection module alerts on each intrusive instance the traceback
module. The latter triggers data collection of different routers linked to the victim and then

traces back the path of mounted DDOS attack.

Carried experiments on detection and traceback mechanism of Wu et al. show promising
results of detection as well as traceback module. Using simulated network traffic, the
detection module achieves high performance with false positive and negative rates ranging
respectively between 1.2% to 2.4% and 2% to 10%. Furthermore, the traceback module
misidentifies attack and normal edges of reconstructed paths respectively by about 8% to12%

and 12% to 14% [411].

Several other intrusion detection experiments have involved decision tree techniques in their
analysis engines. Sinclair et al. have implemented an intrusion detection system, NEDAA
(Network Exploitation Detection Analyst Assistant), which uses different rule learners.
Decision tree techniques were one of the involved learners. Such learners generate multiple
decision trees using sniffed network traffic for normal and anomalous connections. Built
decision trees are then transformed into classification rules to be included in NEDAA’s expert
system. The latter uses learned rules either for connection filtering or anomalous event
detection [352]. Lee et al. also have adopted decision tree techniques to built one attack class
detectors. Constructed detectors depend on different classes of the DARPA taxonomy.
Sangkatsanee et al. as well have based the classification part their real time detection system
on decision tree techniques. Conducted tests on one class detectors and real time detection
system respectively in [218] and [335] using KDD 99 dataset have shown appropriateness of
detection trees to intrusion detection. Additionally, the have illustrated high detection rate and
low resource consumption of the decision tree detection model. Bouzida et al. have compared
decision tree to neural network detectors. They have confirmed that each detector
complements the other and thus their integration within the same analysis engine is possible
in order to improve the overall performance of an ids. Makkithaya et al. have experimented C-
fuzzy decision tree technique for intrusion detection. C-fuzzy decision tree detectors consist
of a decision tree structure in which different nodes are identified using fuzzy C-mean
clustering algorithm. Additional details on these decision tree detectors are discussed in [53],

[177]. Besides, different experiments have tested and compared decision trees and Bayesian

57



CHAPTER 2: Related work: intrusion detection analysis and reaction mechanisms

classifiers in intrusion detection, such as [40], [41], [272]. The next section reviews two main

Bayesian classifiers and presents many analysis components based on these.
2.2.1.2 Bayesian classification

Bayesian classification methods are based on the Bayes theorem to predict class membership
probabilities of a given data example. Let X a p-dimensional data example and H; a hypothesis
stating that X belongs to an output class Cj, j=1,...,N, the membership probability of X is
estimated by the conditional probability P(H i / X ) The latter is the posterior probability that
assesses the probability that the hypothesis H holds given the observed data example X. It is
estimated using the Bayes theorem as follows:

P(x/H,)P(H )

P(X)

where P(Hj) and P(X) are prior probabilities respectively of the output class C; and the

P(H,/X)= (2.6)

observed data example X. P(X/H)) is the posterior probability of the observation X conditioned
on the hypothesis H;. These probabilities are estimated relying on frequencies of observed

values in the training set.

Naive classifier and Belief networks are two Bayesian classification techniques widely
applied in intrusion detection. Classification processes and several intrusion analysis

mechanisms based on these techniques are presented in the next sections.
2.1.2.2.1 Naive Bayes classifier

Naive Bayes classifier is based on the class conditional independence assumption. The latter
states that feature values are conditionally independent given the target output class. This

assumption simplifies posterior probability computation as follows:

P((x,,...x,)/c,)plc,)
P(xl,...,x )

p

Pl [Pl /) 2.7)

Plc,/x)=

117

i=1

Where X=<x; ,..., x,> a p-valued vector of features respectively fi,..., f, and

C,eC= {C1 ,...,CN} the set of possible output classes.
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For each processed data example X, naive Bayes classifier estimates posterior probabilities as
given by (2.7). Then, it assigns X to the most likely output class, Cx, associated with the

maximum posterior probability as follows:

P

or also, C, =arg maxP(C i )H P(xi /C j), because P(X) is constant for all output classes.
C;eC i=1

Prior probabilities of classes, P(C;), and posterior probabilities of feature values conditioned

on classes, P(x/C;), involved in this decision rule are estimated using the training instances.

Naive Bayes classifier has been adopted by several intrusion detection experiments in
implementing corresponding log analysis mechanisms. Panda et al. [289] have designed a
network anomaly detection using the naive Bayes classifier. The proposed Bayesian anomaly
detector has been trained and tested using preprocessed network traffic datasets provided by
the DARPA benchmark. Testing results show that naive Bayesian classifier ensures higher
detection rates of considered attack classes than the experimented back propagation neural
network. Moreover, it is less costly than this in terms of computation time both in the training
and testing phases. However, the neural network detector has lower false positive rates,

comparatively to Bayesian detector, except for probe attacks.

Farid et al. also have designed two learning algorithms for mining network traffic and
detecting traced attacks. These algorithms are inspired by the naive Bayes classifier process.
Furthermore, they use additional machine learning techniques namely decision tree and
clustering to build improved detection models that appropriately represent and detect normal

and intrusive patterns [113], [114].

The first algorithm proposed by Farid et al [113] extends the learning process of the naive
Bayes classifier by a data splitting phase as performed in decision tree learning. The second
learning algorithm instead includes a distance based clustering step [114]. Several
experiments have been performed to evaluate the two learning algorithms using preprocessed
DARPA data sets. Different subsets of features have been involved in these experiments.
Using a set of 19 features, testing results of these two learning algorithms illustrate their high

accuracies that exceed 99%. Moreover, they show that both algorithms outperform naive
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Bayes classifier in terms of detection rates. However, specifically the algorithm including a

splitting step achieves lower false positive rate than the naive Bayes.

Muda et al. [264] have also adopted the k-means clustering and naive Bayes classifier in their
two stage intrusion detection process, KMNB. The first stage of the process focuses on
clustering training data to determine groups of similar instances. However, the number of
discovered clusters in this stage is limited to three representing respectively normal, DOS and
other attacks instances. For each of these clusters, the second stage of KMNB estimates prior
and posterior probabilities relying on the learning process of the naive Bayes classifier. It

aims at and deriving more specific groups regarding included output classes in a cluster.

Multiple experiments have been carried out to test and compare naive Bayes classifier and
KMNB process. They have been based upon training and testing data sets extracted from the
preprocessed DARPA traffic log data. Experimental results show that KMINB ensures 99.89%
and 0.41% respectively as detection and false alarm rates. K-means clustering in KMNB
increases its detection rate by nearly 2% compared to the naive Bayes classifier. Moreover, it
reduces the false alarm rate of KMNB nearly by 7% comparatively to this. Reached results
validate those of Farid et al. experiments in that the naive Bayes classifier is more effective

when trained using a data partition than the whole training set.

More recent experiments have been conducted by Sharma et al. to evaluate and compare their
naive Bayes based multilayer detection approach to decision tree based ids. In this approach
Sharma et al. have proposed three layers of naive Bayes classifiers. In each layer, the
corresponding classifier uses a reduced feature set to recognize fixed attack types. Every log
data instance is sequentially processed by classifiers of the three layers to identify its true type
including DOS, probe, R2L or U2R attack. Results of carried experiments on layered
approach and decision trees based ids show slight dominance of the latter in terms of
detection rates of DOS, probe and R2L attacks on the former. However, the former
outperforms decision trees based ids both in terms of detection rate of U2R attacks and time

taken to build detection models [346].
2.1.2.2.2 Belief networks

Bayesian belief networks encode causal relationships between variables and represent their
joint probability distribution [178], [293]. They assume that class conditional independence
hypothesis applies to subsets of variables but not to all of them, as supposed by the naive

Bayes classifier. A belief network consists of two components namely graphical and
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numerical. The graphical component is a directed acyclic graph. Each of its vertices
corresponds to a discrete or continuous random variable. The latter may be observed or
hidden. Observed variables like protocol type or service attributes of network traffic logs are
evaluated for each processed data example. Hidden variables may correspond to features to be
predicted such as the degree of intrusiveness or the output class of the given log data example.
Each edge in the graph encodes a probabilistic dependence between a node and its
descendant. A node is conditionally independent of all of its non-descendants, given its
parents. The numerical component concerns conditional probability tables, each of which

determines the conditional probability distribution of a variable given its parents.

The belief network learning process is typically performed in two steps. In the case where the
network structure is unknown, the first step identifies relationships between variables and
builds the graphical structure. The last step estimates conditional probability tables of
involved variables. Generated belief network will serve then to classify given data examples

relying on Bayes conditional probability rule given by (2.6).

Ben Amor et al. have experimented a simple type of belief networks called naive Bayesian
network in detecting network attacks. The naive Bayesian network consists of two layers of
nodes. It includes a single parent node in one layer and all its descendants in the other layer.
The parent node represents the only hidden variable to be predicted and thus it usually
corresponds to the output class of the processed data instance. Its child nodes in the other
layer represent all observed variables of the network and correspond to considered features of
given data examples. Complete independence between child nodes in the context of their

parent is also assumed for the naive Bayesian network.

A series of experiments have been conducted on the naive Bayesian network using the
DARPA preprocessed datasets. They aim at validating several hypotheses that mainly concern
densities estimation, discretization of continuous feature and considered attacks granularities.
The main findings of these experiments state that normality hypothesis does not apply to all
continuous log features thus more generalized density estimation method increases accuracy
of belief network based detector by more than 12%. Moreover, discretization of a subset of
continuous features associated with finite values has slightly improved the accuracy of the
detector. These two results are validated by experiments involving high granularity, 38 attack
types or 5 attack classes of DARPA taxonomy, but not those using low granularity of attacks,
specifically, two classes based experiments. However, five classes based belief network

detector adopting generalized density estimation and discretization methods for continuous
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attributes ensures the highest accuracy that exceeds 92%. Detailed results and complete

findings of carried experiments are given in [41].

Additional experiments have been performed by Ben Amor et al. in [40], [41] to compare
detection models based respectively on naive Bayesian networks and decision trees.
Experimental results for different attacks granularities show that both types of detection
models have high accuracies that exceed 91%. For all these experiments, decision tree slightly
outperforms naive Bayesian network based model even after discretization of continuous
attributes of the selected subset. When compared to the winner of KDD99, these detection
models seem complementary rather than competitive. On one hand, the decision tree model is
better than the KDD99 winner in detecting DOS and U2R attacks. On the other hand, naive

Bayesian network outperforms the KDD99 winner in identifying R2L and probe attacks.

Additionally, in his thesis, Tabia has tested several variants of belief networks. The main
finding of the carried experiments states that these classifiers fail to detect novel attack
instances specifically those of U2R and R2L classes. The reason behind this common failure
is two-folded as discussed by Tabia. On one hand, classifiers capabilities to handle new
unseen behaviors and adapt to the particularities of intrusion detection are insufficient. This is
usually due to low probabilities assigned to unseen events of new attack instances and their
confusion with those normal. On the other hand, training and testing data sets induce
confusion to these classifiers. As an example, in the preprocessed DARPA data sets, R2L and
U2R are represented by low proportions in the training set and only new unseen examples of
these two attack classes are included in the testing set. Moreover, these datasets include some
incoherencies in that the same data instance is duplicated with different labels such as for

normal and R2L classes.

To improve belief network detection capabilities of new attacks, Tabia has proposed different
enhancing rules for the Bayesian classification process as detailed in [381]. Improved
Bayesian network classifiers have been tested using the DARPA and real internet traffic data
sets. Results of conducted experiments using DARPA data sets show that detection rates of
unseen attacks have increased by more than 50% for novel DOS and R2L attacks and 25% for
new U2R attacks. This has remarkable improved new attack detection rate of enhanced
Bayesian networks compared to the standard ones to reach 63.14% instead of 5.12%. These
improvements are also validated by experiments performed on web traffic. These experiments
report more than 90% of increasing in the detection rate of new attacks after applying

enhancing rules of belief networks.
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Enhancing rules have been also adopted in the tree augmented Bayesian network, TAN, of
Tabia [381]. TAN is a variant of the naive Bayesian network. It explicitly represents
dependencies between child nodes or features such that they form a tree structure. For this
class of belief networks, Benfarhat et al. have proposed another improvement mechanism
based upon expert knowledge. The latter may concern different aspects linked to the attacks,
detection models and data sets. In [43], authors particularly focus on attacks or normal
instances proportions in testing data sets. This knowledge is encoded into rules and then

applied to the classification results of TAN classifier.

Different experiments of extended TAN classifier have been conducted on preprocessed
DARPA data sets. The extended version of TAN classifier ensures better performance than
the standard one, as reported by results of these experiments. Its accuracy is increased by
more than 3% compared to the standard TAN classifier that correctly classifies nearly 93% of
normal and anomalous data examples of the testing set. Moreover, this extension of TAN

outperforms the Tabia enhanced version even if the reduced DARPA taxonomy is considered.

Multiple other intrusion detection works have been focused on belief networks. Kruegel et al.
have adopted Bayesian networks to aggregate outputs of different detection models [202].
Tuba et al have proposed a detection model based on large probabilistic networks. They have
discussed a design methodology for these networks. This idiom based methodology thought
of network structure as a set of linked fragments each of which can be built using predefined
templates or idioms. Thus, it speeds up and simplifies the construction of large belief
networks. Feng et al., as well, have adopted dynamic Bayesian networks, DBN, in predicting
goals of system call sequences. State variables included in these networks concern system
calls and their goals either normal or anomalous. Markovian property is assumed between
system calls such that current system call depends on the previous one and the current goal of
the sequence. Moreover, the goal of the current system call sequence is supposed dependent
to the initial goal. Probability tables for variables of both classes namely system calls and
goals are estimated using the training set. DBN have been also applied in detecting privacy
attacks targeting sensitive data. Discussed Bayesian network based detection models and

others are detailed in [21], [119], [392].

In a recent work [272], Natesan et al. have experimented ensemble based approach using
decision trees and Bayesian classification techniques in intrusion detection. They have shown
that decision tree outperforms Bayesian based ensemble, in terms of detection rate, for DOS

and Probe attack classes and inversely for U2R and R2L classes. This complies with the main
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finding in [40] about the complementarity of decision trees and Bayesian classification

techniques in intrusion detection.

Multiple other techniques including Markov models and neural networks have been used to
deploy several analysis and detection mechanisms. Following two sections respectively focus

on these techniques and their built mechanisms.
2.2.1.4 Hidden Markov model

Markov process is a mathematical model that describes the system dynamic behavior over
time. It is a simple model that exhibits dependencies in system behavior in terms of
probabilities. It is a stochastic or a random process for which Markov property holds. The
latter states that the future behavior of the system is conditionally independent to the past
given its present behavior. Thus, Markov process is memoryless and it does not save any
previous activities or states because next state of the system is influenced only by the actual

one. Moreover, the next state is independent to the manner of how current state was reached.

Markov model can be discrete or continuous time based. Discrete Markov model deals with
the system state changes at discrete time points. However, continuous Markov models focus
on systems for which state changes occur anywhere in the time. The Markov model can have
either a finite or infinite state space. Models with finite state space are called Markov chains.

Multiple intrusion detection works have been focused on this detection model [364], [415].

The strict assumption of Markov that the next state depends only on the actual state is not
sufficient for modeling different real world processes. It allows a simple model that focuses
on system observable states or outputs. To deal with such complex processes, an improved
model is required. Moreover, this extension of observable Markov model should concentrate

on other inherited aspects in the target system [126], [166].

A two hierarchy level model namely Hidden Markov model (HMM) was proposed to deal
with complex stochastic processes. HMM distinguishes between states and their outcomes. In
fact, when observations are given to the model, only outputs are observable and states behind
these remain hidden. Therefore, it is called hidden Markov model. The theoretical foundation

of HMM was developed by Baum and colleagues [36].

HMM is a generative model. It consists of hidden Markov chains of states and sequences of
observations generated by each one. HMM is based on a hierarchical structure composed of

two levels of states. The upper level is a Markov process with hidden states. The lower level
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consists of outputs or observable system signals. The first level process fulfills Markov’s
assumption. However, the second one supposes that the actual output signal depends upon the

current hidden state [192], [194].

Classification process based on HMM models involves two main steps. The training step
focuses on generating HMM models. In this step, hidden states are determined and transition
probabilities between these are estimated using the training set. Prior probabilities of the
identified states are also computed at this step. They determine starting probabilities of the
HMM at different states. Furthermore, emission probabilities of observed symbols are
estimated at the training step. Each of these corresponds to the probability of generating a
given output symbol when HMM is in a given state. The classification step using the HMM
involves the learned probabilities. For each processed data sequence, posterior probabilities of
an observed sequence conditioned on the computed HMM models are estimated. They
correspond to observation probabilities of the processed sequence under given HMM models.
Based on the Bayes’ rule, this sequence is assigned to the output class of HMM associated

with the maximum of observation probability.

HMM have been used in modeling temporal and spatial dependencies in sequential data.
Various applications in information security, Bioinformatics and speech processing have
employed different types of HMM. In these domains, ergodic and left-to-right HMM types
are commonly applied. In fully connected or ergodic HMM, each state should be reached
from any other state in a finite number of steps. Left-right or Bakis HMM has different
constraints about states and transition between them. It imposes transition to the same state or
others with increased indexes when time increases, but not to low index states. Additional
constraints can be associated to left-to-right HMM such as the jumping step to avoid large

changes in state indexes and reduce possible transitions of each state [73], [194], [312].

In intrusion detection field, initial experimentations of HMM have been conducted by Forrest
and his team, after their seminal paper, on self and non self system calls, that has introduced a
new type of log data and participated in founding the immunological approach for information
security [124]. HMM and other techniques have been also tested by Warrender et al. in
discriminating between normal and intrusive sequences of system calls. Fully connected
HMM type has been adopted in [405] for modeling normal behaviors of selected programs.
Generated program profiles using HMM use fixed numbers of states. Furthermore, they are

capable to process system call sequences of variable lengths.
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Warrender et al. have trained HMM using normal system call traces of selected programs.
Each of these models uses a number of hidden states equivalent to the numbers of unique
system calls invocated by the corresponding program. The transition probabilities are
evaluated for each of the identified states. Moreover, conditional probabilities of observing an
output symbol given a state are also estimated using training sets. Generated HMM are
independent to program trace length in training and testing sets. Each of the HMM processes
a single trace system call a time. In the testing phase, it is considered as a nondeterministic
finite automaton. For any processed system call of the trace, it explores the possible paths
including required state transitions and output symbols to generate this call. A mismatching
system call is identified when it is generated using transition probabilities less than the
prespecified thresholds for normal behavior. It is usually inserted by an intruder in normal
traces to implement his attacking objective. Thus, any processed trace supporting a

mismatching system call is considered as anomalous by the built HMM.

Testing experiments performed for normal behavior HMM and other models use sets of
unseen normal and intrusive traces. Normality thresholds in these experiments range between
0 and .001 for generated HMM. For selected programs, HMM have better performance in
terms of true and false positive than other frequency and rule based detection models. Their
average true positive rate reaches 99% for less the 0.05% as an average false positive.
Furthermore, they are capable to achieve better results when extended numbers of states are
included in building HMM, as stated in [405]. However, training such HMM is very

expensive in terms of computation cost compared to frequency and rule based models.

Left-to-right HMM with single or two jumping steps and fully connected HMM have been
also experimented by Yeung et al. HMM was applied in modeling programs and users’
profiles using respectively system calls and shell commands in these experiments. The
dynamic profiles built for programs and users have the ability to capture temporal
dependencies respectively in invocated system calls and shell commands. Captured
dependencies in these profiles ensue the discrimination between intrusive and normal system

call or command sequences.

System calls and shell command data sets involved in Yeung et al’ experimentations were
divided into three subsets. Training and threshold determination data sets concern specifically
normal behaviors of programs and system users. Testing data sets instead include normal and
intrusive system calls or shell commands. Training sets are preprocessed before building

HMM models that concern a single state of normal behavior. For each program, system call
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traces of its invocated processes are determined. Typed command within each user session are
also structured into tokens and included in the session trace. Then, different sequences of each
trace in system call and shell command training sets are extracted using a fixed width moving
window with a step size of 1. Resulting training data sequences will serve in building
respectively programs and users normal profiles based on ergodic and left-to-right HMM
types.Generated temporal profiles of programs and users’ normal behaviors are then involved
in classifying new traces. A given trace is considered as intrusive if it includes an anomalous
sequence. A sequence is abnormal when its observation probability under given HMM is
above the computed normality threshold. The latter is evaluated for each threshold
determination data set. It is estimated by the mean or minimum value of sequences

observation probabilities.

Conducted tests on generated HMM models use testing sets including both normal and
intrusive traces. Various experiments of normal behavior HMM of selected Unix programs
have tested different lengths of system call sequences. The results of these experiments show
that ergodic HMM outperforms left-to-right model in terms of true positive when using
sequences of reduced length. Left-to-right HMM require sequences of increased length to
achieve high true positive rate. In the experiments focusing on shell commands, both types of
HMM models do not appropriately discriminate between normal and intrusive traces
specifically for reduced length sequences. Such failure, as stated by Yeung et al., depends
upon weak temporal relations between user commands. Thus the static technique such as
event frequency allows better detection rate than HMM models in these experiments. When
using increased length sequences, performances of both types of HMM models are improved.
Ergodic HMM allows a slightly better detection rate than left-to-right HMM, but the latter is

less expensive in terms of computation time [421].

Standard HMM has been also experimented in network intrusion detection. Ariu et al have
proposed a multiple classifier system based on HMM called HMMPayl in order to detect web
attacks specifically those manifesting through HTTP service. HMMPayl processes logged
HTTP payload, which summarizes invocated HTTP requests, in three steps. Feature selection
step focuses on preprocessing HTTP payload and formatting them into fixed length
sequences. A moving window with a fixed width was adopted in [24] to extract payload
sequences. Preprocessed normal HTTP payloads only are involved in training HMM for the
multiple classifier system. Built HMM include the same number of hidden states that

corresponds to the length of processed sequences. Observed symbols for these HMM are
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identified from produced sequences. Moreover, transition and emission probability matrices
are randomly initialized when training different HMM of the multiple classifier system. The
latter includes five HMM according to Ariu et al. settings. All the HMM are provided with the

same input sequences. However, they use different transition and emission matrices.

The pattern analysis step next aims at evaluating emission probabilities of each processed
payload trace using HMM. In this step, each HMM processes extracted sequences of a given
trace. The emission probability of the trace for that HMM is estimated by the mean value of
output probabilities of its different sequences. Multiple classifier system of Ariu et al.
determines five emission probabilities regarding its HMM for each processed payload trace.
In the classification step, emission probabilities of a single trace are fused using the minimum
or maximum method. Then, the resulting probability decides whether the processed payload is
normal or intrusive depending on the predefined normality threshold. True and false positive

rates are involved in the threshold determination [24].

Testing experiments aiming at evaluating HMM based multiple classifier system of Ariu et al.
use simulated and real traffic for normal and anomalous HTTP requests. Their normality
thresholds are fixed such that the false positive rate is initialized to either 0.1% or 1%.
Experimental results for DARPA data set show that HMM based multi-classifier system is
capable to detect more than 98% of intrusive HTTP requests. For the same false positive rate,
HMM ensure also high true positive rate for real traffic data sets that exceeds 86%. However,
for a false alarm rate of 0.1%, the multiple HMM system achieves detection rates exceeding

94% and 77% respectively for simulated and real test sets [25].

Several other intrusion detection experiments have been focused on testing detection
capabilities of HMM. Huang has proposed in his thesis the profile HMM, PHMM, for
modeling users normal behaviors. PHMM combines HMM and sequence alignment
techniques to construct a normal user profile based on sequences of typed commands. Hu et
al. have proposed an improved training scheme for standard HMM. This scheme is based on
partitioning long sequences of system calls in order to speed up the training phase of HMM.
Sultana et al. instead have based their intrusion detection experiments on large frequent
sequences. Similarly to Huang, they have illustrated remarkable enhancement of this on
building time of their improved HMM, I-HMM, based ids. The latter ensures also near same
detection performance to ids based on the standard HMM. All these experiments and the

designed HMM based detection mechanisms are detailed in [163], [166], [168], [377].
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2.2.1.5 Artificial neural networks

Inspired by the human brain, scientists such as Minisky and Papert, Rumelhart and
McClelland, Hopfield and others have contributed to the theoretical foundation of Artificial
neural networks, ANN [47], [261]. ANN is a powerful technique for modeling complex
relationships between input and output data. It consists of a network of computational units
that implement a mapping function to approximate the desired output relying on a training
data set. The network units or neurons are highly interconnected. Each unit receives inputs to
compute its activation and feeds a single output to other neurons that perform the same task.
The connections between all processing units are weighted. These weights are updated from

iteration to another to adapt the network to desired outputs [278], [298], [342].

In neural network, processing units are organized into layers. The input layer is the first layer
of the network structure. Neurons in this layer don’t perform any task rather than feeding
input data to neurons of another layer. Generally, the number of neurons in this layer depends
on the dimensionality of the processed data set. The ANN structure disposes of a single input
layer which is connected to the first hidden layer of neurons and may be to others, in specific
architectures such as Recurrent Neural Network, RNN. A neural network may support single
or more hidden layers. Neurons of these layers process input data and then forward their
activations to processing units of the next hidden or the output layer. The last is the final
neuron layer in the network structure. It returns the decision of the network to the given
problem. Its neurons may be connected to input neurons or those of the last hidden layer.
Their number is fixed depending upon the treated problem. A single or multiple neurons form

the output layer when dealing respectively with function prediction or classification problems.

ANN are extensively experimented in multiple real problems including information security.
They have been involved in building useful and highly adaptive models of user or system
behavior relying on incomplete or even noisy data. Thus, they are widely applied in intrusion
detection systems where experimented attackers can sometimes alter log files to hide their
traces, [298], [333], [344]. Neural networks have additional qualities that offer the potential to
resolve different problems encountered by other approaches in the intrusion detection field
[5], [63], [298]. They have the ability to generalize from incomplete data. Moreover, their
input data are free from any statistical assumption. Furthermore, they have other advantages
such as improved analysis capabilities and the possibility to update constructed models, when
retrained. In spite of these qualities, ANN are appealing black boxes by their results. They

allow no explanation on how results are reached. Moreover, they have another drawback
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namely parameters setting that increases their application cost in intrusion detection and other
fields. Some critical parameters for the neural network model should be empirically estimated
and optimized. This requires additional costs in terms of computation as well as data

availability [5], [133], [203], [298], [342].

Neural networks are categorized into feed-forward and recurrent networks depending on
connections and units arrangement within the network. MLP (Multi Layer Perceptron) and
Elman are among the most known respectively feed-forward and recurrent networks. Feed-
forward neural networks allow single direction signal or activation flow. In RNN, one or
many neurons in a hidden layer wait for inputs from other neurons in the same or other layers.
The internal connection feedback in the RNN implements the effect of previous decisions on
the current outputs of neurons [15]. In this section, several ids supporting supervised ANN
based analysis engines are summarized. Subsequent sections in the current chapter will focus

on unsupervised networks.

Multiple neural network topologies have been also experimented either in modeling attacks
signatures or normal behavior patterns or both. In their neural network intrusion detector,
NNID, Ryan et al. have applied a two layer MLP network to identify legitimate users based
on the distribution of their executed commands. NNID uses user vectors that correspond to
collected statistics about user commands over a period of time. Then, it tries to recognize the
distribution of commands as normal or intrusive. It doesn’t take into account neither
command orders nor command arguments. Only the set of commands and their frequencies
are considered in computing user vectors. The two layer back propagation MLP experimented
by Ryan et al. includes 100 input units. Its single hidden layer supports 30 neurons. However,

the number of units in the output layer depends on the number of users in the training set.

Testing results of the NNID on reported sessions of 10 users show its high accuracy. NNID
achieves 96% and 7% respectively as detection and false alarm rates. Furthermore, by
focusing on command distribution, NNID allows more flexibility to intrusion detection
system and preserves user privacy. However, it may generate increased false alarms,
specifically, when dealing with an extended number of users. In this case, the discrimination

between user sessions becomes difficult and requires numerous relevant features [329].

Ghosh et al. as well have adopted standard feed-forward networks in their misuse and
anomaly intrusion detection system. The hybrid ids designed by Ghosh et al. relies on MLP

networks in modeling processes behaviors both in normal and under attack situations. In
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addition to the detection of known attacks, it aims at classifying online data and taking

advantages of the generalization capabilities of ANN to recognize future unseen attacks.

Built neural nets for each process use its preprocessed sequences of system calls. Ghosh et al.
have adopted distances instead of simple enumeration of extracted sequences as inputs to
different neural nets [133]. For each process, its normal or intrusive traces are formatted into
sequences of six consecutive system calls. Afterwards, the distance between each extracted
and one of the reference sequences is evaluated using the devised distance metric. The latter
concerns common system calls and their positions within the two sequences. Computed
distances will serve as input to different neural nets that include input units similar in number
to available reference sequences. Output layers in these networks support a single neuron.
Moreover, a single hidden layer is included in each ANN. The number of hidden units in this

layer is variable and determined for each ANN depending upon its testing performance.

Conducted tests on hybrid ids use different normal and intrusive data sets extracted from the
DARPA 98 testbed. The misuse detection system is capable to achieve a detection rate
exceeding 90% but with high false positive rate of 18.7%. The anomaly detection system
instead ensures more than 80% as a detection rate for less than 8% of false positive. The main
findings of these experiments confirm high sensibility of the misuse detection system to slight
changes in attack signatures. Additionally, the anomaly detection system can generalize from
learned patterns and hence it is capable to recognize new unseen attacks. However, its

generated false alarm rate remains unacceptable specifically for commercial systems [133].

Ghosh et al. have also tested different machine learning techniques including feed-forward
backpropagation and Elman recurrent networks [134]. In performed tests, MLP and Elman
based program normal profiles are generated using data sets extracted from the DARPA
evaluation program. The results of these tests show higher performance of the Elman nets
comparatively to the MLP. MLP based anomaly detection recognizes 77.3% of intrusions
with 2.2% of false positive rate. Elman networks reach the same accuracy level with no false
alarm. Furthermore, they are capable to achieve total detection with near 9% of false positive
rate. This illustrates promising capabilities of the Elman networks in detecting unseen attacks

as well as reducing false positive rates of anomaly detection systems [134], [263].

Similarly to Ghosh et al., Alarcon-Aquino et al. have conducted a study on standard feed-
forward and two types of recurrent networks, namely Elman and fully connected RNN. This
study aims at evaluating performances of ANN based detection models in detecting HTTP

attacks. The designed and implemented tests of feed-forward, Elman and fully RNN based
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detection models use training and testing datasets of normal and anomalous web application
queries. They are preprocessed and the resulting fixed length binary sequences are taken as
inputs to different neural nets. All experimented neural nets have input layers of 64 units.
Multilayer feed-forward detection model includes two hidden layers of 15 neurons and an
output layer of 5 units. Elman network has the same architecture as the feed-forward network.
It includes a similar number of units in each layer except hidden layers in which neurons are
doubled compared to those in the chosen feed-forward net. Fully connected RNN has a

similar structure to Elman network with a single hidden layer.

At the training phase, fully RNN was the least costly in terms of epochs or training iterations
to satisfy the stopping criterion. It reaches the predefined training error of .015 for about 75
epochs. Three layer feed-forward and Elman networks require respectively more than 200 and
100 iterations to fulfill the same goal. Furthermore, fully RNN outperforms the two other
neural nets. It ensures high accuracy that exceeds 94%. Moreover, it preserves low false

negative and positive rate of respectively about 0.87% and 4.37% [15], [344].

Previously presented intrusion detection experiments solely focus on supervised neural nets
based analysis components. Multiple others such as those of Bivens et al., Canady and
Mahaffey and Sheikhan and Jadidi, have proposed the combination of neural nets and
supervised or unsupervised machine learning techniques. Bivens et al. have designed a
modular network intrusion detection system based on neural networks, NIDNN, which
analyzes network traffic (tcpdump data) to develop windowed traffic intensity trends. They
have selected both supervised and unsupervised neural networks respectively for
preprocessing and analysis components of their system. NIDNN system monitors traffic of
selected set of ports for different network sources or hosts. It preprocesses network traffic by
sources with respect to the set of ports and processing time intervals. Self organizing maps,
SOM, an unsupervised network, are then used to cluster sources in order to group hosts with
similar traffic intensity trends together, section §2.2.2.4 details SOM based clustering. The
number of clusters or source groups is constant, initially established at the training phase of
SOM. After this step of behavior-based clustering, traffic intensities of each group are
normalized and then given to the analysis component of NIDNN system. An MLP analyses
pre-processed data within each time window and decides which group has attacked the victim,

if an attack was detected [50].

In their preliminary experimentations of the hybrid misuse detection system [62], Cannady

and Mahaffey have adopted the same neural net combination as in [50]. In these experiments,
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network log data is structured into sequences with respect to a predefined time window. The
events of each sequence are clustered based on SOM derived groups. Afterwards, the outputs
of the clustering step are fed to the input layer of the MLP based analysis component. In this

component, clustering decisions are fused to label the processed sequence as normal or attack.

Conducted tests by Cannady and Mahaffey on the hybrid misuse system use simulated FTP
attacks. The results of these preliminary tests show that hybrid neural nets are capable to
detect complex known attacks as stated in [62]. Bivens et al. experiments of the NIDNN
system have been based on the DARPA data sets. Two tcpdump test sets have been designed
for these experiments. In addition to normal instances, they respectively include examples of
all attacks and single DOS attack. NIDNN is able to perfectly discriminate normal and DOS
instances of the second test set with no false alarm. However, it achieves an unacceptable

false positive rate that reaches 76% for the first test set [50].

Sheikhan and Jadidi have also proposed a hybrid detection model that combines association
rules and supervised neural nets. Association rules are one of widely adopted data mining
techniques to capture relationships between attribute values as explained further in section
§2.2.3.1. The integration of these two techniques within the same analysis component aims at
taking advantage of their capabilities in order to improve the detection rate of the hybrid
misuse detection system, specifically for complex attacks such as U2R and R2L. This system
is based on a three step process to generate signatures of different attacks and normal classes.
The first step of feature selection identifies a reduced set of relevant log attributes to be
involved in the association rules generation. Feature selection step is performed on a subset of
training data that concerns U2R and R2L attacks. The second step focuses on rules
generation. In this step, the training subset of U2R and R2L is reduced, according the selected
features, and then preprocessed. Afterwards, association rules that concern both classes, U2R
and R2L, are generated using the resulting dataset. In the last step, an MLP network is built
using preprocessed training set that concerns classes of the DARPA reduced taxonomy. The

trained MLP includes 41, 35 and 5 units respectively in its input, hidden and output layers.

Built MLP network and generated rules are saved for classifying further traffic data examples.
The hybrid detector of Sheikhan and Jadidi initially classifies each data instance using the
trained MLP. Then, the rule based classifier is triggered depending upon the outputs of the
MLP network. It is involved in making precise decisions about processed data examples that
were previously labeled as U2R or R2L by the MLP network. Conducted tests of the hybrid
use training and testing datasets extracted from the DARPA testbed. They show that the MLP
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and hybrid detection models have comparable performances in terms detection and false
alarm rates. However, the hybrid detection model is definitely better than MLP network in
detecting U2R and R2L attack instances. Additionally, these two attack classes are the least
represented in the testing set, therefore their detection rates have almost no effect on the

overall performance of the hybrid detection model [347].

Several works have surveyed previous intrusion detection experiments involving different
types of neural networks. Mousa [263] has presented a survey of research efforts in intrusion
detection based on neural nets. Different network or host or even application based misuse
and anomaly detection systems using supervised or unsupervised neural nets are discussed in
this survey. More recent reviews have been presented by Ahmed et al. and Shah et al. on
ANN approaches to intrusion detection [6], [344]. Additionally, the authors in [6], [7] have
developed a thorough empirical study on different supervised and unsupervised neural
networks aiming at raking them according to numerous criteria including cost and detection
rate. Ravi Kiran et al. have adopted unsupervised learning technique in selecting log features
to supervised neural net based ids [320]. Gu et al. have discussed different neural nets
architectures and how integrating them with the genetic algorithms to achieve intelligent
intrusion recognition [144]. Mukkamala et al. have also conducted a detailed comparison
between multi-layer feed-forward networks and support vector machine, SVM, in the
intrusion detection field [266]. The SVM technique was adopted in implementing several

analysis mechanisms. The following section discusses some of these.
2.2.1.6 Support Vector Machine

Support Vector Machine (SVM) is a binary classification technique proposed by Vapnik and
colleagues [52]. It is based on geometrical interpretation of classification problem where the
objective is the definition of the hyperplane with the maximum margin that separates
instances of two classes. SVM classifiers are based on mapping functions in order to
transform original data space into high dimensional space. Within the resulting space, they
search for the optimal linear hyperplane separating the two classes. The optimal hyperplane is
determined by a small fraction of the training instances, associated with both classes and
referred to as support vectors. Furthermore, it leaves the maximum margin between support
vectors. SVM is known as the optimal margin classifier which has improved classic linear
classifier based on the idea of margin maximization. It transforms the classification problem

into an optimization problem which aims at finding a useful tradeoff between margin
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maximization and classifier performance [61]. A comprehensive and detailed presentation of

the theoretical foundation as well application fields of the SVM can be found in [61], [399].

The last decade, SVM has gained increased attention owing to its speed, scalability and
generalization capacity. It is becoming one of extensively experimented machine learning
techniques in multiple domains for many reasons. SVM speed makes it suitable for real time
system. An SVM classifier requires a reduced training time, compared to other error
minimization techniques, and allows an online classification of new incoming examples.
Additionally, SVM scales better than other machine learning techniques such as neural
networks when dealing with highly multidimensional space where weight estimations become
difficult and distribution of an extend number of training instances is unavailable. SVM is
also able to cope with symbolic features and noisy data. Moreover, it has shown promising

capabilities including high generalization capacity in multiple fields [61], [265], [266], [331].

Mukkamala et al. have implemented the analysis engine of their intrusion detection system,
SVMID, using an SVM classifier. In SVMID, Gaussian radial basis kernel function was
adopted for mapping eight feature data vectors to a higher multidimensional space.
Mukkamala and colleagues have also appropriately initialized parameters of the SVM
classifier in order to severely penalize noisy data vectors and avoid overfitting. SVMID was

prototyped using nonlinear binary SVM algorithm of SVM light package [107], [409].

In conducted experiment, Mukkamala et al. have trained SVM classifier using both intrusive
and normal traffic data. Anomalous data include different types of attacks. Over carried
experiments, SVM classifier has achieved a high detection rate on testing data that reaches
94% [265]. In other experiments [266], Mukkamala et al. have performed different tests
aiming at comparing ANN and SVM techniques using the DARPA datasets. They have
illustrated that SVM and ANN based detection models ensure comparable detection rates.
They have also shown that these learning techniques have compatible performance levels with
a slight dominance of SVM technique. On one hand, SVM requires shorter training and
running time than ANN. On the other hand, ANN is more suitable than SVM when dealing

with multi-class problems.

Additionally, Tran et al. have proposed OTAD, a network anomaly detection based on one
class SVM. In OTAD, an SVM classifier models network normal behavior patterns. It uses a
Gaussian radial basis function in mapping included attributes to high dimensional feature
space. Furthermore, it is built using Tcpstat computed statistics from collected network traffic

data. Tcpsat is a network monitor tool. It reports in online or offline manner different statistics
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on network interfaces activities using sniffed traffic. In OTAD, the traffic data set is
structured into subsets regarding a predefined time window. Then, Tcpstat preprocesses
resulting subsets and forwards evaluated traffic statistics to the SVM based analysis engine. A
subset of Tcpsat reported statistics, including percentages of TCP, UDP and ICMP packets, is
considered in building normal behavior detection model of OTAD. Conducted tests of OTAD
have considered different time windows in structuring network traffic log of the DARPA
datasets. Best performance of OTAD is reached using a time window of 300 seconds. For

such time window, OTAD ensures an accuracy of 71% with 10% of false alarms [389].

The binary SVM classifier was also adopted by Heller et al. of Colombia University to
implement their Windows registry anomaly detection. The SVM based intrusion detection
system was developed to detect abnormal access to Windows registry database. Training and
testing data sets for this ids correspond to preprocessed registry queries collected using
Windows NT system. Each query concerns a single registry in the database. It is a valued
vector that includes the invocating process, the result and the success status of the query and

other components.

SVM based Windows registry detection system was tested using different mapping or kernel
functions such as linear and Gaussian kernel functions. An SVM classifier with linear kernel
has shown the best accuracy level comparatively to other mapping functions. However, it
allows a low detection rate when compared to the probabilistic anomaly detection algorithm
of Eskin [110]. The latter algorithm accurately detects abnormal access to Windows registry
with less than 10% of false alarms. It uses required discriminative information and
consistency checks as discussed in [110], [159]. As stated by Heller et al., such information
could be integrated into a strong kernel function to improve accuracies of SVM detection
models [159]. Different kernel functions have been tested in intrusion detection field

including linear [294], polynomial [382] and Markov kernels [422].

Previously presented detection models are based on binary SVM classifiers, which are not
applicable in multiclass classification problem unless one of the proposed extension
approaches is adopted. Two main approaches have been widely discussed in the literature to
extend the SVM algorithm to the multiclass version. The first approach is based on breaking
the multiclass problem into several binary problems. The second approach instead considers
all classes at once. It proposes a generalization of two-class SVM to the multiclass case where
all classes are simultaneously considered [72], [226], [253], [331]. The latter approach is

simple to implement. However, the former is commonly adopted in different domains.
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Multiple researches have been conducted in order to evaluate capabilities of multiclass SVM
in intrusion detection. Xu in [413] has adopted the multiclass SVM technique to implement
the classifier construction component of his proposed intrusion detection framework. In this
component, multiclass SVM is based on the decomposition approach. Built multiclass SVM
classifier uses the radial basis mapping function. Furthermore, it concerns normal and

intrusive network traffic.

Initial experimentations of the multiclass SVM detection model of Xu have been conducted
on small fractions, about 2% and 10%, respectively of the KDD 99 training and testing sets.
The experimental results illustrate promising capabilities of the multiclass SVM classifiers in
intrusion detection. The tested classifier ensures comparable detection rates to the KDD
winner in identifying normal traffic and probe attack instances. Moreover, it outperforms the
KDD winner. It increased detection rates of U2R and R2L attacks respectively by more than
8% and 2%, comparatively to the KDD winner. However, it requires an increased training set
to achieve a better detection rate of DOS attacks than this [299]. Additional improvements
including feature selection are also needed in order to boost the performances of multiclass

SVM classifiers, as discussed in [413].

In a recent work, Mewada et al. have experimented several multiclass SVM algorithms based
on the decomposition approach. In their network based ids, generalized multiclass SVM
detection models are capable to recognize normal and anomalous traffic instances, according
to the reduced DARPA taxonomy. They were trained and tested using network traffic logs of
the DARPA 99 dataset. Several kernel functions have been tried in building and testing
multiclass SVM detection models. Overall performed tests, radial basis function based
multiclass SVM classifiers ensure high detection rate exceeding 90% compared to other
kernels. Additionally, with the same kernel, the multiclass SVM outperforms one class SVM
classifier adopted in OTAD of Tran et al. [258], [389].

Several other works have integrated different machine learning techniques with multiclass or
single class SVM within the same detection mechanism. Peddabachigari et al. [294] have
designed a hybrid ids by integrating one class SVM and decision tree techniques. The same
idea was recently explored by Mulay et al. in designing their misuse and anomaly detection
systems [267]. Yu et al. have also proposed a hierarchical detection model that combines
single and multiclass SVM classifiers [423]. This model is capable to detect instances of
flooding attacks, a subclass of DOS attacks, in two steps. In the first step, one class SVM

classifier discriminates between normal and intrusive traffic. In the last step, multiclass SVM
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classifier labels flooding instances based on their communication protocol into TCP, UDP or
ICMP flooding. All these integrated analysis engines and others are detailed in [127], [267],
[294], [420], [423]. Additional other works such as [193], [339], [382] have integrated SVM
with clustering techniques in designing their detection engines. More recent ones have
proposed a new technique of multilevel SVM that dynamically determine support vectors of

the separating hyperplane and compared this to the SVM technique using KDD 99 data [2].

Similarly to risk minimization, decision trees and Bayesian techniques, instance based
classification has been experimented in the intrusion detection field. The following section
reviews multiple intrusion detection experiments involving nearest neighbor classifiers in

their analysis components.

2.2.1.7 Nearest neighbor

K-Nearest-Neighbors (k-NN) is an instance based classification method. It is widely applied
in the non parametric classification. In k-NN classification, each output class is represented by
instances of its training data set, which correspond to the memory of the designed classifier. A
given data instance is assigned by the k-NN classifier to a class associated with the k closest
neighbors to this. Closest neighbors are identified among those of the classifier memory using
a similarity measure. The latter is commonly defined in terms of distance metric including the
Euclidean distance [155]. K-NN classifiers using Euclidian distances or other similarity

functions have been extensively adopted in different domains such as information security.

Inspired by previous experiments of text categorization methods, Liao et al [230] have
designed their k-NN based anomaly detection model. The latter aims at classifying session
processes as normal or anomalous using their invocated system calls. At the training phase,
data sets that consist of normal sequences of system call are preprocessed to derive
characteristic vectors of executed processes. A process vector summarizes given sequence of
system calls. It consists of several weights each of which concerns one of selected system
calls for the whole training set. A system call weight is estimated using different parameters
including system call frequencies within the sequence and the overall training set. Vectors of
weights are then involved in classifying further system call sequences relying on an improved
k-NN classification process. This process includes three steps. In the first step, each processed
sequence including system call not among those selected is considered as anomalous. The
second step labels the given sequence as normal if its similarity to the closest training process

vector is equal to 1.0. The last step determines the average similarity between the processed
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instance and its k nearest neighbors. Then it assigns given data instance to normal or attack
classes depending on whether its average similarity exceeds a prespecified threshold or not..
These classification steps are performed for any processed data example. Different tests of the
k-NN detection model use datasets of the DARPA 98. For a threshold of .87 and 5 neighbors,
this model is capable to recognize more than 90% of normal and intrusive sequences.

Moreover, it ensures .082% of false positive.

Optimizing k-NN classifier has been also investigated by Toro-Negro et al. in designing their
misuse detection system. The authors have proposed a genetic learning process to train k-NN
detector. In this process, the training phase of the k-NN classifier was formulated as an
optimization problem. A candidate solution to this problem is a weight vector that assesses the
relevance of features to k-NN classification task. The best solution corresponds to a weight
vector associated with the highest classification accuracy of k-NN classifier at the training

phase. It is saved for classifying further processed data instances.

Preliminary tests conducted on designed misuse detection system use data sets of DOS attack
extracted from the DARPA database. The evolutionary learning process was initialized to 400
iterations with 50 individuals and .5 as mutation probability. Classification accuracy of the
optimized k-NN detector in these experiments ranges between 95% and 99%. Moreover,
candidate weight vectors state that five features out of 38 included in specifying data
examples are the most relevant in classifying DOS instances. Complete details on genetic

algorithm settings and conducted experiments are given in [387].

Additionally, Ghasemzadeh et al. have designed a hybrid detection model that combines rule
induction and k-NN. Two main implementation alternatives of the hybrid detection model
have been discussed in [132]. In the first alternative, the selected rule learner is applied to the
given training set and induced rules are then encoded into valued vectors. After that, the
original training set is preprocessed and the resulting set includes only features of rules
vectors. The latter alternative merely extends the original training set by valued vectors of the
induced rules. Data sets generated in both cases will serve as training sets to the k-NN
classifiers. Both implementations of the hybrid detection model aim at decreasing the
sensitivity of k-NN classifiers to noise based on induced rules. In the first case noisy instances
are filtered based on feature vectors of high confidence rules. Whereas the influence of noisy
examples is reduced in the second case relying on high prediction capabilities of rules features

involved in the extended training set.
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Hybrid detection model of Ghasemzadeh et al. has been tested with its two prototypes RBR
and ABR respectively for the above discussed implementation alternatives. Training and
testing data sets for these prototypes and included classifiers are extracted from the
preprocessed network traffic of DARPA testbed. In these experiments, ABR, RBR and other
classifiers ensure comparable true positive rates exceeding 99%. However, rule based

classifier outperforms all prototyped detection models in terms of detection rate.

Nguyen et al. have adopted k-NN method for the designed detection component of their anti-
DDOS framework. This component aims at achieving earlier detection of DDOS attacks by
classifying the network status. Based on the main two stages of DDOS attacks namely control
and attack as stated in section §2.2.1.1, Nguyen et al. have identified three classes of network
status involved in the earlier detection of DDOS attacks. Therefore, each processed

connection is labeled as a pre-attack, attack or normal.

The designed k-NN based model to classify network status includes feature selection and
normalization steps. In the first steps, most relevant features to predict DDOS attacks are
selected and then the training set is reduced according to these. Afterwards, attributes’ values
in the resulting data set are normalized to reduce differences between feature scales as stated
in [275]. The reduced and normalized training set includes network sessions associated with
the three distinguished classes. Any given network session is assigned by the k-NN model to
one of the output classes based upon the majority of its k closest neighbors. Experiments
carried on the earlier DDOS detection model use datasets of the DARPA 2000 that focuses on
coordinated attacks. They have shown that this model is capable to identify more than 91 % of
normal and intrusive sessions. However, the misclassification rate of this model exceeds 10%

specifically for pre-attack sessions.

Additional experiments integrating k-NN with other machine learning techniques within the
same detection engine are discussed in [270]. Some others involving k-NN classifiers in
reducing training sets and eliminating outliers are presented in [132], [374]. Moreover, k-NN
classifiers have been applied by Ho [161] in filtering ids alarms and identifying normal and
suspicious ones. Other experiments aim at exploring the usefulness of feature selection, max
and min decision rules and the integration of clustering to k-NN detection models are also

detailed in [350], [352].

In addition to the reviewed supervised learning techniques, several clustering algorithms have

been widely applied in intrusion detection. They are mainly involved in preprocessing log
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data and implementing the analysis mechanisms of ids. The following section presents most

adopted clustering techniques and reviews their experimentations in intrusion detection.
2.2.2 Unsupervised machine learning techniques

Supervised learning techniques have been commonly adopted in misuse and anomaly
detection. However, when structured training datasets are not available, unsupervised
techniques are required for intrusion detection analysis mechanisms. Clustering techniques are
provided with unlabeled training sets. They aim at identifying regularities according to an
inner criterion, generally based on a distance or proximity metric, in input datasets. Relying
on discovered regularities, different groups of data objects are worked out. A given data
object is assigned to one of derived groups only when it shares some common properties with

its objects.

Clustering techniques perform into two main steps. The initial step focuses on cluster
identification. It consists of grouping similar training patterns into different subsets. At this
step, exhaustive and mutually exclusive clusters are determined. Their number may be
predefined or induced from the training data set. The last step of the clustering process
concerns the classification based upon discovered clusters. At this step, labeled clusters from

those initially identified are involved in classifying new data observations.

When applying clustering techniques, their associated methods address to two main issues of
similarity among patterns and evaluation of discovered clusters. Similarity or dissimilarity
between patterns is obviously based on distance metrics. Although multiple distance metrics
have been adopted, the Euclidean distance is the most applied in estimating similarity
between two patterns for clustering algorithms. Derived groups based on selected similarity
metric are evaluated using clustering or partitioning criterion. The latter may correspond to
the sum squared error between cluster objects and its mean, maximum distance between
cluster objects or any other dependent criterion to clusters and their objects. It aims at

optimizing cluster compactness and overlapping.

Clustering methods can be classified into several categories. However, in the intrusion
detection field, mainly methods of four categories, namely partitioning, density based,
hierarchical and model based clustering, are the most applied. Partitional algorithms start with
an initial number of partitions or clusters either predetermined or automatically derived from a
given data set. Then, they iteratively refine determined clusters to meet objectives associated

with the selected optimization criterion. Density based clustering algorithms determine dense
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regions of the data space that correspond to its clusters separated by low density components
or outliers. Hierarchical clustering algorithms derive hierarchies of clusters represented as a
tree structure called dendrogram. A dendrogram describes a hierarchical decomposition of
given data patterns based on their similarities. At different levels of the hierarchy, branches of
each cluster identify its sub clusters, except the last one. At the lowest level of the hierarchy,
each cluster is represented by similar data objects. The last category of model based clustering
supposes that each cluster is generated based on a mathematical model. It attempts to optimize
the fit between data objects and this model. Statistical and neural network based clustering
that use respectively Expectation maximization and self organizing maps are examples of

model based methods [105], [155], [410].
2.2.2.1 Partitional clustering

Partitional clustering methods have been adopted in various real life applications, including
intrusion detection. K-means is the most widely applied distance based partitional clustering
algorithm in misuse and anomaly detection. It is mainly based on three steps to determine
clusters of a given dataset. Initially, it randomly chooses k cluster centers from the dataset.
Then, it assigns a given data instance to the closest centroid depending upon evaluated
distance measures. Finally, it replaces each cluster’s centroid by the mean of its members. The
last two steps are repeated by the k-means algorithm until a stopping criterion, such as no

change for each cluster, is met.

K-means and other clustering algorithms have been tested in the intrusion detection field.
Sabhnani et al. have conducted different experiments to evaluate the effectiveness of several
machine learning algorithms in network attack detection including two distance based
partitional algorithms namely k-means and nearest cluster. The latter is based on k-means to
determine initial cluster centers. Furthermore, it adopts the Euclidean distance measure,
similarly to k-means, to identify and assign the processed data example to the nearest cluster.
Nearest cluster, k-means and other machine learning algorithms have been tested in [330]
using KDD datasets. Experimental results presented by Sabhnani et al. show that k-means
algorithm outperforms nearest neighbor and other supervised and unsupervised machine

learning algorithms specifically in detecting denial of service and privilege elevation attacks.

In their defensive and offensive mechanism against distributed denial of service attack, Yu et
al. have adopted k-means clustering to implement the defensive part. Based on collected

application log data, k-means clustering will build client normal profile that will serve in
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classifying future logged session. Suspicious sessions detected based on generated profiles are

then dropped depending upon their trust values computed at the classification step [424].

Munz et al. have proposed the Network Data Mining (NDM) approach for flow based
anomaly detection. This approach is based on the k-means clustering to process and classify
collected network flow records. The latter are first structured based upon prespecified network
services into several datasets. However, those associated with non included services form
three other data sets of TCP, UDP and ICMP protocols. Constructed services logs are next
preprocessed with respect to equally spaced time intervals to derive different data sets. K-
means algorithm is then applied to each of these data sets. Computed cluster centroids will
classify logged flow records based on their (protocol, port) pairs and using a distance
measure. Initial experiments of NDM approach using locally generated and real traffic data
prove its feasibility. Moreover, they have shown promising detection results of the k-means

clustering and thus it may be useful for real time intrusion detection as stated in [268].

Nieves has applied the k-means algorithm to detect different attack classes. In the designed
experiments, he has preprocessed training sets extracted from the DARPA experimental sets
in which categorical and continuous features were respectively encoded and normalized. K-
means algorithm was tested for different values of the parameter k using preprocessed data
sets. Illustrated results confirm the appropriateness of this clustering algorithm in identifying
different classes of network attacks. However, determining the right number of clusters to the

k-means algorithm is also critical to reach good detection and false alarm rates [277].

Multiple extensions have been proposed to improve the k-means algorithm [108], [145],
[179], [239]. They specifically focus on two main shortcomings of the k-means namely the
number of clusters and the empty clusters. These two weaknesses are known respectively as
the number of clusters dependency and degeneracy problems [145]. The first problem
concerns how determining the appropriate number of clusters, the parameter k. The second
problem is about how eliminating empty clusters among those discovered by the k-means.
These two problems have been resolved by Y-means clustering algorithm, an extension of the
k-means proposed by Guan et al.. Y-means clustering partitions the given data set into a
predefined number of clusters that ranges between 1 and n, the size of the data set. Then, it
replaces any empty cluster, of those identified, by a new one and reassigns normalized data
instances to existing clusters. The last two steps are iteratively performed until removing all
empty clusters. Afterwards, the appropriate number of clusters is automatically determined by

splitting and merging steps of the Y-means algorithm. The latter was tested using DARPA
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experimental data. On average, it has automatically identified 20 clusters and reached 86.63%
and 1.53% respectively as detection and false alarm rates. Detailed experiments conducted
using Y-means are presented in [145]. Additionally, a thorough comparison of Y-means
clustering to variants of k-means was recently conducted in [89]. It takes account different

criteria including performance and efficiency.

In their invasion detection system, Jia et al. have proposed an improved version of the k-
means algorithm [179]. Two additional parameters have been included in this extension
namely the cluster radius and nearest neighbor threshold. These parameters are involved in
deciding when new clusters are created and existing ones are merged for the extended version
of k-means. Derived clusters of normal or anomalous behavior based on this clustering
algorithm will serve next in generating rule for the invasion system. Preliminary tests of the
improved version of the k-means show that the number of discovered clusters of DOS attacks
depends upon the fixed nearest neighbor threshold and cluster radius. Moreover, the number
of discovered clusters directly affects the performance of the invasion system. As illustrated
by conducted experiments on DOS attacks, a reduced number of large clusters ensure low
detection and false alarm rates and inversely for an extended number of small clusters. This
stresses the main shortcomings of the proposed extension of the k-means that concern the

determination of appropriate nearest neighbor threshold and cluster radius.

K-means and other clustering algorithms have been adopted also in preprocessing log data
before applying supervised classification techniques. In their experiments, Chairunnisa et al
have used k-means and genetic based clustering to discover network traffic clusters. The
derived clusters will serve in generating k-nearest neighbor based detection model to classify
collected data instances [71]. Bharti et al. have also adopted the k-means algorithm to filter

training and testing traffic log data before building decision tree based detection models [45].

Portony in [307] has proposed a partitional clustering algorithm for his anomaly and misuse
detection system. The designed algorithm performs in one pass, differently to k-means that
requires multiple passes to determine final cluster centroids. It relies on a single linkage
method that assigns each processed data example to its closest cluster. Moreover, it discovers
clusters with a fixed width. Initially, Portony’s algorithm uses a set of empty clusters. Each
normalized data example is assigned to a cluster only if it falls within a predefined radius
from the center of this cluster. In the other case, the distances between the given data example
and cluster centers exceed the fixed radius, a new cluster is created with the processed

instance as a center. Different variants of Portony’s algorithm have been tested using various
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datasets of the DARPA testbed. Initial results of these tests show the designed ids using
different variants is capable to reach near 80% of detection for less than 6% of false positive.

Detailed experiments of the Portony’s algorithm and their results are given in [307].
2.2.2.2 Density based clustering

Density based clustering overcomes the drawbacks of most partitioning methods by allowing
arbitrary shaped clusters instead of spherical shaped ones. Its discovered clusters correspond
to dense regions in the data space. Each dense region is a group of data points within a
predefined radius and contains at least a minimum number of points. It is extended each time

if its data points form new dense regions [155].

DBSCAN is the most widely applied density based clustering algorithm in the intrusion
detection field. It requires two input parameters namely the radius and the minimum number
of points to determine different classes of data points including core, neighbor and outlier.
Based on core points that represent centers of dense regions, it identifies data clusters as

maximal sets of density connected points in the data space.

DBSCAN algorithm has been tested in anomaly intrusion detection using DARPA and
honypot1 data sets [286], [387], [363]. Although, it ensures higher detection rate than k-means
for DARPA experimental data, its false positive rate is unacceptable comparatively to this
[286], [287]. Conducted experiments on honypot data show that DBSCAN and single linkage
based algorithm of Portony ensure comparable detection rates. Moreover, for a fixed false

positive rate of 10%, both clustering algorithms outperform the k-means clustering [363].

Wang et al. [402] have proposed a framework for adaptive and online detection of web
attacks. They have adopted in this framework an extended version of the DBSCAN clustering
algorithm. The improved DBSCAN is capable to online learn. It updates the built detection
model each time changes in system normal behavior are detected. Moreover, it rebuilds this
model if outliers marked as suspicious audit data exceed a certain threshold. The generated
model based on the improved version of DBSCAN clustering also ensures online detection of
web attacks. It was tested using a large data set of web logs specifically for HTTP service.
Reached results show that this adaptive detection method using the online version of

DBSCAN is more effective than the static method based on k-nearest-neighbors in terms of

! Honypots are net hosts supporting multiple vulnerabilities to attract attackers
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the detection and false alarm rates as well the CPU processing time. Complete results of

conducted experiments and their details are presented in [402]
2.2.2.3 Hierarchical clustering

As discussed before, hierarchical clustering algorithms derive tree structures called
dendrograms of discovered clusters. Two main approaches can be adopted to build
dendrograms. They determine the two main classes of hierarchical clustering algorithms. The
first class includes agglomerative hierarchical clustering. Algorithms of this class are based on
a bottom up approach. Whereas, the second class groups divisive clustering algorithms that

adopt top down approach to derive tree structure of generated clusters.

An agglomerative or bottom up clustering algorithm starts with the lowest level of the
hierarchy. It considers each singleton set of given data as a cluster. Then, it successively
merges clusters, to derive larger ones, based upon the predefined dissimilarity criterion until
reaching the root cluster of all data points or the termination condition. Candidate
dissimilarity criteria in merging two clusters are based on distance between data points in
these. Minimum and maximum distance criteria are among those applied by agglomerative
clustering. They respectively identify nearest and farthest neighbors to clustering algorithms
of this class. Two nearest clusters are merged by these algorithms only if they include

respectively the closest or farthest data point pair where each point belongs to one cluster.

Divisive clustering algorithms start with all data points of the given data set in one root
cluster. Afterwards, they iteratively split each cluster into smaller ones until a stopping
condition is satisfied or each data point forms a cluster. The splitting step of top down

clustering algorithms can be based on partitional clustering including k-means.

Although, both hierarchical clustering approaches reach the same result, divisive clustering is
always considered more computationally expensive than agglomerative. Thus, bottom up
clustering algorithms are commonly adopted in several application fields. BIRCH is one of
the most applied agglomerative clustering algorithms in intrusion detection. It characterizes
each cluster by its centroid and radius. Moreover, BIRCH algorithm introduces two main
concepts of clustering feature and clustering feature tree. A clustering feature summarizes
each discovered cluster. It corresponds to a three dimensional vector that includes the number
and the linear and square sum of cluster data points. Clustering features are additive in that

when two disjoint clusters are merged, the clustering feature of the resulting cluster
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corresponds to the sum the two initial clustering features. This is useful in building the tree

structure of clustering features.

Clustering feature tree instead determines the cluster hierarchy of a given data set using
computed clustering features. It identifies non-leaf nodes represented by clustering features of
their child clusters. BIRCH algorithm uses a branching factor parameter that specifies the
maximum number of child clusters by non-leaf node. Furthermore, it has a threshold
parameter that determines the maximum diameter of leaf node clusters. BIRCH algorithm
performs in multiphase where the first scan generates an initial clustering feature tree which is

improved in one or more additional scans of the data set [155], [429].

Mahmood et al. [245] have designed Echidna, a hierarchical clustering algorithm to classify
network traffic. Echidna is inspired by BIRCH. Moreover, it is able to deal with different
types of categorical, numerical and hierarchical attributes, such as IP address. Echidna uses
required preprocessing mechanisms to transform attributes of different types and then to
evaluate dissimilarity measure between data points involving them. Similarly to BIRCH, the
tree structure built by Echidna corresponds to several levels of clusters each of which is
represented by a feature vector. The latter includes sufficient statistics to determine the cluster
centroid and radius. In leaf nodes, this is involved in estimating the maximum and average

intra-cluster distances required to generate traffic reports based upon Echidna clusters.

Echidna has been tested using the DARPA datasets. Comparatively to AutoFocus, a clustering
based network traffic analysis tool is more efficient in terms of the detection rate and

computation time. Additionally, Echidna is capable to detect more attacks than AutoFocus.

In the frame of the European project Safeguard that aims at enhancing survivability of critical
infrastructure, Burbeck et al. [60] have proposed a hierarchical clustering based agent
detector. The latter uses an extended version of the BIRCH algorithm, ADWICE (Anomaly
Detection With Incremental Clustering), to model the normal behavior of the monitored
network and detect its anomalous traffic. ADWICE is an incremental agglomerative
clustering. It includes the first phase of clustering feature tree generation of BIRCH. In this
phase, ADWICE uses the parameter of maximum number of clusters produced by the
algorithm, additionally to the branching factor and threshold parameters of BIRCH. This
parameter was introduced to ensure the generation of sufficient number of clusters that
appropriately represent normal behavior of the monitored system. Moreover, ADWICE
supports the threshold parameter in the detection phase where the belief threshold of each

processed data example is evaluated to decide its normality or intrusiveness. The belief
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threshold is distance based estimated by considering a tolerance interval of the anomaly

detection system.

ADWICE algorithm has been experimented using the DARPA preprocessed data set.
Reported results show that ADWICE is capable to detect 95% of normal and anomalous
traffic records. Furthermore, it reaches a false positive rate of 2.8%. When tested using
different data sets of DARPA attack classes, the anomaly detector based on ADWICE ensures
high accuracies except for R2L class that reaches 31% only. Another extension of the BIRCH
and ADWICE algorithms has been also proposed and experimented in [167]. It ensures better

detection results than these, but it is slightly less effective in terms of the false positive rate.

Zang et al [428] have also experimented the capabilities of hierarchical agglomerative
clustering in detecting botnets, networks of compromised end hosts using remote commands.
For their experiments, they have simulated anomalous flows of a botnet. Collected botnet
flows are then time based merged with real normal internet traffic. The resulting data set is
preprocessed to derive a new one including sixteen time based features. Afterwards, the
adopted hierarchical clustering algorithm that relies on the basic process of agglomerative
methods [155] is applied to the preprocessed data set. Its discovered clusters distinguish near
perfectly botnet flows from those normal. Although, its detection capabilities are comparable

to those of k-means algorithm, it is less efficient than this in terms of computation time.

Agglomerative hierarchical clustering has been also applied by Maggi et al. in clustering
system calls of the monitored host. The clustering based detection approach proposed by
Maggi et al. consists of two main steps. The first step focuses on clustering arguments of an
invocated system call. Discovered clusters aim at characterizing each system call through
capturing relationships between values of its invocation arguments. A representative model is
generated for each of these clusters to classify further inputs. It will assign a probability to the
processed system call that assesses to which degree it belongs to the considered cluster. The
second step of the proposed approach concentrates on modeling normal behavior of system
programs. It represents program flows by first order Markov chain models for which each

state corresponds to invocated system call clusters.

Different experiments have been conducted to evaluate the accuracy and computation cost of
the designed host based ids. Selected system call sets for generating clusters, Markov models
and testing them have been extracted from the DARPA datasets. The designed ids ensures

high detection rate and low false alarm rate for tested system calls, as shown by experiment
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results [244]. Moreover, its computation overhead does not overload the monitored system

specifically at the testing phase.
2.2.2.4 Model based clustering

Clustering using neural network is one of the most widely adopted model based clustering
methods in intrusion detection. It is typically based upon self organizing or Kohonen maps, an
unsupervised neural network type proposed by Kohonen [196]. Self organizing Map, SOM,
has also gained great attention in several applications and research fields including feature
selection, visualizing and exploring multidimensional data. A SOM usually consists of two or
three dimensional grid of units. The latter grid maps patterns of high dimensional source
space into points of two or three dimensional target space. Pattern mapping preserves
topological order such that the proximity relationships between patterns in the input space are

also respected by those of the output space.

In the grid, a model vector is attached to each neuron. It represents a group of patterns of the
input space. Neurons model vectors are involved in the two main steps of the SOM learning
algorithm namely competition step and cooperation step. In the first step, the selected winner
of the competition is the neuron associated with the most similar model vector to the given
input example. Similarities between model and input vectors are usually distance based
determined using the Euclidean or other distance measures. In the second step, not only model
vector of the winner or the best matching unit is updated but also those of its neighbors. Thus,
the winner cooperates with its neighbors in the map to best represent input patterns and

relationships between them, such as the proximity relation [105], [155].

Self organizing maps have been widely applied in the intrusion detection field [64], [210],
[401] [426]. Labib et al. have designed NSOM a real time network anomaly detection using
SOM. SOM based detector of Labib et al uses time based features of collected and
preprocessed network packets. Involved features summarize source and destination addresses
and protocol type for each subset of logged traffic packets. Normalized values of these
features form input vectors to SOM network. Two variants of Kohonen maps have been tested
in NSOM. Simulated and real data sets that concern normal and DOS instances are included
in these experiments. Tested two dimensional maps are respectively based on rectangular and
hexagonal neighborhood shaped in updating model vectors of winner’s neighbors. Results of
conducted tests show that the latter outperforms the former SOM variant in terms of

classification results. For both data sets, winners of the map have similar behavior in that their
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distances to the processed DOS instances are much higher than those to the normal examples.
Additionally, Labib et al have graphically illustrated testing results of SOM. They have also
stressed promising capacities of SOM specifically for visual discrimination between normal

and anomalous traffic [210].

Other intrusion detection systems use enhanced detectors involving Kohonen maps. A two
level hierarchy of SOM has been adopted in the dynamic intrusion detection system of
Lichodzjewski et al. [231]. The dynamic ids takes account only of the basic features of
network connections such as duration, protocol type, service and other attributes. For each of
these features, a SOM is built. Before that, logged values for each basic feature are
preprocessed in order to provide the corresponding SOM with required inputs that support
time representation. Basic feature SOM are then considered as potential inputs to the single
map of neurons of the second level. This SOM aims at presenting a unified view of network
connections. It uses input data of reduced dimension provided by the selected subsets of
neurons of the first level SOM. All selected subsets have the same size. Furthermore, the
outputs of involved neurons in these subsets are normalized before forwarding them to the

second level SOM.

Different experiments have been performed on the proposed hierarchical SOM detector using
the preprocessed DARPA datasets. They are two folded. On one hand, they aim at deducing
labeling rules and validating them based upon frequently selected winners or clusters of the
second level SOM. On the other hand, they seek to evaluate detection performance of the
designed dynamic ids. The results of these experiments show that two best matching units of
the second level SOM are capable to distinguish anomalous connections. Generated
classification rules involving these units ensure 0.02% and 33% respectively as false positive
and negative rates [231]. Reached detection performance lets us deduce that the hierarchical
SOM detector confounds a little fraction, 0.02%, of normal connections as anomalous ones.
However, 33% of the classified intrusive connections by this detector are confused with
normal connections. This may be due to the involvement of same best matching units of

second level SOM in classifying normal and anomalous connections as stated in [188].

Kayacik has extended two levels of hierarchical SOM detector of Lichodzjewski et al. by a
third one. SOM of the added third level concern specific neurons of the second level SOM,
eventually those inducing confusion between normal and intrusive connections. These
neurons are identified based on their selection frequencies as winners for classifying both

normal and abnormal connections. For each of these neurons, a third level SOM is created. It
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is trained on a reduced data set for which the corresponding neuron is considered as the
winner to classify included connections. Third level SOM are involved each time one of
uncertain neurons of the second level wins the competition (is selected as the best matching
unit). Testing results on the whole KDD 99 set show that the extended SOM hierarchy
remarkably outperforms the two level version in terms of false negative rate. Near 0.3% of
intrusive connections are confused with normal ones by this extension instead of 33% for the
two level hierarchy. However, this extension has an increased false positive rate, which

reaches 1.7%, comparatively to 0.02% for the initial SOM hierarchy in [231].

Ibrahim [172] has designed a network misuse detection system that uses growing hierarchical
SOM, GHSOM, based detector. GHSOM is an improved version of the SOM neural network.
It was proposed by Rauber et al. [319] to overcome some shortcomings of the SOM network
including static structure and number of units in the map. GHSOM consists of hierarchically
structured layers of independent SOM. At the top of the hierarchy, the root SOM is a single
unit map. For every level in the hierarchy, each neuron in a given map may be branched on a
SOM in the next level only if the dissimilarity between its model vector and represented
patterns reaches a certain threshold. GHSOM algorithm also imposes other criteria on maps

growing as well as on hierarchy extension.

The GHSOM based detector has been tested and compared to other detectors. Testing and
training data sets for different detectors have been extracted form preprocessed DARPA data.
They include normal instances and intrusive data examples of several attack types. Reached
results show that recurrent network based detector slightly outperforms GHSOM detector in
terms of true positive and negative rates. Furthermore, both neural networks based detectors

ensure higher detection rates than KDD99 winner for R2L, U2R and probe attacks.

Different other intrusion detection experiments have adopted SOM based detectors. In [401]
Vokorokos et al. have applied SOM in detecting normal and anomalous users’ behaviors
using features characterizing their activities. Mitrokotsa et al. have proposed a detection
approach of DOS attacks relying on a variant of SOM that uses a two dimensional grid of
large neuron number. Their approach also aims at evaluating SOM detection and visualization
capabilities of anomalous network traffic. In the same paper, they have summarized several

SOM based detection approaches [262].

Analysis engines of different ids presented in this section are based upon supervised and
unsupervised machine learning techniques. Multiple other intrusion detection works have

experimented additional data mining techniques in analyzing and identifying attack traces in
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the log data. The next section will focus on commonly applied data mining techniques,

namely association rules and frequent episodes, and analysis engines.
2.2.3 Other data mining techniques

The foundation of data mining approach for intrusion detection was developed by Lee et al.
[221] of Colombia state university. Lee et al.” approach was specifically based on association
rules and frequent episodes techniques. Both data mining techniques have been applied in
analyzing sequential pattern and discovering relationships between feature values or data
records within log data. They are capable to automatically produce appropriate and concise
detection models. These rule-based models capture characteristics of normal or intrusive
activities contained in processed log data. The next two sections review main intrusion

detection experiments involving association rules and frequent episodes techniques.
2.2.3.1 Association rules

The problem of discovering association rules was initially introduced by Agrawal et al [3].
The Apriori algorithm was the first algorithm for mining association rules. It was initially
applied in discovering association between sales in large databases. Each transaction in
databases is composed by a set of values or items, regarding the considered attributes. The
length of an itemset is determined by the number its items. The itemset support corresponds to
the percentage of the database records that contain this itemset. Association rules focus on
frequent itemsets. They specifically aim at discovering associations among items and deriving

correlations between multiple attributes in large databases.

An association rule is an implication of the form:
X->Y [cs]

Where X and Y are two disjoint itemsets (X NY =& ), ¢ and s are two measures of rule

interestingness that represent respectively confidence and support of an association rule.

The support of an association rule is the rate of records that include both itemsets (X UY ). It
measures the statistical significance of the rule. The confidence is the ratio of both itemsets

. support(X UY,
support to antecedent itemset support (c:u). It assesses strength or

support(X)
trustworthy associated with the discovered rule. An association rule is considered significant

only if its support and confidence exceed respectively pre-specified minimum support and
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minimum confidence values. Different steps of discovering frequent itemsets and association

rules of the Apriori algorithm are detailed in [3], [220].

In intrusion detection field, first experiments of association rules have been conducted by Lee
et al. in building users’ profiles based on typed commands. In their intrusion detection project,
Lee et al. have adopted a modified version of the Apriori algorithm. In this version,
preprocessing step, where data are converted to binary format, of the initial algorithm was
dropped. Such modification helps in discovering multiple relations between large values of
different attributes. Lee and co-workers have implemented their extension using a row vector
structure for each frequent itemset. The row vector of bits records transactions that include the

frequent itemset.

Improved algorithm of Lee et al. incrementally determines frequent itemsets with respect to
derived feature classes. The final set of frequent itemsets is then used in generating
association rules. Confidences and supports of discovered rules are also computed based on
evaluated row vectors. Afterwards, these rules are merged depending upon fixed constraints
that concern their left and right sides. The resulting rules, with significant confidence values,
specify user normal profile. Rule based normal profiles will be involved in classifying further
logged sessions. Mined patterns for each processed session are compared to the saved normal
profiles. The similarity score between extracted and saved patterns is then evaluated to decide
whether a given user session is normal or anomalous [222], [223]. In conducted experiments
[222], Lee et al. have adopted five weeks session logs extracted from DARPA data to test
detection capabilities of rule based profiles. The results of these experiments show that four
weeks generated profiles are capable to recognize all anomalous sessions of the fifth week
logs. Furthermore, when tested using intrusive traffic data, rule based profiles are able to

capture specific patterns that distinguish anomalous from normal activities, as stated in [221].

Several studies have been conducted on association rules based detection models. In her
network intrusion detection system, Tsai has proposed an improved version of the Apriori
algorithm capable to transform association rules into classification rules [391]. Similarly to
Lee et al.” extension, the proposed algorithm performs in two steps. Katkar et al. have also
proposed one pass incremental association rules mining algorithm. In this algorithm, hash
tables saving discovered patterns and their frequencies are created using log data of each
attack type. They are then involved in generating association rules and evaluating their
supports and confidences. For each attack type, its profile includes only association rules

satisfying support and confidence thresholds. Detection models built using association rules
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mining algorithm of Katkar et al. save attack profiles and hash tables. Saved profiles are
involved in analyzing given data instances. Hash tables will serve in incremental update of

attack signatures when new data examples are appended to train sets.

Katkar et al.” algorithm has been tested using traces of different DOS attacks in traffic data
sets extracted from DARPA preprocessed data. In the training step, rule based signatures of 6
selected DOS attacks are constructed using reduced data sets that include 10 features. In the
testing step, built rule based detection models fail to appropriately recognize DOS instances
except for two attack types namely teardrop and pod attacks. They achieve detection rates
below 1% of other DOS attack types, including smurf, neptune, back and land attacks, the
complete list is given in section §6.4. Furthermore, their false alarm rates exceed 4% for
certain DOS attack types such as smurf and pod [187]. Such failure of rule based detection
models in recognizing DOS instances may depend on many reasons. In fact, many DOS
instances are confused with normal data examples specifically in DARPA test set [40], [381],
[385] and therefore rule based detection models have increased false positive rates for certain
DOS attacks. Additionally, selected features are relevant for the discovered patterns of the
given DOS attacks but not others and thus their detection rates are below 1%. Also, rule
selection in building attacks signatures may require in addition to support and confidence

other criteria such as testing accuracy adopted in [391].

In [187] multiple other experiments focusing on association rules based detection models
have been summarized. Additional works have integrated association rules with other
machine learning techniques including neural nets [365] and clustering [240], [252], [430].
Furthermore, fuzzy association rules approach initially proposed in [242] has gained increased
attention in the intrusion detection field. Several ids have been based on this approach [252],

[348], [373] to overcome increasingly large log data sets and adaptability shortcomings.
2.2.3.2 Frequent episodes

The goal of mining frequent episodes is to discover inter-audit records patterns. A frequent
episode is a set of events that describes an entity (system, user, program,...) behavior. Such a
set of events occurs frequently within a time window with respect to a given minimum
frequency and partial order. In serial episodes, events occur in a sequence with the same order

each time. Whereas, parallel episodes are free from such constraint.

Given a database with timestamped records, a sequence of events or itemsets E={e,,e,..., e,}

occurring in the interval [#;,t;] if it starts at ¢; and ends at #,. An interval is a minimal
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occurrence of E if it contains E and no one of its subinterval includes another occurrence of E.
The support of an itemset e; is the ratio between the number of minimal occurrences including

e; and the total number of events [224], [243], [250].

A frequent episode rule is an expression of the form
XY —>Z [cs,w]

Where X, Y and Z are itemsets that define an episode, ¢ and s represent respectively the

confidence and support of the frequent episode rule within a time interval w.

Manilla et al. have proposed an algorithm for mining frequent episodes [250]. The frequent
episodes algorithm consists of three phases. The recognition phase in which serial or parallel
episodes are discovered incrementally. In this phase only episodes that satisfy the minimum
frequency and window size are saved. In the building phase, candidate episodes with an
increased size are discovered. They use candidate collection recognized in the last building
phase. These two phases are iteratively and alternately performed in generating all frequent
episodes with different sequence lengths. In the last phase, discovered frequent episodes serve
for rule generation. The final set of frequent episode rules consists of those with confidence

levels exceeding a prespecified minimum confidence.

The frequent episodes technique was experimented in intrusion detection by Lee and his team
of the Colombia state university. An improved version of Manilla et al.” algorithm was
proposed by Lee et al. for discovering frequent sequential patterns using logged network
traffic. The enhanced algorithm discovers serial episodes in two main steps. The first step
finds out frequent associations among items of the most relevant features, axis attributes. The
second step generates frequent episodes using extracted associations. This two step algorithm
builds episodes that combine both relationships among attributes and sequential patterns

between log data records [223], [224].

Lee et al. have widely experimented the proposed frequent episode algorithm. These tests aim
at determining different parameters and resolving same shortcomings associated with
discovered frequent episode rules. For instance, in [221] Lee et al. have preprocessed the
training set according various time windows. The frequent episode algorithm was then tested
using resulting traffic data sets in order to determine an appropriate window size to evaluate
time based features and generate frequent episode rule set. The results of these tests illustrate
stable rule sets after reaching a time window of 30 seconds. Furthermore, the best detection

rate of frequent episode rule based model is achieved when evaluating traffic attributes, time
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based features, each 30 seconds, as stated in [221]. Other tests [223] focus on numerous issues
closely linked to rule based detection model including merging and usefulness of count

attributes in mined rules.

An improved version of Lee et al.” frequent episodes mining algorithm has been adopted also
in hybrid ids of Hwang et al. The misuse system was based on SNORT engine. The anomaly
detection system, ADS, uses an episode mining engine that discovers and saves normal
behavior rules from internet connections. In ADS, rare episodes are considered as indicators
of malicious activities. Moreover, Hwang et al. have also adopted a rule pruning step in their
algorithm in order to reduce the large set of episode rules that can be generated [171].
Kokorina has enhanced Hwang et al.” work. The designed hybrid ids uses intrusive and
normal frequent episode rules respectively for signature based and anomaly detection
systems. It includes four main components namely preprocessing, pattern discovery, update
and decision components. Preprocessing component reduces given data sets and formats them
as required for the pattern discovery component. The latter generates frequent episode rules
that specify known attack signatures and normal behavior patterns. In the hybrid ids, built
attack and normal patterns are saved in their corresponding databases. Additionally, the attack
pattern database of the hybrid ids includes SNORT signatures after transforming them into
frequent episode rules. Saved patterns of both databases are periodically revised by the update
component of the hybrid ids. This component inserts new patterns of unknown attacks or
normal behavior to the respective databases depending upon the decisions of system
administrator and the decision component. The latter determines whether processed data is
normal or anomalous regarding saved frequent episode rules. Furthermore, the decision
component fulfills other tasks such as selecting another feature set for preprocessing

component and informing pattern discovery component on required pattern revisions [197].

The hybrid ids of Kokorina was tested using collected honypots log data. Different
experiments have been conducted on hybrid ids with complete and reduced test sets. They
have been focused on the detection capabilities of rule based detection model regarding
selected attacks of several classes including U2R and probe. In these experiments, only
frequent episode rules associated with 1, 2 and 3 items have been considered. Furthermore,
time windows size applied in preprocessing data set and rules generation varies from 2 to 20
seconds. Relying on generated rule based normal and attack detection models, the hybrid ids

is capable to recognize most of tested traces. These results illustrate the appropriateness of
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frequent episode technique to intrusion detection. Detailed results of the performed

experiments and main findings of Kokorina’s work are thoroughly discussed in [197].

The frequent episode technique has been also applied in detecting masquerade attacks.
Gigstad has adopted frequent episode technique to reduce false alarm rate of an ids through
generated filtering rules. Luo et al. have proposed a network ids based on fuzzy frequent
episodes. Additional details of these intrusion detection experiments and others involving

classic and fuzzy frequent episodes are respectively discussed in [137], [243]

Main findings of studied analysis and detection engines:

The majority of previous intrusion detection works, discussed in the current chapter, propose
simple detection models, each of which is merely based on a single technique. Several
machine learning, data mining and other artificial intelligence techniques are adopted in
generating known attack signatures or discovering normal behavior patterns of systems, users
or programs. Other works are based on the integration of more than a single detection model,
building then integrated or hybrid detection models. Base detection models may be generated
using single or multiple artificial intelligence techniques. In these works, two main strategies

are adopted to integrate base detection models, namely sequential and parallel strategies.

The sequential integration strategy assumes that build detection models are applied regarding
a prespecified order, such that outputs of one are processed or refined by the next detection
model. Sequentially integrated detection models are usually built using various artificial
intelligence techniques such as in [204], [247], [264], [348]. It is typically applied when
dealing with a hybrid detection model integrating unsupervised and supervised machine

learning techniques as described in [139], [247], [264].

The parallel integration strategy instead takes simultaneously account all base detection
models. For any processed data example, outputs of base detection models are all combined
together to derive the final decision of the integrated model. Combined detection models are
commonly constructed using single technique such as SVM or ANN [135], [254], [267],
[296]. They may be also based on different learning techniques as proposed in [276], [330].

All proposed hybrid detection models using either sequential or parallel integration strategies
are based on a static set of base models. They always apply the same combination of base
detection models independently to processed data examples. This may involve additional
costs, when processed example is correctly labeled by all base detection models whereas a

subset of them is sufficient. Furthermore, it may induce erroneous decisions specifically if
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processed data is correctly labeled by a subset but not by another of detection models.
Therefore, selective integration of detection models, which was not investigated before, may
be a potential and promising solution to overcome mentioned shortcomings and others as

discussed in the introduction of this report.
2.3 Response mechanisms of intrusion detection systems

The analysis component of idrs has extensively gained attention of researchers in the intrusion
detection field. Minority of previous research works has focused on the idrs response
component and proposed potential improvements of its reactions. A response component
concerns post attempt or attack detection behavior of an idrs. Its implemented actions after
detection may range from a simple alert to a complex reaction involving multiple environment
and attack dependent factors and others. Several taxonomies have been proposed to identify
different categories of idrs responses. Depending on the automation level, three main
categories namely notification, manual and automated responses are identified in [67], [368].
This taxonomy was also studied and its response classes are detailed in the recent work of
Shameli-Sendil et al. [345]. Notification components alert the SSO on detected or potential
threats targeting the monitored computing environment. However, manual and automated
response components provide the SSO respectively with possible and recommended
corrective actions against identified threat. The later automatically implements recommended
actions which are manually selected and deployed by the former. Another commonly adopted
taxonomy categorizes intrusion responses into passive and active such as in [23], [30], [94].
Passive responses correspond to simple notifications to the SSO whereas; active responses
include various corrective actions against detected threats. In [368], Stakhanova et al. have
proposed an extended taxonomy that includes above discussed categories. Furthermore, other
response characteristics have been considered by Stakhanova et al. to devise a detailed
taxonomy. However, Stakhanova et al.’ taxonomy [368] does not meet mutually
exclusiveness principle because a response component may be assigned to more than single
category such as for notification and passive responses. In this section, the response taxonomy

identifying passive and active categories will be adopted in presenting previous works.
2.3.1 Passive response components
Passive responses have no mitigation effect on mounted and detected attacks. Passive

response components merely inform the SSO about detected threats. They always raise an
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alert. They may also provide the SSO with additional information including logged intrusive
activities and a report on mounted threats depending upon the capabilities of involved
detection models. Corrective actions against detected threats are further decided and
implemented by the SSO. Most of existing ids are passive [369]. SNORT is one the most
known signature based passive ids. Its response component alerts the SSO and reports

detected attacks. Additional other passive idrs are presented in [67].
2.3.2 Active response components

Active response components aim at mitigating incurred or potential damage of mounted
attacks. They automatically select or assist the SSO in choosing appropriate security controls
and then deploy them on the monitored computing environment. Active responses have been
categorized based on response time into proactive and reactive in [23]. Proactive response
components preempt attackers’ activity sequences and react before attacks take place relying
on potentially intrusive activities predicted by analysis engines. Reactive response
components instead implement their corrective actions only after detection of attacks.
Furthermore, automated responses have been structured into static, dynamic and cost sensitive
categories depending on how response’s actions are selected [369]. Additional other response
categories are deduced by involving characteristics such as adjustment and cooperation
abilities of automated response components [369], [372]. This section focuses on automatic
response strategy design, without human intervention. Response selection and response time

criteria are the only considered in presenting previously designed response components.
2.3.2.1 Static response selection

Static intrusion response components have prespecified action lists. Depending on detected
attack types, corresponding action lists are then implemented by static response components.
Static responses are designed by the SSO or with the collaboration of a security expert for
theses components. Furthermore, the deployment of selected responses is always delayed until
identifying true types of detected intrusive activities and therefore static response components

are mainly reactive [8], [123].
2.3.2.2 Dynamic response selection
Dynamic intrusion response components dispose of possible defense actions against potential

attacks. Sets of response actions to be implemented are selected by these components
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depending upon criteria related to detected attacks including confidence and severity.
Selection criteria are first evaluated for each attack and then appropriate response actions are
chosen generally in real-time. Dynamic components offer uch more flexibility than static ones
in designing response strategies. Furthermore, they are capable to take account of additional
environment dependent information rather than attack type. Dynamic response components
may save states on their previous reactions and hence they are able to learn from them to

improve future idrs reactions [10].

Most of dynamic response components ensure delayed reactions. EMERALD and AAIRS of
respectively Porras et al. and Carver et al. are examples of idrs ensuring reactive dynamic
reactions. EMERALD is a hybrid distributed detection system. It relies on a hierarchy of
monitors deployed at three main levels namely service, domain and enterprise. Monitors of
each level focus on threats targeting the resources of that level. Furthermore, over different
levels, monitors hierarchically cooperate to detect malicious activities, aggregate raised alerts
and respond against recognized attacks. Each monitor in EMERALD architecture consists of
profile and signature engines, resource object and resolver. The two analysis engines perform
respectively anomaly and misuse detection. The former uses computed statistical profiles to
identify unacceptable deviation to normal behavior of the monitored service, domain or
network. The later verifies logged event sequences against saved signatures to determine
those similar to encountered malicious activities. A resource object component provides all
other components with required data such that the independence of deployed monitor to its
target service, domain or network is preserved. A resolver component receives analysis
reports forwarded by profile and signature based engines, either internal or external to its
monitor. It is an expert system capable to coordinate analysis reports and implement
responses. A resolver is able to correlate intrusion results issued from analysis engines.
Furthermore, it has the possibility to request analysis reports from other resolvers at lower
levels in order to derive global decisions about security state as well as required responses to
monitored target. Resolver of each monitor is also capable to trigger appropriate responses
against reported intrusive activities. Response methods available to resolver are saved by the
resource object of its monitor. Each method is associated with evaluation metrics namely
threshold and severity that determine its deployment conditions. The threshold metric assesses
the confidence assigned by the analysis engine to detected intrusive activities, whereas the

severity metric specifies to which degree a response method is appropriate to anomalous
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activity sequences. A resolver combines both metrics in designing monitor’s response [67],

[123], [306].

The EMERALD response component is stateless in that its previous experiences are not
considered in designing the current response. An adaptive response component based on agent
technologies was designed by Carver et al. of Texas A&M University [67]. It has the capacity
to learn from its environment and past experiences in order to improve further deployed
responses [8]. Adaptive agent based intrusion response system, AAIRS, of carver et al. fulfills
post detection phase for passive ids. It includes multiple agent types. Interface agents of
AAIRS interact with passive ids monitoring target system. They keep track of ids activity
history including their false and true positive rates. Built model of each ids will serve in
generating analysis report and evaluating attack confidence metric by interface agent.
Analysis report and confidence metric are forwarded to a master analysis agent. The latter
identifies whether the detected attack is a new or continuation of an existing one. In the
former case, it creates a new analysis agent to generate a response plan against the new attack.
Whereas, in the latter case, a master agent forwards detection report and confidence metric to
an analysis agent specialized in countering the detected attack. An analysis agent processes
and mitigates detected attack with the cooperation of several other agents. It generates a
sequence of actions, to counter detected attack, in which response taxonomy, policy
specification and tactics agents and response toolkit are involved. The detected attack is
initially classified by the response taxonomy agent. Afterwards, the goal and limit of response
actions are determined by a policy specification agent regarding multiple aspects including
legal and ethical aspects. Then, selected response actions are forwarded to tactics agent that
decomposes them into specific actions. Tactics agent also triggers the appropriate component
of response toolkit to implement specific actions of the generated response. Decisions of
analysis and tactics agents are adaptively taken depending upon the success of their previous
responses, which are saved by a logger agent of AAIRS. In Carver et al. response system, the
SSO feedback is always required in updating information [183] and guiding further responses
[8]. However, Carver et al. have not presented in which step of the response process the SSO
interacts with AARIS. Moreover, as stated in [123], they have given no additional information
on main algorithms performed by AAIRS agents including response action selection, actions

decompositions and response success evaluation.
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2.3.2.3 Cost sensitive response selection

Above discussed dynamic response components of EMERALD and AAIRS are reactive.
AAIRS only is capable to adaptively design action sequence depending upon its previous
responses. However, neither EMERALD nor AAIRS takes account of response cost criterion
in selecting response actions or implementing them. Another category of response
components focusing on cost sensitive design of ids reaction has gained the attention of many
researchers, last decade. Initially, Lee et al. have integrated cost factors in detection
component of an ids. They have designed cost sensitive detection model in which three main
cost factors, specifically damage, response and operational costs, are considered. Damage cost
assesses potentially incurred damage by an attack on monitored resources. Response cost
determines required defense cost against current or potential intrusion. Operational cost
estimates the cost of performing intrusion detection including all processing steps from log
data collection until the analysis report generation. First two cost factors will determine
consequence costs depending upon possible output decisions of the analysis engine of an ids.
Cumulative consequence and operational costs will then gauge the total expected cost of
intrusion detection. The latter is involved in generating cost sensitive detection models for

Lee et al.’ ids.

Lee et al. have adopted DARPA attack taxonomy in their cost model. Base damage and
response costs are prespecified for each attack subclass of those identified. These cost factors
associated with the criticality of the target asset will respectively estimate costs of incurred
damage and countering the mounted attack. The response decision, in this model, is based on
trade-offs between evaluated damage and response costs regarding the mounted attack and
target asset, such that an intrusion is mitigated only if its damage cost exceeds selected
response cost. This is also reflected in estimating the consequence cost of Lee et al.” model

[225], [368], [372].

In the cost model of Lee et al, damage and response costs are statistically initialized. This is
unrealistic because neither base costs nor criticality of the victim reflect its security
requirements and severity of its exploitable weaknesses. Moreover, Lee et al. have not
detailed multiple critical algorithms to their cost model including how evaluating base

damage and response costs and selecting appropriate controls to mitigate reach damage.

Balepin et al. have also proposed an adaptive response component based on derived hierarchy

and directed graph of system resources. In Balepin et al.’” response component, system
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resources are structured based on their types into hierarchies. Such hierarchies are useful in
selecting response actions because the resources of the same type are often protected with
same security controls. However, they are not sufficient in selecting appropriate controls since
thorough information on monitored system and its resources is required. Therefore, system
map expressed in terms of resources directed graph is included in Balepin et al.” response
component. In the system graph, resources represent different nodes and edges express
dependencies between them. Each node in the graph is associated with cost value and basic
response actions. The cost value is commonly assigned by the system administrator or
information owner depending upon the importance of the represented resource. The response
actions are capable to re-establish normal function of the protected resource if attacked. Each
of these actions has an activation condition and a list of affected nodes when implemented.
Furthermore, each node in the graph is assigned response actions. Response actions of each
target node are selected based on a cost benefit analysis step. For this step, intrusion cost and
response cost and benefit are estimated. Intrusion action cost is determined by the sum of cost
values of damaged map nodes due to the mounted intrusive action. Cost and benefit of a
response action are approximated relying on costs of map nodes respectively damaged or
restored to normal function due to implemented corrective action. A gain matrix is then
constructed using evaluated costs. This will serve in determining the optimal response actions,
achieving maximum benefit and minimum response cost, to be deployed against detected

intrusive actions [35], [372].

In Lee et al. and Balepin et al. response components reactively defend against detected attack.
They are based on analysis of tradeoffs respectively between damage and response costs and
cost and benefit of potentially deployed response. Foo et al. have also proposed an improved
trade-off based response component that has the capacity to implement proactive reactions.
ADEPTS of Foo et al. is an adaptive graph based response system to rule out attacks in a
distributed system of interacting services [122]. It relies on intrusion graphs, I-Graph, that
model paths potentially followed by attackers to achieve their goals and spread intrusion
behavior from a service to another. An I-Graph consists of nodes expressing intrusion sub-
goals and edges representing pre and post-conditions between them. It models dependencies
between sub-goals and possible alternatives of arranging them to fulfill the final goal of an
intrusion including information leakage or denial of service. Each alternative or sub-goals
path explicitly states how attackers sequentially proceed to meet the objective of the

implemented deliberate actions.
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In ADEPTS, reported alerts are mapped to I-Graph to determine followed paths and estimate
the likelihoods and locations of the achieved sub-goals. Responses against detected intrusions
are then selected and deployed to prevent and limit potential propagation of intrusive behavior
to other services in the distributed system. ADEPTS responses are selected depending on their
past efficacies against considered attack classes and disrupts to system normal activities.
Furthermore, confidence levels of detection engines decisions are also included in designing
ADEPTS responses. The response control center of ADEPTS chooses and filters candidate
responses based on evaluated parameters. Most appropriate response actions, according these,
are then deployed by response execution agents. A feedback system supported in ADEPTS

tracks implemented responses and revises their effectiveness indexes [122], [123], [372].

Although, ADEPTS prevents against spreading intrusive actions to other services of the
distributed system, the effectiveness of its implemented response remains always dependent
to parameters and designed intrusion graph and granularity of its sub-goals. In fact, in
ADEPTS response process, disruption index evaluation for deployed response strategies is not
detailed. Furthermore, intrusion graph, which is semi automatically generated, may include
elementary sub-goals of mounted intrusive actions. In this case, identifying graph node using
generated alert and its confidence factor is extremely complex unless additional information

on implemented attack actions is available.

Several other limits of ADEPTS have been enumerated by Stkhanova et al. in designing their
cost sensitive preemptive response component [368]. The latter overcomes some of discussed
shortcomings and includes multiple other improvements, compared to ADEPTS. The
response component of Stkhanova et al. is based on tradeoffs between the damage cost
incurred by unexpected actions and response cost of potentially deployed corrective actions.
Its response process includes three main steps namely pre-emption decision making,
candidate responses identification and optimal response selection. The first step focuses on
determining the time point when a response should be fired. Therefore, a probability threshold
expressing an acceptable confidence level from which an attack in progress should be ruled
out is predefined. For each detected intrusive event sequence, its probability of occurrence is
compared to the threshold. The candidate response identification step is initiated only if the
occurrence probability of a malicious sequence exceeds the tolerance threshold. This second
step of the response process aims at maintaining required balance between damages and
benefits of early response. It is based on estimated damage and response costs of potential

response actions against detected intrusive event sequence. Included actions in the candidate
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set are those associated with weighted damage costs, using computed occurrence probability,
exceeding their response costs. The final step of the response process determines the optimal
action to be deployed among the candidate set. The optimal action ensures the highest
expected value expressed in terms of its success and risk factors and probabilities of success
and risk of the detected event sequence. Success and risk factors of a response action assess
respectively its appropriateness in the past and negative effect on the target of an attack.
Selected optimal response action based on these parameters ensures the highest benefit and

least risk to the monitored computing environment [368].

Lee et al. and Balepin et al. response components ensure cost sensitive delayed reactions.
Likewise, ADEPTS and Stakhanova et al. response components automatically select cost
sensitive response actions which are proactively implemented. Toth et al. and Strasburg also
have designed adaptive response components able to deploy delayed or proactive reactions
depending on capabilities of analysis engines. Toth et al.” response approach has inspired
multiple reaction components of successors such as Balepin et al. and Stakhanova et al.
Network based response component of Toth et al. relies on built network model to evaluate
the effects of deployed responses on operational services. A network model consists of
multiple elements of different types and dependencies between them. An element included in
Toth et al. model may be a network service, resource, user, topology or other that can
potentially be affected by the deployed response actions. Furthermore, dependencies between

these elements reproduce their direct or indirect relationships in the network system.

The response component of Toth et al. evaluates response action impacts based on a network
model using an impact evaluation function. The latter uses dependency trees of entities,
network resources or users, to evaluate their capabilities. A dependency tree of each entity is
extracted from the network model. It illustrates the relationships and their types, AND and
OR relations, between the target and other entities in the network model. Additionally, it
represents dependency degrees within the tree that range between 0 and 1. A dependence
degree expresses to which degree the operation of the target entity relies on the availability of
another within the network model. A dependency tree of an entity will serve in evaluating its
capability. The capability of an entity is a value within the interval [0,1]. It expresses to which
degree the target entity normally operates either when response actions are implemented. The
capability value of an entity is determined using a recursive algorithm when its dependency
tree includes other entities. Estimated capabilities associated with penalty constants are then

involved in gauging penalty costs that assess unavailability costs of network model entities. In
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Toth et al.” response component, penalty costs due to candidate response actions are always
evaluated. The most appropriate response action to be preemptively or reactively deployed is

that yielding the least penalty cost among those candidates as stated in [388].

The response component of Toth et al. solely focuses on availability cost in the automatic
response selection. Whereas, integrity and confidentiality impacts are also extremely
important is designing response strategies. This component requires a detailed graph that
captures, direct and indirect, dependencies between elements and potential extensions to
represent a further expansion of the network system. Additionally, penalty costs of elements
are not constant and need to be dynamically determined depending on mounted intrusive

actions, their objective and dependency trees of target entities [372], [388].

In a recent work, Strasburg has designed a host based intrusion response framework that
ensures cost based selection of preventive or defensive actions respectively against predicted
or detected intrusive activities. The developed selection methodology within this framework
determines most appropriate response strategies depending on their expected values and the
security policy of the monitored system. It estimates the expected value of a response by the
difference between its approximated benefit and cost, both have the same scale and range
within [0,1] interval. A response cost is determined by its damage and operational costs. The
latter expresses cost requirements to deploy a response, whereas, the former evaluates its
potential damage on the target in the post deployment phase. The damage cost of a response
is estimated based on its impacts in terms of confidentiality, integrity and availability, (CIA)
on the protected system resources. The operational cost of a response is determined relying on
organization associated cost and monitored system estimated value. The latter is determined
in terms of CIA based on, assumed well established and available, security policy of the
organization. The intrusion cost is also assessed by Strasburg methodology in order to
approximate a response benefit. This methodology expresses the intrusion cost similarly to the
response cost without normalizing operational cost because, as stated in [372], the
implementation cost of intrusive actions may exceed their incurred damage. The overall
benefit of a response is then determined by its estimated reduction effects on intrusion impact
and mounting costs. Among those candidates, Strasburg’s response component selects the

response strategy associated with the highest benefit.

Although, Strasburg’s response components has remarkably improved cost sensitive response
selection through focusing on environment dependent parameters including security policy

and security requirements, its response process supports several shortcomings. In fact, this
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process does not initially illustrate how candidate response actions are selected. Afterwards,
it evaluates intrusion cost similarly to response cost using in both cases damage and
operational costs. But, the operational cost of an intrusion has a different interpretation than
that of a response. Furthermore, its estimation process, which is not expressed by Strasburg
methodology, is extremely complex and requires detailed information obviously difficult to
reach or unavailable such as attacker skill and attacking tools. Moreover, in the response
process of Strasburg component, it is also useful to take account of the target vulnerability

state in estimating damage cost of a candidate response as well potential intrusion.

In addition to Strasburg and Toth et al., Anuar et al. have recently designed a response model
that combines proactive and reactive reactions. This model proposes two response zones
namely active and passive relying on intrusion time frame. Within the active zone, a response
component should be capable, according this model, to implement its preventive or defensive
reaction depending upon the mounted attack progress [23]. Strasburg et al. [372] have
proposed a useful cost model to response component potentially deployed within this active
zone. This cost model relies on three factors, namely response operational cost, goodness and
impact on the target system, in order to evaluate candidate responses. Evaluation, selection
and deployment of response actions according the cost model of Strasburg et al. are
performed with respect to the security policy of the monitored system. Cuppens et al. [86]
have also extended the security policy to include response requirements called also reaction
policy. Formally specified reaction policy rules [86] are involved in identifying detected
intrusion and assessing its impact regarding violated security policy rules. Furthermore, they
are useful to dynamically revise the requirements of security policy, such as access policy,

and fire appropriate reactions against detected intrusion.

In recent works, Baayer and Regragui [31] and Zaghdoud and El Kahtanai [426], have
improved existing cost sensitive response components. Enhanced cost model of the response
component in [31] takes account of false positive cases. It aims at optimizing response costs
when dealing with such cases. Layered response component proposed in [426] was based on
agent technologies. After processing detection decisions by high level layers, the last layer of
the response component designs and implements appropriate responses respectively using
specialized and mobile agents. Multiple other response approaches have been discussed also
in [121]. Designed response components based on these approaches are also compared

regarding their efficiencies, complexities and cost effectiveness in the same work.
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Main findings of studied response engines:

Previously reviewed cost sensitive response components have been based on different factors
including response cost, damage cost, operational cost, response benefit and others. Most of
them lack detailed processes to selected candidate response actions depending on detected
attack or attempt of attack and the target system. Furthermore, they commonly identify
appropriate responses based on cost benefit or cost damage tradeoffs with consideration of
neither the security policy nor the current security state of the monitored system. Strasburg’s
response component specifically is based on the security policy of the target to select and
deploy response actions. However, no one of these response components has taken the current
security state, vulnerabilities and implemented controls, of the target system in evaluating cost
factors. Additionally, some of these components use static parameters such as penalty cost in
[388] and probability of intrusion occurrence in [372]. In recent works such as [345], [371]
response cost evaluation is discussed but neither detailed processes to estimate involved
parameters is presented nor thorough risk model to this aim is designed. Further
improvements of these response components are potentially possible if security standards
such as those of NIST and ISO are adopted and common vulnerability databases including

NVDB and OSVDB are involved in corresponding response processes.

2.4 Conclusion

In this chapter, different detection models based on supervised and unsupervised machine
learning and data mining techniques are presented. Supervised techniques such as decision
trees, naive Bayes, neural nets and support vector machines have been commonly adopted in
generating appropriate detection models for known attacks. Whereas, unsupervised detection
models based solely on clustering techniques have promising capabilities in detecting
unknown attacks. Other data mining techniques including association rules and frequent

episodes have been also successfully applied in misuse and anomaly intrusion detection.

Additionally, different response components are reviewed in this chapter. Response processes
of several dynamic and cost sensitive response components are also detailed in the current
chapter. A specific focus is given to cost models of tradeoffs based response components.
Cost factors and their relationships within these response models are identified. Moreover,
evaluation processes of involved factors are discussed as well response action selection and

associated decision criteria. In the next chapter, our idrs framework will be introduced with its

108



CHAPTER 2: Related work: intrusion detection analysis and reaction mechanisms

two main components of multimodel analysis and risk driven response. Subsequent chapters

of this work will be dedicated to thoroughly present these components.
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CHAPTER 3

THE PROPOSED INTRUSION DETECTION AND RESPONSE
SYSTEM FRAMEWORK

3.1 Introduction

Existing intrusion detection systems use different log analysis techniques. A minority of these
take account of post detection reaction mechanisms. Both analysis and response components
of theses idrs systems have many drawbacks as previously discussed in the introduction. They
require more improvements to appropriately defend against increasingly complex attacks and
meet security requirements of the monitored computing environments. In this thesis, proposed
enhancements address structural aspects as well as operation steps of existing and future idrs

systems. They are associated to designed idrs framework herein introduced.
3.2 Proposed framework

Designed framework proposes an improved structure for existing and future idrs systems.
Besides components of the CIDF, it includes other ones deemed extremely useful according
to identified problems of existing idrs. Moreover, it supports an idrs life cycle that states
different operation steps of involved components. Both, components of the proposed

architecture and steps of the idrs life cycle are presented in subsequent sections.
3.2.1 Problem formulation

The main goal of intrusion detection systems is to generate more certain, precise and accurate
results as much for detection as for response. Several methods have been suggested and
adopted by ids to deal with these concerns. However, ids methods support several weaknesses
that induce failure at different levels of the intrusion detection process. Previously, detection
methods fail to capture different aspects associated with mounted attacks or monitored system
normal behavior. The majority of these methods rely on single detection model approach.

They solely address to a single relation type including nonlinearity, temporal or association,
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within logged intrusive or normal events. Therefore, their generated detection models focus
on a single aspect or facet of system normal behavior or attacker intrusive actions.
Additionally, these detection methods are facing to the problem of data sets availability.
Indeed, reduced data sets that appropriately report different attack classes are available for
these methods. This remarkably limits capabilities of their generated detection models to

recognize slight changes in an entity’s behavior and thus affects the performance of the ids.

Additional other detection methods have been based on multiple model approach. However,
they share same weaknesses with the single model approach unless other reinforcing
techniques, including boosting or bagging or various learning algorithms, are adopted.
Although these improvements partially overcome weaknesses of the former approach, they
induce additional drawbacks for the latter. The resulting detection methods always use static
combinations of generated models. They involve the same sets of detection models in
analyzing any collected log data set and recognizing instances of normal and different attack

classes.

The majority of the proposed intrusion detection methods take account of a single log data
type including network, host or application logs. In addition, they neglect model generation
and updating steps within the ids operation process. A global description is always given for
both tasks that briefly concerns compositions of training data sets and settings of the
algorithms involved in building detection models. As such, no structured process is presented
to deal with how preprocessing data sets, selecting features subsets and generating and
updating detection models. Moreover, ids systems are devoid of a knowledge base
component. Such component saves the domain dependent and intrusion detection knowledge
of extreme usefulness for idrs. It maintains knowledge on detection models, their use
conditions and performances, and previous experiences of idrs systems. It also gives idrs with

required knowledge on computing environment assets, vulnerabilities and security controls.

Additionally, some of previously designed ids integrate response actions to the detection
process. However, response capabilities of an idrs are determined by its response component,
as stated by the CIDF framework. For active ids, they range from a simple alert associated
with a list of applicable controls, given to the SSO, to an automatic selection and
implementation of a combination of countermeasures, depending on detected attacks.
Moreover, it is common for existing idrs to defend against detected attacks without involving
priorities. Their response components similarly treat attacks of the same class regardless of

their respective effects on target assets of the computing environment. The major drawback of
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these idrs is their failure to provide any information on the extent of inflicted damages to
target assets. Indeed, their designed response components exclusively focus on the principle

of reducing likelihoods of threats instead of the global cost of underlying risks.

Known above enumerated and other drawbacks, the proposed idrs framework in this thesis
addresses many of them. It is based on multimodel and risk driven approaches respectively for
detecting attacks and designing responses against them. Our multimodel approach allows
several evaluation facets to the idrs systems in order to conduct a thorough analysis of the
current security state of the monitored computing environment. It ensures multiple log data
sets processing using appropriate combinations of detection models. Processed data sets by
the proposed component may be issued from single or several sources. They differently trace
intrusive or expected activities within the monitored system by involving multiple features.
Their features subsets depend on sources or specificities of single source log. Network, router
and firewall log types are determined by considering their sources. Whereas, intrinsic and
content logs are examples of log types identified for single source. They focus respectively on
basic and content attributes of collected network connections. Log data sets of different types
and their feature subsets are determined by preprocessing and formatting collected log data
regarding a prespecified time window. They serve in generating and updating detection
models. They are also involved in selecting best combinations of detection models for the
analysis component of the proposed idrs framework. Formally, J different log types are

considered by the idrs framework. Each log data set of given type j, j=1..J, is expressed using

the whole feature set of log type j, F/, such that F/ = =1 ..Lj} and f; is the I" feature of

log type j. Feature set available to the idrs framework over all considered log types is

represented by the set F={ F/ j=1..J}.

In the proposed idrs framework, each log type is associated with a set of detectors or detection
models. A detection model is implemented using machine learning, data mining, and other
artificial intelligence techniques, as illustrated in the previous chapter. Classification,
prediction, pattern matching, genetic and other techniques have been widely applied in
constructing detectors for ids [130], [273], [285], [337], [342]. They are also useful in
building detection models to the analysis component of our idrs framework. Additionally, this
component merely imposes that any participating detection model in assessing current logged
activities, independently to its generation technique, should provide an abstract output among

those prespecified. Such condition requires additional processing steps when dealing with
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other techniques, but it is obviously satisfied by classification techniques. Thus, only
supervised classification techniques are considered in constructing detection models in order
to simplify the design and illustration of associated processes to the analysis component of the

proposed idrs framework.

Supervised classification techniques are widely applied in different domains including
information security. Classification models built using these techniques use data sets whose
examples are entirely labeled with their true output class. Labeled training data for these

models concern multiple output classes. Formally, for any given training data set 7R of N
examples, TR={(x,y,), r=1..N}, where x, € R"is a P-dimensional data instance, x, is the
value of feature / of the instance r, le {1,...,P}, and y,€ C={cy,...,co+1} the set of possible
output classes. The classification model derived based on the training set TR is represented the

mapping M, such thatM_ : R” — C. When given with an unlabeled data example, xe R”,

the built classification model predicts its output class, ye C, suchthat M _(x)=1y.

Classification models are mainly categorized into binary or multiclass depending on their
output sets. Multiclass classification models are above summarized, whereas binary models

have an output set C such that C={c,,c, } where ¢, is the only known class and ¢, groups
other possible output classes than ¢, Binary classification models are also known as

supervised outlier detection models. A given data example xe R” is an outlier if

M (x)#c, and then it is dissimilar to subsets of 7R associated to the target output class

¢, [349].

Binary or multiclass classification models may be also categorized based upon details of their
output decisions into abstract, rank and measurement as detailed in section §4.6. Additionally,
several forms are useful in representing classification models. Most widely adopted
representations include rule set, decision tree, graphical network and automata [34], [101],

[155].

In our idrs framework, detection models generated using classification techniques are based
on training, validation and testing datasets set of the corresponding log type, respectively 7R;,

VS;, TS, j=1..J. For each log type j, its training set TR; consists of N, labeled data instances,

TR, zi(x,,y,)/x, =< XX >, Y, € C,rzl..NW} where x, is a data instance of L,

dimensions, x; is the value of feature / of the instance r, le {1,...,L;}, and y, the output class
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associated with x,, y,€C, the set of possible output classes, C={cj,...,co+;}. In our idrs
framework, the output set C includes Q attack classes of reduced DARP taxonomy, ¢,, g=1..0,
and the normal class, cg.;. Additionally, the training set 7R; is reduced to TR;; using the
projection function, (), and selected feature subset, F;C F ={f;, [=1..L;}. For instance, the

reduced training set 7R, , = 7, (TR j), such that the feature subset F, =\f,,/=1..L,

consists of N, unlabeled data examples. Testing and validation data sets of each log type j

including respectively N, and N, unlabeled data instances are given by:
TS, = {xu /X, =X e X > U= 1..Nm} and VS, = {xv /X, =X e Xy >V = 1..Nw}

Similarly to the training set, they are reduced if required respectively for generated detection

models evaluation and validation.

In the idrs framework, detection models construction, using machine learning or other
techniques, is preceded by a feature selection step. A wrapper approach is adopted in this step
where the learning techniques involved in generating detection models are also included in
selecting relevant features for them. For each log type j, its detection model subset DM;
includes N; models, DM={M; / i=1..N;}. Every detection model, M; e DM,, is generated using
a reduced feature set F, ,ch, F; ={f;, I=1..P}, as further discussed in section §4.4. In addition,
its reduced training, validation and testing data sets are derived using the projection function,

), its selected feature subset, F;, and datasets of log type j respectively,

TR ={(xr,yr)/xr =<X X, >y, € C,r :1..N,,}, Vs, = {xU /X, =X ey X, >V = 1..Nm}
and TS, ; = {xu /x, =< x| oy X, > u=1.N } A generated detection model using supervised

machine learning technique has an output set, Ci={c,, g=1..N;j} C. The latter enumerates

classes of patterns recognizable by the detection model, M;.

Additionally, in the proposed idrs framework, detection profiles are defined for constructed
detection models. They are saved by the idrs knowledge base. Detection profiles subsets are
required in fulfilling critical processes of the multimodel analysis component in the proposed
idrs framework. For every log type j, the corresponding detection profile set, DP;, is
determined depending on its detection models in DM;, DP={P;, i=1..N;}. Each profile, P;, is a
data structure supporting generation, historical and performance information on the detection

model M;.

Generation information includes the representation of computed detection model such as a

rule set, tree structure or others, as illustrated in chapter 6. It additionally concerns the output
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set, relevant feature subsets and learning set of the generated detection model. Relevant
feature subsets of a detection model, M;, are determined depending on its output classes of C;
and the training set of considered log type, TR;. For every output class, c,e C, its relevant
feature subset, F;,, is derived from attributes of log type j, F, based on a wrapper approach.
Selected feature subsets of different output classes in C;, {Fi, c,€C;, g=1..N;;}, are then
involved in specifying the overall set, F;. The latter will serve in generating detection model
M; as subsequently detailed in section §4.4. The learning set of a detection model, {;c TR},
includes all recognized data instances of this model when tested using its training set,

g, = {(x,,y,)/(x,,yr)e TR,yj,Mi(x,)z V.. r= l..N"}. Learning sets of detection models are

required by different processes of the proposed idrs framework, specifically detection models
fusion within the multimodel analysis component, as discussed in section §4.6.5. They are
also revised using historical data sets of generated detection models and involved in updating

them.

Historical information focuses on previous experiences of detection models. The historical
data set, H;, of each detection model, M;e DM;, summarizes its earlier involvements in
analyzing log data. It saves processed log data examples at different time points and
associated assessments, both of the participating and combined detection models. The
historical data set of each detection model serves in dynamically revising its learning set and
then in reinforcing its detection capabilities. This is detailed in a subsequent section of chapter
4. Additionally, historical data sets are also included in updating testing performances of

detection models.

Performance information of a detection model summarizes its detection effectiveness using
corresponding validation and testing data sets. Relative scores of detection models, sr;j,
considered in our idrs framework, express their performances. They are assessed using
validation and testing confusion matrices of detection models for included log types as further
discussed in section §4.4. Moreover, the relative score of a detection model is revised each
time it is involved in an analysis task. In such case, the testing confusion matrix of the
detection model is updated using its historical data set. For every detection model, M;,
validation and testing confusion matrices respectively VM; and TM; are saved by its profile.
They are involved in different computation steps of the multimodel analysis component

including selection and fusion of detection models.
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A detection profile saves all above discussed information. For each log type j, computed
profile set, DPj= { P, i=1..N;}, depends solely on generated detection models for that log type,
DM= { M,, i=1..N;}. Each profile, P;e DP;, concerns a single detection model M;, M;e DM;.
It is represented by a multidimensional data structure, P;=<M,;, C,{F;, q=1..N;;}, F;, ¢, H,
VM,, TM;, sr;;>, that saves required information on the corresponding detection model.
Detection profiles are built and updated by the generation component of the idrs framework,
discussed later in this chapter. Furthermore, they are required by processes of the multimodel
analysis component of our framework in evaluating the security state of the monitored

system, selecting detection models and processing log data as discussed in chapter 4.

In the proposed idrs framework, analysis and detection process performs in near real time. At
each time point ¢, log data of different types are collected and preprocessed by the
corresponding component of the idrs framework. The resulting data set, D={x;,..., X;j, ...,
X:J }, is analyzed using dynamically selected detection model subsets, each of which concerns
a single log type. Initially, a subset of candidate detection models, {CS; / CS; < DM,, j=1..J},
is determined for each log type. Its candidates are already built using selected feature sets of
the considered log type. Then, the most effective combination of these models, S;;={M/ M;e
CS; } and S={ S,jj=1..J}, to process currently available log data of type j, are identified
relying on an integrated criterion. The latter includes environment and model dependent
factors that focus respectively on attack signs and performances of detection models, as

respectively explained in sections §4.4.4 and §4.4.

In the designed multimodel analysis component of the idrs framework, every data example of
given type, x;; € D;, j=1..J,1s processed by detection models of the corresponding combination,
S,; < Si, j=1..J. Detection models are assumed independent and providing outputs at the
abstract level { ¢,/ c,e Ci, i=1..1S,jl, j=1..J}. They are fused to derive the final decision of the
combined detection model on currently logged and analyzed activities of the monitored
computing environment. Different fusion levels are discussed in section § 4.6, among these,
the decision level is only being considered by our combined detection model. Furthermore,
many fusion methods operating at the decision level have been experimented in previous
works [184], [185], [412]. However, evidential combination methods are specifically
considered in our idrs framework. This is due to two main reasons. On one hand, evidential
fusion rules are useful in dealing with uncertainty in detection models decisions and including

context dependent information within the combination process. On the other hand, most of
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them are appropriate in coping with conflict situations between selected detection models.
The proposed combination method relies on the Transferable Belief Model, TBM, of Smets. It
fulfills two fusion stages within and between selected combinations of detection models, S;;
S;, j=1..J. The main steps of the fusion process are presented in detail in section §4.6.5 of the
next chapter. For each processed log data set, D,, the combined detection model provides a
detailed decision. The latter corresponds to the assigned label to analyzed system activities
and its confidence value. Multimodel analysis component decision on currently reported and
processed security state of the monitored computing environment is then forwarded to the

response component.

The combined detection model decision is critical to risk driven response component of the
proposed idrs framework. It is required to evaluate risk position of the monitored system and
design cost effective response programs against attacks facing it. As such, a risk model is
developed for the response component of our idrs framework. It focuses on assessment and
treatment of computing environment risks. Furthermore, it uses several parameters in addition
to the aggregated decision of the multimodel analysis component, interpreted in this context
as the probability of threat occurrence. The designed risk model is an extension of generic
models such as Annual Loss Expectancy (ALE) of DoD and risk methodologies of National
Institute of Standard and Technology (NIST), to meet requirements of the monitored
computing environments [149], [325]. It includes two additional components, implicitly
considered by generic models, in assessing risks of the computing environment, as
summarized in section §5.2. These components concern respectively the severity of supported
vulnerabilities and effectiveness of operational security controls of the monitored computing
environment and its assets. The former focuses on potential extent of harm caused by
mounted attacks known that the gravity level of supported weaknesses by assets of the target
system. The latter component instead takes account of reduction effect of deployed security

countermeasures on computing environment inflicted damage by mounted attacks.

In this work, the designed response component is based on normalized risk management
model. The latter is mainly inspired by the risk management standard of ISO-27005 and other
risk standards and security guidelines [149], [173], [175], [325]. It includes two major and
interdependent parts of risk assessment and risk treatment, as recommended by ISO-27005.
The first part relies on two steps respectively of risk parameters identification and evaluation
in order to assess the basic risk of the target system when attacked. In this report, we

interchangeably use risk parameters or risk elements. The second part complements the first
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one. It aims at treating assessed risks through choosing a treatment option and implementing

its underlying actions.

In the proposed model, the first step of the assessment part focuses on identification and
determination of different risk parameters relying on included risk components. In this step,
six risk elements are considered in determining risk of the monitored system and assessing
their monetary values. They are structured into three main groups of risk exposure,
vulnerabilities severity and controls effectiveness. The exposure group concerns indirect risk
elements, namely, asset value, impact and threat likelihood. These parameters are involved in
determining risk exposure, the potential damage due to mounted attacks, of the monitored
system or its target assets. Vulnerability and control groups instead include direct risk
elements to estimate respectively the gravity of potential exploit of supported flaws and
efficacy of deployed security safeguards. For each identified direct or indirect risk element,
dependent variables involved in its evaluation are also determined in this step. All these risk

elements are discussed in detail in sections §5.2 and §5.3.

In the proposed risk model, we assume that the monitored computing environment is
composed of N assets determined by the corresponding set A={a;, i=1..N}. Assets support

multiple flaws identifying then the vulnerability set V, V = {v pJ=1LM }, of the computing

environment. Additionally, the monitored computing environment has different security
controls that form its initial protection strategy, SS, = {s,,s, € SC}, SC the set of L possible
security controls, SC = {s,,l = 1..L}, given by the Annex A of the ISO-27001. Each asset, a,
of the computing environment is in turn determined by its set of vulnerabilities and an initial
control subset, respectively, V;c V and SS;9c SSp. The latter includes dedicated or common
controls considered in protecting against mounted attacks of the threat set T={c,, g=1..Q} and

T c C, the set of possible output classes.

The second step of the risk assessment part focuses on basic risk evaluation for each target
asset and then the computing environment. It takes account of risk parameters identified and
determined in the latter step focusing on risk elements of exposure, vulnerability and control
groups. In the evaluation step, basic risk, RI.B , of each target asset, a;, is estimated based on
its exposure due to detected attack, c,, vulnerabilities severity and controls effectiveness that
respectively define parameters X, ¥; and Z;, . Therefore, it is expressed as a function of these

parameters, R/ :CID(X Yi’Zi,O) as detailed in section §5.4. The exposure determines the

iq’
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potential loss inflected by the detect attack, c,, on the target asset, a;. It is also estimated
relying on the impact of the victim, /;, and the likelihood of detected threat, L; 4, as stressed by
defined function to this aim, in section §5.4. The impact element assesses the potential loss of
an asset due to its supported vulnerabilities, V. It takes account of the asset value and impact
factors of determined categories of vulnerabilities depending on their exploit goals. The
likelihood of a detected threat expresses to which degree it is successful such that the normal
function of the target asset is affected. It is estimated based on the combined decision of the
multimodel analysis and detection engine and the failure rate of operational security controls.
The latter rate expresses to which degree functional controls are incapable to defend against
the exploit of supported vulnerabilities by the detected threat. Vulnerabilities severity and
controls effectiveness are both determined based on supported flaws of an asset. The former
risk element solely considers flaw groups, determined using exploit gravity criterion, and
severity scores of associated vulnerabilities. The latter element takes account of different
vulnerability categories, identified relying on exploit goal criterion, and estimated efficacies
of operational security controls in defending against supported flaws. Expressed functions and
designed processes to evaluate basic risk and associated parameters are presented in detail in

section §5.4.

Appraised basic risk of the monitored system, R®, due to mounted and detected attacks is then
treated in the second part of the proposed risk management model. The mitigation option is

chosen in this part. It aims at reducing the assessed basic risk such that the resulting residual
risk, RS, of the computing environment doesn’t exceed a prespecified tolerance level, T,
with respect to allocated security budget, B. The residual risk of the computing environment,

R}, corresponds to unmitigated risk after applying selected control combination or a security
strategy, SSi={s;, I=1..L;}and R} = R*(R",SS,). In our response component, designed risk

mitigation process is capable to determine the optimal security strategy, SS,, that minimizes

both the residual risk and security investment cost. Therefore, a minimization program was
developed with this aim. The risk cost function considered by this program takes account of
both damage cost and remediation cost. Two main constraints are associated to the risk cost
minimization program. They ensure for each designed security strategy that reached residual
risk and cost of selected controls do not exceed respectively the tolerance level and the

security budget.
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The developed minimization program considers effects of both installed and added security
controls on risk cost. Optimal security strategies determined by this program to defend against
detected threats are cost effective. Furthermore, they include appropriate controls from those
recommended by security experts for detected attacks. Different controls of designed response
strategies and expert recommended subsets are extracted from the Annex A of the ISO-27001,
the set of possible security countermeasures applicable to the information security domain.
These two parts of the proposed risk management model and their associated steps are
thoroughly discussed in the respective sections §5.3, §5.4 and §5.5, of the chapter 5.
Following section presents the framework structure that supports proposed improvements and

copes with the challenges of future idrs systems.
3.2.2 Architecture

New requirements of future idrs systems, previously introduced, are supported by components

of the following architecture.

Detection Models
. <>
Generation Knowledge
i Base
CIDF inspired
<>
idrs model

Figure 3.1: Idrs framework structure

Basic components included in this structure deal with critical tasks of preparation, action and
reaction of idrs process. Detection models generation component fulfills preparation task for
the idrs system. It generates detection models relying on reduced training sets, with respect to
selected feature subsets, and chosen learning techniques. Knowledge base component assists
in the achievement of various tasks within different steps of the idrs life cycle. Moreover, it
performs additional tasks to maintain up-to-date and shareable idrs knowledge. In our
framework, knowledge base component has a distinctive role to other components in that it
ensures integration of domain knowledge in the idrs and its core process. It revises, evaluates
and maintains an environment dependent and global knowledge. Idrs knowledge is critical for

assessing security state, approximating inflicted damage and designing response strategies.
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Detection models generation and knowledge base components represent two extensions of

CIDF framework.

CIDF inspired component of our architecture focuses on different processing steps of idrs
system. In the proposed idrs model, structural recommendations of CIDF are fulfilled and its
components namely Event, Analysis, Response and Database-boxes are considered. However,
in this work a special attention is given to critical components of CIDF including analysis and
response boxes, regarding above defined problem. A multimodel approach is adopted in
designing A-boxes. Moreover, a risk driven approach is involved in modeling R-boxes. Both

components and their associated processes are respectively detailed in chapters 4 and 5.

Known the CIDF framework, the above presented architecture enhances this generic idrs
structure. It extends basic components of CIDF by adding P-boxes and K-boxes respectively
for preparation and knowledge base components. The former component concerns general
conditions and basic steps towards computing appropriate detection models. The latter instead
focuses on the integration domain dependent knowledge in the idrs process. Six instead of
four components of CIDF is well adapted and extremely useful to satisfy requirements of
future generation of idrs. Furthermore, it ensures appropriate background to support further
idrs improvements required for evolving computing environments including high speed

network and parallel systems.
3.2.3 Intrusion detection and response life cycle

The proposed idrs framework, through its different components, involves following steps’

activities:
i. Preliminary traffic analysis and idrs model generation
ii. Security analysis towards feature based models selection
iii. Fusion of selected models
iv. Real time risk driven security or response program design
v. Knowledge creation and policy based evaluation and validation of idrs knowledge

Previously discussed idrs components are concerned with these activities that cover
preparation, detection, response and revision steps during the idrs process. They participate in
idrs life cycle by fulfilling single or several of its activities. Initial step’s activities concern

detection model development component. The latter preprocesses training datasets in order to
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identify most appropriate predictor features. Then, training datasets are reduced regarding
selected feature subsets. The resulting data sets serve next in constructing detection models,

which are saved for subsequent use.

Next three steps of the life cycle are about activities achieved by two main components,
analysis and response, of the idrs framework. The multimodel analysis component track signs
of malicious events and control changes of relevant features for any tested data set. It
identifies subsets of feature exhibiting remarkable changes to saved references. These feature
subsets are then involved in selecting different detection model combinations to analyze
collected datasets and explain the origin of supported changes. Afterwards, the analysis
component combines subsets of selected detection models at the decision level. Decisions
made by the combined detection model and other parameters are required to the risk driven
response component. The latter assesses damage incurred as a result of detected attacks.
Depending upon the reached damage level, it designs most appropriate response strategies to
counter detected attacks and reduce subsequent risks of the computing environment to an
acceptable level. Additionally, it is capable to selectively revise the security program of the

monitored system by considering its current security state and the decision of SSO.

Knowledge base component mainly focuses on the last step of the idrs life cycle. It copes with
the creation and revision of idrs knowledge, which is required by components of the idrs
framework and possibly by other security systems. Derived knowledge concerns, for instance,
detected attacks, their inflicted damages or implemented corrective actions to rule them out.
Idrs knowledge can be revised if new pieces of information become available. Revised
knowledge includes updated detection models, if appropriate datasets are collected or their
learning sets are updated, and control combinations, when new applicable countermeasures
are available or others are developed. Additionally, knowledge that concerns computing
environment assets, supported vulnerabilities or other entities of the framework can be also
acquired, saved by the idrs knowledge base and revised. However, before involving created
or revised knowledge in different tasks of the idrs process, it should be evaluated and
validated. In our idrs framework, knowledge revision, evaluation and validation are policy
based activated. Knowledge revision, evaluation and validation policies specify requirements,

conditions and rules that ensure effective implementation of any of these activities if required.

Different activities within each step of the idrs life cycle will be detailed in this report. The

first and last steps of the life cycle are briefly discussed respectively in the next two sections.
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Remaining steps that represent the main focus of this work are introduced in subsequent

sections of the current chapter and deeply addressed in the next two chapters.
3.3 Detection model generation

Detection model generation component of the proposed framework fulfills two main
activities. On one hand, it preprocesses and formats collected log data with respect to the
prespecified time window. On the other hand, the generation component computes detection
models after performing additional actions including feature subsets selection and
preprocessed log data reduction, as illustrated by figure 3.2. Both activities are critical in
achieving the initial step of the idrs process. They are selectively performed either to construct
new or update existing detection models. In these cases, the SSO and Knowledge base

component are involved.

Idrs preparation tasks, associated with model generation component, are identically performed
for available data sets of different log types. Processed data sets include various features.
They can be issued from several sources or derived according to specificities of collected
logs. They are grouped into multiple subsets, as mentioned before in section §3.2.1. These
datasets can be labeled or not depending on their utilization, training, testing or validation,
and considered learning techniques. Moreover, they may include normal or anomalous log

data examples, as categorized by DARPA [190], or a combination of these.

Within model generation component, each data set of given log type includes three subsets of
training, testing and validation respectively TRj, TS;, and VS, j=1..J. As their names already
suggest, these datasets serve respectively to the construction, evaluation and validation of
detection models. They support both normal and intrusive log examples. These datasets are
unlabeled except training dataset that should satisfy the requirements of selected learning
techniques and prespecified output sets for detection models, C; < C, i=1..N;. Furthermore, all
three data sets are reduced before the generation of detection models using their selected

feature sets.

Diverse artificial intelligence and data mining techniques may be adopted by the model
generation component, as discussed above. But in this work, commonly applied classification
techniques, in previous ids researches, such as decision trees, support vector machine, nearest
neighbors, and others are considered. They are useful in building heterogeneous detection
models for our idrs framework. Constructed models are also complementary and focus on

different aspects that concern normal and intrusive behaviors. Therefore, their fusion
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improves the discriminative power of the resulting combined detection model unless conflicts
between them are resolved. Furthermore, it enhances reporting capabilities (expressiveness,

explanation) and boosts global accuracy and precision of the idrs.

For every log type, j=I..J, the model generation component takes account of the
corresponding training set and selected learning algorithms and feature subsets in building its
detection model subset, DMj={M,, i=1..N;;}, j=1..J. Relevant feature subsets for detection
models are extracted from the whole set of the given log type. They are identified using either
selection criterion or adopted learning techniques. They are also restructured into different
subsets depending on considered output classes and involved in other activities of the idrs
process, as discussed in section §4.4. The common process of the detection model generation

for a single log type is illustrated by the diagram of figure 3.2.
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Figure 3.2: Detection model generation process
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Preliminary log analysis step, as stated in the idrs life cycle, covers two elementary and
sequentially performed activities of feature selection and data reduction. Feature selection is
the initial activity of model generation process. It aims at reducing dimensionality of log data
sets before processing them. It can be implemented based on two main approaches of filter or
wrapper selection. The former uses different criteria including information gain, gain ratio or
others, as discussed in section §2.2.1.1. Whereas, the latter relies on adopted learning
techniques to determine relevant feature subsets involved in building detection models. In our
framework, both approaches are useful to detection model generation component.
Furthermore, the two approaches can be adopted in implementing feature selection activity of
this component’s process with respect to used artificial intelligence techniques to generate
detection models. However, this work takes account only of classification techniques.
Moreover, as stated in the literature, the wrapper approach always outperforms filter, in terms
of accuracy, in different domains, including pattern classification [32], [78], [155], [383].
Therefore, this approach is adopted for detection model generation component. Additionally,
selected feature subsets using wrapper approach are involved in the second step of the idrs life

cycle, feature based detection model selection, as detailed in section §4.4.

In the depicted diagram, feature subsets are selected using included learning techniques.
Based on selected feature subsets, training, testing and validation datasets are reduced as
required by next activities within the generation process. A detection model is then built by
applying the selected learning technique on reduced training set. Afterwards, it is validated
and evaluated using unlabeled examples of respectively validation and testing reduced
datasets. At this step, confusion matrices of generated model are computed to be further
included in assessing its performance, as discussed in section §4.4. Additionally, the learning
set of each detection model is computed by a separate activity in the process of the generation
component. Built detection model, its relevant feature subsets, confusion matrices, learning
set and other information are then included in its profile. The latter is saved in the idrs

knowledge base.

Presented process of the detection model generation component can be enhanced by including
additional activities. For instance, data filtering activity performed before feature selection
may be required for this process. It eliminates outliers from training datasets and provides
more appropriate feature selection results than before. Another activity that consists of
structuring given data sets depending on specificities of learning algorithms seems extremely

useful for this process. It aims at providing selected algorithms with appropriate datasets
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before reaching the feature selection activity [169]. These extensions and others may improve
capabilities of detection models and enhance their profiles in the knowledge base. The latter

component and its management process are succinctly discussed in the next section.
3.4 Knowledge base management

Knowledge is defined as actionable information or information in a context. It corresponds to
validated information which is required in performing actions or fulfilling tasks in a given
context. Different kinds of knowledge are distinguished including shallow or deep and tacit or
explicit depending respectively on a memory term to acquire knowledge (short term memory)
and ease of codification (or verbalization) [29], [281]. Knowledge is created, verified and
validated before transferring them into the knowledge base. These steps form the knowledge

management process that allows useful knowledge to resolve domain specific problems.

Although, main processes of information security systems are based on expert and domain
knowledge, a minority of these systems support knowledge management facility as one of
their basic components. As an example in ids systems, the analysis and detection processes
use knowledge discovered from collected log data. However, existing ids systems include
databases instead of knowledge bases, except those based on expert systems. The core
difference between a knowledge base and database is that the former supports an inference

engine which is lacking the latter.

Knowledge base consists of rule and fact bases and an inference mechanism. The inference
engine relies on a rule base to revise existing or acquire new knowledge. Such rule based
approach in designing knowledge base is the oldest and the most widely adopted in capturing
expert knowledge. Whereas, the last decades, ontology based approach has gained great
interest in knowledge representation. Ontologies specify formal information models of
concepts of given domain and the relationships between them [316], [407]. They are easily
understandable by computer users and security personnel. Moreover, they offer required
flexibility and upgradeability in representing knowledge and acquiring new concepts within

the target domain [234], [235], [318].

Recently, benefits and flexibility of ontologies have attracted considerable attention in the
information security domain. Multiple experiments have been carried out in this domain to
derive useful ontologies to classify attacks [302] and [316] or design knowledge bases [77],
[234], [235], [370]. Ontology based knowledge bases are designed in order to reinforce the

management of information security specifically after the publication of the ISO-27001 that
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focuses on ISMS (Information Security Management System). Following this standard and
knowing high intricacy of currently developed security systems, knowledge base become a
critical component of these systems not only for reinforcing security management but also for
enhancing technical security, including intrusion detection, vulnerability and threat

assessment.

Ontology based knowledge base is effective and well adapted to our framework. Based on
domain semantic captured by ontologies, it is capable to provide idrs components and their
associated activities, in the idrs life cycle, with required knowledge. Additionally, idrs
knowledge can be easily shared with other security systems and revised by the SSO or

security experts.

Ontology proposal for our idrs knowledge base component should be based on previous
works. It enhances existing ontologies in information security domain such that new concepts,
dependent to intrusion detection and response, and relationships between them are included. It
is derived through a thorough revision of idrs components and their entities. The scope this
ontology is confined to solely concerns activities of the idrs life cycle, above discussed. Main
concepts and relationships of the intrusion detection and response ontology are depicted in

figure 3.3 below.

Elements of the idrs ontology cover different idrs processes including detection model
generation, analysis and detection and reaction. In this ontology, an asset represents any kind
of worthy resources of the monitored computing environment. It supports several
vulnerabilities. Vulnerability represents any weakness that can serve as a source of
compromise or exploit. Obviously, an exploit concerns single or multiple vulnerabilities of the
target asset. It is used by a malevolent entity to mount an attack. An attack consists of a
combination of an agent (entity), malicious actions and a fixed goal. It manifests through
leveraging these sources of compromise. Both, malicious actions of attacking agent and
expected behavior of an asset are represented by detection profiles. Basically, a detection
profile includes designed model that captures specificities of given intrusive or normal
actions. Additionally, to reduce damage or decrease the realization chance of an exploit, a
security strategy is implemented to protect computing environment assets. It consists of a
combination of security controls, which are effective against potential realization of an
exploit. A control is a security countermeasure that has corrective or preventive effect on

exploits realization. Risk element concerns incurred damage by an asset regarding an exploit
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realization and implemented security strategies. Historical or residual risks save traces on

previously inflicted damages and their treatment strategies.
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Figure 3.3: Idrs concepts and their relationships

The presented concepts can be extended. Additional entities of intrusion detection and
response field or common with other information security fields can be considered in the idrs
ontology. Moreover, other concepts associated to information security standards, guidelines

and best practices are possibly included in the ontology.

Ontology based idrs knowledge base design and implementation process includes several
steps. Automated tools associated with the ontology integrated environment such as Protégé
supports these steps [131], [309]. Protégé environment is an open source platform associated
with useful tools for editing ontologies and building ontology based applications. This
platform integrates OWL (Ontology Web Language) a formal language for encoding
ontologies to knowledge bases. OWL ontologies are expressed as a hierarchy of classes,
instances and proprieties, the main OWL concepts. OWL classes focus on ontology concepts
and group their associated domain instances or objects into different sets. OWL proprieties or
relations are binary and link instances between them or to data types. Protégé platform
ensures also data introduction for the knowledge base. The data can be collected from
monitored systems, public databases or also security standards. Protégé can be extended by
various inference engines, including Jess and CLIPS engine, that rely on rules deduced from

encoded ontologies or introduced manually [84], [131], [305]. Security experts and SSO can
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define their own rules and encode them to the inference mechanism through tools such as
DLRule and SWRL (Semantic Web Rule Language) that focus on OWL hierarchies [76],
[106], [120], [129], [407].

The idrs knowledge base supports knowledge created by processes of the inference
mechanism. Before applying acquired knowledge, it should be evaluated and validated. Policy
based evaluation and validation strategy of idrs knowledge relies on two main steps. The
evaluation step tests idrs function with consideration of created knowledge. It aims at
assessing the consistency of newly derived knowledge. The validation step instead focuses on
idrs performance after integrating acquired knowledge. The selection, use and interpretation
of decision criteria associated with both steps should be also policy based fixed. Moreover,
the evaluation and validation policies explicitly determine performing requirements of each

step’s process.

Knowledge base design and implementation for idrs include many complex tasks. Discussed
concepts and relationships are the core elements of the idrs ontology. The latter requires
further extensions and deeper enhancements to effectively meet key requirements of idrs
systems. Furthermore, idrs knowledge base development requires more effort to come up with
appropriate creation, evaluation, and validation processes. Additionally, the knowledge
creation process should cope with automatic (inference and idrs processes) and manual
knowledge acquisition. Whereas, evaluation and validation processes should deal with
knowledge appropriateness and system efficiency. Further investigations of all these
processes may be extremely useful for idrs and other security systems supporting knowledge

base component.
3.5 CIDF inspired idrs model

The proposed idrs framework complies with CIDF standard. The common structures of
different CIDF components are included in our model, as presented before, to ensure required
modularity and interoperability with other systems. However, core components of CIDF
namely analysis and response, respectively A-boxes and R-boxes, only have received
considerable attention in this thesis. Multimodel based A-boxes are designed in the proposed
idrs framework. They rely on dynamic selective combinations of detection models to fulfill
analysis and detection tasks. Their selection processes dynamically identify most effective
detection models to be included in the current analysis task. Selected detection model

combinations are then hierarchically fused within an evidential environment using the
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proposed combination process. After that, the combined decision of A-boxes is forwarded to
risk-driven R-boxes in order to select the most appropriate corrective actions. R-boxes are
based on devised risk management model. The latter is compliant with risk standards of FIPS
65 and ISO-27005 and meets objectives of NIST guidelines, NIST SP800-30. It supports two
main processes of risk assessment and risk treatment. The former identifies and appraises
damages incurred by target assets of the computing environment due to detected attacks.
While, the latter performs an optimization program to retrieve cost-effective response
strategies that rule out detected threats and reduce inflicted risks to an acceptable level.

Processes of A-boxes and R-boxes are detailed respectively in chapter 4 and 5 of this report.
3.6 Conclusion

In this chapter, we have introduced the proposed idrs framework and detailed its structure and
the associated idrs life cycle. Furthermore, we have briefly discussed added components,
namely detection model generation and knowledge base components, to CIDF framework,
their usefulness and potential tools to deal with them. These two components enhance idrs
systems at functional and interoperability levels. The first component extends the idrs process
by including preparation tasks that emphasize the new requirement of existing and future idrs.
While the second component focuses on the integration of dynamically changing instead of
static knowledge in idrs and ensures their interaction with other security systems. In addition
to structural improvements and their benefits for idrs, other functional enhancements that
concern analysis and reaction components are introduced in current chapter and detailed in the
next two ones. The multimodel analysis component of the proposed framework is presented in
the following chapter. Only supervised classification techniques are considered in designing

the multimodel analysis and detection engine and studying and modeling its processes.
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CHAPTER 4

ADAPTIVE ANALYSIS AND DETECTION

4.1 Introduction

According to CIDF framework, intrusion detection systems should include single or multiple
A-boxes. Analysis and detection components or A-boxes play a central role in idrs process.
They process log data initially collected, preprocessed and formatted by event generators, E-
boxes. Their decisions about the current security state of the target system are sent back to the
response component or R-boxes of the idrs.

E-boxes provide A-boxes with required log data to perform analysis and detection tasks. They
are implemented by sensors that collect log data at different levels including application, host
and network. Moreover, E-boxes allow various types of log data depending on their
granularity. Based on these two criteria, namely operation and granularity levels, several
event generation mechanisms are distinguished. Main taxonomies and widely adopted classes
of logging mechanisms are discussed in this chapter.

A-boxes are differently designed from an ids to another, but their main role should be
preserved whatever their design and detection principles. They can be single model based A-
boxes as commonly encountered in the majority of existing ids. In this case, analysis and
detection components are called simple or basic A-boxes because no additional elements are
required to implement them rather than detection models. However, complex A-boxes include
multiple detection models and thus other elements to manage them are becoming necessary.
Furthermore, A-boxes can be designed to track signs of given patterns or assess deviation
from them or both. In this work, we propose complex A-boxes that dynamically and
adaptively select detection models based on a preliminary analysis of collected and
preprocessed log data. Following sections of this chapter deal with the architecture and
different components of designed A-boxes.

Depending on included detection models, A-boxes output decisions take different forms and

allow various levels of details. Abstract outputs or labels, either single or ranked labels,

131



CHAPTER 4: Adaptive analysis and detection

provided by A-boxes summarize current security state and specify types of attacks targeting
monitored system. Whereas numerical outputs of A-boxes assess the current security state of
the monitored system (normality or intrusiveness of currently analyzed behaviors) and
determine confidence or certainty degrees assigned to this assessment. Decisions of A-boxes,
labels or confidence degrees, are required to R-boxes either to inform the SSO or to design
and implement corrective actions against detected threat. In our idrs framework, A-boxes may
be based on multiple machine learning, data mining or other techniques, as discussed in
previous two chapters. However, in the current chapter, two types of machine learning
techniques, namely the binary and multiclass classification, are solely considered in designing
A-boxes of the proposed idrs framework. The outputs of binary or multiclass detection
models are supposed at the abstract level. Multimodel analysis engine based on these
detection models allows outputs at measurement level. Its valued outputs are forwarded to
risk driven R-boxes in order to design appropriate response strategies depending on
determined risk levels. Proposed risk model to R-boxes of our idrs framework is subsequently
detailed in a separate chapter. The current chapter focuses on second and third steps of the
idrs lifecycle that specifically concern multimodel analysis of log data and detection of

intruder activities.
4.2 Proposed analysis component, structure and main processes

The proposed analysis component is based on a multimodel approach. It takes account of
various subsets of detection models depending on log types included by the model generation
component. Our multimodel approach is different to those in [102], [135], [139] [202] [204],
[254], [288], [296], [330]. It considers several subsets of heterogeneous detection models
instead of single or multiple subsets of homogenous detectors based on neural networks or
other techniques. Furthermore, subsets of detection models in our approach are neither static
nor duplicated to process considered datasets. They are dynamically and adaptively
determined, as presented in section §4.4. Depending on processed datasets and specificities of
generated detection models, these subsets are selected. Moreover, decisions of selected
detection models are hierarchically combined using a bi-level fusion structure.

Additionally, our analysis component ensures many enhancements comparatively to existing
in [135], [156], [222], [254]. It takes account of context dependent information, scores and
reliability factors of detection models, throughout its components and their implemented
processes. It is not designed to specifically operate at network or host levels [135], [156],

[288] but it is capable to analyze datasets concerning same sequences of activities even if
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issued from different sources. A typical example of the last alternative is host activities that
may be reported by system calls of the Basic Security Module, BSM, of the Solaris system, or
also by host based features extracted from network sensor logs, as discussed in section §4.3.
The multimodel analysis engine takes account of different log types. Indeed, log datasets of
different types ensure several descriptions that concern same system activities to be analyzed.
They can be issued from different sources or collected at various levels but they differently
report performed activities within the same time interval. As such, varieties of log types may
serve as inputs to the proposed analysis engine regarding the monitored system. For instance,
in a network environment, activities can be traced in traffic logs and other log types generated
by various sources including switchers, firewalls, routers and proxies. Additionally, traffic
logs can be structured into different log types depending on their specificities, as discussed in
the next section, by considering network services or layers of the OSI stack. Similarly, host
activities can be also traced in several log datasets including those generated by operating
system functionalities, such as process management, file system management, security
management components [156], or other network based logs.

For every log type, its collected dataset is processed using a combination of appropriate
detection models. Combinations for considered log types are feature based constructed. They
include detection models that concern norm and anomalous behavior and thus the proposed
idrs framework is useful both for anomaly and misuse detection. Anomaly detection models
focus on the expected behavior of the monitored system. They extract different patterns from
logged normal activities through considering various projection facets, including nonlinearity,
association and temporal relations. Similarly, misuse detection models identify abnormal
conditions associated to logged activities of intrusive behavior affecting to the normal
function of the monitored system. They are constructed based on available datasets of known
attacks.

Several techniques are useful to build misuse and anomaly detection models for the idrs
framework, as presented next in the section §4.3. However, in this chapter and for the sake of
simplicity, one and multiclass supervised classification techniques are specifically considered
in generating detection models. One class detection models determine whether current
security state of the monitored environment is expected or of known type, depending on the
target output class. While multiclass detection models assess to which degree processed event
sequences are similar to computed signatures of concerned output classes.

Anomaly and misuse detection models are involved in different steps of the main process of

our analysis engine. This process is performed for each collected and preprocessed log
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dataset. It consists of three main steps namely selection, analysis and fusion, as depicted in
figure 4.1. Each of these steps corresponds to a basic process of the analysis and detection
engine. The selection process identifies combinations of appropriate detection models to be
involved in current log analysis step, with respect to considered log types. It uses feature and
model based criteria to identify best detection models. The analysis process performs a
thorough checking of collected log datasets using detection model combinations of the
previous selection step. It ensures that every selected combination is provided with the dataset
of the corresponding log type. Moreover, within each combination, it formats the considered
dataset as required by included detection models. After processing log datasets, output labels
of participating detection models forwarded to the fusion process. The latter evaluates beliefs
of involved detection models on selected output labels using a distance based approach. It
then performs two combination levels on detection model output decisions. In the first level,
decisions of detection models are fused within each combination, hence an aggregated
decision is reached for every log type, as though a single detection model has processed the
associated dataset. In the second level, fused decisions of considered log types are aggregated
another time to derive an overall assessment of the current security state of the monitored
system. This is required in designing defensive security strategies of R-boxes.

The main process of our analysis and detection engine enhances those existing by adding two
processing steps. Commonly designed processes include two basic steps of log analysis and
decision making. However, our analysis and detection process additionally supports the
selection and fusion steps to meet requirements of the multimodel adaptive engine. Its
elementary processes that respectively correspond to above enumerated steps are illustrated
by figure 4.1. Subsequent sections of this chapter will focus on these processes. They present
in detail respectively selection, analysis and fusion components of the multimodel engine.
Before that, widely adopted log data types by ids are presented in the next section.
Furthermore, their applicability and usefulness to the proposed multimodel analysis engine

are also discussed in the same section.
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Figure 4.1: Analysis and detection process of the multimodel engine

4.3 Log data

Event generator or E-boxes of CIDF is the initiator of the idrs process. According the CIDF
framework, E-boxes accomplish event generation within the idrs process by preprocessing
and formatting log data produced by the computing environment. Their produced events are
specifically sent back to the security state evaluator or A-boxes of the idrs. They concern use
conditions and performance indicators of the monitored computing environment. These
events are extracted from raw log data collected and recorded by different data collection
mechanisms or sensors.

Depending on sensor attributes, several taxonomies of data collection mechanisms for idrs
have been proposed. Moreover, collected data by these mechanisms can be structured into
different formats, either normalized or proper, to appropriately satisfy requirements of A-
boxes.

In the current section, we will present three of the most widely adopted classes of data
collection mechanisms in idrs systems. Included features, normalized format and applicability

of these sensors in our idrs framework are also discussed in the same section.
4.3.1 Sensor taxonomies

Data collection facilities for idrs are widely studied and surveyed such as in [30], [93], [191],
[213], [217], [297], [427]. They are classified into different groups relying on their intrinsic
features and the environment where they operate. In [427], Zamboni has proposed different
taxonomies, each of which uses single decision criterion and identifies two classes of sensors.
These taxonomies were structured based on the abstraction level into conceptual and practical

classifications. At the conceptual level, idrs sensors can be considered as centralized or
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decentralized, according to their locations and components of the computing environment
they monitor. Additionally, they can be categorized into direct or indirect sensors based on
how log data are obtained. At the implementation level, data collection can be fulfilled by an
integrated or supported part of the monitored component. Then, it identifies respectively
internal and external sensors. Moreover, data collection facility can be implemented to
acquire logs of single or interconnected hosts. Through discussed taxonomies, Zamboni’s
main finding states that host based data collection mechanisms are the most useful and
suitable for idrs. Furthermore, he has argued, specifically in this group, that all mechanisms
are based on direct logging. Compared to the indirect group that includes network based
mechanisms, host based internal sensors fulfill required completeness, reliability and
scalability for idrs. But, this is not always reachable and depends on the environment where
idrs sensors are deployed and the nature of potential attacks to be detected. For instance, in an
open source environment host based and internal sensors can be implemented and deployed
but they remain inefficient for detecting network denial of service attacks.

Larson [212] has proposed a detailed taxonomy of log data collection mechanisms. Four
groups of sensors are identified in this taxonomy. They form the main branches of the
taxonomy tree structure. The first group focuses on implementation techniques of sensors. It
determines different sensor classes based on considered implementation aspects namely time
points of triggering data collection mechanisms and levels of granularity of logs they provide.
The second group characterizes data collection as triggered or performing on action
mechanisms. Several triggers, actions and responses that concern sensor’s behavior are
considered by subclasses of this branch. The third group is based on location or where logging
mechanisms can be inserted. User and system location levels are considered to discriminate
between sensors of this group. Determined subclasses include application, system and object
manipulation considered respectively as entry, exit and network data collection mechanisms.
The last group in Larson’s taxonomy presents most widely discussed and adopted subclasses
of sensors even in classifying idrs. Sensors of determined subclasses are merely categorized
as application, host and network based collection mechanisms [33], [94], [146], [400]. All
three types of sensors will be discussed in the following section with special attention given to

their collected data, generated profiles or patterns and their usefulness to our idrs framework.
4.3.2 Host based log data

Host based sensors collect different types of data that concern monitored host and its use

conditions, invoked by users or programs. They are closely dependent to auditing mechanisms
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of the operating system running on the target host. Audit logs collected by these mechanisms
are not specifically dedicated to idrs but also useful to other security systems, such as access
control and reinforcing accountability. They report user or program behaviors on the
monitored host.

Host based audit logs have different abstraction levels as illustrated in figure 4.2. High level
audit logs correspond to various events that describe currently performed activities using
resources of the target host. These events concern, for instance, logging and disk management
mechanisms of the host. They are generated by running programs. Furthermore, these events
are captured and processed by operating systems and reported by auditing mechanisms.
Auditing facilities of Windows and syslog of UNIX systems allow such high level audit logs.
Low level audit logs consist of sequences of system calls. They allow information about the
implementation level of currently performed activities. Kernel and application calls that
implement triggered activities on the target host are collected by low level mechanisms. BSM
module of Solaris operating system is an example of the low level auditing facility.

In both levels, different features are appended to raw audit data including timestamp and
identity of the agent, user or program. Audit logs provide useful information to idrs systems
to track user or program activities on a single host. Moreover, they allow idrs systems to scale
well with the increased load of the monitored system and react in a timely fashion as pointed
by Zamboni [427]. Host based idrs uses different forms of audit logs, such as event logs, shell
commands and system calls, to generate profiles of system, user or program normal behavior
or given attack types [162], [191], [395], [400], [404]. Many of these systems are based on
subsets of features included in raw data such as arguments of the system calls [143], [400].
Additional other systems use statistical and many derived features, computed using basic
attributes of logged audit data. Designed profiles by these systems obviously involve
frequencies of system call types or argument within given time intervals [111], [484].

In our idrs framework, the proposed analysis engine can operate at the host level and detect
attacks that target single machine. Furthermore, it is well adapted to a thorough assessment of
the security state of monitored host when more than single audit log type is considered.
However, to detect network attacks, this engine requires an aggregated log dataset over all

hosts of the network. Such alternative is seldom explored such as in [251].
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Type Date Time Source Category Event User
Information 27/01/2010 22:43:48 Browser None 8033 N/A
Error ~ 27/01/2010 22:43:46 Dhcp None 1002 N/A
Warning 27/01/2010  22:37:17 Dhcp None 1003 N/A
Information  27/01/2010 22:36:48 Tepip None 4201 N/A

Information  27/01/2010 22:26:07 Service Control Manager ~ None 7036  N/A
Information  27/01/2010 22:26:04 Service Control Manager None 7036  N/A
Information  27/01/2010 22:26:04 Service Control Manager ~ None 7035 System

(a) Example of system event log for Windows platform

close, close, open, close, close, close, close, close,

close, execve, open, mmap, open, mmap, mmap, munmap,
mmap, close, open, mmap, mmap, munmap, mmap, mmap,
close, open, mmap, mmap, munmap, mmap, close, open
mmap, close, open, mmap, mmap, munmap, mmap, close
close, munmap, open, close, ioctl, ioctl, close, close,

close, close, exit

(b) Sample of system calls of single process logged by the BSM module in DARPA
experiments

Figure 4.2: Examples of high (a) and low (b) level audit data
4.3.3 Application based data collection

Application logs form two main classes of system and user application logs. System
applications correspond to different functionalities of the operating system, specifically
communication functionality. These functionalities called also services including HTTP, FTP
and Telnet are associated with several communication ports. Activities of running services on
different ports can be logged by high level data collection mechanisms associated with
operating systems such as Syslog. User applications including web and database applications
are also managed by operating systems and based on their services. Their behaviors are
logged by auditing mechanisms of the operating systems. Additionally, user applications may
support proper auditing facilities. Their sensors are capable to directly record and report
different events involving application resources

User application sensors are considered by taxonomies of Zamboni as direct logging
mechanisms. They are assigned to the group of dedicated auditing facilities that log high level
events about user activities in target applications. Collected events by application sensors
concern access types, required resources and additional information. They are appropriate in
designing application or user normal behavior profiles to ids. Furthermore, they are useful in

generating attacks signatures. However, direct application sensors have two main drawbacks.
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On one hand, collected data are specific to given applications and hence they don’t allow
same description neither in terms of format nor in terms of details due to the particularity of
considered features. On the other hand, application sensors are disconnected from any
auditing mechanisms of operating systems and specifically report application events. Thus,
application ids are vulnerable to various attacks that target environments on which these
applications are running.

By revising the last weakness, we deduced that user level log data, collected by application
sensors, are not sufficient to protect against low level attacks. In fact, running applications
may be indirectly targeted by low level attacks. This type of attack aims at disrupting normal
function of critical infrastructure, including network protocols and other basic functionalities
of operating systems, for these applications. A possible solution to this drawback consists of
the integration of application ids with host or network based ids to ensure collection and
analysis of log data at both user and system levels [103], [153].

For such problem, our idrs framework offers the typical solution. It is capable to resolve
above discussed drawback of application ids by including multiple log datasets. Analysis and
detection process of the proposed idrs framework takes account of different traces, of
performed activities, issued from direct and indirect application sensors and thus it is able to
include logs at user and system levels. This ensures required security and low risks

specifically for highly critical applications.
4.3.4 Network based data collection

Network sensors globally offer two types of log data to idrs that concern respectively network
devices and traffic. They indirectly collect useful information about network devices relying
on simple network management protocol, SNMP. Such Internet standard protocol ensures
information exchanging between different network devices. It also assists administrators in
managing their network infrastructure. MIB (Management Information Base) associated with
this protocol is the main data collection source of sensors at this level. Saved information by
MIB includes routing tables and various traffic counters that concern respectively
configuration and performance of network devices. This information is indirectly collected by
network sensors, formatted and then presented to A-boxes of idrs [93], [94], [217], [423].

Network traffic sensors intercept and collect local traffic within the network. Packet sniffers
are the most widely adopted traffic sensors. Associated to the network interface, they
passively listen and log exchanged packets across the network. They provide administrators

and automated security tools with useful information about network activities after decoding
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captured packets. Derived attributes from packet headers by sniffers form the basic or
intrinsic feature set. The latter includes IP address, port number, transport protocol and other
flags. Additional features can be determined using logged network traffic. For instance,
content feature set can be generated relying on payloads of collected packets and their
semantic interpretation. It groups features such as number of failed logins and number of
accessed files. Moreover, time based or traffic features can be derived from the basic set by
considering time intervals within which logged data are processed according to single or
multiple time windows. Such set includes features like number of connections to the same
host or service within the last two seconds. Another feature set that concerns host activities
can also be deduced from intrinsic attributes. Its attributes are determined based on history or
archive window that focuses on a fixed number of past connections involving the considered
host.

Previously discussed feature categories have been proposed in the frame of DARPA intrusion
detection evaluation program. Simulated network traffic by DARPA has been preprocessed in
order to ensure training and testing datasets that cover all features of these categories [90],
[189]. Additional attribute categories can be defined based on the intrinsic features either by
focusing on a particular layer of the OSI stack such as in [283] or by considering new
requirements of existing computing environments [96], [125], [152], [198].

Network traffic logs are more appropriate than SNMP logs for intrusion detection. In fact, the
latter allows untreatable logs by computerized systems unless encoded to required format.
However, the former provides a flexible log format that can be customized according to
system requirements. Moreover, it ensures an extended description of network activities that
partially covers different aspects discussed at host and application levels. Therefore, network
sensors are almost the most suitable source of logs for idrs systems. They are also appropriate
to the proposed idrs framework. Collected network traffic and identified feature subsets offer
required redundancy to multisided and stringently track of attack signs. Furthermore, they are
useful to idrs detection models to appropriately analyze and precisely evaluate the current
security state of the monitored computing environment. However, wide availability of these
sources of data from anywhere on the network increases their risks to be tampered. In fact, the
Internet provides attackers with various and sophisticated tools to hide their deliberate actions
and alter log files unless appropriate security controls are correctly deployed.

Above discussed sensors provide corresponding idrs with required log data. Furthermore,
aggregation of their collected logs ensures more complete datasets as well as for designing

patterns, for attack or normal behavior, as for identifying them. Aggregated log data could
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enhance idrs capabilities. Additionally, they are useful not only for systems with which idrs
cooperate, such as network forensic systems, but also for system administrators. In intrusion
detection field, log data aggregation is facing various problems. Lacking of standards and
platform independent formats for collected data at different levels are serious problems that
stay behind difficulties of log data aggregation in intrusion detection.

Proposed formats such as of Bishop [48] and Chen et al. [75] focus specifically on log data at
host level. Both formats are flexible, extensible and platform independent. Additionally, Chen
et al.” proposed format is based on the XML (eXtensible Markup Language). Its structure and
logged events are expressed using XML.

The Intrusion Detection Work Group (IDWG) of the Internet Engineering Task Force (IETF)
body has proposed a common format for idrs alerts. The Intrusion Detection Message
Exchange Format (IDMEF) was recently considered to express logs for correlation based idrs.
It relies on the XML language. Moreover, it is useful to represent outputs of different sensor
types. But, the IDMEF format addresses to alerts formatting and exchange procedures to
enforce information sharing between different idrs. This has inspired several works in the
field of alert aggregation and correlation, which has gained a lot of attention in the last decade
[200], [251], [396].

In our idrs framework, intrusion detection alerts can be considered as metadata. They can’t be
processed by idrs analysis engine, as for collected log data. However, adapting the basic
approach of this engine to alerts aggregation is one of promising research perspectives of the
proposed idrs framework. Additionally, considering aggregated log datasets from different
sensors at the analysis step of idrs is also a potential direction to enhance performance and co-
integrate the proposed model with those of others security fields such as forensic analysis.
Commonly used log data types discussed in this section are useful to our idrs framework.
Furthermore, their associated log datasets can be easily processed by E-boxes, P-boxes and
multimodel A-boxes. The analysis process of the last component includes different steps that

are thoroughly studied in the next three sections.
4.4 Detection model selection

Detection model selection is one of the key components of the proposed multimodel analysis
engine in the idrs framework. It ensures dynamic and context dependent selection of detection
models, as detailed in the next three sections. The model selection process, on which relies
this component, aims at decreasing the computation load of the analysis engine. It fulfills

preliminary tasks in order to achieve selective processing of collected log datasets. Thus, for
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each log type, a combination of most appropriate detection models, rather than the whole set,
is included in the current analysis task.

Model selection processes identify single or subset of most effective detection models with
respect to prespecified, simple or integrated, criteria. They may be static or dynamic. Static
selection determines a fixed subset of detection models to be involved in analyzing all
unknown patterns. Dynamic selection instead is online performed. Furthermore, for each
unknown pattern, it identifies most appropriate detection models, to label it [327]. Static and
dynamic processes include two main steps of evaluation and selection. The evaluation step
assesses capabilities of detection models depending upon selected criteria. The selection step
finds out then a single or subset of best models with respect to these criteria.

Several metrics and search methods have been widely experimented in classifier selection.
Performance and diversity metrics are involved in classifier subset selection [12], [65], [136],
[326]. However, single classifier selection methods are solely based on performance metrics,
such as in [205], [361], [410]. These metrics are commonly adopted also by ranking methods,
which are useful, both for single and subset selection. Furthermore, ranking methods are
appropriate specifically for subset selection when dealing with an increased number of
detection models. Therefore, the proposed selection process ranks detection models based on
their assessed scores before identifying the most effective subset to be involved in the current
analysis task.

The proposed selection process for the multimodel analysis consists of different steps. Its
initial processing steps focus on a thorough checking of changes in observed values of key
features derived by the model generation component. Then, other steps fulfill multiple
assessments by involving detection profiles. They aim at feature based identifying most
effective detection model combinations, each of which concerns a single log type.

In the selection process, involved detection profile subsets of different log types are stored in
the idrs knowledge base. Each profile saves detailed information about the target detection
model including its selected relevant feature subset and confusion matrices, as discussed in
section §3.3. Information about detection models is included in different steps of the selection
process. Relevant feature subsets serve in conducting preliminary checking of collected
datasets of different log types. Determined features as abnormal by these processing steps
signal first signs of intrusive events in processed log datasets. Additionally, they are
considered in computing global scores of detection models. Global scores involve both data
dependent and performance factors. The former focuses on relevant features of a detection

model and those flagged abnormal. It concerns the flagged feature factor determined for every
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detection model, as discussed later in this section. This factor expresses to which degree a
detection model is appropriate to process currently checked log data.

The latter factor takes account of performances of detection models. It can be expressed using
different metrics including ROC curve and others detailed in [65], [66], [182], [361], [362].
But in our work, specifically global performance metrics are applicable because multiple
heterogeneous detection models are considered and their outputs are assumed at the abstract
level. Furthermore, the commonly available information about detection models’
performances is extracted from their confusion matrices. Global performance metrics
involved in assessing scores of these models may be gauged using validation and evaluation
confusion matrices. Multiple, pairwise and non-pairwise, performance metrics are next
discussed in the frame of detection model score assessment.

Global scores of detection models expressed in terms of their performances and flagged
feature factors are required to the selection process. At any time point, the latter involves
computed scores in ranking detection models of given log types. Then, it identifies subsets of
appropriate detection models to be included in the current log processing task. The selection
process and its main steps are depicted in figure 4.3.

The selection process continually analyzes security states of the monitored system relying on
three checking steps. These steps fulfill a preliminary analysis of the security state of the
monitored system. The first two processing steps are simultaneously performed for all
considered log types. They aim respectively at conducting a preliminary assessment of current
security state and identifying any abnormal changes to the expected behavior of the system.
Thus, they respectively involve most efficient norm detection models and norm relevant
attributes, as detailed later in this section. Identified signs of intrusion in these steps are
thoroughly tracked in the next one. The last step conducts a stringent control of signaled
changes through checking observed values of relevant features of different attack classes. It
aims at collecting more evidences and providing a preliminary explanation about the origin of
previously identified intrusion signs. Feature checking steps of the selection process involve
relevant feature subsets and reference vectors respectively of normal and attack classes.
Collected evidences, on security state and abnormal changes in relevant feature values, over
the three previous steps are compiled before performing the selection step. They serve to
evaluate and rank candidate detection models. The last step of the selection process is then
conducted on ranked sets of detection models. For every log type, it decides which are

appropriate and well adapted detection models to tell us the truth about the current security
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state of the monitored computing environment and decipher hidden aims behind unexpected
changes in log datasets.

Inputs to the selection process consist of different subsets of detection profiles, reference
vectors of normal and attack classes and preprocessed dataset of currently collected logs of
different types. Depending on considered log type, the corresponding detection profile subset
specifies its detection models and their confusion matrices and relevant feature subsets, as
detailed in chapter 3. Additionally, norm and attack relevant feature subsets for every log type
are deduced from those selected by its different detection models. They determine reference
vectors that characterize normal or intrusive behaviors. Reference vectors of normal and
attack classes are computed based respectively on their training instances of given type.
Currently collected and preprocessed log dataset includes data examples of all considered log
types. Detection profiles, reference vectors, discriminative attributes and current preprocessed
log dataset are required to the five step process of the proposed model selection component.

These steps and their associated processes are subsequently detailed.
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Figure 4.3: Detection model selection process

For these elementary processes, we assume that J log types are considered by our idrs

framework. Each log type j is associated with different attributes that form the set
F'= {fz, pl=1.L; }and therefore the set of available features for the idrs framework is F,
F= {F Y F L F } Additionally, the set of possible output classes in the idrs framework
corresponds to C. The setC = {cl,...,cq,...,cQ+1}, includes possible attack classes, ¢, g=1..0,

and the normal class, cq,;. Considered attack classes are determined based on the reduced
DARPA attack taxonomy. Each output class in C is associated with several reference vectors,
each of which is computed using corresponding training instances of given log type, as

discussed later in this section.
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We suppose also that the set of generated detection profiles over all log types is DP,
DP={DP;, j=1..J}. Additionally, the subset of detection profiles of every log type j
DP={P;, i=1..N;}, depends on its constructed detection models, DM={M,, i=I..N;}. A
detection profile, P;, as discussed in the previous chapter, is a data structure built for every
detection model, M;. It saves information about generation, history and performance of the

concerned detection model. Detection models of M; are generated using different techniques

and datasets and relevant feature subsets, F,c F’,i=1..N;, selected from those of log type j.

Furthermore, they are capable to recognize patterns of different classes determined by C; cC,
i=1..Nj and Ci={c, g=1..N;;}, the set of output classes of the detection model M;. Relevant
features, training sets, historical data and more details about detection models are included in
generating their profiles of DP;. Within each set, DM;, detection models are evaluated and
their relative and global scores are estimated, as discussed next in this section. Moreover,
these models are structured into two main subsets depending on whether they are capable to
recognize normal system activities or not. This is required to first steps of the detection model
selection process as detailed respectively in sections §4.4.1 and §4.4.2. In this work, we
interchangeably use DP; and DM; to denote detection models of log type j, when additional
information about detection models is required, DP; set is used. The following sections
discuss relevant feature identification and score assessment for detection models and
reference vector computation for included output classes.

a) Relevant feature subsets

In the proposed framework, feature space is partitioned into different categories depending on
included log types, as discussed above. Construction of detection models of considered log
types is preceded by a feature selection step based on the wrapper approach. Although, such
approach is computationally expensive, compared to the filter approach, it is more appropriate
when dealing with heterogeneous classification techniques, such as in our idrs framework.
Furthermore, it ensures accurate detection results due to the validated effectiveness of selected
feature subsets.

For every log type j, the detection model M;e DM; disposes of different subsets of most

discriminative attributes derived depending on its output classes in C;, {F;, / F;, € F’,

g=1..N;;}. TIts relevant feature set over all classes is determined by F;, such

Nij )
that F, = UFI., , and F; € F’. The learning algorithm involved in selecting feature subsets for
q

different output classes, {Fi, g=1..N;j, c,e C; }, is also adopted to generate the detection
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model M; using the overall set F;. Relevant attribute subsets of detection models,

{F pi=1.N;,,M,e DM j} are included in their profiles and saved in the idrs knowledge base.

Additionally, selected feature subsets for detection models of given type are structured

depending output classes in C. For every log type j, the relevant feature subset F fq of the

N/
output classes, c,e C, g=1..Q+1, is deduced, such that F fq :UFi,q/ ¢, € C, . It basically

characterizes the output class ¢, when dealing with log data of type j. It is involved in

performing one of the feature control steps of the selection process. Moreover, the attribute
set I fq serves to compute the reference vector, RFj,, of the output class ¢, in C relying on its

training instances of log type j. Existing methods for determining reference vectors of output
classes are discussed below.

b) Reference vectors

Reference vectors of output classes are required by different steps of the model selection
process. They mainly focus on relevant feature subsets of considered output classes in order
to globally summarize their training sets. In our framework, each output class is represented
by multiple reference vectors depending on included log types.

Various techniques are useful to determine reference vectors of attack classes or system
normal behavior. The sample mean is the simplest technique to derive reference vectors for
the model selection process. In computing reference vectors, numeric features, continuous or
discrete, are represented by their mean values over the training sample. Symbolic attributes
instead are expressed by their median values in determined vectors.

RF;  =<X|,., X000 Xp >,

q

X, : mean or median value of the selected attribute f,, f,e F fq, I=1.L,, and

F fq : Set of relevant features of the output class c,e C, g=1..0+1, of log type j, over all its

generated detection models in DM,

Clustering techniques are also applicable to this problem. Reference vector of each output
class corresponds to centroid or medoid of the corresponding cluster. K-means and other
center based clustering algorithms, as discussed in section §2.2.2, can be adopted to determine
reference vectors of the output classes.

Control intervals

Computed reference vectors are critical for two feature control steps of the selection process.

They serve in identifying and tracking signs of anomalous activities. Initial signs are
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determined by norm relevant features exhibiting unacceptable changes regarding associated
reference vectors to the normal class. These signs are thoroughly tracked by the second
checking step. The latter focuses on relevant attribute subsets of different attack classes.
Furthermore, it marks any of these features as a source of intrusion only if its current
observed value satisfies imposed constraints with respect to the involved attack class and its
reference vector. For both checking steps, variations between relevant attributes observed and
saved values by reference vectors are compared to determined thresholds. Thresholds of
different selected features decide whether reached changes, in features observed values, are
expected or intrusive regarding respectively norm and attack classes’ reference vectors.

In the proposed selection process, thresholds of different variables can be empirically
determined either by assuming normality or approximating their probability distributions. The
first alternative supposes that involved features are independently and identically distributed.

For a given confidence level o, observations of a relevant variable, f;, that takes values falling

within the control interval, I =[x, +Z,,0,], represent (1-o) percent of training data

examples of normal behavior or different attack classes, where X, , (512 and Z,,, are

respectively sample mean and variance of feature f; observations and tabulated value of the
normal distribution. In previous works, different experiments have been conducted using
thresholds of 3-sigma to the sample mean, to discriminate between normal and anomalous
behaviors [292], [414], [416]. The second alternative is based on testing different known
distributions, regarding the characteristics of the considered variable. The distribution
function that well fits observations of the target variable is included in thresholds
determination.

Thresholds for specifying control intervals to normal or intrusive behaviors can be also
estimated using Techbychev inequality, hypothesis testing or other tests. These techniques are
based on derived distribution to assess to which degree current changes in relevant features’

values are normal or intrusive. For instance, Tchebychev inequality states that

(1 - (1/ 5 )) percent of observed values of the feature f; are within A standard deviation to the
mean p(]x, —)_c,| > /lO',)S 1/27, if A=3 then 89% of observations of output class ¢, lay within

the control interval I =[x, —36,,%, +30,] [410], [414].

In our idrs framework, reference vectors of considered output classes are determined based on
sample mean or median of training sets. Thresholds of control intervals may be determined

using identified distributions of considered relevant variables. But, this alternative is quite
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costly, specifically when dealing with an increased number of relevant variables, such as for
log datasets. Therefore, the first alternative of threshold determination, above discussed,
seems more appropriate to the proposed selection process. Additionally, the normality
assumption should be maintained for treated variables.

Previously discussed techniques allow a single reference vector for any pair of training set
and output class. However, it is possible, in different steps of the model selection process, to
represent each output class by several reference vectors or a codebook. Output class codebook
consists of a set of code vectors which basically represent the associated training data set.
Each code vector encodes a region of given output class partition. A given log data example is
assigned to a region only if it ensures the smallest distance to the corresponding code vector.
Codebooks of different classes can be worked out based on unsupervised techniques including
clustering as discussed above [390].

c) Detection models relative scores

Relative or performance scores are determined for detection models of different log types.
They are involved in determining global scores as discussed in section 4.4. They are also
critical in performing the first checking step of the selection process. Most appropriate
detection models are selected based mainly on their performance to conduct the preliminary
security assessment step. Multiple performance metrics [65], [182], [215], [361], [362] are
potentially applicable in assessing relative scores of detection models. These metrics have
been subdivided into three main categories according to Caruana et al. [66]. Threshold
metrics are applicable to different detection models whatever outputs they allow at the
abstract, measurement or also rank level. They require the definition of a fixed threshold that
will serve in interpreting assessed performance results according these metrics. Ranking or
ordering metrics summarize performances of detection models over multiple thresholds. Thus
they impose an ordering on models’ outputs according predicted values. These metrics apply
to detection models at the measurement level, where predicted values serve in ranking output
labels [116]. Additionally, they may be evaluated using training results of detection models,
of different output types, when built using cross validation technique [410]. The last category
of probability metrics commonly focuses on detection models at the measurement level. Its
metrics allow much more detailed performance evaluation than the two other categories. They
involve the predicted value for each processed pattern in assessing performance of the
concerned detection model.

Classification accuracy is commonly accepted and widely adopted performance metric of the

first category [361]. The accuracy of a detection model determines the proportion of its
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correctly recognized normal or intrusive patterns. It is estimated based on the confusion
matrix of each detection model. A confusion matrix is usually a square matrix that depends on
output classes included in generating each detection model. For each output class, it counts
numbers of correctly and incorrectly recognized instances by the corresponding detection
model. For instance, a detection model capable to discriminate between normal and intrusive

activities has the following confusion matrix:

Table 4.1: Confusion matrix of a binary detection model

Predicted Attack | Normal
True clasg<ass
Arttack tp fn
Normal fr mn

Elements of the confusion matrix determine true positive and true negative counts, tp and tmn,
for correctly classified patterns of respectively attack and normal classes. Additionally, false
negative and false positive, fn and fp, counts correspond respectively to intrusive instances
confused with normal ones and the inverse. The accuracy of the detection model is computed

based on these counts as follows:

Acc = ip+in
tp+ fm+m+ fp

Similarly, the detection error of a detection model is estimated based on its confusion matrix,

4.1)

using type I and II errors respectively fp and fin, by the following equation:

Err= fp+ In
p+ f+m+fp (4.2)
=1-Acc

Multiple other performance metrics such as sensitivity, specificity and precision can be
deduced based upon the confusion matrix. Sensitivity, or also recall or hit rate of a detection
model, assesses its effectiveness in detecting intrusive activities. Specificity or true negative
rate instead estimates the effectiveness of the detection model in recognizing normal
examples [361]. The inverse specificity corresponds to the false alarm or false positive rate,
FPR, of a detection model. Precision metric determines the proportion of correctly detect
intrusive instances among all classified as attack. True positive and true negative rates, TPR

and TNR, and precision of a detection model are respectively determined by:

Recall=—P | (43)
tp+ fn
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Specificity = M _y1_FPR (4.4),
m+ fp

Precision = ' 4.5)
+Jp

Receiver Operating Characteristic,c, ROC, and Recall/precision curves allow different

performance metrics falling within the ordering category. These graphical tools and others
appropriately visualize performances of detection models. Among these tools, ROC curve has
gained much more attention and wide acceptance in multiple domains including signal
processing, medical domain and machine learning. A ROC curve is a plot of detection model
recall versus (I-specifity), TPR versus FPR as depicted in figure 4.4. It illustrates relative
tradeoffs between TPR and FPR of a detection model across varied thresholds. The
performance of a detection model based on its ROC curve is estimated using the area under
the ROC curve, AUC. A detection model performs better than another only if it has the
highest AUC. Performance evaluation based on AUC of machine learning and data mining

algorithms is illustrated and detailed in different Fawcett’s works including [116], [117].
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Figure 4.4: ROC curve
The last category of probability metrics includes root mean squared error, RMSE, and other
metrics. RMSE assesses the deviations between predicted and true output values. For a given
binary detection model M;, its numerical predictions, p;;, that assess intrusiveness degrees of

processed test examples, x;, j=1..J, fall within the interval [0,1], p;;€[0,1]. The RMSE of the

J

1
detection model is estimated by : RMSE = \/72(@ i—a; )2 (4.6)
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Where the binary variable g; is equal to 1 if the true class of processed example x; is “attack™
and O otherwise. RMSE and other error and information based metrics falling within the
probability category have been applied in comparing classification models [155], [165].
Furthermore, these metrics have been combined with others of threshold and ranking
categories in order to propose more powerful performance evaluation tools. Caruana et al.
[65] have proposed SAR metric based on Squared error, Accuracy and Roc curve. SAR
includes most correlated metrics according conducted experiments in [66] but its application
is restricted to classification models generating outputs at the measurement or confidence
level. Lavesson et al have also proposed a generic performance function that allows
classification model assessment using multiple metrics depending on the target domain [214],
[215].

In our idrs framework, probability metrics are not applicable in assessing relative scores of
detection models allowing abstract outputs. Additionally, ordering metrics are not useful for
such context unless training results using cross-validation are adopted in evaluating relative
scores of detection models using the selected ranking metric. However, in model selection
component of our framework, detection models relative scores are estimated based both on
their validation and testing results, {(VM; , TM;), i=1..N;} as stated in section §3.2.1.
Therefore, threshold metrics are the most appropriate to evaluate performances of detection
models. Several, pairwise and non-pairwise, threshold metrics in addition to those previously
discussed apply to detection model relative score assessment. Balanced accuracy and error
rates, BAR and BER, are two non-pairwise performance metrics useful in assessing efficacy of

detection models. They are determined based on confusion matrices of detection models as

follows:
BER=L|_S" I
2\tp+fn tm+fp) 47)
=1- BAR

Additionally, success rate ratio, SRR, is a candidate pairwise performance metric to evaluate
relative scores of detection models [54]. Success rate ratio, SRR, , of a pair of detection
models (#,v) using data set D;is determined by :

SRR, = (1—Err))/(1— Err/) (4.8)

where Err/ and Err] are the error rates of detection models respectively u and v when tested

using data set D;. It compares a pair of detection models in terms of their accuracy on the

same test set. The two detection models are comparable in terms of ensured accuracies only if
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SRR ratio is equal to 1, otherwise one detection model dominates the other. The overall mean
SRR of detection model u, is determined by:
1 N J »
SRR, =m;;SRRM{V (4.9)
It is estimated overall tested V-1 detection models and J test data sets, {D;, j=1.. J}.
Relevant features, reference vectors and relative scores determination is required for the five
steps of the selection process. Elementary processes of these steps are respectively presented

by following sections.
4.4.1 Preliminary security evaluation

Preliminary security evaluation is the initial step in the detection model selection process. It
aims at evaluating current preprocessed data examples of different types, D={x,, j=1..J}, as
normal or anomalous. The security evaluation process of this step is useful to identify
preliminary signs of potentially intrusive events. Furthermore, it guides next steps of the main
process towards the selection of most appropriate detection models capable to sift and assess
the current security state of the monitored computing environment.

Preliminary security evaluation is achieved by performing different actions of the
corresponding process as presented in figure 4.5 and the appendix A. This process is solely

based on anomaly detection models, capable to recognize normal activities of the monitored

system. Thus for each log type Js the profile subset,
DP,,,, € DP,,DP,, ,=\F,1=1.N;q,,,¢cq, € Ci} that specifically concerns norm detection

models, is considered by the preliminary security evaluation process. For every log type, the
latter selects the best norm detection model associated with the highest relative score, s7;;. to
analyze currently considered log data example, x;;. Outputs of selected detection models are
next fused over all considered log types. A voting method such as the minimum vote is
appropriate for deriving the combined decision of the preliminary security evaluation step on
current security state of the monitored system [317].

Another alternative eventually applies to the preliminary security evaluation step. It consists
of the selection of a subset instead the best norm detection model for every log type. A subset
of top ranked norm detection models based on their relative scores is selected to fulfill the
preliminary evaluation of collected log data. In this case, the combined decision of the
evaluation step is derived using two aggregation stages. In the first stage, output labels of
norm detection models are combined within the selected subset, for each log type. In the latter

stage, first level decisions are fused over all considered log types to decide whether the
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current state is normal or anomalous. Additionally, the preliminary security evaluation step
may be based on fixed or variable size subsets, depending upon a prespecified lower bound of
detection model relative scores. Voting methods are also appropriate to fuse norm detection

model outputs in such alternative.

Sort models of
DP; o, based on
St

Select top ranked
model: M;

Subsets of Norm detection}— 5
models

DP]',Q+1§DP‘,_].=I..J
DPj,QH:{Piv i=1--]vj,Q+1}

Analyze data
instance x,; with

Preprocessed log data
examples {x,; j=1..J}

/ Update output set
[3 log type] of processed log
(:T ) \ types

Fused outputs of
selected models: [
CO,

Fuse decisions

Output set
of the output set P

{ouij}

Figure 4.5: Preliminary security evaluation process
4.4.2 Control relevant features of the normal class

This second step of the selection process overlaps with the first one of preliminary security

evaluation. For every log type, it takes account of the determined relevant feature subset,

F¢

JRE and reference vector, RF) ., that characterize normal behavior of the monitored

system. Computed tolerance intervals for different features in F j_CQH using the reference vector

RF 041, as previously discussed, are also required by this checking step. For any processed
data example of given type, x;;, the latter detects changes in observed values of relevant
features with respect the reference vector of the normal output class. Then, it flags a checked
feature as abnormal, only if it is associated with unacceptable deviation with respect to the
corresponding tolerance interval. All these activities of norm relevant features control process
are depicted by the diagram of figure 4.6 and detailed in the appendix A.

Norm relevant features control process is simultaneously performed with the preliminary
security evaluation step. On one hand, it reinforces reached decision of the initial step by an
advanced monitoring of changes in norm relevant attributes values. On the other hand, it

reports potential attack signs through flagged features as abnormal.
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Figure 4.6: Norm relevant feature control process (FCP-1* step)

Norm features control and preliminary security evaluation steps induce redundant
verifications of each logged data example. Such redundancy is intentionally included in the
selection process. It increases the chance of identifying intrusion signs by inserted double
control. Moreover, it ensures that all detection models capable to recognize normal system
activities are considered in the two first steps of the selection process, even those excluded by
the security evaluation step are involved in the norm feature control step through revising
changes in values of their relevant features. Additionally, it reinforces the decision to interrupt
the main process of the multimodel analysis engine at this level when treated data instances of
different log types are evaluated as normal.

Outputs of security evaluation and norm features control steps are tested. In the case of
abnormal behavior in the first or unacceptable changes in the second, the next step of attack
relevant features control of the selection process is started. Performed actions of this third step

accomplish a thorough tracking of previously signaled intrusion signs.
4.4.3 Control relevant features of attack classes

The third step of the model selection process is carried depending on decisions of the previous

steps. The control step of relevant features of different attack classes is initiated only if the
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current security state is evaluated abnormal or at least a single norm relevant feature is
flagged, for any processed log type. It separately focuses on feature subsets of considered log
types. The third checking step is iteratively performed for each log data type, as illustrated in

figure 4.7. An iteration of the control process concerns a single attack class. It takes account
of selected features of that class, F fq, their observed and saved values respectively in the

current log data instance, x,;, and stored reference vector, RFj,. It checks changes between
observed and saved values with respect to prespecified control intervals, each of which
corresponds to a single relevant feature. Any of relevant features is marked as abnormal only
if its observed value falls within the control interval. Flagged features subsets, UTj and Uj g+,
respectively in the current and precedent control steps will determine the set of abnormal
attributes, U;, of considered log type j. The resulting set of abnormal features is forwarded to
the evaluation and ranking step of the model selection process. It will mainly serve in
evaluating global scores of candidate detection models and sorting them according to these
scores. Different actions of the control process focusing on attack relevant features are
illustrated for a single log type in figure 4.7 and presented in detail in the appendix A.

As stated in the idrs life cycle, an initial analysis of the monitored system security is
conducted relying on designed three checking processes. The preliminary security evaluation
process determines whether currently report security state is normal or anomalous. Its
decisions are reinforced by the next process. The latter controls deviations of observed values
of norm relevant features to the expected behavior of the system. The last process checks if
taken values of attack relevant features correspond to a known intrusive behavior.

In our framework, preliminary security evaluation and feature control processes are
complementary. They achieve a twofold objective. On one hand, they fulfill an initial
assessment of the current security state of the monitored system. On the other hand, they
identify key features that will serve in selecting most effective detection model combinations.
Preliminary security evaluation and norm feature control processes continually supervise
security state of the target environment over all considered log types. Attack feature control
process is triggered when at least one of previous processes reports unexpected behavior
within analyzed log data. Outputs of feature control processes are critical for identifying
candidate detection models, evaluating their scores and ranking them, as detailed in the next

section.
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Figure 4.7: Control of attack classes relevant features for single log type (FCP-2°* Step)
4.4.4 Detection model evaluation and ranking step

This step of the selection process aims at estimating scores and sorting detection models of
each log type relying on these scores. Detection model scores serve as the main criterion in
the selection process. They combine two types of factors namely performance and data
dependent factors. Performance factors are included in estimating detection model relative
scores as discussed before. The single data dependent factor included in this step will assess
appropriateness of detection models to analyze current security state. It focuses on relevant
feature subsets of generated detection models and those flagged in the two previous steps of
the selection process.

The global score of a detection model is determined based on its relative score and flagged
feature factor. The latter expresses to which degree the concerned detection model is adequate
to explain marked changes in the monitored system behavior. Appropriateness of a detection
models, according this factor, depends on the fraction of common features, 6;j, between its
relevant attribute set and those reported as abnormal. Thus, the flagged feature factor is
determined after performing feature control steps of the selection process. It involves both,

the output of control steps, U;, and relevant feature subsets of generated detection models,

{Fl., i= ]..Nj,Ml. € DMj}, for every log type. The common feature subsets, {9;;, i=1..N;}, of
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detection models in DM, are initially determined, &;j= F; N U;. Then, the flagged feature

factor, ff;;, of every detection model, M; € DM;, is computed as follows:

. = 5. (4.10)

7 |

where, |XI is the cardinality of the set X.

Most appropriate detection models to process logged data have higher values of the flagged
feature factor. For every log type, evaluated factors are also involved in determining the
candidate detection model subset, to be considered in raking and selection steps. Detection
models associated with not null flagged feature factor values only are included in this set. The
global scores of detection models are then estimated using a weighted sum of relative scores

and flagged feature factors based on the following formula:

S8, :%(Sri,j +ﬁci,j) (4.11)

Equal weights in global scores computation indicate that both performance and
appropriateness are essential factors to evaluate detection models and select the most effective
combination of them to assess current security state of the system. Weight coefficients may be
revised depending on whether performance or appropriateness is more important to evaluate
detection models. For each log type, evaluated global scores serve also in ranking candidate
detection models them.

Main activities performed in evaluating and ranking and selection steps for each log type are
depicted in figure 4.8. Inputs for these activities include flagged feature subset reported by the
control processes and generated detection profiles for considered log type. The initial activity
of the evaluation and ranking step determines the common feature set, d;;, for each detection
model of log type j, M;. The common feature set of a detection model corresponds to its
relevant attributes reported as abnormal depending upon the output of control steps and
processed data example. It serves in fulfilling the next two activities of the evaluation and
ranking step. On one hand, the common feature set of a detection model determines whether it
is included or not in the set of candidates, CS;. In the other hand, it is involved in estimating
flagged feature factor for the corresponding detection model and then its global score, with
the consideration of its evaluated relative score, sr;;, and respectively equations (4.10) and
(4.11). Candidate detection models are ranked based on their global scores. Afterwards, the
resulting subset is processed in the last step of the selection process to identify the most

effective detection model combination to analyze logged data example of type j.
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4.4.5 Detection model selection step

This last step of the selection process iteratively treats subsets of ranked candidate detection
models, CS;, j=1..J, of different log types as presented by figures 4.3 and 4.8. Its main goal
consists of identifying most effective combinations, each of which concerns a single log type,
to be involved in conducting a thorough assessment of current security state of the system.
Multiple selection methods may be useful to implement this step. Three of them are discussed
in this section.

The first selection method identifies fixed size combinations of highly ranked detection
models. For ever log type, top ranked detection models with respect to their global scores and
the prespecified combination size are selected to analyze current log data example. Although
this method is simple and intuitive, its selected detection model combinations may include
redundancies. Redundant cases within a selected combination are identified when two or
more detection models have nearly identical relevant feature subsets. In such cases, only a
reduced subset of common attributes between those flagged abnormal and those relevant for
selected detection model is considered in analyzing logged data. This may lead to a partial
assessment of the current security state of the monitored system and therefore the final
decision of the combined detection model may be affected.

The second selection method reduces redundancies within selected detection model
combinations by imposing a coverage condition. For each selected combination, the latter
condition is satisfied only if relevant feature subsets of involved detection models ensure the
maximum coverage of flagged attribute set of considered log type, U;. This second method is
slightly different to the first one. Furthermore, it determines combinations including variable
number of detection models, with respect to an upper bound. However, similarly to the first
method, its selected detection models are among highly ranked.

The third selection method aims at identifying diversified combinations of detection models
for processing collected log data. Various diversity measures may be useful for this method.
The main objective behind using these measures is boosting global performances of selected
combinations that include complementary and independent detection models. The diversity of
a pair or subset of detection models may be expressed using similarity, agreement, correlation
[100], [205], [209], [269] or other measures. Different research works have tested diversity
measures in designing multiple classifier systems [12], [206], [326]. Disagreement measure
and Q statistics are among widely adopted diversity measures in these experimental studies.

The disagreement measure assesses the difference between two classifiers based on
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proportions of inversely classified examples. Yule’ Q statistic was adopted in [205] and [208]
to evaluate the dependency between a pair of classifiers. Disagreement and Q statistic are

respectively evaluated for a pair of classifiers, («,v), as follows:

) Nl() +N01
dis, , = NN NS N (4.12) and,
NIINOO _Nl()N()l
Q”vV = NIINOO +N10N01 (4'13)

Where, N and N% are numbers of times both classifiers, u and v, are respectively correct
and incorrect. N'” and N’/ are numbers of times only single classifier, respectively, u or v, is
correct.

New diversity measures have been proposed in other works such as [12], [13], [37], [170].
Aksela et al. [12] and [13] have proposed new diversity measures that focus on the
significance of classifiers prediction errors. Weighted count of errors and correct results,
WCEC, and exponential error count, EEC, are two measures of the error diversity category
introduced by Aksela et al. WCEC takes account of both positive and negative classification
results of a pair of classifiers. It gives emphasis to cases when both classifiers are correct or

they made the same errors. Using arbitrary weights, WCEC is estimated by:

WCEC,, = N" +1/2(N" + N* )= N, =5N®  (4.14)

same

N 3007 and N ~are counts of the number of times both classifiers made respectively different

and same errors using given test sample. EEC measure takes account of exponentially
weighted error count by the number of classifiers making it. It is evaluated for each
combination, CB of k candidate classifiers, as follows:

Zf:l (N i(?same )i

1
all

EEC,, = (4.15)

Where, N

i.same 18 the count of same errors made by i classifiers and N !, is the number of
correctly classified examples by all classifiers of the combination CB.

Although, researches in the field of multiple classifier systems theoretically stress the
assumption of strong correlation between diversity and accuracy of classifiers, no practical
diversity measure is yet proposed to support such hypothesis. Therefore, the majority of these
works have identified a weak correlation between diversity measures and accuracy of multi-
classifier systems [1], [56], [170], [206], [207], [237], [269]. Other works instead have

illustrated the effectiveness of diversity measures in improving performance of classifier

combinations [37], [46], [139].
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Multiple other selection methods are also candidates and may be appropriate to the detection
model selection component of the proposed idrs framework. They include methods based on
the integration of two diversity measures or more such as in [37]. Other selection methods
combine performance and diversity measures. Furthermore, they use different search methods
such as genetic algorithms to identify most effective combinations of detection models that
ensure the best tradeoff between performance and diversity. The method based on GMES
(Genetic Ensemble Member Selection) algorithm of Lofstrom [236] is an example that
combines diversity and performance measures. Furthermore, it uses genetic search to select
best combinations of classifiers. Additional other selection methods have been discussed and
experimented in [135], [326].

Variants of top ranked and diversity based selection methods are useful for the last step of the
selection process. Multiple combinations of appropriate detection models according one of
discussed criteria are identified, each of which concern a single log type. They will fulfill the

step of log analysis. The latter is presented in detail in the next section.

Flagged feature subset Detection profiles subset of
of log type j : U; type j, DP={P;, i=1..N,;}
Identify common\ [5,#2]

Update subset of
candidates of type
J> CS;j, by M;

[3Me DM;]

Select most effective
combination S, for
log type j
S,,j={M,' N M,' € CSJ}

Evaluate global
Sort models of CS; / valuate globa

! scores, $g;;,
based on sg;; v M; € CS;

Update S, , set of
selected combinations

Figure 4.8: Evaluation, ranking and selection of single log type detection models
4.5 Log data analysis

Feature based selected detection models combinations of S={S;;, j=1..J} are involved in the
next activity of the multimodel analysis process namely log analysis step. Each subset will

analyze preprocessed and formatted log data examples of the corresponding type. Before this
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step, for each type j, collected log data within a prespecified time interval is preprocessed as
imposed at the training phase. Afterwards, the resulting preprocessed log data instance is
reduced according to relevant feature subsets selected by detection models in §;;. Reduced
data instances are then analyzed by corresponding detection models, M;e S;;. Different actions
of the analysis process are performed for log data instances of considered types. The activity

diagram in figure 4.9 illustrates main actions of the log analysis process for single log type.

Relevant feature subsets Preprocessed log data
of M;e S, ;:{F;} example of type j: x,;

/ Reduce x,;
k according F;

Reduced data Selected models
example, x;;; subset S, ={M; }

Output decisions of
M,E S,‘j
li=1..K, K=I§,;1}

{ C‘]r

Figure 4.9: Log analysis process for single log type

The output set of the analysis process for each log type j consists of output labels, ¢, €Cj,

each of which is assigned by a selected model, M;e S;;, to currently assessed security state of
the monitored computing environment. More stringent assessment of the current security state
of the system may be conducted when decisions of detection models within and overall output
sets are considered, even those conflicting. Therefore, two level fusion process is proposed, as
stated in the third step of our idrs framework, in order to derive a combined decision on the
activities of the monitored system over all included trace types. The next section details

different steps of the detection model fusion process.
4.6 Detection model fusion

Subsets of selected detection models will process collected log dataset. To derive the final

idrs evaluation of the current state of the monitored system, these detection models should be
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combined. Several combination levels are discussed in this section, but only fusion at the
decision level is retained for our idrs framework. Moreover, various methods are candidates
to fuse selected detection models at the decision level. However, uncertainty based
aggregation methods only are introduced in this section. Furthermore, a specific attention is
given to evidential combination methods for which two fusion rules are detailed namely
Dempster rule and Smets’s conjunctive rule. The latter rule specifically is included in
modeling the idrs fusion problem. In this problem, only one and multiclass detection models

are considered.
4.6.1 Fusion methods

Information fusion concerns combination of often imperfect and heterogeneous information in
order to have global, complete and high quality information required to take right decision
and implement appropriate actions [S1]. Different fusion methods have been proposed to
combine information from several sources. They form three main groups based on fusion
levels namely, data, feature and classifier combination methods. All three groups may be
considered at different levels of the classification process [208], [326]. Methods of the two
first fusion levels are less explored comparatively the third one. They focus respectively on
preprocessing and integration of acquired raw data and fusion of feature subsets extracted
from several sources. Methods of these groups are adopted in a wide range of applications
including image and signal processing.

Methods of the third group, also called decision fusion methods, are the most widely studied
and investigated in literature [4], [51], [326], [412]. They propose different strategies to ease
the multi-classifier problem. They are subdivided into two subgroups depending on whether
they focus on classifiers (classifier structure) or their outputs. Methods of the first subgroup
are concerned with the design of multi-classifier systems and how are generated base
classifiers using available training data. Bagging and boosting are common methods of this
subgroup. They focus on a combination of multiple classifiers generated by sampling from the
original training data set. But, they use different techniques to generate the training sample of
each base classifier.

In the second subgroup, combination methods solely operate on classifiers outputs. Output
information of base classifiers can be assigned to one of the three levels: abstract, ranked and
measurement. Type I classifiers output abstract labels that indicate the most probable classes
to processed data examples. Output information of type II classifiers corresponds to partial or

completely ranked lists of class labels. Most likely output classes for these classifiers are
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given by top ranked labels of the lists. Type III classifiers instead allow soft outputs
interpreted as confidence or certainty factors assigned to considered class labels. Processed
data instances by these classifiers are assigned to output classes associated with highest
confidence values.

Different variants of voting method, such as the majority and weighted plurality voting
methods, and other probabilistic and evidential methods are useful to fuse type I classifiers
outputs [206], [271]. Combination methods of type II classifiers at decision level are based
either on reduction or reordering approaches. They aim at improving the rank of the true class
of given input either by reducing or resorting class labels over all lists. The largest class of
combination methods focuses on type III classifiers, also referred to as probabilistic classifiers.
These fusion methods thought of returned certainty or confidence values by each classifier as
probability, fuzzy or belief measures [51], [326], [393]. Same of probabilistic and evidential
fusion methods of measurement and abstract levels have been experimented in the intrusion
detection field such as in [184]

In our idrs framework, detection models are supposed providing outputs at the abstract level.
Combination methods operating at the abstract level, specifically evidential methods, are the
only considered in this work. In such context, evidential fusion methods are appropriate to
deal with conflict in detection models decisions. Furthermore, they allow much more
flexibility to integrate context dependent knowledge in designing the combined detection
model. Additional other benefits supporting the adoption of evidential methods in designed

detection model fusion process are subsequently discussed.
4.6.2 Dempster’s rule based combination

Evidential fusion is based on Dempster’s orthogonal combination rule. The latter is widely
known and commonly applied in several fusion problems. Various other fusion rules have
been devised relying on Dempster’s rule to cope with weaknesses of this including Smets’s
conjunctive rule, Dubois and Prade’ rule, Yager’s rule and others reviewed in [228], [301].

Dempster’s combination rule and Smets’s conjunctive rule only are studied in this work.
4.6.2.1 Dempster Shafer Theory

The mathematical theory of evidence is a generalization of probability theory to simply and
directly represent ignorance. The Dempster-Shafer theory (DST) of evidence is a powerful
tool for representing knowledge, updating beliefs and combining evidences relying on

Dempster’s combination rule [343]. Thus, it becomes attractive for modeling complex
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systems and practical for multiple applications treating uncertainty in different domains such
as classification, information fusion, and medical diagnosis [227].
DST is based on a universe of discourse known as the frame of discernment and denoted by €.

The frame Q is a set of mutually exclusive and exhaustive hypotheses, Q = {wl,...,wM }. All

possible subsets of Q, ACQ, are also hypotheses and they form the superset of 2™ elements.
The impact of evidence on a subset of the power set can be measured by mass functions or the
basic probability assignment (bpa). The latter is a mapping function of the powerset to the
interval [0,1]. Formally, its properties are the following:

m:2" —01]

n(@)=0 ana ¥, __mla)=1 +

The hypotheses associated with not null mass are called focal elements. They represent the
only elements in € dealt with in computing belief values. The belief function is based on the
mass function to evaluate the total belief committed to a given hypothesis A via all its subsets

as given by the following formula:
Bel(A)=3 _ m(B) (4.17)

The plausibility also relies on bpa. It is the sum of all masses associated with any subset B
that intersect with A
pi(A)=3 " m(B) (4.18)

Bel and PI represent respectively the lower and upper bound that locate the probable impact of
evidence on the hypothesis A. They specify respectively the minimum and the maximum
extents to which current evidence allows to believe in A [14], [28], [328]

Beliefs assigned to focal elements are discounted when their source is not totally reliable.
Discounting consists of redistributing support degrees between focal elements based on
source reliability degree, o.. Discounting operation was initially proposed by Shafer [343]. It
assigns reduced parts of belief masses of different hypotheses to the uncertain set €.

Discounted belief function %m is defined as follows:

“m(A)=om(A), VAcCQ

(4.19)
“m(Q)=1-o+am(Q)

The discount coefficient, (1-at), is null when the considered source is fully reliable. In the

other case, the discount coefficient is equal to 1, the information source is unreliable and its

associated belief function represents the total ignorance.
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4.6.2.2 Dempster’s rule of combination

Dempster’s rule aggregates two or more independent evidences within the same frame of
discernment and from different sources into a single belief function. The combined belief
function expresses support of the given proposition in both evidences bodies.

Consider Bel; and Bel, two belief functions and m; and m; their respective bpa associated to
independent evidences defined in the same frame €2. The combined bpa that represents the
aggregated impact of different pieces of evidences on the hypothesis A is defined as follows:

VAC Q, m(A)=m ®m,(A)
-k YmBm) @2V

C,BcQ;CNB=A
where the normalization coefficient K is expressed by:
K= 1/(1— > mi(B) mz(C)j 4.21)
CNB=g
It expresses the degree of agreement between sources; if this coefficient is null, it means the
complete conflict between sources and the combination of their beliefs is impossible. The

combined beliefs of two distinct sources ( Bel(A)= Bel, ® Bel,) can be also computed using

their fused masses and Bel equation of respectively (4.20) and (4.17).

DST is useful when dealing with incomplete and possibly contradictory information. It does
not require a prior knowledge on hypotheses probability distribution for performing evidences
combination as in Bayesian scheme. However, the DS combination scheme is similar to the

Bayesian scheme in that evidences are assumed to be statistically independent [343]
4.6.2.3 Existing fusion methods

In the proposed idrs framework, different subsets of heterogeneous detection models are
selected to process currently logged datasets. The outputs of involved detection models are
supposed to be at the abstract level. They correspond to different subsets of class labels each
of which is associated with selected detection models of given log type. Each class label
represents the output decision of a selected detection model on the processed log data instance.
Several methods have been proposed to fuse heterogeneous detection models at the abstract
level [14],[271], [327]. Vote methods are widely known fusion methods that operate at the
abstract level. They solely focus on output labels of detection models. They use various rules
including majority vote to derive the combined decision. Xu et al [412] have proposed

different variants of the majority vote that also deal with the combination of abstract or type |
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classifiers. Additionally, two other evidential fusion methods of Xu et al. and Parikh et al. are
also useful in combining abstract classifiers. These methods focus on output labels and prior
knowledge of participating classifiers to derive their combined decision [291], [412].

Xu et al. evidential combination method is based on detection model global information.
Recognition, Substitution and Rejection rates (RSR) of attack classes and normal behavior are
used in this method [412]. These performance metrics are evaluated for each detection

model, M, € {M,,....M,}, with respect to output classes considered at the training phase,
C= {cl s Coap } Assuming that all detection models have the same output set, for each output

class c,, these metrics respectively correspond to proportions of patterns correctly classified,
confused with other classes and not recognized by detection model M;. They are computed

using the confusion matrix of each detection model for testing set as follows:

. 1
r, = Py (4.22) and
np,
=T 403
q npq

Where rqi and s; are respectively recognition and substitution rates of detection model i when

processing a sample of np, data examples of class c,. Recognized and substituted examples of
class ¢, by detection model M; are determined respectively by true positive, tp,, and false
negative, fn, patterns in the confusion matrix. Rejected patterns of each output class by
detection models are also included in confusion matrices considered by Xu et al. They are

involved in determining rejection rate of each detection model which corresponds also to

(1- r; - sf]). Assessed performance metrics will serve in computing belief mass (m;) of each

hypothesis in the frame of discernment, Q={A;, ..., A,..., Ap}, where the hypothesis A, states
that processed data example x belongs to the output class ¢, € C.

In SRS method [291], the output decision of a detection model, M,, on processed data
example x 18 ¢, € CU{CQ+2} such that, M, (x)=c, and co.> is the rejection class.

Depending on outputs of each detection model, two main cases are treated by the SRS method
in computing bpa of processed data example x. Belief masses on hypotheses of Q are

estimated according SRS as follows:

— Rejected sample: ¢, =c,,, and it is the complete ignorance case and m,(2)=1,

167



CHAPTER 4: Adaptive analysis and detection

— Recognized example: ¢, €C , two focal elements are identified

(A, and—A, =Q- {Aq(_ }) and belief masses are estimated by:

m, ({4, )=r,
m(a, )=s, @24
m, (Q):l—r; —sé

The bpa of detection models given by (4.24) will be fused using the orthogonal combination
rule of Dempster, (4.20), as discussed in the above section, to assign processed instance x to
the most appropriate class.
As in Xu et al.” method, Parikh et al.” predictive rate combination scheme, PRM, is based on
classifier level information. In PRM, predictive rates instead of recognition, substitution and
rejection rates are involved in estimating belief masses of hypotheses. They are estimated
using the confusion matrix of each detection model. The predictive rate of each class takes
into account misclassified instances of other classes. It assesses the capacity of a detection
model to recognize patterns of a given output class. For each column of the confusion matrix,
the predictive rate of detection model M; for class ¢, corresponds to the ratio between
correctly recognized patterns, #p,, and total patterns identified as belonging to the class c,, (tp,
+ /Pq)-
pi=—"P1 (405

ip, +Jp,
In PRM, bpa of hypotheses are estimated using predictive rates when processed data

examples are not rejected by detection models. For a given detection model, M;, if its output

for processed data instance x isc, € C, then identified focal elements in this case are Aq’_
and—A, =Q— {Aq’_ }, their bpa are determined as follows:

{4, )=

mi (ﬁAq,):l_piq[

[lustrative examples given in [184] detail how performing detection models fusion using

RSR, RPM and other methods.

(4.26)

Several other combination methods have been based on DST. They propose different
improvements to overcome weaknesses of Dempster’s rule as discussed in [228], [301], [359],

[425]. Smets has also worked out another version of Dempster’s rule, Smets’s conjunctive
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rule, in the frame of his interpretation of DST, called the Transferable Belief Model (TBM)

[353]. The following section introduces the TBM model of Smets and his fusion rule.
4.6.3 Smets’s conjunctive rule based fusion

TBM is an interpretation of Dempster-Shafer Theory of belief function proposed by Smets. It
provides a model, for representing quantified beliefs, totally unlinked to the probability model.
This model is solely based on credibility or belief functions as appropriate measures of beliefs.
Moreover, belief functions are free from any assumption that link them to probability
functions such as randomness concept, additivity rule and prior probability distribution on the
frame of discernment [353], [354], [356].

The TBM was based on two-level structure: credal and pignistic. The credal level is
concerned with entertaining beliefs. It relies on two components including static and dynamic.
The static component quantifies beliefs of given user using belief function. The dynamic
component instead deals with belief revision when new pieces of information become
available for user. The pignistic level focuses on belief based decision making. Beliefs at this
level are quantified by probability functions. The pignistic transformation proposed by Smets
ensures construction of these probability functions from belief functions at the credal level.

In the TBM framework, the credal level precedes the pignistic level. At any time, the former
quantifies, updates and combines beliefs. But, when decisions have to be made, the latter
constructs pignistic probabilities from belief functions.

The credal level:

This level includes two components. The first component focuses on beliefs representation

and evaluation. But, the second component deals with belief revision.

The static component:
The initial and crucial step in formulating any problem with TBM is the definition of the
frame of discernment, Q, that contains all states of the nature, w;: i =1, ..., M. Then, beliefs
that support any subset A ¢ Q are quantified using belief function from the power set 2V to
the interval [0,1].

m:2" —0.]
. (4.20)

ZA;Q m(A)=1

Basic belief assignment (bba) or belief mass function, m(), is one possible form to express

belief function. Belief mass, m(A), quantifies that part of user belief allocated to the
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hypothesis A , i.e., that the actual world belongs to A and due to lack of information, user does
not support any strict subset of A. A mass function is normalized only if m(£J)=0 as in DST.

The belief degree on A, bel(A), is obtained by summing all bba given to Xz and X cA cQ
bel(A)= > m(X) (4.28)

D#XcA

In the TBM framework, Smets does not assume the normality condition, m(£)=0, except
under the hypothesis of closed world where Q is exhaustive. However, under the assumption
of open world, the bba of the empty set, m(£&J), is interpreted as the belief mass that supports
the actual world does not belong to Q. In this case, the bba assigned to £Jis not specific and
does not support any subset, A < Q, because &J supports at the same time A and —A.
Additionally, the positive mass allocated to the empty set in the TBM has a different
interpretation in the dynamic component.

Coarsening and refinement: given that ® and Q two frames of discernment. A mapping p
from the powerset 2% to the powerset 29, (p: 29529, is called a refining if it verifies
following properties:

1- {p({6}).6€ ®} = 2% is a partition of Q

2-vA 0, p(4) = p({6})

BcA

(4.29)

© is called a coarsening of Q and Q is a refinement of ®. The bba m® on ® can be

transformed into bba on the refinement € relying on vacuous extension as follows [95], [97]:

m®(p(A))=m®(4) VAcC® (4.30)

Dynamic component:

Beliefs issued from distinct sources and quantified by bba can be aggregated, at the credal
level, using different operators. In the TBM, these operators are called combination rules. The
Smets’s conjunctive rule aggregates two bba, m; and m;, as follows:

(m@m,)A)= > m (X) my(Y), VAcQ 4.31)

XNY=A
X, YycQ

In such combination, sources are supposed to be fully reliable (assumed to tell the truth). This
rule is also called unnormalized Dempster’s rule of combination where the normalization
factor K is omitted and the conflict between sources is expressed by the combined mass
allocated to the empty set, mlz(Q). Normalized belief masses, in this case, are determined as

follows [257], [355], [356]:
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(m, @ m, J(A) = 1_("(1’;?5;1(3?30) VA#D (432

The pignistic level:

When the decision must be made, belief masses determined by the combination rule induce
probability measures at the pignistic level [354], [355], [359]. The probability function that
allows such measures using bba is called betting probability function and denoted BetP. It is
constructed from bba using the following pignistic transformation:

BetP(w)=(1-m(@))" >’ @, Ywe Q (4.33)

BcQ.,weB |

Where B is subsets of Q and IBl its cardinality.

Such transformation ensures uniform distribution of belief mass of B to its elements.
Determined probabilities of different elements will be adopted to complete the decision
process and select the best decision [353], [358].

The TBM framework proposes powerful tools to deal with different forms of uncertainty. In
our idrs framework, TBM tools are appropriate to represent and treat uncertainty associated
with decisions of detection models and conflict between them. Moreover, this evidential
model offers required flexibility to incorporate domain specific knowledge within the
developed model of the target problem. In this work, the proposed evidential model for the
fusion component of our multimodel idrs problem is based on the TBM framework. The
Smets’s conjunctive combination rule will be adopted to aggregate decisions of detection

models within and between selected subsets of considered log types.
4.6.4 Detection model fusion problem

In our idrs framework, different subsets of detection models identified by the selection
process will analyze collected log datasets. Each of selected detection models exchanges no
information with those in the same subset or in other subsets. Furthermore, detection models
outputs on the current security state of the monitored system are supposed independent. They
will be combined within an uncertain environment relying on an evidential method. As such,
the TBM framework is adopted in modeling the idrs fusion problem. Moreover, the designed
fusion method is solely based on Smets’s conjunctive combination rule. Many reasons
support such choices and approve the appropriateness of TBM and Smets’s conjunctive rule

in this context.
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The TBM model is appropriate to our idrs framework. It is highly structured and its two levels
meet with the requirements of the proposed multimodel analysis engine. At the credal level,
beliefs of selected detection models are evaluated based on their outputs and learning sets.
Then computed beliefs are fused using Smets’s conjunctive rule that is one of integrated TBM
tools. At this level, context dependent knowledge is quite easily integrated in the proposed
fusion process. Uncertainty in detection models decisions can be dealt with when evaluating
beliefs. Moreover, the conflict between selected detection models can be treated by required
mechanism when fusing them.

At the pignistic level, combined beliefs are transformed into probabilities to make a decision.
This is required to multimodel analysis engine to label the current security state of the
monitored computing environment. Furthermore, it is critical to the response component of
the proposed idrs framework in order to assess inflicted damage and design appropriate
defense strategies against detected attacks.

TBM model offers required tools to appropriately support further extensions of the proposed
idrs framework. It is useful when dealing with imperfect data either in training sets or
historical datasets as discussed later in the proposed process. Moreover, it is well suited to
cope with unknown attacks in idrs when adopting the open instead of the closed world
hypothesis, as further discussed in this work. Additional other qualities of the TBM model,
such as multilevel fusion, remarkably improve capabilities of idrs by allow precise detection
decisions and detailed intrusion reports.

In this work, another class of fusion methods is proposed based on TBM model. In this class,
fusion methods are capable to deal with outputs at different levels including abstract, ranked
and confidence levels. Furthermore, they are independent to natures of outputs, specifically at
the measurement level where output values have different interpretations.

Instead of solely focusing on outputs of detection models, our evidential fusion method takes
account of prior knowledge of detection models, the learning sets. This knowledge is not
static as in PRM and RSR but dynamically revised depending upon previous experiences of
detection models. A learning set of a detection model supports learned and recognized
patterns of considered output classes in training this model. The proposed method based on
learning sets is capable to fuse heterogeneous detection models at the abstract level. It is
inspired by previous works of Denceux and Zouhal on evidential nearest neighbor classifier
[98], [431]. Furthermore, this fusion method uses the distance based approach to evaluate the
beliefs of selected detection models based upon their derived learning sets. It additionally

applies Smets’s conjunctive rule in combining evaluated beliefs of detection models within
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and between selected subsets for considered log types. Two main steps of the fusion method
namely beliefs evaluation and combination are summarized in the proposed TBM based real

time multimodel detection process. The latter is thoroughly discussed in the next section.

4.6.5 Real time multimodel detection process

In the proposed idrs framework, different subsets of heterogeneous detection models are
selected to process currently logged datasets. The outputs of involved detection models are
supposed to be at the abstract level. They correspond to different subsets of class labels each
of which is assigned by a selected detection model combination to the processed log data
instance. Our TBM based detection process computes the final decision of the combined
model relying on those of selected detection models and their learning sets.

In the proposed process, the initial step of updating learning sets of detection models based on
their historical data sets is performed depending upon fixed criterion, such as historical
dataset size or time constraints. The next steps of the process are fulfilled for any processed
data instance. Beliefs evaluation step uses the distance based approach of Denceux to assess
detection models beliefs on processed log data instances. Afterwards, beliefs fusion step
performs two aggregation levels, within and between selected subsets, to evaluate the beliefs
of combined detection model on currently processed logs. Smets’s conjunctive rule is applied
in both fusion levels. Betting probabilities estimation step is finally conducted using the
pignistic transformation and combined belief masses to take the right decision about reported
and analyzed security state of the monitored system.

In our idrs framework, multiple log types are considered in reporting and analyzing monitored
system activities. Let us assume that we have J intrusion log types associated with different
feature subsets constituting the set F= {FI, o ..., F'}. Also let us denote C= {cj,..., Copevor
co+1} as finite set of output classes, ¢, g=1..0, represent attack classes of DARPA reduced
taxonomy and cg.; corresponds to the normal class. We interchangeably use labels of the set,
L={1, ...,.q, ...,Q+1} i=1..Q+1 to ease notation problems as needed.

For every log type j, we denote DM={M; / i=1..N;} the set of detection models generated
using relevant feature subsets { F;, F; c F'} and dataset of type j. The dataset of each log type
is structured into 7R;, TS; and VS; that denote respectively training, testing and validation
subsets. These composite datasets include both normal and intrusive data examples. Every
detection model M; in DM; of log type j is trained, validated and tested using respectively
datasets TR;; < TR; , VS;jc VS, and TS;; c TS;. TR;j, VS;;and TS;; are respectively training,

validation and testing sets of M; based on datasets of type j. They are determined using the
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projection function, 7(), selected feature subset, F;={f;, [=1..P}, and datasets respectively TR,
VS; and TS, as stated in section §3.2.1. The projection function defined by 7, (R):R,. is
based on the set of attributes, X;, to reduce the relation R into R;. The resulting sets of the

projection of TR;, VS; and TS; based on F; are respectively reduced training, TR;;, validation,

VS, and testing, T8S;;, sets determined as follows:
TR, ={(xr,y,)/x, =<X[ 00X, >, Y, € Ci,r=1..N”},
VS, = {xk /x, =< xlk,...,xf, > k= 1..Nm} and
TSI.J. = {xu /x, =< xl”,...,x; >u=1.N,
All datasets involved in generating detection model M; concern only its selected feature
subset, F, c F’/ . The latter is iteratively determined depending on output classes
of C, :{cq,qzl..Nl.,j}gC , as discussed in section §4.4. Throughout the idrs life cycle, a

historical data set, H;, i=1..Nj, is built for each detection model. It stores previous experiences
of that detection model. Of course, some of the processed data instances may not concern all
models M;, i=1..Nj;, and therefore they are not stored in the history of certain detection models.
Historical data sets are also involved in updating prior knowledge on detection models
including their confusion matrices, TM;, i=1..Nj, initially computed using testing sets 7.S;; .

The historical data set, H;, of detection model M; summarizes its previous experiences at

different time points. At given time 7T, the data raw appended to H; corresponds to the reduced
data example x; of the logged instance, x;, using the projection function, 7(), and selected

feature subset, F; of the corresponding detection model. Output decisions respectively of the

model M;, ¢, or simply g, ; € L;, the set of output labels of M;, and the combined detection
model, ¢, € L, are obviously included in labeling each data instance of the historical set H;,

H, = {hm Jre{0,....t -1}, h, =<X.:Y.; >y, = {q“. Uq,. }} Therefore, the historical data

1

sets may include imprecise data examples for which the associated output labels correspond
to subsets of C, y, < C, but not a single label. Such case is encountered when the involved

and the combined detection models in current analysis task output different labels.

The learning set {; of the detection model M; is determined based upon its training set, 7R;;. It
is gradually updated using the historical data set, H;, of the involved detection model. The
learning set of each detection model includes precise examples, each of which is associated

with a single output label.
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Initially, the learning set {; of each detection model corresponds to its revised training set.
After the validation phase, generated detection models are tested using their training sets in
order to identify substitution cases. The latter include training examples incorrectly
recognized by the learned detection model. The learning set of each detection model is then
derived based on its revised training set.

The learning sets of detection models are gradually updated based on historical data sets. In
this context, real time log analysis induces very large historical data sets for detection models.
Although, increasingly large historical datasets improve detection models decisions, they may
produce extended learning sets that affect performance of the analysis engine in terms of
computation and storage loads. In order to remedy to these problems, we proceed by

prototyping the historical data sets.
Prototyping historical data sets

Many prototyping methods are discussed in literature [16], [128], [303]. They aim at
representing large datasets by prototypes without affecting the decision making process based
on this. Prototyping methods form two main categories namely generation and selection.
Generation methods determine artificial prototypes by merging data examples of the
processed set. Selection methods instead identify representative prototypes among instances
of the dataset relying on data reduction, artificial intelligence and other approaches [303],
[351]. Methods of both categories are confused [238], [321] as stated in [128] and usually
considered as prototype selection methods [16], [303].

Prototype selection methods are commonly based on nearest neighbor technique. Garcia et al.
[128] have categorized and experimented near fifty of these methods. Other methods use
clustering techniques for the identification of prototypes [44], [241]. In [99], clustering based
method is adopted to select prototypes for training evidential neural networks. Ravindra also
in [321] has tested different methods including distance based for selecting prototypes from
large datasets.

In the proposed multimodel detection process, clustering, distance based and other methods
discussed in [16], [44], [128], [241], [303] can be adopted in selecting prototypes of learning
sets. For instance, distance based methods can be applied in evaluating dissimilarity between
randomly selected prototypes and data examples in historical datasets. When the dissimilarity
exceeds a given threshold, the tested prototype in the historical set is then included in the
considered learning set. Distance based and other prototype selection methods are performed

each time historical datasets of intrusion detection models exceed a certain size.
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The learning set, {,, summarizes the knowledge state of the detection model M; about

processed data examples of each output class in C;. Each element in {; will participate in
expressing its own knowledge on processed data examples as belief degrees. For any given
data example x, each selected individual x, € ; states that x belongs to ¢, with a certain belief.
The reliability of x, depends on its measured distance to x, d(x,x). A reliability coefficient is

then determined for x, and involved in discounting its beliefs.
Prototyping effort

Learning sets of detection models, {;, i=1..Nj, include data examples of different output
classes considered at the training phase. Data instances of each learning set have precise
labels and this is also the same for prototypes appended to them. However, prototypes derived
from historical data set, H;, of the detection model M; may have imprecise labels. Therefore,
the proposed prototyping process aims at selecting prototypes with precise labels from
historical data sets in order to update learning sets of detection models, M;e DM;. It uses
clustering and nearest neighbor techniques to respectively find out prototypes and their
precise labels. The prototyping process is performed in two steps. In the first step, the
standard clustering process is fulfilled in order to determine clusters and their centroids. In the
second step, precise labels are specified for cluster centroids based on their computed nearest
neighbor sets.

In the initial step of the prototyping process, the number of clusters may be statically
determined depending upon the number of possible output classes for the considered detection
model. Likewise, the number of distinct single labels within the historical dataset may be also
useful in initializing the number of clusters. Based on the prespecified number of clusters, &,

the clustering process partitions the historical data set into groups. Non empty clusters are

then returned and their centroid, P, = {x,* | :1..k}, are computed. In the final step of the

prototyping process, centroids are assigned to precise labels, sz = {y;‘,l = 1..k}. Afterwards

derived prototypes are inserted in the learning set of the considered detection model.

In the last step of the process, each cluster centroid is associated with a nearest neighbor
set, @,, from the historical data set. Computed nearest neighbor sets are involved in labeling
generated prototypes. Two main cases may be encountered depending on whether all
elements in the nearest neighbor set belong to the same output class or not. In the former, the
generated prototype is similarly labeled to its neighbors in the computed set. In the latter case,

labels of elements in the neighbor set are aggregated to derive the most probable label of the
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identified prototype. The labeling process of centroids involves similar computation steps as
in processing new cases, detailed below. It takes account only of centroid neighbors,
determined by set @, in performing different computations and a single fusion step. Then, it
chooses precise labels of centroids based on estimated pignistic probabilities. Identified labels

and  computed  centroids determine  prototypes of  historical datasets,

P = {s,* =<x,y >I= 1..k}, in order to update learning sets of detection models.

When selected, nearest neighbor set of a given cluster center, x,* e P", has distinct, either

precise or imprecise, labels. The labeling process of the corresponding centroid has to
determine precise label to ease the problem of updating learning sets. It is inspired by
evidential kNN process proposed by Denceux [98]. In this context, the frame of discernment is

represented by C. It can be coarsened into C; depending on the specificities of considered

detection model M;. Bba of each selected neighbor x € ¢, is determined based on d (xr,xj ),

the distance between x, and the centroid xl , as follows :

V=l-a (4.34)

and o = o,,0(d,,) (4.35)

where 0 is a constant dependent to examples in ¢,. It represents the reliability coefficient of
x, in determining instances of c,€C;. q)(d,,,) is a decreasing monotone function verifying

following conditions:

¢,(0)=1 136
lim ¢, d)=0 (4.36)

Combined beliefs of k, neighbors in @; of the centroid x, associated with the same label y, are
given by

k,

m(y,)=1-T](~o,)

e

k,

m(c)=T]1-o,) 4.37)

e

m;'(4)=0,Ae 2°\{C,,y,}
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Combined beliefs over distinct labels in @, using Smets’s conjunctive rule are determined as
follows by:
mi(w)=" > m;(A,)m{}’(B,) we C, (4.38)

A.NB, =w
A,.B,cC,

Pignistic probabilities of atoms in C; are then determined based on combined beliefs over all

neighbors in @; by:

bet}’i,,(w)zl_;q(g) > m(B)/|B|, Ywe C, (4.39)
il

BcC;,.weB

Precise labels of centroids, x, € P, ,l =1..k, are determined by y, € P:y,l =1..k, such that

y; =arg maX(Bel‘Pi’[(W)) (440)

VweC;

Generated and labeled prototypes, P* ={s’....s.}, of the historical dataset H; are then

appended to the learning set of the detection model M;. Additional other cases, not considered

at this level and may be encountered by the labeling process, need further studies.

Updating learning sets of detection models is required by the fusion step of the detection
process. The latter step focuses on the evaluation and combination of beliefs with respect to
selected detection model decisions on currently processed log data examples. This step is

presented in detail below.
Processing new cases

In our idrs framework, the knowledge base saves different detection profiles for considered
log types, j=1..J, as discussed in section §3.2.1. Each detection profile, P, DP; concerns a
generated detection model, M;, its training set, TR;; historical data set, H;, and other
information, Pi= <M;, H;, ...>. At any time point ¢, different subsets of detection profiles, {S;;,
j=1..J}, are selected and then the associated detection models are involved in processing
logged data examples of J different log types determined by D={x;,..., x;, ....x,s}. S;; is
always used to designate selected detection models of type j rather than their profiles in
current and subsequent sections. Furthermore, each detection model is assumed to generate
independent outputs to other candidates or selected models in S;;.

The log analysis process of the proposed multimodel engine is similarly performed for all
considered log types, j=1..J. To process the data example x;, a subset S;; € DM, of detection

models, generated using feature subsets of log type j, is determined by the selection process,
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S,/={M;/M;e DM;}, as detailed above in section §4.2. For any detection model M; € S;; , bba
of a given data example x,; are constructed using individuals in its learning set, ;. By
considering all selected subsets of detection models S;;, j=1..J, our intrusion detection
problem consists to assign current security state of the system differently reported by several
log types, x,;€ D, to one class of C and therefore to decide which is the true among Q+1
possible hypotheses stating that D, is assigned to the class ¢, g=1..Q+1. In this problem, the
frame of discernment is represented by C. Moreover, bba on different hypotheses of C, for
any x,;€D,, are expressed using distance based approach. Additionally, abstract outputs of
selected detection models, M;e S,;, and their learning sets, {;, i=1..N;;} are considered in

estimating belief masses of any processed log data example, x;; € D,, as detailed below
Techniques proposed to select cases in ; to participate in computing bba

Two main techniques have been proposed to select data examples of ; to be involved in
computing bba. The first technique selects a fixed number of nearest neighbors to the data
example x;; depending on the chosen distance measure. The second technique summarizes the
learning set by several prototypes using different methods as discussed earlier. For both
techniques, a reduced set of examples of ; is involved in evaluating beliefs. In this work, the
first technique is adopted. For any processed data example x;;, the set @,;; of k nearest
neighbors to x,; in {; regarding the output label of selected detection model M;, g, is derived
based on evaluated distance measures. For any selected example x.€@;;;, bba of x;; is

expressed based on (4.34) as follows:

mtr,i,j ({Cr }) = atr,i
m, (C)=1-a], (4.41)
m!. (A)=0,Ae 29\{C. {c, }}

t,i,j
where 0 <@, <1 and it is expressed using (4.35) by

a), = a$,(d,)
0y is a dependent parameter to examples in @,;; and belongs to [0,1]. It expresses reliability
of selected data example x, in recognizing data instances of class ¢,. ¢{d,,) is a decreasing
function depending on the distance d,, between x, and x;;. It should satisfy conditions given
by (4.36). As detailed in [98] and [398], it can be defined by the following exponential

function:
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0.(d,)=expl-v.(d,, 2] @4

where Y, is a normalization coefficient estimated based on the mean distance, d, between

data examples in {; labeled as ¢, € C, vy, = 1/ (d " )2

Combined beliefs of two examples x, and x; of @,;; associated with the same output class ¢,

are determined by:

mih (e, )=1-(1-a;,)1-a,)
mi0(c)=-a)1-a,) (4.43)
m7(4)=0,4e 2°\{C,.{c. }}

tlj

Over the k elements of @,;;, belief masses of the processed data example, x;;, are given by :

m,,,-,j({c,})=1—f1(1—a:,,-)
m,, ]k'I( ') (4.44)

m,. (A)=0,Ae 2°\{C,.{c. }}

Li,J

At this step, belief masses of the selected detection model M; are determined by fusing bba
over all k elements of @,;; using (4.44). They are discounted with respect to reliability
coefficient, o, of the involved detection model. This coefficient is estimated using the testing
confusion matrix of the detection model M;. Moreover, it is updated each time the model M; is
selected to process logged data. Discounted beliefs of selected detection model M; are

evaluated as follows:

m (e, )=a,m, (e}, ¢, eC
m (C)=(-a )+, m,;(C) (4.45)
m (A)=0, @=Ae29\{C,U{c, }}

Fusing on all

To be combined with other belief masses on different hypotheses of C; of the detection model
M;, bba should be expressed on the frame of discernment C. Depending on generated
detection models and their output classes, C;, different transformations are applicable to
represent their bba on C. In our idrs framework and for the sake of simplicity, one class and

multiclass supervised detection models specifically are considered. In the first category of
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multiple class detection models, output classes of each model represented within the defined
frame of discernment, C, and thus their bbas are evaluated, as discussed above using (4.45) on
C. However, one class detection models are associated with a reduced output set and then the

reduced frame of discernment for these models is determined by C,; = {c 2Ca } The latter is

considered as a coarsening of the frame of discernment C. Bbas initially determined using

(4.45) for c,€ C; are now expressed on C based upon the following transformation:

m ({C }) “J({c }) Ve, eC
m’ (C\e,)=m’: (c,) (4.46)
m, ,(C)=m,(C,)

Evaluated and represented bba on C using (4.45) and (4.46) are then fused twice relying on
Smets’s conjunctive rule. The initial fusion level evaluates combined beliefs for each
considered log type j, j=1..J. Beliefs of selected detection models of S;; to process log data
examples of type j, are fused based on the following:

:E:’nfuj t»j l;l wC (j (4.47)

ANB=w
A,BcC

where M, and M, are two selected detection models of S;; and their beliefs on the security

state reported at time ¢ by x,;€ D, are respectively evaluated by belief masses m_, . and m, i

L, j
expressed by (4.45) or (4.46).

The second aggregation level determines fused beliefs of D, over all considered log types,
with respect to selected subsets of detection models, S;; j=1..J. The beliefs of the combined
detection model on currently analyzed security state of the monitored system are expressed as
follows:

= >mf (A) Jwc C (4.48)

ANB=w
A,BcC

where m,c ; and mfh are combined bbas respectively for log types j and /& evaluated using

(4.47).
Deciding the output class
Fused beliefs of the second level by (4.48) will determine pignistic probabilities, BetP,, of

different atoms of C to decide to which class is assigned processed log data in D,. Betting
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probabilities of atoms are expressed using the pignistic transformation (4.33) and combined

beliefs of (4.48) as follows:

BetP(w y & (B ) VYwe C (4.49)
( _m )BCC weB

Currently analyzed security state of the system is assigned to the output class associated with

the highest BetP, evaluated by (4.49) as follows:

q., = argmax(BetP(w)) (4.50)

VweC

Afterwards, the final decision, selected label and betting probability BetP;, of the combined
detection model on analyzed log, D,, is sent back to the risk driven response component of the
proposed idrs framework. It is initially considered by this component to decide whether a
reaction is required or not. When a response should be implemented, it is also involved in
designing appropriate security strategy by the risk driven response component. Additional
parameters are considered with the probability of detected attack, BetP,, in assessing risk cost

for this component.
4.7 Conclusion

Adaptive analysis engine proposed in our idrs framework is based on the multimodel
approach. It takes account of multiple log data types. Moreover, it extends those designed in
previous works by including real time detection model selection and fusion. Designed
multimodel analysis engine is based on a three step process. The latter focuses on performed
activities of considered components respectively of selection, analysis and fusion. At a given
time point ¢, log datasets of different types are collected and preprocessed. The resulting set
includes single instance for each considered log type. The selection component is then
involved in identifying appropriate combinations of detection models with respect to
considered log types and assessed security indicators. Afterwards, the analysis component
treats available log data instances of different types using corresponding detection model
combinations of the previous step. Finally, the fusion component derives the combined
decision of the multimodel analysis engine. It is based on two combination levels that are
preceded by beliefs evaluation for all selected detection models based on their abstract
outputs and learning sets. The combined decision of the multimodel detection engine on
current security state of the monitored computing environment is forwarded next to the

response engine
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In this chapter, proposed improvements of the analysis engine fulfill two main activities of the
idrs life cycle namely selection and fusion. The selection component was initially based on
three checking steps to analysis system security of the system. The first two steps determine
whether current state is normal or anomalous. In the case of an abnormal behavior, the last
checking step thoroughly tracks signs of potential attack. The checking steps determine also
several feature subsets that report identified intrusiveness signs. These subsets are involved in
guiding the selection of well adapted detection model combinations to assess current security
state of the system. The fusion component was based on Smets’s conjunctive rule to combine
selected detection models at the abstract decision level. The distance based approach of
Denceux was adopted to express beliefs of detection models on processed log instances.
Evaluated beliefs were fused twice to derive the final decision of the multimodel analysis
engine. The probabilistic output of the analysis engine is then considered by the risk driven
response component of our idrs framework to design appropriate security strategies against
detected threats.

The next chapter of this thesis focuses on the risk driven response component of our idrs
framework. Furthermore, it presents in detail the proposed idrs risk management model and

how security strategies are designed relying on this.
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CHAPTER 5

RISK DRIVEN RESPONSE, THE IDRS RISK MANAGEMENT
MODEL

5.1 Introduction

In our idrs framework, combined decision forwarded by the multimodel analysis engine is one
of the basic parameters of the response component, R-boxes. The latter is based on a risk
driven approach. As such, a risk model is proposed to assess inflicted damage by mounted
attacks on the assets of the computing environment. Relying on this model, a risk cost
minimization program is developed in order to design the most appropriate security strategy

to be deployed.

In this chapter, the proposed risk management model is presented, as well as its identification
and estimation parts are thoroughly discussed. Furthermore, the risk treatment part of this
model and the associated optimization program are also stringently detailed in subsequent

sections of the current chapter.
5.2 Proposed risk model

In our multimodel intrusion detection and response framework, detected attacks or attempts of
attacks are actively treated by included risk driven response engine. The latter assesses
incurred damages due to these attacks. Then, it identifies the most appropriate combination of
countermeasures, from those recommended by security experts, to rule out detected threats
and mitigate their negative effects on target assets. Both steps followed by the response
engine in processing detected attacks are imposed by the risk management model proposed to

these aims.

Risk management model of the response engine consists of two interdependent parts. On one
hand, the assessment part ensures the identification, determination and evaluation of inflicted

damage by detected threats. On the other hand, the treatment part focuses on the selection of
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cost effective control combination to reduce assessed risks. The risk assessment part of the
proposed model is concerned with the analysis and evaluation of risks. The risk treatment part
concentrates on the post assessment step, specifically, the selection and implementation of a

treatment option.

The proposed risk management model relies on four main components namely assets, threats,
vulnerabilities and security controls. Threats and assets are critical components and
commonly considered by risk management methodologies. Threats component groups
deliberate actions of insider or outsider entities who attempt to inflict damage to target assets.
Assets component includes any worthy computing resource to the organization. The assets of
the computing environment support several vulnerabilities or weaknesses that represent the
main source of harm to them. To defend against potential exploit of supported flaws by
malicious actions of an attacker, appropriate security safeguards or controls are selected and
implemented with respect to the security policy of the target environment. Moreover, they can
reduce or neutralize negative effect arising from weaknesses exploit. Dependencies between

considered risk components are presented in figure 5.1.

exploit Threats determine
target
Vulnerabilities support Risk
: eliminate determine
Security Assets
Policy
] associated
Security
—
Controls reduce

Figure 5.1: Dependence diagram of risk components
The proposed risk management model is depicted by figure 5.2. The risk assessment part
focuses on analysis and evaluation of the current risk level, the basic risk of the computing
environment. It uses collected data on attackers’ means, exploited vulnerabilities, targeted
assets and safeguards. The risk treatment part specifically concerns mitigation option where
cost-effective security controls are selected to reduce basic risk and ensure acceptance of
residual or remaining risk. Each identified part of the risk management model is supported by

processes that implement its associated activities.
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Vulnerabilities

Threats

Basic Risk

Residual Risk

Assets

Initial security
control set

Selected security
controls

Security
Policy

Figure 5.2: The proposed risk model
The risk assessment in our model is performed in two steps. Initially, risks are analyzed where
different risk elements or parameters are identified and associated variables are determined.
Then, evaluation processes of identified risk elements are designed by considering determined
variables of the previous step. The risk analysis process is initiated by identifying risk
elements closely related to above discussed components. Key elements identified in the
proposed risk model are required by both steps of risk assessment. They include commonly
considered elements by normalized, public or proprietary risk assessment methodologies
namely impact, likelihood and exposure elements. Moreover, other risk elements are
explicitly considered by our risk assessment process, specifically the severity of supported
vulnerabilities and the effectiveness of countermeasures. Such improvement proposed by our
risk model emphasizes the roles of environment dependent elements that were neglected or
implicitly included, through key elements, in managing risks. Furthermore, it allows more
precise and objective estimations of risk levels and thorough risk management than the
existing ALE (Annual Loss Expectancy) or NIST (National Institute of Standards and

Technology) inspired methodologies [149], [325].

In the analysis process, risk determination focuses on variables involved in estimating risk
elements. For each identified parameter, its determinant variables are found out regarding
specificities of considered risk components. They reflect single or multiple aspects that the
target risk element is concerned with. Determined risk elements can be estimated using
quantitative or qualitative methodologies. Depending on selected methodology, involved

activities in the determination step may focus on scale definition. Moreover, they may
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concern procedures design to process collected data and combine different features of
considered risk components in order to evaluate determined parameters. In the proposed
management process, different variables that concern identified risk elements, presented in
figure 5.3 are determined. Their estimation is based on a quantitative methodology. Risk

identification and determination steps of the analysis process are discussed in section §5.3.

Risk evaluation follows identification and determination steps of risk analysis. This final step
of the risk assessment process is based on identified parameters and their determinant
variables. It defines estimation processes of the identified elements and basic risk of each
target asset of the computing environment. These processes involve selected combinations of
determined variables with respect to considered risk elements and their dependencies. Basic
risk evaluation process focuses on identified risk elements. It expresses combined effect of
involved parameters that reflect the current security state of the asset or the computing
environment. In the proposed risk model, basic risk is evaluated by combining elements
including exposure, severity of vulnerabilities and effectiveness of controls as depicted in
figure 5.3. The exposure element determines the expected damage incurred by the target asset
due to exploit of its vulnerabilities by detected threats. Asset impact and threats likelihoods
are main parameters to determine the exposure. The former relies on the asset value to express
its potential loss due to supported flaws. The latter assesses the probability that an asset is
affected by an attack when occurring. The severity of vulnerabilities and effectiveness of
deployed security controls depends on current security state of the target asset. In one hand,
the severity parameter focuses on the extent of damage inflected by an attack if a sequence of
vulnerabilities is exploited by this. On the other hand, the effectiveness parameter concerns
the reduction effect of existing security controls on assessed risk. The basic risk assessment

process is thoroughly studied in sections §5.3 and §5.4.
Asset value H| Impact |

Threats
likelihoods

Exposure

Vulnerabilities severity Basic Risk

Current safeguards
effectiveness

Figure 5.3: Basic risk assessment
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Risk management consists of risk assessment and treatment. After assessing risk, normalized
risk management methodologies impose the selection and implementation of a treatment
option [148], [175], [325]. Risk reduction option is the most significant for our idrs
framework, thus it is the only considered in this study. Such option reinforces the current
security state of the computing environment. It relies on the selected combination of security
controls to reduce current risk of the computing environment to an acceptable level with
respect to available security budget, as globally illustrated by the process of figure 5.4. The
proposed risk reduction process aims at decreasing the global risk cost, damage and security
investment costs. It prioritizes risks to identify and urgently mitigate the most serious.
Moreover, this process ensures selection of the best control combination that reduces residual
risk to meet tolerance criterion and saves maximum security budget. Residual risk
determination and control combination selection in this process are iteratively performed as
summarized by figure 5.4. The whole risk mitigation process and its optimization problem are

detailed in section §5.5.

Basic Risk
[Acceptable risk OR No
remaining security budget]
Residual Risk /\
Select Security
Controls No
idrs
Response
Recommended
control subsets

Figure 5.4: Risk treatment
In the proposed risk management model, two main vulnerability classifications are considered.
The first classification discriminates vulnerabilities of the computing environment based on
their exploit objectives as given by publicly available databases such as open source
vulnerability database, OSVDB. Determined classes by this include privilege elevation,
service privation and other classes. They are involved in assessing threats likelihoods and

controls effectiveness parameters.

The second classification identifies different flaw groups depending on the target environment.
Availability and implementation states of remediation against these vulnerabilities are basic

criteria considered in determining groups of this classification. The latter mainly consists of
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patched, unpatched and unresolved vulnerability groups. These three groups are specifically
considered by our risk model in determining severity element of supported vulnerabilities for

the assets of the computing environment.

In our risk model, we assume:
A: a set of N assets of the monitored computing environment, A={a;, i=1..N}.
V: a set of M vulnerabilities supported by the computing environment; V={v;, j=1..M}.
VE: a set of P vulnerability categories, Ve = {V’ N 1..P}.

Vi: a set of vulnerabilities supported by the asset a;, V, = {v i /v i€ V}.

T: a set of Q possible threats, T7c C, the set of possible output classes, T={c,, g=1..0Q}.
SC: a set of L security controls, SC={s;, [=1..L}.
S8y : the initial control combination or security strategy of the computing environment and
the subset SS;p < SSy protects against exploit of vulnerabilities, V;, supported by the asset
a; .
S: the set of designed candidate combinations of security controls to mitigate assessed risk
of the computing environment to an acceptable level.
SS;x: the control combination of the asset a; associated to the security strategy SS; < S of
the computing environment, SSi={ s;, s;€ SC, [=1..L;}.
Risk assessment and treatment parts of the proposed model are presented in following three
sections. Risk analysis, evaluation and mitigation steps of the model are respectively

discussed in these sections.
5.3 Risk identification and determination

Previously identified risk elements, namely asset value, impact, threats likelihoods, exposure,
vulnerabilities severity and controls effectiveness, based on included components are detailed
in this section. Moreover, variables involved in their determination processes are globally

discussed in following subsections.
5.3.1 Asset value

Assets identification and valuation is a critical step in quantitative risk analysis methodologies.
It is required to enumerate and determine how worthy are potentially target assets of the
computing environment. However, with the increased size of organizations and complex and

dynamic nature of their networks, this step becomes more complicated and time consuming.
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Assets can be automatically identified using asset management systems. These systems track
changes of the computing environment when new assets are added or other are removed. They
periodically update information about assets including their functional and security statuses
and locations. Moreover, asset management systems are able to discover supported flaws

when associated with vulnerability scanners [39].

Identification step in risk management provides global information about computing
environment assets in order to understand their criticalities and assess their degrees of
implication in achieving the organization’s mission. Assets of computing environment can be
grouped into different classes. The most known classification identifies tangible and
intangible assets classes. Tangible class concerns hardware and other physical assets.
Intangible assets correspond to software, information, intellectual property and other logical
assets. Pfleeger has defined six class asset classification by discriminating between assets of
computing environment and required resources for their function. The first three classes,
namely hardware, software and data, identify computing environment intrinsic assets. The last
three classes of documentation, supplies and people skills group assets not considered as a
part of the computing system but they are required for its proper operation [300]. Farahmand
uses also five class assets taxonomy. Information assets class of this taxonomy concerns data
and documentation resources of Pfleeger. Whereas, system class includes any combination of

people, software, hardware and information assets [112].

In this work, the main classes of Pfleeger’s taxonomy are considered. Any combination of
software, hardware and data assets is included in system class, similarly to Farahmand’s
taxonomy. The last class is considered in our risk model because attacks generally target
combined rather than elementary assets. For instance, if attackers aim at disrupting printers or
corrupting client database, these are reachable only by jeopardizing management systems of

target assets respectively printing server and database management system in this example.

Assets of different classes can be valuated using several methodologies discussed in literature.
Quantitative methodologies determine assets worth in terms of monetary values. Different
costs are considered by valuation processes of these methodologies such as purchase, design,
implementation, function and maintenance costs. Qualitative methodologies rely on different
labels or scoring systems to estimate values of assets. Cost factors considered by these
methodologies are included in defining scoring tables or selecting qualitative terms. These

tables or chosen labels guide the determination of the right valuation scores or labels.
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Assigned value, score or label, reflects the importance of a given asset within the computing

environment [112], [340].

The methodologies of the first class are subject to unreasonableness due to their over or
under-valuations. Likewise, second class methodologies are considered more subjective when
using inappropriately structured scoring tables or scales. But, whatever the selected approach,
the main objective of this step is the definition of an asset hierarchy in terms of their

importance or criticalities within the computing environment [151].

In this work, the valuation process relies on a quantitative approach because this is critical in
assessing inflicted damage by detected threats as well as designing appropriate defense
strategies against them. Additionally, it mainly focuses on above discussed asset classes,
explicitly, hardware, software, data and systems that group support assets of the computing
environment [300]. Different quantitative valuation methods are candidates for implementing
this process, as stated in [104]. However, the proposed quantitative process will specifically
focus on an economical approach to determine how worthy are assets of the computing
environment. Such methods thought of the business value of an asset as its expected value as
explained later. Moreover, they suppose that a fraction or the total amount is lost if the
corresponding asset is targeted by a threat. In the proposed process, the value of an asset, a;, is

expressed relying on its business income and operating cost.

The business income or the return of an asset corresponds to the fraction of the organization
revenue insured by this asset through implementing single or multiple activities within several
business functions. Different approaches were proposed to gauge the business income of
given assets. In [180], revenues of assets are broadly determined based on downtime and
liability costs. Downtime cost quantifies income loss in terms of productivity and revenue
when an asset is targeted by an attack within a given time interval. Liability cost evaluates the
amount to be paid by the organization to its partners due to service disruption. Other
approaches approximate the business income of single asset using revenues of business

functions in which it is involved [376].

The operating cost of an asset depends on its nature. It corresponds to required cost to recover
normal function of the target asset. It includes one or a combination of acquisition, installation,
function, maintenance, design, implementation and configuration costs depending on the
target asset. These costs are approximated based on previous experiences of the organization

and the actual market prices.
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Assets values are appropriately estimated if business processes of the organization are well
structured and documented with regard to recommendations of the ISO-27001 which concerns
information security management system (ISMS) [173]. ISMS implementation requirements
are mainly centered on business functions of the target organization and their security needs.
Each business function is organized into several activities. These activities are represented by
different processes that transform inputs into required outputs by the corresponding business
function. By identifying different business processes of the organization, their importance and
required assets, the proposed valuation procedure of the risk model may produce more
objective and precise estimations of asset values [173], [376]. The process proposed in section

§5.4.1.1 assumes similar conditions to those discussed above in determining asset value.
5.3.2 Impact

Impact determination is a critical step of any quantitative risk analysis methodology. It
focuses on estimation of potential losses of computing environment assets due to supported
weaknesses. Impact element in risk assessment methodologies expresses the magnitude of

harm that could result from potential exploit of target asset vulnerabilities.

Potential loss due to supported flaws can’t be exactly evaluated neither for assets nor the
computing environment. However, it is estimated based on an intricate process that combines
historical data, knowledge of target systems and judgments of risk assessors. In quantitative
risk analysis methodologies, impacts are commonly measured using numerical scales.
Different numbers within the selected scale are assigned to expected magnitudes of potential
damages. ALE methodology, for instance, recommends the expression of assets impacts
directly in terms of monetary values because it is legally more acceptable and useful in

evaluating risks [149].

Impact estimation processes are based on several factors. A class of processes approximates
potential losses of exploit relying on multiple cost factors, while another class takes account
of different security concerns in their estimations. Cumulative costs, either direct or indirect,
of possible damages are considered by processes of the first class as the most appropriate
estimate of supported weaknesses’ impact. Direct costs such as loss of sales, materials, labor
costs and productivity are included in the processes of this class because they reflect tangible
part of this impact. Whereas, intangible impact costs are difficult to approximate due to their
variable nature and dependence on out of control attributes. These costs are closely related to

external agents to the organization like competitor (loss of competitivity), and costumer (loss
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of confidence), and operation standards (breaches to operation standards). Moreover, they

represent the major security cost to preserve business continuity [375]

The second class of processes is based on NIST risk assessment standard. Processes of this
class take account different security concerns, such as confidentiality and integrity, in their
estimates of assets impact. They determine the overall impact of the target asset by
considering its single potential loss in terms of each selected security principle. These
processes are well suited to information security domain as well as to our idrs framework. On
one hand, their assessments are based on security concerns of the target organization. On the
other hand, their considered list of security requirements is not restrictive and can be extended

depending on the environment and operation sector of the organization [181].

Standards and guidelines such as [149], [150], [260] and [325] try to identify the magnitude of
harm resulting from compromises independently to other assessments that aim at evaluating
compromise probability. Processes based on NIST risk management framework define
adverse impact as any potential damage associated to unauthorized disclosure, corruption or
disruption of computing environment assets. They express impacts in terms of loss or
degradation of any or a combination of three main security concerns namely confidentiality,

integrity and availability.

Confidentiality impacts focus on potential damage of unauthorized discloses of saved or
exchanged data assets. They reflect an important part of the intangible impact of the
organization vis-a-vis its partners and customers and the regulation. For example, successful
divulgation of client credit card number would result in customer confidence and business
losses. Impacts on integrity instead resume additional costs supported by the organization due
to improper modifications of its systems or information assets. The cost of corrupted
information or contaminated systems could stem from increased fraud tentative, wrong
decisions and conflicts with organization’s partners. Losses of availability affect mission
critical assets of the organization. They lead to disruption of organization functions and
decrease operational effectiveness due to lost productivity time and inability of legitimate

users to access and use their systems.

NIST generic risk assessment process [325] uses qualitative labels to describe corruption,
disclosure and disruption impacts. In our quantitative risk model, relative impacts of
supported weaknesses to considered security concerns will be determined using numerical
scales used by the normalized CVSS system, as detailed in subsequent sections. The potential

damage due to supported vulnerabilities of a given asset will be function of its value and
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relative impact factors. Moreover, different weight coefficients will be associated to selected
security principles and considered in determining relative impact factors of an asset. This was
neglected by all previous impact assessment processes, which assume the same importance
for all security requirements over all assets. Such improvement of the impact assessment
process is inspired by reality where the same asset requires various levels of protection
depending upon its environment, usage, location within the computing environment and

stored information.

In the proposed risk model, the impact of a given asset a; is determined using its value,

required security services and supported weaknesses as expressed by the following function:

I,= (U W,V,) (5.1)
where:
I; : the impact of the asset a; due to its supported weaknesses
U; : the expected value of the asset q;

W; : vector of weights that expresses the importance of considered security principles,
including integrity, availability, confidentiality and other security requirements, to the
asset a;. It can be evaluated for each asset by security expert and organization’
managers regarding the security policy and the mission of the organization

Vi : set of supported vulnerabilities of a;
The impact of the asset a; is partially determined based on its relative impact factors
expressed in terms of confidentiality, integrity, availability and other security principles
included in W;. A vector of relative impact factors, I'i=<%;, ... %> , should be evaluated for
each asset a;. Its appraisal is basically achieved by considering supported weaknesses, V;, of
the target asset a; and their impact scores assessed by publicly available vulnerability scoring
systems as discussed in §5.3.5. Relative impact factors, I';, and weights of required security
services, W;, are involved in determining the overall impact factor, T;, of the asset a;. The
potential loss due supported flaws of the asset g; is then estimated using its value and the
overall impact factor. Involved variables and the associated function to determine impacts are

discussed in section §5.4.1.1.
5.3.3 Threats likelihoods

One of challenging steps in quantitative security risk assessment methodologies is the
determination of likelihoods of malicious events experienced by different assets of the
computing environment. Threats likelihoods element is essential in our basic risk

determination process. It expresses how likely target asset is being compromised if an
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unwanted event occurs. In ALE methodology, likelihood is interpreted as the annualized
frequency of malicious event occurrence. For other risk assessment methodologies including
GISAM and NIST, it is thought of as the probability of potential exploit of an identified

security breach by a malicious event [216], [325].

Objective estimation of likelihoods requires an extended historical dataset on mounted attacks,
supported weaknesses and target assets associated with perfect knowledge of the monitored
system. These are seldom available for actual organizations and even if they dispose of little
historical dataset, available risk assessment methodologies fail to objectively predict
likelihood of occurrence of a malicious event that impacts computing environment assets. In
fact, the majority of these methodologies rely on expert judgment and evaluate likelihoods of
threats occurrences using terms such as low, medium or high or using numerical ratings.
Qualitative methodologies use these labels to identify risk levels of target assets based on
impact-likelihood matrix as in [17], [216], [325]. However, quantitative methodologies
determine risks of a given asset using selected functions. The latter functions combine
different risk parameters including likelihoods of threats occurrences and expected

consequences of intrusive actions.

Other risk assessment methodologies are based on likelihood estimation processes. Different
dependent factors to entities mounting attacks or threat sources are considered by these
processes. Schechter has identified two main categories of factors related to threats
frequencies. The first category concerns positively correlated factors to threats occurrences
such as the number of potential attackers and potential benefits. However, the second category
focuses on disincentives to attacker resumed by negatively correlated factors like intruder
risks, to be caught, and system resistance. Both factor categories are considered by the process
proposed to estimate threats frequencies [337], [338]. Farahmand has founded his likelihood
determination process on NIST recommended factors, specifically; attackers’ motivations,
means and opportunities of exploit [112]. Bellefeuille has proposed a probability estimation
process that involves several dependent factors to security incidents. Incorporated factors
concern categories such as attacker motivation and capability and vulnerability nature [39],
[390]. Motivation and capability of attackers are represented in this process by two factors
namely target attractiveness and ease of exploit. Vulnerability related factors are expressed by
characteristics such as availability of exploit and Internet wide frequency of attacks.
Considered factors are scored using different scales. The probability of an attack is then

linearly determined based on cumulative scores over all included factors [39].
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In previous risk analysis methodologies, threat likelihood is interpreted as the probability or
frequency of unwanted event occurrence on computing environment assets. This event can be
originated from nature or accidentally or deliberately by different entities or threat agents. It
may cause variable damages to computing environment assets. Furthermore, deliberate
actions inducing these events look for several objectives ranging from simple information

leakage to complete disruption of the target asset.

In this work, mal-intentioned events mounted by internal or external entities are the only
considered threats by the proposed risk management process. These deliberate events aim at
compromising computing environment assets and inflicting harm to them. They negatively
affect target assets only if they successfully exercise supported weaknesses or bypassing
deployed security controls or both. Otherwise, any attack or attempt of an adversary, when
occurring, has no impact on computing environment assets. In the proposed risk model, the
likelihood of a malicious event corresponds to its probability of affecting the target asset. This
depends jointly on its occurrence and effect on the victim. Moreover, at this step, we consider
an attack, ¢, when occurring, negatively affects the target asset only if it exploits at least one

of its supported weaknesses.

In our framework, detected threat, ¢, is considered as a random variable with possible values
in the set of threats, 7. Its values can be determined by an embedded sub-system such as the
analysis and detection engine of our idrs, as discussed in chapter 4. In this work, a probability
distribution of ¢, p(c,), is defined. For each attack class, p(c,) is interpreted as the probability
that the class ¢, takes place. Probabilities of different values of ¢, in T are periodically
estimated by our combined detection model. They are included in estimating threats

likelihoods element of our risk model.

In the proposed risk model, threat likelihood is approximated by the probability that mounted
threat ¢, affects target asset a;. Based on Bayes theorem of conditional probability, this
probability is determined by the product of the probability of the occurrence of ¢, and the

probability that ¢, affects a; when occurring. It can be expressed as follows:

p(c, affects a; )= p(c, )p(c, affects a,/c has taken place) (5.2)

The conditional probability included in (5.2) of likelihood estimation can be determined by
considering the current security state of the target asset a;, specifically, its security controls

and supported flaws as discussed in sections § 5.3.6 and § 5.3.2.
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5.3.4 Exposure

Exposure element in risk analysis determines the expected compromise associated with an
attack exploiting a vulnerability in the target asset. It takes account critical components of risk
model, specifically, assets supported vulnerabilities and potential threats. Impact element of
risk analysis focuses on the first two components where expected potential loss experienced
by an asset is determined by considering its intrinsic sources of harm, the supported
weaknesses. However, the exposure element adds another risk dimension to those of the
impact parameter. This dimension concerns asset extrinsic origins of damage, either internal
or external malevolent entities to the organization and their capabilities. The exposure element
of the proposed risk model expresses expected damage inflicted by a given threat agent with
consideration of its potential success in exploiting single or multiple weaknesses of the target

asset.

Information security risk exposure can be quantitatively or qualitatively estimated. It is
expressed using numerical values either monetary or scaling values for quantitative
methodologies. Qualitative risk analysis methodologies instead use ordinal scales that
globally rank expected magnitude of risk exposure, usually, as high, medium or low. Both
classes of methodologies thought of expected loss due to the unwanted event as the product of

its occurrence frequency and expected consequence.

In quantitative methodologies, particularly ALE based, risk exposure or also Annualized Loss
Expectancy is assessed in terms of monetary values by multiplying the Single Loss
Expectancy (SLE) and the Annual Rate of Occurrence (ARO) of an intrusive event. This was
largely criticized in other risk analysis methodologies [313], [365]. In fact, exclusive reliance
on such assessment of risk exposure provides a global insight and hides details of the actual
security strategy of the computing environment. However, hidden information is extremely
valuable to decision maker, security managers and other steps in the risk management process.

For instance, if the monitored computing environment is faced to the following situations:

Case 1: ARO =9 /year and SLE= 2000$

Case 2: ARO = 0.5/year and SLE = 36000 $
According to the ALE global assessment of the exposure, both situations have the same extent
because they ensure identical expected loss. Moreover, they should be similarly treated.
Nevertheless, decision maker and security managers consider the first case as the most
catastrophic and needs to be urgently addressed because it is associated with the highest

frequency. Furthermore, it may concern client database in e-banking environment or an access
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server of an Internet service provider. However, the second case corresponds to an ordinary
and manageable situation since it is associated with low frequency, even if it concerns highly
critical assets. Additionally, if the second case occurs for low criticality assets of the
organization, its treatment should be done after appropriate mitigation of high priority risk

associated to the first situation.

Other quantitative and qualitative methodologies determine the risk exposure level based on
predefined matrix. The exposure assessment matrix is formed by different lines and columns
associated respectively with scores or labels of threats likelihoods and assets impacts.
Expected risk exposure is identified for given labels or scaling values by the intersection
between the corresponding likelihood line and impact column as illustrated by table 5.1 [295],

[325].

In our risk model, the exposure of the computing environment is considered as a function of
the impacts of its assets and likelihoods of malevolent activities targeting them. Potential
damages of the target asset, due to supported vulnerabilities, are estimated based on its
expected value and required security services. Likelihoods of attackers’ actions are expressed
in terms of probability of a successful exploit of target asset weaknesses. Expected exposure
due to exercise of supported flaws by a given threat can then be determined, identically to
ALE based methodologies, a combination of above discussed risk elements or any other as
discussed in [55], [332]. In the proposed risk model, the exposure, X;;, of the target asset a; is

expressed using its impact, /;, and the likelihood of the mounted attack, ¢, L; 4.

X,, =f(I,L,) (53)

Near certainly

Highly likely

Likely

Low
likelihood

Likelihood

Improbable

Minimal Minor Major Serious Catastrophic

Impact

Table 5.1: Example of exposure matrix’

* An example of risk matrix for information system security available at: www.faa.gov
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5.3.5 Vulnerabilities severity

In information security context, the same attack causes variable losses even if it targets
comparable assets of two organizations in the same exploitation domain. This is closely
dependent to the target environment and attacker related factors. In fact, the consequence of
mounted attack is manageable if technical, operational and managerial controls of the target
computing environment are periodically revised. Nevertheless, if increasingly discovered
vulnerabilities are left without any remediation; malicious activities of an attacker could

probably cause catastrophic damages that can’t be supported by the target organization

Losses due to the malicious actions depend also on attacker capability, skill and experience,
and means. Expert attackers are able to carry out their intrusive actions even if only difficult
to exploit vulnerabilities are supported by the victim. Always, they use their proper attacking
toolkit either totally developed by them or partially modified Internet tools according to their
needs. Actually, wide variety and highly sophisticated attack tools available on the Internet

motivate even beginners and thoroughly assist them in mounting their attacks.

In addition, both classes of beginner and experimented attackers have an unlimited access to
detailed information, from trusted sources, on recently discovered vulnerabilities and their
potential exploit. They are capable to design the most appropriate strategy that supports their
motives and satisfies their objectives. Thus, their deliberated actions are becoming well

structured, precise and more devastating.

Attackers can identify multiple flaws of the victim relying on simple to use vulnerability
scanner tools. Based on their knowledge and discovered weaknesses, they try to determine
different attacking scenarios that fulfill their objectives. Generally, they look for scenarios
associated with a single vulnerability to minimize their logged traces. But, when such
scenarios are not available, they include sequentially exploitable vulnerabilities in designed
attacking scenarios to increase their success chance. Such aspect should be considered in
estimating potential damage of malicious events experienced by the target computing

environment.

Unfortunately, it is difficult to determine exact vulnerabilities exploited by an attacker. But, in
our risk model, vulnerabilities severity element tries to express above cited risk factor by the
mean of flaws scores. Such risk element gives an insight on the potential exploit of a
collection of supported flaws. It focuses on the extent of attacker opportunity to implement

deeper attack and inflict more damage to the target asset knowing its vulnerabilities and their
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severity scores. In fact, severity scores are available for disclosed vulnerabilities through
different normalized and public databases including National Vulnerabilities Database
(NVDB) and Open Source Vulnerabilities Database (OSVDB). They are calculated by
standardized vulnerability scoring systems such as the Common Vulnerability Scoring System

(CVSS) [88], [280], [284].

Vulnerabilities scoring systems are proposed and implemented by trusted organizations such
CC-CERT, NIST, SANS, Microsoft and others. Their main objective is to provide
information technology managers with required information to prioritize and remediate most
damaging technical flaws [74], [271]. These systems process nearly real-time disclosed
vulnerabilities. Moreover, they are associated with comprehensive historical databases that
save traces of discovered vulnerabilities. These databases are publicly available. Besides, they
are structured according Common Vulnerability and Exposure (CVE) naming standard that

recommends an extensive set of features to describe technical vulnerabilities [87].

Several public and proprietary scoring or rating systems have been implemented. US-CERT
system ranks discovered vulnerabilities using severity scores ranging from O to 10. For this
system, scores are determined based upon different factors which are dependent to
vulnerabilities, their environment of exploit and effects on Internet infrastructure [256], [394].
CERT system was considered as threat oriented rather than vulnerability oriented because it
focuses on general factors that fail to ensure standard scoring of different vulnerabilities.
Moreover, it provides security managers with general threat level to given vulnerability which
is not effectively useful for prioritization and remediation ends [140]. The SANS vulnerability
analysis system concentrates on flaws origins and their criticalities. The Symantec proprietary
system determines vulnerability severity scores based on access levels required to exploit
discovered flaw and its impact on the target asset [380]. The security response group of
Microsoft manages its own rating system that prioritizes user reported vulnerabilities based on

their exploitation and impact levels [82], [259]

Above discussed scoring systems are not normalized. They support different weaknesses
either in considered factors about vulnerability or scoring process itself. The majority of these
systems include few vulnerability features in their scoring processes which are not appropriate
in rating flaws of different categories. The single standardized scoring system that overcomes
these shortcomings is CVSS (Common Vulnerability Scoring System) of the Forum and

Incident Response and Security Team (FIRST) [82].
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CVSS is the most widely accepted scoring system managed by FIRST. It reinforces the
vulnerability management policy of the organization by adopting harmonized scoring process
for all of its software vulnerabilities. CVSS is based on standardized scoring process. It offers
an open framework that allows a detailed description on how determining scores of different
vulnerabilities. Several organizations use CVSS for publishing their vulnerability bulletins,
communicating severities of vulnerabilities in their commercial products or managing flaws
of their operational software. CVSS scores and processed vulnerabilities are publicly

available in different databases such as NVDB, OSVDB and bugtrack [59], [280], [284].

CVSS severity scores are determined using a numerical scale of 0 to 10. They are based on
three relative scores associated with considered metric groups. Basic metric group concerns
constant vulnerability characteristics over time and across computing environments. These
metrics include access vector, access complexity and impact. The temporal metric group
instead focuses on vulnerability features that change over time. Exploitability and remediation
factors of this group emphasize changes respectively in the available exploitation technique
and remediation status of discovered vulnerability. Metrics of the first two groups are
determined when vulnerability bulletin is released by software vendors or security analysts.
The last group of environmental metrics concerns features related to vulnerability context
within the organization. Metrics of this group are evaluated by users of the computing
environment. They aim at integrating organization specific features in scoring process. Last
two groups of metrics are optional for all vulnerabilities. But, metrics of the first group are

critical in computing CVSS scores.

In the proposed risk model, potential effect due to multiple exploits was included. Its detailed
estimation is not feasible since complete data on attack stages and exploited vulnerabilities are
not available. We propose a partial approximation of such effect by considering a global
severity factor of supported vulnerabilities. Such risk element broadly resumes offered
opportunities to threat agent to make deeper attack. Moreover, it informs on the extent of
possible damage when an attacker has the potential to exploit more than single flaw of the
target asset. Global vulnerabilities severity factor of the proposed model will be determined
based on supported flaws of the target assets, their CVSS scores and common weaknesses of

NVDB and OSVDB databases.

In this work, severity factor is computed for each asset of the computing environment.
Initially, supported vulnerabilities of the target asset are discovered using widely available

automated tools. Then, severity scores of identified flaws are evaluated. Before this,
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discovered vulnerabilities are dispatched between different groups of the second flaw
classification, considered by our risk model. This categorization is based on NVDB. It
identifies patched, unpatched and unresolved vulnerabilities of those discovered in the
computing environment. It solely focuses on the gravity of potential damage associated with
different vulnerability groups. Several criteria can be considered in this step including the
efficacy of available countermeasures [9], [26], the level of exploitation potential [397] and
general popularity, with consideration of top ranked vulnerabilities of SANS [74]. According
to selected criteria, each of identified vulnerability groups is associated with a weighting
coefficient that ranges from O to 1. These weighting coefficients are determined relying on
worldwide information. They are proportionally assigned depending on potential damage
possibly incurred due to the exploit of vulnerabilities of the corresponding group [10]. The
overall flaws severity of the target asset is determined as a weighted sum of relative severity
factors of considered vulnerabilities groups. This is summarized by the process presented in

section §5. 4.2.
5.3.6 Controls effectiveness

The negative effect of different threats experienced by computing environment assets can be
reduced relying on multiple categories of security controls. For federal organizations, NIST
has imposed minimal required security controls. The basic control collections of federal
organizations consist of managerial, operational and technical countermeasures [248], [249],
[260]. Managerial or organizational controls focus on security policies, guidelines and
standards that protect and preserve organization mission continuity. Operational controls
mainly concern physical countermeasures that ensure consistency and uniformity in security
operations. Technical safeguards are required to protect critical and sensitive information and
information systems. Each of identified three categories supports preventive, corrective and

recovery security controls.

Within this context and to ensure continuous monitoring and revision of the computing
environment security state, NIST has presented a guideline for assessing security controls in
federal information systems. This guideline helps organizations in evaluating proper
implementation, operation and effectiveness of their security controls. Highly structured
process of the guideline conveniently assists security practitioners in conducting safeguards
assessment starting by the preparation and development of assessment plans until post-

assessment and report analysis [323]. Other security audit methods such as CRAMM and
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ISRAM allow measurement of countermeasures effectiveness as recommended in standards

of the ISO-27000 series [85], [80], [115], [173], [175], [216], [367].

In assessing effectiveness of functional security controls different features, related to the
safeguard or its environment, should be considered. Correctness attribute is concerned with
implementation flaws of countermeasure. Strength of security control reflects both its
capacity to resolve supported vulnerabilities and attacker effort and capability to reach his
objective. Control function feature determines the types of ensured protection, preventive,
corrective or recovery [38]. Other features can be considered in addition to those previously
discussed including configuration flaws and dependence between safeguards. Such extended
feature set ensures a stringent assessment that addresses countermeasures implementation,
operation and returned services with consideration of confidentiality, integrity and availability

requirements of the computing environment.

In this context, controls effectiveness estimation should not be based specifically on collected
data either within the organization or from controls vendors. Both sets of collected data are
complementary and should be considered to evaluate effectiveness of current security strategy
and its controls. Moreover, assessment of security controls involving collected datasets and

discussed features can be conducted manually or using automated tools.

Safeguards effectiveness can be determined using an automated tool such as ASSET of NIST.
This tool is associated with the guideline of [341]. The recommendations of the guideline
impose a normalized approach for security self-assessment for federal organizations in order
to determine current status of their security programs and plan potential improvements.
Moreover, ASSET is useful in evaluating technical controls even if their assessment process
is more complicated than managerial and operational countermeasures. As stated in [151],
[323] effectiveness of installed managerial, operational or technical security controls can be
estimated relying on an assessment process, including ASSET process, in conjunction with an
approved security plan of the organization. In fact, the security plan provides security assessor
with detailed description of installed and planned security controls with respect to
recommended security baseline [248], [260]. Another possible way to measure security
controls effectiveness focuses on audit reports. This alternative is based on manual processing

of detailed information on installed safeguards provided by audit reports.

Among discussed alternatives to gauge security controls effectiveness, the last one is the
simplest and widely accepted regarding objectivity and confidence of audit reports. Moreover,

it was mentioned in risk management and best practice standards [80], [175] not only due to
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availability of audit reports even for private organizations, but also for multilevel assessment
ensured by security audit mission. Additionally, control assessment in security audit is
achieved by considering both benchmarks provided by developer and configuration of the
target system, with respect to its security requirements. Actually, information security systems
of any organization should be audited at least twice a year by internal and external certified
auditors as imposed by national and international regulation [22], [118], [174], [282]. An
audit report of each mission is composed of two main parts that focus respectively on nominal
and technical audit [313]. Nominal audit is concerned with organizational and procedural
aspects of managerial, operational and technical security controls. Technical audit instead
addresses implementation, operation and outcomes of different categories of safeguards.
Multiple penetration testing scenarios are experimented in this part to technically evaluate the
resistance of deployed security strategy. Both parts of audit reports, in addition to security
expert recommendations and worldwide information, are required for a coherent assessment

of countermeasures effectiveness.

In the proposed risk model, we focus on security controls of different categories. The
estimated effectiveness of controls are interpreted as their reduction factors that shrink the
exploitability extent of supported vulnerabilities and decrease attackers opportunities to
successfully execute intrusive actions. Reduction factor values range between 0 and 1. Based
on available data, they are determined for different flaw categories as presented in table 5.2.
This vulnerability-safeguards matrix involves flaws categories determined based on their

exploit objectives.

Table 5.2: Security control effectiveness by flaw category

Flaws Controls
categories S . S . SL
VI
e e e
r
\% ey | o | €| ... | €Ly
VR €1 R €R | --- | €LR
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Where, ¢;, is the expected effectiveness of the security control s; against vulnerabilities of the
category V', e;, € [0, 1] and ¢;, = 0, if the control s; is not applicable in reducing the exploit

of vulnerabilities of the class V" .

The relative effectiveness of single control s; to defend against vulnerability set V; of asset a;,
is evaluated by considering different categories that compose V. Assuming that n;z flaw
categories are included in V;, the mean effectiveness of the security control s; against exploits

of vulnerabilities supported by the asset a; is ej; :

e =1n e, (5.4

Assuming that the initial security strategy, SS;9, associated with the asset a;is composed by /;
independent controls. Its relative effectiveness against supported vulnerabilities of a; is

estimated by eg,, :

e, =1=7g, (5.5
75 , corresponds to the bypass rate of the initial security strategy, SS;o, of the asset a;

regarding categories of its supported vulnerabilities. It is determined by the mean failure rate

based on the above matrix as follows:
”SS[‘(] = l/ni,R Zﬂ-jqr (56)

where 7, assesses the failure rate of SS;, with respect to single vulnerability category, V",

of a;. It is interpreted as the probability of potential exploit of any vulnerability, v;e V,", of
the victim. It is estimated using table 5.2 by:

i
7, =[]t-e, 67
l

Additionally, an asset is targeted by an internal or external attackers depending mainly on its
attractiveness and supported weaknesses. But, despite of its high profitability for attackers, it
remains unreachable by them while supported vulnerabilities are appropriately fixed. Thus,
the probability of targeting an asset depends roughly on the failure of its security strategy.
Such probability can be estimated using the failure rate of deployed security control
combination to protect the target asset as discussed above. The probability of targeting given
asset, a;, of the computing environment that supports security strategy SS;o can be

approximated by the overall probability of failure of all its controls.
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5.4 Basic risk evaluation

The basic risk of the asset a;, Ri‘: , due to mounted attack ¢, depends on its exposure,

vulnerabilities severity and controls effectiveness. It is expressed by the function & as follows,
given that: ¢, : a threat targeting a;,

Vi : a set of supported vulnerabilities by a;,

W; : a vector of weights associated to security concerns of a;,

SS; 0 : the initial set of security controls deployed to protect a;.

R'? = CI)(Xi,q’Yi’Zi,O)

Xi,q = f(li’Li,q)
Iizfl(Ui’VVi"/i) (.8)
Y, =g(v,,A)

Z= h(Vi’SSi,o)

where:

Xiq : the exposure of the asset g;, given that the threat ¢, takes place, determines the
expect loss of the target asset due to the mounted attack. It is a function of the overall

impact factor of the asset a; and the likelihood of the threat c,.

I; : the overall impact factor of the asset a; represents the expected loss due to potential
exploit of supported vulnerabilities. It depends on asset value, U,, its supported flaws,

Vi, and considered security services, W;.

L;4: threat likelihood reflects how likely an attack, c¢,, has a negative effect on the
victim, a;, when occurring. Its estimation is based on the probability of occurrence of
¢4 and failure rates of deployed security controls, on the target asset, to defend against

an exploit of searched flaws of a;.

Y;: severity of vulnerabilities of an asset expresses to which extent the mounted attack
has the opportunity to inflict more damage. It is determined based on supported

vulnerabilities, their CVSS scores and gravity weights, A, of considered flaws groups.

Zio: effectiveness of the current security strategy of the asset a; represents the
defensive capacity of the target asset. It is estimated using the relative effectiveness of

installed security controls, SS; ¢, with consideration of supported vulnerabilities.

5.4.1 Risk exposure evaluation

Risk exposure arising from mounted attacks should be determined based on an appropriate

combination of estimated threat likelihood and expected potential damage of the target asset.
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In this work, the function f implements such combination. The simplest way to combine both
risk parameters with respect to ALE standard is the product function. The potential expected
loss due to mounted attack and its impact on the target asset is calculated as follows:
X, =f(I.L,)
N (59
=1 XL,
i i,q9
Considered risk elements, asset impact and threat likelihood, are determined based on

identified parameters of respective sections 5.3.2 and 5.3.3. Their estimation steps are

discussed in following two sections.

5.4.1.1 Impact estimation

The impact of an asset is determined based on (5.1) as previously discussed. It is estimated in
terms of confidentiality, integrity and availability losses, as recommended in [175], [282],

[340], with consideration of asset value and supported vulnerabilities.

Ii=fi(Ui, W, Vi)

U;: asset value is estimated based on business income, B;, and operating cost P; of the asset g;

Vi: set of supported flaws by the asset a; identified and reported by a vulnerability scanner
W; : weights of security requirements for the asset a;. Such vector can be estimated before
determining the value of an asset relying on the security policy and asset classification, if

exists.
a) Asset valuation process

In this step, asset valuation process supposes that the organization is structured into different
business function each of which is composed of several business processes. Each business
process uses a subset of assets associated with the business function to implement one of its
activities. In this context, asset value can be determined based on its contribution in different
business functions and by considering its business value. The annualized business value of a
given asset ; corresponds to the difference between its total annual revenue and total annual
cost of acquisition and operation [216]. Additionally, in real time environment, the daily
worth of an asset can be determined by dividing its annual business value by the number of

business days in a year.

In the proposed valuation process, business income of an asset should be determined using
annual revenue of the organization and assets importance coefficients. The annual revenue of
an organization corresponds to the sum of the incomes of all its business functions. Within

each business function, different weighting coefficients are assigned to assets to express their
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importance in achieving its objectives and implementing its activities. The importance
coefficient of each asset is determined by considering its weights over all business functions
that implement the organization’s mission. A simple process to appraise asset values based on

chosen approach is given below:

B; : total annual revenue of the asset ¢;,

P; : annual investment cost of the asset a;,

B : total annual revenue of the organization,

BF : set of business functions of the organization,

n s importance or criticality of the business function f to the organization’s mission,
Ay: set of assets required to achieve the business function f,

& weighting coefficient that assesses the degree of involvement and the importance
of the asset g; in fulfilling the business function f,

d: number of business days in a year,

U. :annual business value of asset a;,

1
up: daily business value of asset a;,
& : importance coefficient of asset a; over all business functions in which it is involved.

Asset value determination process
1-determine normalized importance coefficient, 8?’ of the asset a;:

1-1: compute importance coefficient of a; over all business functions €, = Zn &g
f

1-2: compute normalized importance coefficient of a; over all assets in A = U As,

!
e’ = 8,./ D,
j
2-evaluate B, = BX va
3-determine U, = B, — P,
4-compute U” =U, /d

U?P is useful for loss determination in our real time system after the estimation of the impact
factor of mounted attack and number of days required to repair damaged asset. However, it is
enormously difficult, in the information security domain, to estimate the number of days to
recover normal function of the computing environment due to the complicated nature of

mounted attacks, either if the victim is completely replaced.

In the proposed risk model, asset value is required to assess inflicted damage by the mounted
attacks. It may be estimated based on the annual business value and operation cost of the asset.
It merely corresponds to the difference between these monetary values as given by the

following formula:
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U =B —-P (510)

b) Impact factor determination

Different security services are required by assets of the monitored computing environment.
Commonly considered security principles in security policies and security reports, such as
audit or security plan or risk assessment, include confidentiality, integrity and availability
(CIA). Other security services can be added to these including non-repudiation and
authenticity depending on the target asset and the organization’s mission. In this work,

specifically, these three common security concerns are included in determining impacts of
targeted assets. Their relative impact factors given by the vector I'i=c %1 %2, ¥3>,

respectively for confidentiality, integrity and availability impact factors are estimated for each
victim a;. These factors express fractions of potential loss interpreted as a failure in fulfilling
associated security concerns for the target asset. In our risk model, they are determined using
impact scores given by CVSS for supported vulnerabilities, vie V;, j=1..1V|l, as discussed in
section §5.3.5. Impact scores present potential effects of considered vulnerabilities on CIA
services using numerical values scaled between O and 10. Confidentiality, integrity and
availability impact factors for a given asset ¢; are estimated based on supported vulnerabilities

as follows:

1 .
Vin = VV;\/[[SM (5.11)

1

where:
Y:.»: the impact factor of the asset a; associated with the n™ security service
| Vi 1: the size of V,, set of supported vulnerabilities of the asset a;

isj,,: normalized impact scores in terms of n™ security principle, associated to the
vulnerability j, (impact scores of vulnerability j on confidentiality, integrity and
availability requirements divided by the maximum score). Scores, is;, are available
for each vulnerability v; through the CVSS scoring system.

Security concerns are not uniformly important for all assets within the organization. But, their
relative importance depends on the target assets and business functions involving these.
Several assets require only integrity and availability such as DNS database either in e-banking
or ecommerce systems. Others specifically need availability including printer and routers.
Such context dependent aspect is considered in the proposed model. Different weight
coefficients are associated to impact factors to bring out the relative importance of considered

security concerns of the target asset. These importance coefficients are determined by experts
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based on security requirement of the business function that involves the target asset. They
correspond to the values within the interval [0,1] given by the vector W;. The overall impact
factor, Ti, of the asset a; based on its supported weaknesses and its requirements in terms of

considered security principles is determined by the following formula:

T, =27, W, (12

where :

W, a weight coefficient of n'" security service required by the asset a; n=1..3, for
basic security principles of CIA.

The overall impact factor of an asset estimates the fraction of its value that can be lost due
supported flaws. Based on the value and the impact factor of an asset, its potential loss due to
flaws exploit can be approximated by a product function as follows:
I.=f(U,W,V.)
1 A

:WUi ZH“Zj:Wm ;. (5.13)

=1, XU,
5.4.1.2 Threats likelihoods estimation
Threat likelihood, L;,, expresses how likely threat ¢, occurs and impacts the asset a; regarding
its current security state. It can be interpreted as the probability that threat ¢, has a negative
effect on asset a; when occurring. But, negative effect arising from any threat has always a
single source which is exploiting supported flaws of the victim. In the proposed model, the
likelihood of a given threat is thought of as its probability of affecting or causing damage to
the target asset. It is expressed in terms of probabilities of occurrence of threats and their

opportunities to affect target assets as follows:

Li,= p(c, affects a;)
p(cqoccurs ) p(c, affects a; given that ¢, has taken place)
= p(cy) p(cq affects a; | ¢,)

p(cy): the probability that threat ¢, takes place. This probability is determined by the
multimodel analysis and detection engine that process events and monitor security of the

target asset in the computing environment

p(cy affects a; | ¢,) expresses the opportunity of an attacker to bypass current security controls

of the target asset and exploit at least one of its supported weaknesses. It can be estimated
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relying on the failure rate of currently deployed security strategy, to eliminate supported flaws
of the target asset a;, with respect to potentially exploitable vulnerabilities of the identified
threat ¢, .

Supposing that threat ¢, exploits different vulnerabilities of classes given by
A :{ Vql,...,Vq"k"‘} and a; supports flaws determined by classes of V© :{Vi‘,...,Vi"“’},
potentially exploitable weaknesses by threat ¢, when targeting a; belong to classes given by
Vl.f] =VS ﬁVqC. By considering the current security strategy of the asset a;, SS;o which is

composed by /; security controls, and supposing independence between included vulnerability

classes, the probability that ¢, affects a; when occurring can be gauged as follows:

p(c, affects a,/c, )= H 7z, (5.15)

vv'e v<

iq

Where 7, . is the failure rate of currently deployed security strategy of a; with consideration

ir

of vulnerabilities of class V" . It can be estimated using the effectiveness of controls that
compose the deployed security strategy using (5.7), as discussed in the previous section §

5.3.6.

In our risk model, threats likelihoods are determined as follows:

L = p(c, affects a,)
=pep [T m, 19

5.4.2 Vulnerabilities severity estimation

Vulnerabilities severity element of our risk model depends on supported flaws of the target
asset and their severity scores, according the CVSS system, and actual remediation states.

After discovering flaws of the considered asset, three main groups are identified. Patched and
unpatched groups, respectively V,”and V,”, focus on weather resolved vulnerability, by the
manufacturer or developer, are effectively corrected or not in the target asset. Unresolved
vulnerability group, V", includes flaws for which technical countermeasures still unavailable.
According to [26] vulnerabilities of the second group are the most searched by attackers.

Vulnerabilities severity parameter allows partial information on the gravity of damage when

an attacker has the potential to exploit more than a single weakness of the victim. It is

determined using a weighted sum of scores over discriminated vulnerability groups. The main
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steps of vulnerabilities severity computation process for the proposed risk model are

presented by the activity diagram in figure 5.5.

In this process, vulnerabilities of each asset, V;, can be discovered and reported using
automated tools such as ISS, RealSecure or Cybercop. For each vulnerability, vieV;, its
severity score is determined based on public databases such as NVDB and OSVDB that in

turn save CVSS system assessments. Then, it is assigned to one of the considered groups

in ,V.°, namely patched, unpatched or unresolved, V.9 ={ V", V" V" }, relying on its
remediation state. The latter depends on availability and implementation state of
recommended countermeasures. Identified vulnerabilities of different groups are involved in

evaluating relative severity scores of considered groups. After that, a weight vector A,
A=<A,,A;,A, >, associated to V.%is determined by security experts. It reflects the world
wide gravity of exploiting vulnerabilities of each group, V' < V., r=1..3. Both, relative

scores and weighting coefficients will determine severity scores of vulnerabilities of different

groups as illustrated by figure 5.5.

Public vulnerability
databases: NVDB and Vulnerability scanner
OSVDB reports
Determine normalized Identify vulnerabilities of
score of vulnerabilities, considered groups,
VeV, Ve = e, V?, 1748}
Supported
vulnerabilities by the
asset a;, V; ={v;}

Compute relative

Gravity weights of
vulnerability groups,

A=< 7\,[7,7»77,7\‘“ > groups of V,.G

severity scores, Y, . »0f

Determine vulnerabilities
severity factor of a;, Y;

Figure 5.5: Vulnerabilities severity determination process
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The severity factor of supported flaws of the target asset a; is estimated by the latter process

using the following formula:

Y, =g(V,,4)
= 247, 617
vicve
e
Yi,r:?gsrj

Where:
Y; : vulnerabilities severity of the asset a;

A, weighting coefficient of flaws of the groupV ", determined based on world wide

information including public databases, security reports and expert recommendations
srj:normalized severity score of vulnerability v; of the group V", vie V"

Y;, : mean normalized severity scores of flaws of the group V', V' < VI.G.
Yi, A, srjand ;€ [0,1],and Y A, =1

Another group of secret vulnerabilities can be considered in the severity determination
process. It concerns unpublished flaws either accidentally, due to lack of thorough test of self
developed software, or deliberately because of fear to negatively influence customer trust.

Weaknesses of this group can be easily identified using existing vulnerability scanners

Moreover, the vulnerability popularity feature is useful in measuring flaws severity. Such
attribute was introduced by US-CERT and used in OSVDB and SANS [74], [394]. It
addresses to flaws ranking by considering either the most searchable weaknesses identified by
SANS or the most frequently checked vulnerabilities presented by OSVDB [284], [336].
Furthermore, elapsed time between disclose and resolution of vulnerability can serve as a
good indicator of vulnerability severity because, as illustrated in [26], attack frequency

remarkably increases, for a short time period, just after the publication of patches.
5.4.3 Controls effectiveness approximation

Controls effectiveness is a risk element that addresses the extent to which vulnerability
severity and exploitability are reduced and attacker’s opportunity of success is shrunken. The
effectiveness of security strategy of a given asset is determined with consideration of different
supported flaws. In the proposed risk model, it is estimated relying on the efficacy of each
countermeasure of the deployed security strategy with respect to considered vulnerability
categories. Effectiveness matrix of table 5.2 that links between vulnerability categories and

operational controls is defined for this aim. It is involved in assessing the overall effectiveness
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of current or planned security strategy with respect to selected controls and supported

vulnerabilities.
In our risk model, controls effectiveness estimation takes account of:

SSio: set of dedicated or shared security controls associated with the asset a;, a; € A

and SS,',() ={S1, NAS] SC}

Vi : set of vulnerabilities supported by a;, that can be structured into n;, different

categories based on exploit objective, with respect to those initially considered

The effectiveness of deployed controls, Z; , is expressed as follows:
Zi,O = h(‘/i’SSi,O)

“1-ln, S, (18

r, YV eV

where T, represents the expected failure rate of deployed security strategy associated with

the asset a; regarding its vulnerabilities of category V" . This rate is estimated, as discussed in
section §5.3.6 using (5.7), by considering the single remediation effect of each control s; of

S8 0 on given vulnerability category as follows:

L
ni,r = H(l - el,r)
!

where, /; : the size of deployed countermeasure set, S, o,

ey the expected single effectiveness of control s; against supported vulnerabilities of
the category V' as determined by table 5.2.

5.4.4 Basic risk assessment

The basic risk of an asset or a computing environment evaluates its actual security state with
consideration of unmanageable factors namely internal and external threats. In this model,
basic risk of target asset a; is estimated by combining its exposure, X;, vulnerability
parameter, Y;, and effectiveness of current security strategy, Z;o. The three risk parameters on
which is based our model are approximated, as discussed in previous sections, using

following formulas:
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Xi,q :f(li7Li,q)
:Lxgﬂ
Y, =gV, A)
= Av.
Z ryl,r (5.19)
Zi,O = h(Vi’SSi,o)

Mir
= 1 - 1/ni,r zﬂ’-i,r
r

However, the exposure parameter should be evaluated with respect to Q; mounted attacks on
the target asset a;, determined by the sequence 7;, within a given time interval:
X, =10 > X, (520
c,€T;
The basic risk of an asset is estimated by a combination of identified parameters as expressed

below by:

RiB:cI)(Xi’Yi’Zi) 5
21
=X, x Y x(1-2,,) OV
Where (1-Z;y) expresses the estimated failure of deployed security strategy of a; against
detected threats. The overall basic risk of the computing environment that has N, targeted

assets, AD A, = {al geres Qpyenes Ay }, by different attacks is estimated by:

NI
R* =Y R/ (522

The assessed basic risk of the monitored computing environment is then considered by the
treatment component of the proposed risk management model. Treatment option selection and
implementation are the main issues addressed by this second component as discussed in the

following section.
5.5 Risk treatment

The risk management process is based mainly on two components. The risk assessment
component focuses on analysis and evaluation of risks inflicted by different threats. It
identifies risk elements and determines their variables to be considered in the evaluation step.
The risk treatment component instead is concerned with post-evaluation steps. It addresses

two main steps of treatment option selection and implementation [175], [325].
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The risk treatment component of the proposed management process imposes risk
prioritization before implementing the selected treatment option. Such step is required to
guide the mitigation process and choose appropriate treatment activities to the identified risks.
Priorities can be determined by the organization’s managers and decision makers or merely by
ranking evaluated risks. Other techniques such those discussed later in this section are useful

in prioritizing risks of the computing environment.

Risks priorities and other factors such as expected investment costs and benefits are included
in deciding which treatment option will be selected and implemented. Risk mitigation is
possibly achieved by adopting different options including avoidance, transfer, retention or
reduction. Avoidance option is selected when treated risk is excessively high and
implementation costs of other options exceed their benefits. It imposes the elimination of risk
causes or consequences or both [325]. Risk transference option ensures transfer of losses to
other organizations, outsourcing companies or insurance agencies, which are capable to
manage and reduce risks to meet an acceptable level (acceptance criterion). Risks are retained
if their damage costs are manageable and do not exceed tolerated risk level of the organization.
Reduction option involves the selection of appropriate managerial, operational and/or
technical controls to reduce assessed risk and ensure its acceptance regarding the tolerance

level of the concerned organization [80], [175].

In our work, risk treatment solely focuses on reduction option. The proposed risk mitigation
process is capable to determine optimal security strategies to defend against detected attacks
with respect to the tolerated risk level and available security budget of the organization. The
selected security strategies consist of combinations of security controls. They are effective in
impeding supported vulnerabilities exploit by mounted attacks. Selected security controls of
these combinations are identified among those recommended by security experts with respect
to security policy specification and the appendix A of the ISO 27001 [173]. Recommended
subsets of countermeasures are saved by the idrs knowledge base. They concern different

attack classes considered by our idrs framework.

Our mitigation process determined cost effective control combinations, based on
recommended subsets. In previous works, mitigation processes identify appropriate security
solutions in terms of residual risk [219], [229]. But if two or more security strategies have the
same reduction effect on current risk, they will be identically rated according the single
decision criterion used in [229]. The proposed risk mitigation process presents a refined

solution to such problem. It includes another decision criterion, the security investment cost,
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in its optimization function, in addition to that commonly considered. Thus, it sifts candidate
security strategies to identify the best one that meets both decision criteria. Furthermore,
identified security strategies minimize risk cost that concerns both residual risk and
investment cost. In this step, other criteria that concern conflict and compatibility between

controls can be considered to thoroughly identify appropriate combinations.

The cost effective control combination, presented by our incremental and iterative mitigation
process, is identified by minimizing both residual risk and security investment cost. The
residual risk of the computing environment corresponds to the unmitigated fraction of
assessed risk by selected security strategy. It is estimated relying on the basic risk of the
computing environment, R®, and potentially deployed security strategy on it, SS. It is

assessed using the following formula:

Rf =w(R",SS
=Yl o) (5.23)
=R%(1-2,)
Where Z; corresponds to the estimated effectiveness of the security strategy SS in protecting
against exploit of vulnerabilities supported by victim assets in the set A,. It is estimated by the

mean effectiveness overall target assets of A; using:
NI
Z,=1-1/N, > ns  (524)

where T, is an estimation of the failure rate of the security strategy SS;«C SSi in defending

against attacks targeting any of supported vulnerabilities of the asset a;€A,. It is determined
based upon identified categories of a;’s vulnerabilities and elementary effectiveness of

controls in SS;y, as presented above in section §5.3.6

Security investment cost, to mitigate current risk experienced by assets of the computing
environment, corresponds to the cumulative expected costs of acquiring, installing and
maintaining selected security controls. It is estimated using global expected costs of

countermeasures of SS, composed by L; safeguards, as follows:

A(SS,) =385, ) 525)
1=1 .
:(Dk

Where 3(s)) is the expected cost of the security control s; of SS;.
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The proposed process is based on the following optimization function to identify optimal

control combinations:
Minimize W(R",SS,) =R + ®,

Subject to:
1) Rf<7
2) o <P
Where T and P are respectively the tolerated risk of the target computing environment and

the allocated security budget to secure it.

Our risk treatment process prioritizes risks, and consequently target assets, before designing
candidate security strategies. It is based on prioritizing factor that ranks risks by jointly
considering the target asset criticality and its damage degree. Such factor is useful in
identifying the most serious risk to be immediately addressed. These risks are generally
experienced by the most critical assets which are served in the first line by this process. Such
aspect remains unreachable if using other ALE based risk management methodologies, even if
supported by automated tools. These methodologies lack required flexibility to ensure a clear
discrimination between catastrophic and manageable risks which is extremely important in
mitigation step as discussed in section §5.3.4 and stated in [365]. Moreover, priority factor
integrated in this mitigation process ensures treatment of all other preponderant risks before

less significant ones.

Rather risks prioritization, our proposed treatment process takes account of global constraints.
These constraints concern reached risk cost due to the designed security strategy. On one hand,
they ensure low residual risk that shouldn’t exceed the prespecified tolerance level,T. On the
other hand, they impose acceptance of selected controls cumulative costs with respect to the
allocated security budget, B. The proposed treatment process imposes different tolerance
levels respectively to assessed risks with respect to target assets. Each asset considered by the
process is assigned with a tolerated risk level that reflects its importance, within the
computing environment, and security needs. Determined tolerance levels are inversely
proportional to computed priorities, such that, the most critical and damaged asset is
associated with the lowest acceptance level. Such constraint is imposed in our mitigation
process for many reasons. It ensures the maximum security to highly critical and damaged
assets by incrementally designed security solution. Moreover, it allows the development of

context dependent security strategy that serves serious risks in the first rank. Additionally, it

218



CHAPTER 5: Risk driven response, the idrs risk management model

gradually treats low priority damages to overcome the overall risk of the computing

environment and meet security budget criterion.

The proposed mitigation process is incremental and iterative. Each increment is concerned
with the security requirements of a single asset; whereas, an iteration corresponds to a single
execution of the optimization process. An increment treats security risk experienced by the
considered asset with respect to its priority factor and security strategies of previous
increments. High priority risks are mitigated first with consideration of low tolerance levels to
simultaneously ensure maximum risk reduction and global constraint satisfaction. Their
remediation security strategies, if applicable, are imposed on low priority damages. Within
each increment, multiple iterations of the optimization process can be performed depending
upon identified candidate security strategies, their costs and residual risks. Iterations of an
increment focus on relaxations of tolerated risk constraint. Different tolerance levels below
the overall acceptable risk are considered. Gradual checking of different tolerance levels by
increment’s iterations ensures thorough sweep across candidate solution space and increases
the chance to meet global acceptance criteria, residual risk and security investment constraints.
However, the collective failure of iterations, when mitigating high priority risks, means that
no feasible security strategy exists, regarding the recommended control set. Then, risks of the
computing environment are irreducible to the imposed acceptable level using the available
security budget. In this situation, even the treatment of low priority risks has no chance to
satisfy imposed constraints and preserve vital business functions of the organization because
serious damages are left unmitigated. The main steps of the proposed risk reduction process

and their associated activities are summarized by figure 5.6.

As depicted by the diagram of figure 5.6, the risk mitigation process consists of three main
composite activities of initialization, increment risk treatment and security strategy evaluation
and selection. The initialization activity focuses on prioritizing risks and determining
tolerance levels. It takes account of assets in A,, targeted by detected attacks. Each asset, a;e

A,, is associated with a basic risk and criticalit