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Sciences et Techniques de l’Informatique Décisionnelle (STID)

Option

Informatique et Gestion de la Connaissance (IGC)

PREFERENCE REPRESENTATION IN THE POSSIBILISTIC
FRAMEWORK
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Introduction

Preferences are usually expressed by means of pieces of information in a local manner,

rather than as a complete preorder between the different possible states of the world. This

state of fact has led AI researchers to propose compact representation formats for pref-

erences and procedures for computing a plausible ranking between completely described

situations from such representations, in the last fifteen years. Conditional preference net-

works (CP-nets for short) (Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004) have

emerged as a popular reference setting for representing preferences, leading to different

refinements (Brafman & Domshlak, 2002; Wilson, 2011), as well as some alternative ap-

proaches (Bienvenu, Lang, & Wilson, 2010; Dubois, Kaci, & Prade, 2006; Kaci & van der

Torre, 2008; Benferhat, Dubois, & Prade, 1999). See (Domshlak, Hüllermeier, Kaci, &

Prade, 2011) for a brief overview. Inspired from Bayesian nets, CP-nets inherit from their

graphical nature, and besides, rely on a simple, apparently natural principle, named ceteris

paribus, which allows to extend any contextual preference “in context c, I prefer a to ¬a”

(denoted for short c : a � ¬a), to any particular specification b of the other variables

used for describing the considered situations, i.e., the preference is understood as ∀b, cab
is preferred to c¬ab.

The CP-net approach perfectly exemplifies the ingredients needed for a satisfactory

completion of preferences, stated in a possibly conditional manner, into a preorder useful

for a user: i) a simple representation setting, preferably having a graphical counterpart

for elicitation ease, ii) a natural principle for making explicit the preferences between

completely described situations, and iii) an algorithm for determining how to compare two

complete situations according to the existence of a path of worsening flips linking them.

In spite of their appealing features, CP-nets have some limitations. First, there exist

preorders that make sense and for which there does not exist any CP-net that can be asso-

1



Introduction 2

ciated to them. Moreover, they tend to force some debatable priorities between preferences

associated to nodes in the CP-nets, beyond what is really expressed by the preferences one

starts with (Dubois, Prade, & Touazi, 2013b; Kaci & Prade, 2008). Therefore, we as-

sumed that having a synthetic comparison between all the existing methods is convenient.

First, to underline the different characteristics of each method. Second, to highlight their

limitations. Then to propose an approach that is able to overcome almost all the problems.

In this report, we advocate possibilistic networks as a valuable tool for representing

preferences. First, possibilistic nets are an exact counterpart of Bayesian nets in possibility

theory, based on a possibilistic Bayesian-like conditioning rule. Although they have been

only used for uncertainty modeling until now, they can serve preference modeling purposes

as well, as shown in the following, without having the CP-nets limitations detected. we

also provide a comparison between different ordering models of preferences.

This master thesis is organized into 4 chapters. Chapter 1 provides a background on

CP-nets and their algorithms. Then chapter 2 proposes a general overview of the possibility

theory and the different possibilistic formats for preference modeling. Chapter 3 presents

a comparative discussion between the possibilistic framework for preferences and the CP-

nets where the main differences are outlined. Finally, chapter 4 describes the proposed

model and establishes some properties.



Chapter 1
CP-nets: Reasoning under the Ceteris

Paribus principle

1.1 Introduction

In several domains it is very important to assess the users’preferences. Such representation

of preference ordering form an important task of the automated decision tools. Generally,

all the available decisions or actions are fixed and the only inconstant component in the

process is the preferences on whose behalf a decision is being made. This task is mainly

arduous and many sophisticated techniques exist to achieve it. Ideally, a preference repre-

sentation should capture statements that are natural to the users to asses and reasonably

compact.

One of the most popular models for preferences is the Conditional Preference network

(CP-net for short) (Boutilier et al., 2004) which provides a compact way to express prefer-

ences using a graphical representation. CP-nets rely on the Ceteris Paribus principle which

means that every thing else is equal. For instance, if a person says ‘I prefer to have a cat

if I live in a flat ’ it asserts that given two similar flats one with a cat and the other with

a dog, the house with a cat will be preferable. This tells us nothing about his preferences

if he is living in a villa. Such representation is natural, compact and intuitive.

This chapter is organized as follows: Section 1.2 and 1.3 introduce some definitions on

preference independence used in this chapter. Section 1.4 is devoted to the the logical and

graphical representation of the CP-net. Section 1.5 details the different queries executed

3



Section 1.2 – Notations and definitions 4

on the CP-net. Finally, section 1.6 presents some extensions of the CP-net more precisely a

probabilistic version so-called the Probabilistic Conditional Preferential network (PCP-nets

for short).

1.2 Notations and definitions

We first give some notations and definitions that are going to be used for the rest of the

report:

• V = {A1, A2, . . . , Ai} a set of variables;

• DA = a1, . . . , an denotes the finite domain of the variable A;

• ai denotes any instance of Ai;

• X, Y, Z, . . . denote subsets of variable form V ;

• DX = ×Ai∈XDAi
denotes the cartesian product of domains of variables in X and

called assignment;

• x denotes any instance of X, if X = {A1, . . . , An} then x = (ai, . . . , an);

• Ω = ×Ai∈VDAi
denotes the universe of discourse, which is the cartesian product of

all variable domains in V ;

• Each element ω ∈ Ω is called interpretation, a possible world or a state of Ω;

• p, q, . . . denote subclasses of Ω (called events) and ¬p denotes the complementary set

of p i.e. ¬p = Ω− p;

• p ∧ q (respectively p ∨ q) denotes the intersection (union) of p and q.

1.3 Preferences and ordering

Since we are talking about preferences and orderings, let us first introduce the notion of

order. Note that the aim of preference models is to generate an order between all the

possible interpretations. Let Ω be a set of alternative choices. Note that the order induced

by the CP-nets is a partial preorder.
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Definition 1.1. Ordering: Let Ω and � be respectively a universe of discourse and a

binary relation on Ω. � is considered as a partial order if it satisfies three properties:

∀ a, b a and c ∈ Ω:

• Reflexivity: a � b or b � a;

• Asymmetry: if a � b and b � a then a = b;

• Transitivity: if a � b and b � c then a � c.

Definition 1.2. (Boutilier et al., 2004) A preference ranking (or preference ordering) is

a total preorder (�) over a set of values: s.t. ω1� ω2 ( ω1, ω2 ∈ Ω) means that the

interpretation ω1 is equally or more preferred than ω2.

We will use the term preference ordering in the remaining of this report.

When asserting the preferences the user may express his preferences towards some

variable in a conditional manner. It means that some variables are dependent of other

variables values.

Definition 1.3. A set of variables X ⊆ V is preferentially independent from its comple-

ment Y = Ω/X iff, ∀x1, x2∈ Asst(X) and ∀ y1, y2 ∈ Asst(Y ), we have:

x1y1 � x2y1 iff x1y2 � x2y2. (1.1)

This relation corresponds to a Ceteris Paribus relation. It means that ’I prefer x1 to x2

with every thing being equal. In the same way we can define the conditional preferential

dependence. Assume that we have 3 sets of variables X, Z and Y . If Z ∈ V is conditionally

preferentially dependent on X, and X on Y , then Y is preferentially independent of Z.

These kinds of preferences are relatively weak because we can not apply special trade-

offs. In fact, consider two variables A and B preferentially independent, note that we can

not define the relative importance between them. A solution of this problem was proposed

in (Brafman & Domshlak, 2002).

1.4 CP-net representation

CP-nets (Boutilier et al., 2004; Boutilier, Brafman, Hoos, & Poole, 1999) are graphical

and powerful models for representing and analyzing preferences. They are characterized
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by their clarity and their efficient management and storage of the information. CP-nets

express the conditional preferential relations by means of graphical dependence represented

by the edges. They capture only qualitative statements.

Definition 1.4. A CP-net over variables V={A1, A2, . . . , An} with domains D(A1), . . . , D(An)

is a directed graph where:

• Each variable A, associated with a domain D(A) = {a1, a2, ..., an} of values it can

take, is represented by a node;

• Directed edges connect the nodes two by two: Hence, if an edge exists then the two

variables are preferentially dependent;

• To each node X we associate a conditional preferential table (CP-Table). The CPT (A)

gives a local preference rule (A, u :�) for each combination of values u ∈ pa(A) for

the parents of A.

To each dependent node, we associate a CPT (A) describing the user preferences over

the values of the variable given all the parents possible combinations. Note that, each

attribute is conditionally preferentially independent given its parents. Independent nodes

(without parents), have only one row conditional preferential tables associated to the order

of preference order over its values.

In what follows, we are going to deal only with acyclic graphs. We should mention that

nothing in the semantic forces the graph to be acyclic. Likewise, we assume here CP-nets

with fully specified preferential conditional tables.

A CP-net is called satisfiable if there exists at least one ranking of preferences that

satisfies it. Thus, the ranking has to satisfy each of the conditional preferences found

in the CP-Tables using the Ceteris Paribus principle. Note that, every acyclic CP-net is

satisfiable.

We illustrate the CP-nets semantics with the next example.

Example 1.1. Let us consider the simple CP-net of Figure 1.1 that expresses a user prefer-

ences over housing configurations. This network consists in 3 variables T, L and P, stand-

ing for the type, the locality and having pets respectively s.t D(T ) = {villa(v), f lat(f)},
D(L) = {outskirt(o), downtown(d)}, D(P ) = {dog(b), cat(c)}.
The preference conditional set is:
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The user prefers having a villa to having a flat.

If he has a villa, he prefers it to be in the outskirt than in downtown.

If he has a villa, he prefers to have a dog to a cat.

If he has a flat, he prefers it to be downtown than in the outskirt.

If he has a flat, he prefers to have a cat to a dog.

v ≻ f 

v:  o ≻ d 
f:   d ≻ o    

v:  b ≻ c 
f:   c ≻ b    
    

T 

L P 

Figure 1.1: CP-net representation

The universe of discourse associated to this example is Ω = {ω1 = voc, ω2 = vob,

ω3 = vdc, ω4 = vdb, ω5 = foc, ω6 = fob, ω7 = fdc, ω8 = fdb}.
Here, the node ’L’ standing for locality is conditionally dependent on the node ’T’. So, we

find to different orderings between the values of ’L’ according to the parent configuration.

For example, for T=v we have o � d.

In the CP-net’s semantics, parents priorities are more important than children’s ones.

Consequently, violating a father constraint is more important than violating a child one.

After presenting the main characteristic of the CP-net, in the next section, we are going

to present its principal semantics.

1.5 Optimization and ordering queries

The main motivation of the CP-nets is to have a procedure for combining the elementary

evaluations to design a preorder between the alternative choices. Intuitively two principal

queries may be asked. First, finding the optimal outcome, called optimization query.

Second, which is more complex, order all the outcomes. In the following, the two types of

queries are presented.
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1.5.1 Outcome optimization

Finding the optimal outcome consists on finding a variable configuration where all the con-

straints (preferences) are satisfied. In the acyclic CP-net this procedure is straightforward

while it is is not the case with cyclic graphs where answering this query needs an NP-hard

algorithm. As already mentioned, acyclic CP-nets induce a unique optimal outcome. It

can be found by a simple sweeping through procedure in a linear time and we assign each

time the most preferred value according to the parents configuration. More precisely: To

find the optimal outcome two different steps should be done:

1. First, choose for all the root nodes (independent variables) of the CP-net the most

preferred values which are ordered first relatively to all the other domain values.

2. Then, each time when all the parents of a variable are assigned, choose its most

preferred values according to the parents configuration. Repeat this step until all the

variables are assigned.

The resulting outcome of this procedure is the optimal outcome. Let us show the applica-

tion of this procedure on Example 1.1.

Example 1.2. Applying the sweeping forward procedure on the Example 1.1:

• At first, we choose the value of the independent variable ′T ′. Thus we have T = v.

• Then we can process and choose the values of the two variables ′L′ and ′P ′. We will

have L = o and P = b.

1.5.2 Outcome comparison

Another task supported by the CP-nets is the comparison between the different alterna-

tives. This query is more complex than the first one. Three possible alternatives between

two interpretations exist. Consider two outcomes ω1 and ω2 the three possible relations

are:

• The CP-net entails that ω1 dominates ω2;

• The CP-net entails that ω2 dominates ω1;
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• Or, both of the outcomes are not comparable. It means that the CP-net does not

contain enough information to determine that either outcome is preferred than an-

other.

Starting with the dominance query (Boutilier et al., 1999), given two different outcomes

ω1, ω2, a dominance relation is a precise relation of preference holds. For example, ω1

dominates ω2. The other way of comparison is just to prove that these outcomes are

comparable. Therefore, a dominance relation is just to determine if a relation between

them exists and it does not matter either of the outcomes dominates the other. It is clear

that the ordering queries are weaker than the dominance queries.

Ordering queries in the acyclic graphs can be answered in a linear time in the number of

variables. The following algorithm presents how this can be done. Note that this procedure

exploits the graphical component of the CP-net to determine the hierarchical structure of

the variables.

Definition 1.5. (Boutilier et al., 2004) Let us consider an acyclic CP-net with N variables,

and ω1 and ω2 be two outcomes. If there exists a variable A in V , such that:

1. ω1 and ω2 assign the same values to all ancestors of A in V ;

2. Given the assignment provided by ω1 (ω2) to pa(A) (such that pa(A) is the set of all

the parents nodes of the variable x), ω1 assigns a more preferred value to A than that

assigned by ω2.

Then ω1 � ω2.

Based on the Ceteris Paribus semantics and using the information in the CP-Tables of

the CP-nets, one can change or flip the value of a variable. This modification can lead

either to an improved outcome or a worsened one. Therefore, we can partially order all

the outcomes using this notion of swap pairs (Boutilier et al., 2004).

The set of ordered swap pairs is called a worsening tree where the root is the best

outcome and the leaves are the worst ones. We can say that an outcome is preferred to

another if there exists a chain (directed path) of worsening flips between them. Analogously,

we can define an improving flipping sequence which is the reverse of the worsening sequence.

Example 1.3. Let us consider the worsening tree in Figure 1.2 of the CP-net of Figure

1.1.
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 ω2 

 
ω1 

 
 ω4 

   
ω3 

 

 ω7 

 ω5  ω8 

 ω6 

Figure 1.2: Worsening flip of Example 1

Consider the two outcomes ω1 and ω4, there is no directed path between them. Thus,

the two outcomes are not comparable. We can also notice that there is only one value

change between two outcomes related with an edge. Besides, from this ordering we can

observe that the higher violations are (according to the CP-net graph) the larger is the

negative impact on their order. But, we still can not compare two lower levels violation

with a single ancestor preferences.

The complexity of the dominance testing in the binary valued variables depends directly

on the structure of the CP-net graph. In particular:

• If it is a tree structured graph, the complexity of dominance testing is quadratic in

the number of variables.

• When it has a polytree structure, it is polynomial in the size of the CP-net description.

• When a CP-net is singly connected and there is at most one directed path between

any pair of nodes, the dominance is NP-Complete.

It was proved in (et al., 2008) that the temporal complexity of the dominace query in the

general CP-nets (cyclic) is NPSPACE.

The flipping sequence search algorithm for tree structured graph was proposed by Brafmann

(Boutilier et al., 2004). It is considered as the lower bound complexity algorithm. Assume

we want to compare two interpretations ω1 and ω2. It starts first by assigning to all the

variables the less preferred values according to the outcome. Then, iteratively, all the leaf

variables will be removed. In one step, there will be no variable left, at that stage all the
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variables will be assigned to their value of ω1. Finally, an improving flipping sequence from

ω1 to ω2 will be generated.

In each step a candidate variable is chosen to be flipped. A variable is a candidate

variable if:

• Its value can be flipped.

• There is no descendant of the variable where we can have its value flipped, knowing

the current other variable values of the interpretation.

The corresponding algorithm is described in Algorithm 1.

Algorithm 1 TreeDT ([N |= ω � ω
′
])

Begin.

Initialize the variables in V to outcome ω
′
:

while there is a non flipped value do
Iteratively remove all leaf variables from V that have assigned to them their values in

ω.

If V = ∅, then return yes.

Find a variable A s.t. its value can be improved, and no value of its descendants in N

can be improved, given the current assignment to V .

If no such variable was found, then return no.

Otherwise, change the value of A.

End.

1.6 Probabilistic CP-nets

Many extensions of the CP-net were proposed during this last decade namely TCP-nets

(Brafman & Domshlak, 2002) and Probabilistic CP-nets (PCP-net for short) (Damien,

Zanuttini, Fargier, & Mengin, 2013). TCP-net enables the processing of relative importance

over the variables in the CP-nets. Therefore, they refine the order induced by the Ceteris

Paribus constraints.

PCP-nets were briefly evoked in (de Amo, Bueno, Alves, & da Silva, 2012) for preference

elicitation without giving a precise definition of their semantics. Then, they were deeply
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studied in (Damien et al., 2013). They were introduced to encounter the fact that real

life scenarios are generally pervaded with uncertainty. One other feature of the PCP-

nets, is their ability to describe compactly a set of person’s preferences. Therefore, they

are an aggregation or a summary of a group’s preferences. In addition, PCP-nets afford

the ability to answer about the probability of preference between two outcomes. Indeed,

PCP-nets enable to compactly represent a probability distribution over many CP-nets and

answer their associated queries. Probabilistic CP-nets can tolerate probabilities either on

the conditional tables or on the edges either on both.

A PCP-net is a structure that has the same variables and domains as the CP-net,

thus, the same graphical component. But instead of CP-Tables, they have PCP-Tables (as

exemplified below). Also, each edge is weighted with a probability distribution.

Example 1.4. This simple example presents the differences between PCP-nets and CP-

nets:

event p is certain.

A B

Table 1.1: Probabilistic preference conditional tables

P ordering for A

0.8 a1 � a2

0.2 a2 � a1

A P ordering for B

a1

0.3 b1 � b2

0.7 b2 � b1

a2

0.2 b1 � b2

0.8 b2 � b1

For example, one possible interpretation of this PCP-net, there is 80% of people who

prefer a1 to a2 and 20% who prefer a2 to a1.

We have to mention that CP-Tables can be seen as PCP-Tables with a probability value

associated to each preference equal to 1. Therefore, they are considered as a generalization

or aggregation of CP-Tables.
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From a PCP-net we can generate more than one CP-net, each one corresponding to

a special choice performed to the PCP-net tables and edges. We can generate CP-Tables

when choosing just one row for each value of a variable giving its parents. Generating

CP-net we can find:

• CP-nets with the same graph structure;

• CP-nets with less edges;

• CP-nets with less nodes;

• or a combination of those alternatives.

Algorithms to determine the probability of the induced CP-net, the most probable CP-net

and the optimal outcome are detailed in (Cornelio, Goldsmith, Mattei, Rossi, & Venable,

2013).

1.7 Conclusion

This chapter presents brief overview of a very efficient model for handling preferences

and its ordering which reflects conditional dependence and independence of preference

under the Ceteris Paribus principle. This formal framework often allows compact and

arguably natural information representation. We argued about, given a CP-net, the basic

inference problems and have proposed the different queries and their algorithms. We also

mentioned that this representation can be used under the probabilistic framework to handle

preferences pervaded with uncertainty.



Chapter 2
Possibility theory: Preference

representation approaches

2.1 Introduction

Non-classical theories were proposed in order to deal uncertain and imprecise information.

We can cite the theory of evidence (Glenn Shafer, 1976) and the possibility theory (Dubois

& Prade, 1988; Zadeh, 1978). Possibility theory presents an efficient tool to express knowl-

edge and reason with it. It is, as well, very efficient to deal with preferences (Dubois et al.,

2006; Kaci, Dubois, & Prade, 2004). One of its major aspects is its simplicity while being

expressive.

A remarkable feature of the the possibility theory is the existence several representation

formats. Indeed, the possibilistic bases (weighted propositional formulas), comparative

bases (a set of strict comparative statements) and possibilistic networks where links are

weighted by possibility degrees.

This chapter exhibits the definitions of these formats and their specifications and the

possibility of translations between them. Section 2.2, and 2.3 proposes the basic concept

of the possibility theory. Then, Section 2.4 tackles the different ways to express preference

under the possibilistic framework.

14
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2.2 Possibility theory

Possibility theory, introduced by Zadeh and developed by Prade and Dubois (Dubois &

Prade, 1988; Zadeh, 1978), handles uncertainty in a qualitative way, while encoding it in

the interval [0, 1] called possibilistic scale.

2.2.1 Possibility distribution

Possibility theory (Dubois & Prade, 1988; Zadeh, 1978) relies on the idea of a possibility

distribution π, which is a mapping from a universe of discourse Ω to a finite scale L. This

possibility distribution is a function π : Ω→ L.

The scale L can be interpreted in two manners:

• Ordinal manner when all that matters is the order taking by the interpretations

not the values they handle. Here, we talk about the qualitative setting. Thus,

possibility degrees should take a value in the finite interval. Then, each value must

be justified into the unit interval [0,1]. In most cases, it is difficult to attribute exact

numerical values of possibility degrees. Therefore, it is easier for experts to say that

one situation is more plausible than another.

• Numerical manner if the values associated to the interpretations have sense. This is

called the quantitative setting. It is obtained by a finite and ordered scale denoted

by L = {α1, α2, α3, ..., αn} and α1 = 1 > α2 > α3 > ... > αn = 0 where each value

makes sense.

Example 2.1. Assume 3 values of a variable relative to 3 types of illnesses detected by a

doctor i.e.; ω1 = CANCER, ω2 = FLUE and ω3 = AIDS. After the diagnosis the doctor

gave this possibility distribution:

π(CANCER) = α0, π(FLUE) = α5, π(AIDS) = α9.

From this possibility distribution π, we can deduce that CANCER is more plausible than the

FLUE, which in its turn more plausible than the AIDS since α0 = 1 > α5 = 0.5 > α9 = 0.1.

The definition of the possibility distribution for handling uncertainty is different from its

meaning when talking about preferences. Either the two manner, the possibility distri-

bution rank-order the possible states by their possibility level depending on the possible

information. By convention:

For ω, ω
′ ∈ Ω:
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• π(ω) = 0 means that the interpretation ω is fully impossible (totally refused).

• π(ω) = 1 means that ω is totally possible (the most satisfactory). Nothing prevents

it to be the real world.

• π(ω) > π(ω
′
) means that ω is more plausible (preferable) than ω

′
.

The possibility distribution π is normalized if ∃ ω ∈ Ω, π(ω) = 1, which expresses that

there is at least one fully possible state in the possibility distribution. Therefore, not all

values in Ω are impossible, and thus consistency. Note that nothing forbids to have ω 6= ω
′

and π(ω) = π(ω′) = 1.

Definition 2.1. Normalization: A possibility distribution π is said to be α− normalized,

if its normalization degree, denoted by h(π), is equal to α, namely: α = h(π) = maxωπ(ω)

when α = 1 π, is said normal.

Example 2.2. Let us consider the same universe of discourse of Example 2.1. The possi-

bility distribution is as follows: π(ω1) = 0.2, π(ω2) = 1, π(ω3) = 0.

This means that the most possible illness is the FLUE while the AIDS is totally rejected

(impossible) and a slight possibility for the patient to be having Cancer.

Now consider:

π(CANCER) = 0, π(FLUE) = 1, π(AIDS) = 0.

He is sure that the disease is the FLUE.

π(CANCER) = 1, π(FLUE) = 1, π(AIDS) = 1.

He is totally ignorant.

2.2.2 Possibility and Necessity measures

In probability theory, uncertain knowledge about any state q is represented by a single

probability measure P. This measure is dual i.e. we can deduce the probability degree

assigned to q from its complement (¬q): P (q) = 1 − P (q). Furthermore, the term ”it is

probable that q” means that ”not q is not probable”, on the other hand it is possible that

q it does not mean that it is not possible that not q. The possibility theory differs from

probability theory by the use of a pair of dual set functions derived from the possibility

distribution named possibility and necessity measures.

Any normalized possibility distribution can be associated with a possibility measure

and a dual necessity measure. The two grading measures can be obtained using these two
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mappings:

Let p be an event.

• Possibility measure (consistency):

Π(p) = max {π(ω) : ω ∈ [p]} evaluates to what extent p can be entailed from the

available information.

• Necessity measure (certainty):

N(p) = 1− Π(¬p) evaluates to what extent satisfying p is imperative.

The possibility measure estates the extent that the event p is not inconsistent with the

information while the necessity measure determines the certainty of an event. In fact, more

the opposite event of p is impossible more the event p is possible. hence, necessity and

possibility measure are two complementary measures. Yet, they satisfy those properties:

Let p and q be two different events then:

Π(p ∨ q) = max(Π(p),Π(q)) and Π(p ∧ q) = min(N(p), N(q)). (2.1)

It is important to mention that the normalization of π ensures that the possibility measure

value according to an event is always lower than its necessity measure value. Giving p an

event, we can extract those possible states:

• N(p) = Π(p) = 1, p is certain and there no other possible information claiming the

opposite.

• N(p) > 0 and Π(p) = 1, p is normally true. Almost all the possible situations are

coherent with it.

• N(p) = 0 and Π(p) = 1, this is a state of complete ignorance about the certainty of

the event p. In fact, both of p and ¬p are possible.

• N(p) = 0 and Π(p) < 1, p is normally false.

• N(p) = 0 and Π(p) = 1, p is certainly false.

Example 2.3. Considering the universe of discourse Ω = {CANCER, FLUE, AIDS}
Let π(ω1) = 0.2, π(ω2) = 1, π(ω3) = 0 be the possibility distribution.

Let p be ”the patient suffers from CANCER or the FLUE”. The corresponding measures

to this event are:
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• Π(p) = max(1, 0.2) = 1.

• N(p) = 1− 0 = 1.

Thus, we can say that the event p is certain.

2.2.3 Conditioning

Conditioning consists on modifying our initial knowledge about the state of the world,

when a certain piece of information e arrives. In possibility theory, it is defined from

the Bayesian-like equation Π(A ∩ B) = Π(A|B) ∗ Π(B), where ∗ stands for the product

in a quantitative setting (using the full power of the unit interval [0, 1]), or for min in a

qualitative setting where only the ordinal value of the grades makes sense.

The natural properties of possibilistic conditioning are:

Let φ = [e] be the set of models of e:

1. if π(ω) = 0 then π
′
(ω) = 0;

2. ∀ω /∈ φ, π′
(ω) = 0;

3. π
′

should be normalized;

4. ∀ω1, ω2 ∈ φ, π(ω1) > π(ω2) iff π
′
(ω1) > π

′
(ω2);

5. if Π(φ) = 1, then ∀ω ∈ φ, π′
(ω) = π(ω).

(1) means that impossible states stay impossible even after conditioning. (2) says that the

information is totally certain. Then, (4) precise that the new information do not alter the

order between the interpretations in φ.

The above properties do not allow a unique conditioning definition. Indeed, two dif-

ferent conditionings in two different settings satisfy those properties namely in the ordinal

scale and in the numerical scale.

• In the ordinal setting: the maximal possibility level is assigned to the best models

of p. We get:

π(ω|mp)


1 if π(ω) = Π(p), ω ∈ [p],

π(ω) if π(ω) < Π(p), ω ∈ [p]

0 if ω /∈ [p].

(2.2)
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• In the numerical setting: the model of p are proportionally shifted. We get:

π(ω|∗p)


π(ω)
Π(p)

if ω ∈ [p],

0 otherwise.
(2.3)

Example 2.4. Let us consider the universe of discourse and the possibility distribution of

Example 2.1. Let p be ”the patient suffers from CANCER or the FLUE”. The correspond-

ing possibility measure to this event is Π(p) = max(1, 0.2) = 1.

• Min-based: π(ω1|mp) = 0.2, π(ω2|mp) = 1, π(ω3|mp) = 0.

• Product-based: π(ω1|∗p) = 0.2, π(ω2|∗p) = 1, π(ω3|∗p) = 0.

2.3 Possibilistic networks

Possibilistic networks (Benferhat, Dubois, Garcia, & Prade, 2002; Ben Amor, Benferhat, &

Mellouli, 2003; Benferhat & Smaoui, 2007) are a graphical compact format of the possibility

theory and is the counterpart of the Bayesian networks (Pearl, 1985). They share the same

basic components, namely:

• A graphical component which is a DAG (Directed Acyclic Graph) G= (V,E) where

V is a set of nodes representing variables and E a set of edges encoding conditional

(in)dependencies between them.

• A numerical component associating a local normalized conditional possibility distri-

bution to each variable Ai ∈ V in the context of its parents (denoted by pa(Ai)).

The two definitions of possibilistic conditioning lead to two variants of possibilistic

networks: in the numerical context, we get product-based networks, while in the

ordinal context, we get min-based networks (also known as qualitative possibilistic

networks).

Possibilistic networks are based on the idea of decomposing a joint possibility distribution

as a combination of conditional possibility distributions. The procedure is similar to the

one in probability theory. Hereafter, normalization constraints on each variable should be

respected:

• If pa(Ai) = so, for independent nodes we have max(Π(Ai),Π(¬Ai)) = 1;
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• For each dependent node Ai, having pa(Ai) = {ui, . . . , un} be the set of the parents

configurations, we have max(Π(Ai|ui),Π(¬Ai|ui)) = 1.

Given a possibilistic network over V = {A1, A2, . . . , AN} variables, we can compute its

encoded joint possibility distribution using the following chain rule:

π(A1, . . . , AN) = ⊗i=1..N Π(Ai | pa(Ai)). (2.4)

Where ⊗ is either the min or the product operator ∗ depending on the semantic underlying

it.

Thus, using for instance the min-based conditioning, we have :

π(A1,...,An)=min(π(An|A1,..., An−1), π(A1,...,An−1)). (2.5)

When applying repeatedly this definition, the joint possibility distribution is decomposed

into π(A1, ..., An) = min(π(An|A1, ..., An−1), ..., π(A2|A1), π(A1))

The conditional possibility distribution π(Ai|A1, ..., Ai−1) associated with each variable

Ai can always be normalized by construction. Like for Bayesian networks, the above

decomposition can be further simplified by assuming conditional independence between

variables (Ben Amor & Benferhat, 2005). For instance, if An is independent of A1, ..., Ai

in the context Ai+1, ..., An−1 then the expression π(An|A1, ..., An−1) can be simplified into

π(An|Ai+1, ..., An−1).

Example 2.5. Let us consider the following possibilistic network.

π(a) π(¬a)

1 0.2 BA

C

D

π(b) π(¬a)

1 0.8

π(.|.) ab a¬b ¬ab ¬a¬b
c 1 1 1 1

c 0.7 1 1 0.6

π(.|.) c ¬c
d 1 0.2

¬d 0.3 1

Figure 2.1: A possibilistic network
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If we consider this graph as min-based then the corresponding joint distribution of the

interpretation ω = ¬ab¬cd is π(¬a ∨ b ∨ ¬c ∨ d) = min(π(¬a), π(b), π(c|¬ab), π(d|¬c)) =

min(0.2, 1, 1, 0.2) = 0.2.

If it is a product-based network then π(¬a∨ b) = (π(¬a)∗π(b)∗π(c|¬ab)∗π(d|¬c)) = 0.04.

2.4 Preference representation

Several methods aiming to represent preferences in the possibilistic framework exist, some

are based on graph structures and others on logic theories (Benferhat et al., 1999). We

can cite in particular, possibilistic logic, the comparative bases and symbolic possibilistic

bases (Kaci & Prade, 2008; Dubois et al., 2006, 2013b; Benferhat et al., 1999). When this

theory is used, possibility degrees will provide an information about how much satisfactory

the alternative choices are. Thus, the possibility distribution will be restricted to alterna-

tive choices that are somewhat acceptable. Then, the possibility measure will be able to

compute the satisfaction degree . Π(ω) estimates to what extent the user will be satisfied

while N(ω) expresses the imperativeness of having the interpretation ω. Besides, possi-

bility theory has a very useful feature. Since, it can be be represented in many different

formats. Also, it has the machinery to go from one format to another in a rather direct

way.

The efficiency of one format changes with consideration on how the information was

expressed. therefore, in some cases we can find formats that are more compact and concise

than others although that they express almost the same thing. This is due to how it

is natural for the user to express his preferences. Moreover, it is possible to use more

than one format to express them (Benferhat & Smaoui, 2007). We mention in particular,

comparative bases possibilistic bases and possibilistic networks, detailed below.

2.4.1 Comparative bases

A strict comparative possibilistic base is a set of constraints of the form Π(v) > Π(f), it

means that there is at least one interpretation where we have v that is more preferred than

one interpretation having f . This is considered a weak relation, since due to the use o

the possibility measure, we consider that the most satisfactory interpretation having v is

preferred to the most preferred interpretation having f . For instance, ’when having a villa,

I prefer to live in the outskirt than downtown’. It is the translation of the of the default
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rules v → d is preferred to v → o.

We consider this format as the most direct one to represent preferences (Benferhat et

al., 1999). It consists on simply strict comparisons between interpretations which seems

to be the most natural way for a person to define his preferences. Thus, it is a proper

preference representation framework.

Example 2.6. Assume that we want to represent the preferences mentioned in Example

1.1 in the possibilistic framework. The most natural format to be translated into is the

comparative (conditional) base. We have 5 constraints:

Π(v) > Π(f).

Π(v ∧ d) > Π(v ∧ o).

Π(f ∧ o) > Π(f ∧ d).

Π(v ∧ b) > Π(v ∧ c).

Π(f ∧ c) > Π(f ∧ b).

For instance, when having a villa (v) the user prefers it to be outskirt (o) than downtown

(d).

Benfarfat et al. (Benferhat, Dubois, & Prade, 1992) proposed an algorithm to induce

a unique qualitative possibility distribution from the strict comparative base. To rank

the different interpretations, we have to split them into different strats where we have in

the first partition interpretations that do not violate any of the constraints and so on.

Applying the algorithm in (Benferhat, Dubois, Kaci, & Prade, 2001), it has been shown

that interpretations can be classified into different partitions. The first one is the most

satisfiable and the last one is the least one. It consists in, each time, putting interpretations

in the highest possibility rank. This is an application of the Minimum of specificity principle

i.e. anything not observed as actually possible, or asserted actually satisfactory is ruled

out.

Yet, any alternative is by default assumed as much satisfactory as no other constraint as-

sume it to be less satisfactory. Here, we recall the main steps of the algorithm in (Benferhat

et al., 2001; Benferhat & Garcia, 1997). Consider the comparative formula R1 > L2, we put

respectively in the set i1 and i2, alternatives that are satisfied by the corresponding logical

formula. Then choose in each step the interpretations that are are not existing in any right

set. The first layer will have the highest satisfaction degree and so on. The following algo-

rithm describes the steps of the transformation to the set of well ordered partitions. Let

WOP (π) = S1, S2, . . . , Si be the set of ordered partitions such that Ω = S1 ∩ S2 ∩ . . . , Si.

Example 2.7. Considering the comparative base of Example 2.6, We obtain 3 different
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Algorithm 2 Transformation from comparative base to set of ordered partitions

Data: Universe of discourse Ω, counter i, the set of rules G

Result: WOP of sets Si

i← 0 U ← Ω

while U 6= ∅ do
i← i+ 1;

Si = ω : 6 ∃ Π(Ak ∩Bk) > Π(Ak ∩BZ) s.t. ω ∈ Ak ∩Bk;

if Si = 0 then
G is inconsistent

Remove from U elements of Si Remove from G the constraints such that Si∩Ak∩Bk 6= ∅;
return WOP = E1, E1, . . . , E1 s.t. ∀j ≤ i, Ej = Si−j+1;

End.

layers:

E1 = {ω2}.
E2 = {ω1, ω3, ω4, ω7}.
E3 = {ω5, ω6, ω8}.

2.4.2 Possibilistic logic bases

Possibilistic bases (Dubois, Lang, & Prade, 1994) are sets of a finite propositional language

φi (first-order logic) denoted by Σ. Each formula has a weight αi, belonging to the scale

[0, 1], which expresses to what extent the constraint is imperative in the preference settings

with consideration to the incomplete available information. The possibilistic weight reflects

how much each choice is satisfactory.

A N-possibilistic base is a possibilistic base where the weights are computed as the

necessity measure. The possibilistic base is under the form Σ = (φi, αi) : i = {1, . . . , n}.

In the qualitative setting, this base can be presented as a set of partitions where each

one contains formulas with the same necessity degree. The order between the alternatives

is given by a possibility distribution. Thus, from this knowledge base we can generate a

unique possibility distribution by associating to each interpretation the level of compati-

bility with the preference afforded:

∀ω ∈ Ω, πΣ(ω) =

1 if ∀(φi, αi) in Σ, ω ∈ [φi]

1−max{αi(φi, αi)} ∈ Σ and ω /∈ [φi] otherwise

(2.6)
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Therefore, the interpretations satisfying all the preference constraints will have the high-

est possibility degree 1. The converse transformation, from a possibility distribution to

possibilistic base is also straightforward.

Example 2.8. Let Ω = {ω1 = voc, ω2 = vob, ω3 = vdc, ω4 = vdb, ω5 = foc, ω6 = fob,

ω7 = fdc, ω8 = fdb} be the set of interpretations.

The comparative format (Conditional base) could be translated into a possibilistic logic base

(Benferhat et al., 2001) conserving the same possibility distribution. The corresponding

possibilistic logic is then:

Σ = {(f ∨ o, 1/3), (f ∨ b, 1/3), (v, 1/3), (v ∨ d, 2/3), (v ∨ c, 2/3)}.
Given this possibilistic base we can generate a unique possibility distribution:

π(ω2) = 1, π(ω1) = π(ω3) = π(ω4) = π(ω7) = 2/3, π(ω5) = π(ω6) = π(ω8) = 1/3.

For example, ω7 violates (v, 1/3). The satisfaction degree of ω7 is then π(ω7) = 1− 1/3 =

2/3.

Note that the possibility theory leads to a total ordering of all the alternative choices.

The optimal outcome is the interpretation with the highest distribution degree. For in-

stance, in Example 2.8, ω2 is the best outcome.

2.4.3 Symbolic possibilistic logic

Symbolic possibilistic bases (HadjAli, Kaci, & Prade, 2008) consist on adding to each

formula a symbolic weight. The set of weights are going to set a partial ordering between

the alternative choices. It was proved in (HadjAli et al., 2008) that this approach is more

faithful to the user preferences than the CP-net. Ordering the outcomes could be done

by the use either the Leximin or the Symmetric Pareto ordering. The former refines the

latter. It was proved also that both of these ordering are considered to be the upper and

the lower bound respectively

The definition of symbolic possibilistic logic is exactly the same as the possibilistic

logic. To each entry of the form ui : xi > ¬xi in the conditional table of the CP-net of

each node is encoded by the possibilistic logic clause (¬ui ∨ xi, αi) where αi is a symbolic

weight. All the formulas created are put in the symbolic base Σ, such that, each node will

have a single symbolic weight. Therefore, we can do the conjunction of all the formulas of

one node. Note that we can add additional constraints over symbolic weights.

As mentioned above, we can generate a partial preoder of the alternative choices. Let

w = (w1, ..., wm) and w′ = (w′1, ..., w
′
m) be two weight vectors having the same number of
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components (w and w′ are viewed as sets). To each interpretation is associated a vector of

weights such that if a constraint is satisfied than the corresponding value will be equal to

1 otherwise it will be equal to 1− 〈the constraint priority weight〉.
Formal definitions of Leximin and Symmetric Pareto are:

Definition 2.2. Pareto: w �Pareto w
′

iff ∀i, wi ≥ w
′
i and ∃j s.t. wj > w

′
j. w �Pareto w′σ

iff min(w ∪ w′) ⊆ w′.

Definition 2.3. Leximin: First, delete all pairs (wi, w
′
i) from w and w′ such that wi = w′i.

Thus we get two non-overlapping vectors. Then w �leximin w′ iff min(w ∪ w′) ⊆ w′.

Definition 2.4. Symmetric Pareto: w �SP w′ iff there exists a permutation σ of the

components of w′, yielding a vector w′σ, s.t.1 w �Pareto w′σ iff min(w ∪ w′) ⊆ w′.

Example 2.9. Let us consider the preferences mentioned in Example 1.1. The correspond-

ing symbolic base is : k = {(v, 1− α), ((f ∨ b)∧ (v ∨ c), 1− β), ((f ∨ o)∧ (v ∨ d), 1− δ)}.
Table 2 recapitulates the whole interpretations.

Table 2.1: Symbolic possibilistic base

Ω (v, 1− α) ((f ∨ b) ∧ (v ∨ c), 1− β) ((f ∨ o) ∧ (v ∨ d), 1− δ)
ω1 1 1− β 1

ω2 1 1 1

ω3 1 1− β 1− δ
ω4 1 1 1− δ
ω5 1− α 1 1− δ
ω6 1− α 1− β 1− δ
ω7 1− α 1 1

ω8 1− α 1− β 1

Since we may not know to what extent preferences are imperative, the weights associ-

ated to the logical formulas are given as symbols. Still, they are supposed to belong to an

ordered scale, and if some ordering is known between some of the weights,this information

may be added. For instance, in the CP-net spirit, we may want in Example 2.9 that the

parents weights are greater than the children’s ones i.e. 1 − α > min(β, δ). Even if the

weights are expressed in terms of symbols, we can generate a pre-order using the Leximin

ordering or the Symmetric Pareto orderings. Here we have the same pre-order: assuming

α < max(β, δ), ω2 � ω1 ∼ ω4 � ω3 � ω7 � ω5 ∼ ω8 � ω6.

1w �Pareto w
′

iff ∀i, wi ≥ w
′

i and ∃j s.t. wj > w
′

j .
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2.5 Conclusion

In this chapter, we surveyed contributions in the preference representations under the

possibilistic framework that have been developed in the last decade. The possibility the-

ory appears to be rich in representation formats, permitting to express many kinds of

preferences. We pointed that the possibilistic representation setting allows for different

representation formats that are all equivalent to the possibilistic logic format, but which

may of interest depending on the way people express their preferences. One may distin-

guish the possibilistic logic, symbolic possibilistic logic and the comparative base. In the

next chapter, we will propose a comparison between the different approaches of expressing

the preferences.



Chapter 3
Possibilistic preference modeling

approaches vs CP-nets

3.1 Introduction

As presented in Chapter 1 and 2, there exist several methods aiming at representing pref-

erences in the possibilistic framework. Some are based on graphical structures providing a

compact way to express preferences and others on logic theories. In spite of the popularity

and success of the CP-nets, present some limitations. Indeed, they may express more than

what the user wanted to communicate. In this chapter, we provide a comparative study

between orderings deduced from different possibilistic methods of preference representation

and the CP-nets.

Generally, preferences, especially when the number of alternatives is huge, are not

directly expressed by a total ordering. Rather, the decision maker describes his preferences

locally, i.e., he only mentions features of interest and his preferences among them. Note

that preferences can be expressed either by means of strict comparisons, or by prioritized

goals. Thus, we need completion principles to induce a set of ordered interpretations. Each

method presented in the previous chapters is based on a particular completion principle.

The possibilistic theory setting offers different representation formats (sets of weighted

logical formulas, sets of conditionals, possibilistic networks) (Dubois & Prade, 2008), and

different completion principles may be considered for obtaining an ordering from the pref-

erence specifications. Therefore, the differences and similarities between them merit a

27
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rigorous examination.

This chapter proposes a synthetic comparison between the methods of preference rep-

resentation under the possibilistic framework and the CP-nets. We will focus on the ex-

pressive power of each method. Our comparative study will be based on how well do each

method use the information given to induce a general comparison between alternatives.

Firstly, orders induced by different methods should be compared to the inclusion order-

ing presented in the following. Second, we will discuss how does each method react to the

violated constraints and what are the completion principles used. Do they lead to total or

partial pre-orders? We identify the positive aspects and the limitations in each case.

This chapter is partitioned following this outline. Section 3.2 presents the Pareto or-

dering. Section 3.3, 3.4 and 3.5 discuss the different orderings of the methods presented in

Chapter 1 and 2. Finally, Section 3.6 provides a synthetic discussion.

Principle results of this chapter are accepted to be published in (Ben Amor, Dubois,

Gouider, & Prade, 2014b).

3.2 Pareto ordering

Since in many practical situations, ranking the alternatives according to a finite numerical

scale is impossible and too complex to be used, other solutions should be studied. Indeed,

this problem amounts to compare those alternatives without aggregating them. The prob-

lem of ranking the interpretations consists on, given a set of constraints C = {s1, . . . , si} of

the form a � b in the context c, is to compute an order with no added supplementary con-

straints. The natural way for ranking the alternatives is the well-known Pareto ordering,

which is:

Definition 3.1. Pareto: Let v and v′ be two vectors. v � v
′

iff ∀i, vi ≥ v
′
i and ∃ j s.t.vj >

v
′
j.

Example 3.1. (Boutilier et al., 2004) Let us consider the following preferences. We

assume that all the variables are binary for the sake of simplicity. This example is going to

be used for the rest of the chapter. It expresses preferences about housing configurations over

3 variables standing for the main course (M), the soup (S) and the drink (W ) s.t. D(M) =

{meatcourse(Mmc), fishcourse(Mfc)}, D(S) = {fishsoup(Sf ), vegetablesoup(Sv)},
D(W ) = {redwine(Wr), whitewine(Ww)}.
The preference conditional set is:
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The user prefers a meat course (Mmc) to a fish course (Mfc)

If the main course is meat, he prefers to have a fish soup (Sf) to a vegetable one (Sv)

If the main course is fish, he prefers to have a vegetable soup to a fish soup

If the is served a vegetable soup, he prefers to have red wine (Wr) to white one (Ww)

If the is served a fish soup, he prefers to have white wine to red one

The universe of discourse associated to this example is Ω = {ω1 = MmcSfWw, ω2 =

MmcSfWr, ω3 = MmcSvWw, ω4 = MmcSvWr, ω5 = MfcSfWw, ω6 = MfcSfWr, ω7 =

MfcSvWw, ω8 = MfcSvWr}.

To each interpretation we associate a vector of constraints, we assign 1 to each violated

constraint si otherwise 0. Then the comparison is done according to the sum of the vector

values. For instance, Let vω1 = {0, 0, 0, 0, 0} and vω6 = {1, 0, 1, 0, 1} be two interpretation

vectors, ω1 is preferred to ω6. The corresponding order of Example 3.1 is: ω1 � ω2 ∼ ω4 ∼
ω8 � ω3 ∼ ω5 ∼ ω7 � ω6. Note that the highest violated constraint number is 3. We

can not violated more than this number due the conditioned statement of the constraints.

Pareto Ranking is the most natural way as it takes into consideration the number of local

preferences violated in the sense that if an interpretation v satisfies all the constraints

satisfied by another interpretation v′ plus some other(s), then v is strictly preferred to v′.

Our unique criteria here is the number of the violations. Therefore, inducing this order

is straightforward. Besides, it does not take into consideration the relative importance

between the variables or any eventual interaction and dependencies between them.

Our first goal is to compare the different orderings with the inclusion order with re-

spect to the number of violated preferences. All the induced orders must be faithful to it

otherwise they would be inconsistent. Yet, Pareto ordering is not sufficient to represent

preferences. Hereafter, it should be refined by introducing some completion principles. As

mentioned above, each method presented has a completion principle namely the maximum

and the minimum of specificity, the Ceteris Paribus and the leximin ordering.

3.3 CP-net ordering

CP-net, directed graph expressing conditional statements, is based on the Ceteris Paribus

principle (which sounds very intuitive). However, even improved versions of CP-nets, such

as TCP-nets (Brafman & Domshlak, 2002) that take into account the relative importance

between variables, still suffer from noticeable limitations.
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During the comparison we are going to rely on the three elementary structures of CP-

net. Any CP-Net graph should be a combination of these structures with perhaps more

parents or children nodes. Thus, given those structures we can gather all the possible

situations.

Example 3.2. (Boutilier et al., 2004) Let us consider the following CP-nets. We assume

that all the variables are binary for the sake of simplicity. This example is going to be used

for the rest of the chapter. Figure 3.1 illustrates the corresponding CP-nets such that:

A 

a ≻ ¬a a ≻ ¬a a ≻ ¬a b ≻ ¬b 

  a:   c ≻ ¬c 
¬a: ¬c ≻ c    
    

  a:    b ≻ ¬b 
¬a:  ¬b ≻ b    
    

  b:  c ≻ ¬c 
¬b: ¬c ≻ c    
    

  ab  :    c ≻ ¬c 
¬ab  :    c ≻ c 
  a¬b:    c ≻ ¬c 
¬a¬b:  ¬c ≻ c    
    

  a:   b ≻ ¬b 
¬a: ¬b ≻ b    
    

(1) (2) (3) 

B 

C 

A 

B C 

A 

B 

C 

Figure 3.1: Elementary structures of CP-Net

The associated universe of discourse is Ω = {ω1 = abc, ω2 = ab¬c, ω3 = a¬bc, ω4 =

a¬b¬c, ω5 = ¬abc, ω6 = ¬ab¬c, ω7 = ¬a¬bc, ω8 = ¬a¬b¬c}.

These three structures illustrate the following three cases:

• Case(1): Two parent nodes with one child node.

• Case(2): One parent node with two children nodes.

• Case(3): Each parent have one child. A parent node with a grandchild node.

The ordering can be determined using the worsening flip method, based on the Ceteris

Paribus principle and illustrated by Figure 3.2. The orderings deduced from the CP-nets

are partial, many interpretations are not comparable, and it induces only one optimal
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 ω2 

 
ω1 

 
 ω4 

   
ω3 

 

 ω7 

 ω5  ω8 

 ω6 

Figure 3.2: Worsening flip of case (2)

(worst) outcome. For instance, ω8 and ω3 are not incomparable since no directed path

exists between them. Note that those two interpretations were compared using the Pareto

ordering ω8 � ω3. It is also worth mentioning that the CP-nets are faithful to the Pareto

ordering although that no proof has been proposed yet (either a counter-example).

The systematic application of Ceteris Paribus, used as a completion principle for build-

ing a partial order from the specification of conditional preferences, induces some additional

information (such as apparent priorities between preferences) that is not explicitly stated

in the preference description (Dubois, Prade, & Touazi, 2013a). For this purpose, let us

consider the following example:

Example 3.3. Let V = {A,B,C,D,E} be the set of binary variables and Ω = {ω1 =

acb¬d¬e, ω2 = a¬c¬b¬d¬e, ω3 = ¬a¬c¬b¬d¬e, ω4 = ac¬b¬d¬e} be the set of the alter-

native choices. The order induced by the CP-net is ω1 � ω2 � ω3 and ω1 � ω4. Note that

this order leave way to non comparable interpretations. In fact, it can not decide about the

preference over ω4 and ω4 nor ω3 and ω4.

Two limitations should be highlighted:

• Priority: In the CP-net approach the priority over the variables is totally and some-

what rigidly given through the structure of its graph. In fact, importance is assigned

to parents nodes relatively to their children which is not evident in the preference

setting. Precisely, the forced priority in favor of father nodes with respect to child
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b  : e ≻cp ¬e 
¬b: ¬e ≻cp e    
    

A 

E D 

a ≻ cp ¬a 

b   : d ≻cp ¬d 
¬b : ¬d ≻cp d    
    

B 

A 

C 

a  : b ≻cp ¬b 
¬a: ¬b ≻cp b    
    

a  : c ≻ cp ¬c 
¬a: ¬c ≻cp c    
    

Figure 3.3: CP-net of Example 3

nodes. Besides, this kind of automatic priority is given locally and this is the subject

of the next limitation.

• Transitivity of priority: We noticed that falsifying a grandchild preference is better

than falsifying a child one. And this latter is as well better than falsifying a parent

preference (ω1 � ω2 � ω3). This is the direct application of the semantics held

implicitly by the CP-net. However, this implicit principle is not always satisfied

since there is non possible comparison between two child preferences (ω2) and with

falsifying one child and one grandchild preferences (ω4). Even more, it can not

compare one parent violation (ω3) and one child and one grandchild preferences (ω4).

Therefore, it is obvious to see that there is additional information, implicitly added,

that blocks the transitivity of priority (Dubois, Prade, & Touazi, 2013c).

Finally, CP-nets are, in some sense, both too bold and too cautious. Too bold since, as

a result of the systematic application of the Ceteris Paribus principle, some priority is

given to preferences associated to parent nodes which cannot be questioned and modified,

as already said. Too cautious since they usually lead to a partial order while a complete

preorder may be more useful in practice. We saw also that CP-nets suffer from the lack

of transitivity between the priorities. For instance, they do not acknowledge the fact that

violating the preference of two grandchildren is less important than violating one child
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and one grandchild preferences. This is contradictory with the basic concept of CP-nets

namely the father priority is more important than the child one.

Thus, the partial ordering induced by the CP-net approach may look somewhat debat-

able, as presented above, wondering the exactitude of the preference representation. This,

may in turn questions the capability of the possibility framework to handle preferences in

a more global manner than the CP-net’s way.

3.4 Possibilistic base ordering

Possibilistic setting is another framework that can be used for preference representation.

Beside its capability to express knowledge efficiently and reason with it, this logic is,

as well, very effective to deal with preferences. It induces a total preorder thanks to

its possibility distribution (Dubois et al., 2006). In this theory, we can distinguish two

completion principles namely the minimal and maximal of specificity that respectively

produce the largest and the smallest possibility distribution (Kaci & van der Torre, 2008;

Dubois, Kaci, & Prade, 2005).

Obviously, the comparative base is the most direct way to describe preferences. Each

local preference is translated into a strict comparison between two situations.

Example 3.4. The preferences described in Example 3.1 are expressed in the following

way:

Π(Mmc) > Π(Mfc).

Π(Mmc ∧ Sf ) > Π(Mmc ∧ Sv).

Π(Mfc ∧ Sv) > Π(Mfc ∧ Sf ).

Π(Sf ∧Ww) > Π(Sf ∧Wr).

Π(Sv ∧Wr) > Π(Sv ∧Ww).

This order could be extracted directly from the comparative base using the minimum of

specificity. It consists on considering interpretations, which are not less preferred than any

other, to be totally satisfiable. Another opposite way of reasoning is the maximum of speci-

ficity, it consists in the fact that each interpretation dominated by any other interpretation

to be the least satisfiable.

Indeed, the minimal specificity principle accord the most important degree to alterna-

tives. It does not enforce any preference between the criteria if not explicitly provided.

Contrariwise the maximal of specificity gives the lowest possible degree to the alternatives.
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Note that both of the principles induce total preodrers with a number of levels less than the

Pareto partial order with being definitely faithful to it. The following example illustrates

the two completion principles.

In fact, they can refer to two kinds of decision makers. Optimistic ones according

to the maximum of specificity, because they tend to give the interpretations the highest

satisfactory degree 1, and cautious ones according to the minimum of specificity. Giving

the highest degree only to interpretations that are never dominated by another. Another

thing to specify is that all the interpretations are compared and there is no room for

incomparable interpretations which is not the case with the inclusion order. We can look

also for an eventual combination between them.

As mentioned above moving from one format to another can be done in an almost

direct way. These same preferences are translated into a possibilistic base, under the form

of prioritized goals. It is a simple hierarchy of goals.

Example 3.5. The corresponding possibilistic base is then

Σ = {(Mmc, 1/3),(Mfc ∨ Sf , 1/3),(Sv ∨Ww, 1/3),(Mmc ∨ Sv, 2/3),(Sf ∨Wr, 2/3)}.

Using Σ, we can generate a unique possibility distribution: π(ω1) = 1, π(ω2) = π(ω4) =

π(ω8) = 1/3, π(ω3) = π(ω5) = π(ω6) = π(ω7) = 2/3.

From this possibilistic base we can generate a total preorder represented by the possi-

bility distribution ω1 � ω2 ∼ ω4 ∼ ω8 � ω3 ∼ ω5 ∼ ω7 ∼ ω6. It is important to point also

that the possibilistic order is coherent with the Pareto ordering but we noticed that it tends

to flatten it. In fact, it is due to the use of the minimum function as it considers only the

most important constraint violated (the violated formula with the highest necessity value)

and retains the worst satisfaction degree. Precisely, let the alternative ω be associated with

a weights vector uω1 = (a1, a2, . . . , ai) where ai ∈ [0, 1] . The possibility degree π(ω) = x

where ∀ai x � ai.

We can highlight two important limitations:

• No graphical component: The possibilistic logic for handling preference is very robust

and it is constructed over strong basics. However, it is easy to notice the hardness

of determining the dependent variables and this is due to the absence of a graphical

component.

• Complete order: The order induced is even less precise than the Pareto ordering.

Indeed the number of levels is strictly under the Pareto levels. Therefore, we can



Section 3.5 – Symbolic possibilistic base ordering 35

not retain much information from it. Since the possibilistic ordering is complete, we

notice that it generates equalities between the interpretations that are debatable.

Finally, the comparative constraints (or prioritized goals) produces exceedingly cautious

orders. Such order intersect with the CP-net ordering. It is worth noticing that, using

the Cetreris Paribus principle, we are unable to define default constraints. Indeed, in the

CP-net, it is not possible to say that a preference hold except in a context c, which is

totally possible using the possibilistic framework and more precisely the comparative base.

For obvious examples, this may not cause a problem, but in more complex situations this

may seem enough imposing.

3.5 Symbolic possibilistic base ordering

As mentioned above, possiblistic logic can code partial preorder when using symbolic

weights. Therefore, each formula will have a symbolic degree expressing its priority among

the others. Those symbolic weights can be ordered such that parents constraints have

higher weights than children ones. To order the interpretations we can use either Leximin

or Symmetric Pareto ordering. To each interpretation we associate a vector of weights.

Each weight is equal to 1 if the corresponding constraint otherwise it will be equal to

1-(the highest priority weight).

Definition 3.2. Leximin: First, delete all pairs (wi, w
′
i) from w and w′ such that wi = w′i.

Thus we get two non-overlapping vectors. Then w �leximin w′ iff min(w ∪ w′) ⊆ w′.

Definition 3.3. Symmetric Pareto: w �SP w′ iff there exists a permutation σ of the

components of w′, yielding a vector w′σ, s.t.1 w �Pareto w′σ iff min(w ∪ w′) ⊆ w′.

The order induced is more respectful to these constraints than the CP-net ordering

because it conserve the transitivity of priorities. Applying the Leximin ordering on the

structure (3) of Example 3.1 we find this order is ω1 � ω2, ω4, ω8 � ω3, ω5, ω7 � ω6.

Leximin and Symmetric Pareto are respectively the lower and the higher bound orderings

of the CP-net. They generally only approximate that order (with being coherent with it).

The only case where they both yield to the same order is when each parent node has at

most one child.

1w �Pareto w
′

iff ∀i, wi ≥ w
′

i and ∃j s.t. wj > w
′

j .
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Example 3.6. Let V = {a, b, c} the set of variables used in Example 3.3. The symbolic

possibilistic bases of the different preference examples (cases 1,2 and 3) are as follows:

• Σ1 = {(a, α1), (b, α2), (((¬(a∧b)∧¬(¬a∧¬b))∨c)∧ (¬(a∧¬b)∧¬(¬a∧b))¬c), α3)},
with min(α1, α2 > α3.

• Σ2 = {(a, α1), ((¬a∨c)∧ (a¬c), α4), ((¬a∧b)∨ (a∧¬b, α5)}, with α1 > Max(α4, α5).

• Σ3 = {(a, α1), ((¬a∧ b)∨ (a∧¬b, α5), ((¬b∨ c)∧ (b∨¬c), α6)}, with α1 > α5 > α6).

Let the set of interpretation be the cartesian product of the variable values. For sake of

simplicity we have: Φ1 = (a, α1), Φ2 = (b, α2), Φ3 = (((¬(a ∧ b) ∧ ¬(¬a ∧ ¬b)) ∨ c) ∧
(¬(a∧¬b)∧¬(¬a∧ b))¬c), α3), Φ4 = ((¬a∨ c)∧ (a¬c), α4), Φ5 = ((¬a∧ b)∨ (a∧¬b, α5),

Φ6 = ((¬b ∨ c) ∧ (b ∨ ¬c), α6).

Table 3.1 presents the possible alternative choices vectors.

Table 3.1: Symbolic possibilistic vectors

Ω Φ1 Φ2 Φ3 Φ1 Φ4 Φ5 Φ1 Φ5 Φ6

abc 1 1 1 1 1 1 1 1 1

ab¬c 1 1 1− α3 1 1− α4 1 1 1 1− α6

a¬bc 1 1− α2 1− α3 1 1 1− α5 1 1− α5 1− α6

a¬b¬c 1 1− α2 1 1 1− α4 1− α5 1 1− α5 1

¬abc 1− α1 1 1− α3 1− α1 1− α4 1− α5 1− α1 1− α5 1

¬ab¬c 1− α1 1 1 1− α1 1 1− α5 1− α1 1− α5 1− α6

¬a¬bc 1− α1 1− α2 1 1− α1 1− α4 1 1− α1 1 1− α6

¬a¬b¬c 1− α1 1− α2 1− α3 1− α1 1 1 1− α1 1 1

We notice that:

• In structure (1): We found that the Symmetric Pareto ordering and the Leximin

ordering are totally able to capture the ordering of the CP-net

• In structure (2): Symmetric Pareto is unable to provide the CP-net ordering. In

fact, it fails to compare the interpretations a¬b¬c and ¬a¬b¬c, while, there exist a

directed chain between those interpretations and we have a¬b¬c �¬a¬b¬c according

to the CP-net ordering. Indeed the two interpretation vectors are not comparable

due to the fact that 1 − α1 < min(1 − α4, 1 − α5) and 1 < max(1 − α4, 1 − α5).

Otherwise, the Leximin order is able to capture this order exactly.
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Table 3.2: Methods of preference representation summary

CP-net Possibistic logic Possibistic symbolic

Logical rep-

resentation

No Set of prioritized goals Set of prioritized goals +

symbolic weights

Principle Ceteris Paribus Minimal or maximal

specificity

Symmetric Pareto or Lex-

imin

Dominance

testing

Chain of worsening flips Vector comparison Vector comparison

Order Partial Total Partial

Priority partially induced by the

structure

Defined by decision maker Defined by decision maker

Graph repre-

sentation

Yes (DAG + CP-tables) No No

• In structure (3): The Leximin ordering fails to provide the CP-net order while the

Symmetric Pareto is fully able to capture it.

Therefore, the Symmetric Pareto is not able to compare two alternative choices where there

exists a variable with more than one child (structure 2). But, in structure 3 we noticed that

the Leximin ordering is more precise than the CP-net ordering, as it is able to compare

two non comparable interpretations of the CP-net.

Although, that the symbolic possibilistic base overcomes the problem of the possibilistic

base namely the order induced is more precise and significant, it still suffer from the absence

of the graphical component.

3.6 Discussion

Although that many researches focused on reproducing the same order induced by the CP-

net, it reveals until now that the additional implicit information used by the CP-net are

difficult to determine or to encode. But, many proposed methods based on the possibility

theory were provided, producing ordering that are somewhat rival to the CP-net ranking.

Table 3.2 gives an overview of the different methods, presenting their resemblances,

differences and limitations .

We do not have precise criteria on which we can evaluate orders. But, each order is
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somewhat logic and coherent with a special case. Also, we can determine if incomparable

interpretations are not wanted, because it may happen in some cases that two interpreta-

tions could not be compared. But one thing that is strange, the fact that the CP-net do

not react in the same manner towards all the variables.

Despite that, one powerful feature in the CP-net is that it has a graphical component

which displays the preference relations in a very obvious manner. While, The possibilistic

framework for handling preferences relies on very strong basis where we can get profit from

the logic counterpart of that framework. In the next chapter, we are going to propose a

new representation model based on the possibility theory which overcomes the limitations

of the both settings.

3.7 Conclusion

One of the major contribution of the possibilistic logic, besides its logical nature, is that the

decision maker is able to define the relative importance between the variables. We noticed

that, the order induced when using symbolic weights is more faithful to user expectancy.

Firstly, it ensures the transitivity of priorities. Secondly, it reveals that it is somehow

more expressive than the CP-net. In this chapter, we presented the characteristics of each

method with highlighting their limitations.

In the next chapter, we will propose a new representation method based on the pos-

sibility theory. It takes advantage from of the graphical component of CP-net and it is

inspired the symbolic possibilistic base as it uses symbolic weights.



Chapter 4
Possibilistic networks for preferences

4.1 Introduction

As detailed in Chapters 1 and 2, existing methods of preference representation can be

classified into two main categories graphical ones and non graphical ones. While the

graphical methods suffer from a lot of limitations, non graphical methods suffer from the

lack of an illustrative descriptive component.

In Chapter 3, we proposed a generic comparison and a study of different methods exist-

ing in the possibilistic framework and the CP-nets. We roughly presented the weaknesses

of each approach. During this decade, there have been emergence of the representation

of preference under the possibilistic framework. Although that this theory was perfectly

able to deal with the preferences, it still until now suffer from the absence of the graphical

component. One of the principle useful aspects of the CP-net is the existence of a graph

which is able to express efficiently and effortlessly the dependence between the variables.

In spite of the its defective ordering this approach still one of the well-known and mostly

used method.

This chapter proposes a new possibilistic approach for handling preferences, offering the

possibility to express preferences under a graphical structure. Moreover, it takes advantage

of the logical side of the possibility theory. Besides, it is able to highlight the different

dependencies between the variables.

The main sections of this chapter are: Section 4.2 introduces the structure of the

representation model. Section 4.3 presents the two queries asked namely the ordering and

39
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the optimization queries. After that, Section 4.4 presents a comparison of our method with

the CP-net. Finally Section 4.5 is dedicated to present the implementation of a toolbox

able to perform the principle preference queries.

Principle results of this chapter are accepted to be published in (Ben Amor, Dubois,

Gouider, & Prade, 2014a).

4.2 Modeling preferences with possibilistic networks

Possibilistic networks are decomposed into two main components. Namely, the graphical

component and the numerical component. In this section we will propose a definition of

these components in the preference representation setting.

To illustrate the idea of representing preferences by means of possibilistic network, we

shall use the following running example inspired from the CP-net literature (Boutilier et

al., 2004) (observe that a and d are not symmetric).

Example 4.1. Let us consider a simple example about a night dressing with 4 variables

standing for shirt (S), trousers (T ), jacket (J) and shoes (H) s.t D(S) = {black(s),

red(¬s)}, D(T ) = {black(t), red(¬t)}, D(J) = {red(j), white(¬j)} and D(H) =

{white(h), black(¬h)}.
The preference conditional set is:

The user prefers to wear a black shirt to a red one.

He prefers to wear black trousers to red ones.

If he wears a black shirt and black trousers, he prefers to wear a red jacket to a white one.

If he wears a black shirt and red trousers, he prefers to wear a white jacket.

If he wears a red shirt and black trousers, he prefers to wear a red jacket.

If he wears a red shirt and red trousers, he prefers to wear a white jacket.

If he wears a red jacket, he prefers to wear white shoes to black ones.

If he wears a white jacket, he prefers to wear black shoes.

4.2.1 Graphical component

Our representation for preferences is graphical in nature, and exploits conditional prefer-

ential independence in structuring preferences of a user. The nature of the relations in this
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possibilistic network are not enough strong anymore. Since, they only translate conditional

preference relations. Our aim in this representation is to provide a graph of the possibilis-

tic framework to capture qualitative statements. Recall that CP-net rely on the Ceteris

Paribus principal which is not the case here. As the preference description is assumed to

be given under the form of conditional statements of the form c : a � ¬a where c. And,

stands for the specification of a context in terms of variables. Unconditional preferences

correspond to the case where c is the tautology >. The graphical structure of the network

is then directly determined from this description (as in the CP-net case). Therefore:

• A node: is a choice variable.

• An edge: a preferential independence.

The same characteristics of the possibilistic network are also applied here. The only change

occurs in the meaning of the relations.

4.2.2 Possibilistic preference tables

As in the basic possibilistic networks, we associate to each node a possibilistic preference

table (ΠP -table for short) (and thus to each variable) defined in the following way. To

each preference of the form c : a � ¬a, pertaining to a variable A whose domain is

{a,¬a}, is associated the conditional possibility distribution π(a|c) = 1 (because it is the

preferred value) and π(¬a|c) = α where α is a symbolic weight such that α < 1. We write

π(·|>) = π(·) for independent variables. Values are assigned in the following way:

• We assign a weight equal to 1 to the most preferred value, knowing the parents

configuration. Therefore, each column will be normalized.

• We assign, to other values, a symbolic weight inferior to 1.

Example 4.2. Figure 4.1 gives the possibilistic graph associated to the above example.

For instance:

• For the variable T we prefer t to ¬t because π(t) = 1 and π(¬t) = α with α < 1;

• The corresponding conditional possibility distribution of the variable H is Π(h|j) = 1

and Π(¬h|j) = ε1, Π(¬h|¬j) = 1 and Π(h|¬j) = ε2 such that max(ε1, ε2) < 1.

Therefore, when having j we prefer h. But we can not decide whether ¬j and h are
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Π(t) Π(¬t)
1 α

ST

J

H

Π(s) Π(¬s)
1 β

Π(.|.) ts t¬s ¬ts ¬t¬s
j 1 δ2 1 δ4

¬j δ1 1 δ3 1

Π(.|.) j ¬j
h 1 ε2

¬h ε1 1

Figure 4.1: A possibilistic network

preferred to j¬h since there is not a constraint between the two symbolic weights ε1

and ε2.

4.3 Ordering

As recalled in Chapter 2, we have two types of possibilistic networks: product-based and

min-based ones. As it was observed in Chapter 3 possibilistic bases retain only the worst

satisfaction degree due to the use of the minimum function. Therefore, to avoid that

problem we should use the product-based possibilistic networks.

Possibilistic networks orders are under the form of a possibility distribution. Thanks to

conditional independence relations as exhibited by the graph, and using the product-based

conditioning for increasing the discriminating power, we have in Example 4.2: π(TSJH) =

Π(H|J) ∗ Π(J |TS) ∗ Π(T ) ∗ Π(S).

We are then in position to compute the symbolic possibility degree expressing the

satisfaction level of any interpretation. For instance, π(ω4) = Π(¬h|j) ∗ Π(j|t¬s) ∗ Π(t) ∗
Π(¬s) = ε1δ2β. Similarly, π(ω3) = Π(h|j) ∗Π(j|t¬s) ∗Π(t) ∗Π(¬s) = δ2β. Then, based on

the fact that ∀ α, α < 1, and ∀α, β, α ∗ β < min(α, β), we can define a partial order �Π

between interpretations under the form of a possibility distribution.
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One major virtue of this approach is the ability to handle the variable importance

freely i.e you can define which are the most preferred configurations by setting constraints

between the symbolic weights. In fact, given two interpretations ωi, ωj ∈ Ω, ωi �Π ωj

iff π(ωi) > π(ωj). Thus, for instance, ω3 �Π ω4. Besides, π(ω6)= δ1 and π(ω14) = αδ3,

thereby ω6 and ω14 remain incomparable.

However, if we further assume α < δ1 expressing that the unconditional preference

associated with a node T is more important than the preference ts : j � ¬j, we become

in position to establish that ω6 �Π ω14. Therefore, the approach leaves the freedom of

specifying the relative importance of preferences.

Assume that for each node, i.e. each variable Vi ∈ V , two distinct symbolic weights

are used, one for the context where the preferences associated with each parent nodes are

satisfied, one smaller for all the other contexts. For instance, the symbolic weights of

the variable J become δ1 > δ2 = δ3 = δ4 and those of the variable H become ε1 > ε2.

The partial order induced from the possibilistic network (without adding other constraints

between symbolic weights) is then faithful to the inclusion order associated to the violated

constraints. It is, in fact, exactly the same ordering. This is due to the non comparability

between some symbolic weights (following from the use of product). Figure 4.2 shows the

inclusion-based order induced by the possibilistic graph with these additional assumptions.

ω8 

ω1 

ω9 ω6 ω2 

ω3 ω10 ω5 ω14 ω16 ω7  

ω13 ω15 ω4 ω11 

ω12 

Figure 4.2: The inclusion-based ordering

It may be that CP-net orderings also respect the inclusion-based order found, although

it has apparently never been investigated. Two main queries should be performed on pref-
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erence representation models ordering queries and optimization queries. In the following

section we are going to provide their corresponding algorithms. Those algorithms cover

only the acyclic graphs.

4.3.1 Outcome optimization

We can easily determine the best interpretation among all the possible interpretations

satisfied by the preference possibilistic network. Intuitively, to generate an optimal inter-

pretation we simply need to sweep through the network from the top to the bottom just

like in the CP-net. In each iteration we should set the value to its most preferred value

(1) depending on the parents (if ever they exist). Indeed, despite that many interpretation

can be judged equal, a unique best outcome is found.

Optimization queries can be answered using the following sweeping forward procedure

(inspired from the CP-net), taking a linear time to the number of variables. This procedure

exploits the considerable power of the graphical modeling of the preferential statements to

easily find an optimal outcome:

It has two main steps:

• First, we choose the value of the independent variables. Its weight should be equal

to 1.

• Second, for the dependent variables where all their immediate ascendent are assigned

we choose the value equal to 1.

4.3.2 Dominance query

Finding an order of all the outcomes is easier than using the CP-net. We just have to

compute the joint possibility distribution of all the outcomes. It is, in fact, a sweeping

through procedure where in each time we compute gradually each corresponding possibility

distribution. Then, after computing this, and revising the constraints between symbolic

weights, we can deduce a partial order between them.
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4.4 Comparison with CP-nets

While CP-nets are based on the Ceteris Paribus principle, possibilistic networks do not

obey that latter principle as it can be seen on the previous example (where ω6 and ω14 are

incomparable, while > : t � ¬t). The order induced by the CP-net is a refinement of the

possibilistic order �Π, if no constraints about the relative importance of preferences are

added.

CP-nets, in some sense, apply systematically the principle of Ceteris Paribus, as seen

previously. However, in this approach, priorities associated to parents nodes can be de-

termined and fixed by setting constraints over the symbolic weights. Therefore, we have

the ability to decide about the variable importance. The basic ordering associated to a

possibilistic network is just the inclusion-based ordering, which can then be completed by

adding relative importance constraints. In particular, a complete ordering of the symbolic

weights leads to a complete preordering of the interpretations, as exemplified now.

Example 4.3. Figures 4.3 and 4.4 show, respectively, the order induced by the CP-net and

possibilistic network of Example 1. Here we assume α = β < δ1 < δ2 = δ3 = δ4 < ε1 < ε2.

For instance, let us consider the interpretations ω7 and ω16. In contrast to the possibilistic

network, which gives a total preorder, the CP-net considers these two interpretations as

incomparable. We notice that both interpretations violate two preferences: associated to a

parent and to a grandchild for ω7, and to two parents preferences for ω16. As expected, ω7

is preferred to ω16 in the possibilistic network as their possibility degrees are respectively

π(ω7) = βε2 and π(ω16) = αβ.

Moreover, CP-nets are sometimes unable to represent some user preferences. This is

illustrated by the following example.

Example 4.4. Let us consider the following preferences ordering: ab � ¬a¬b � a¬b �
¬ab. For instance, a stands for “vacations” and b stands for “good weather”. We observe

that this complete preorder cannot be represented by a CP-net, while the possibilistic network

can display it. Indeed, such preferences can be represented by a joint possibility distribution

such that: π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab). Since any joint possibility distribution

can be decomposed into conditional possibility distributions, any complete preorder can be

represented by a possibilistic net. Here, we have > : a � ¬a, a : b � ¬b and ¬a : ¬b � b. It

corresponds to the initial network with ΠP -tables given in Table 4.1. which yields π(ab) =

1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) = αγ taking α > β and β = γ.

Lastly, it is important to mention that one of the advantages of the possibilistic graph is
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ω9 

ω1  

ω10 

ω2 

 ω13  ω7  

ω8  

ω3  

ω6 

ω15  

ω11 

ω12  

ω14  ω5  

ω16 

ω4  

Figure 4.3: The order induced by the CP-net

Table 4.1: Preference conditional tables

π(a) π(¬a)

1 α

π(·|·) a ¬a
b 1 γ

¬b β 1

its ability to be translated into a possibility logic base (Benferhat et al., 2002) that can be

used for inference. This bridges the approach presented here with the direct representation

of preferences by a possibilistic logic base (Dubois et al., 2013b; Kaci & Prade, 2008).

4.5 Implementation

In this section we present the implementation of our method. The main purpose of our

implementation is the construction of the ordering induced, and then the evaluation of

these rankings. For this proposal, we have developed two main programs of two principal

tasks. Namely, optimization and ordering.

In fact, given a possibilistic network for preference there are two principal procedures

that should be implemented:

• Optimization : finding the best outcome;
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Figure 4.4: The order induced by the possibilistic network

• Ordering: rank-order all the interpretations.

4.6 Conclusion

This chapter has outlined a preliminary presentation of possibilistic networks as providing

a convenient setting for preference representation. This setting remains close to the spirit

of Bayesian nets, but is flexible enough, thanks to the introduction of symbolic weights,

for capturing any ordering agreeing with the inclusion-based ordering.



Conclusion

In this work, we provide a comparative study with respect to CP-nets, and previous at-

tempts at a possibilistic modeling. We highlight the different limitations of the presented

methods. Besides, we studied their corresponding orderings and their differences.

We found that despite their popularity CP-nets suffer from unavoidable problems. First,

systematic application of priority over the variables. Second, the lack of that priority

transitivity. Besides, we observed that, while the possibilistic framework overcomes these

drawback, it still suffer from the absence of a graphical display.

Therefore, we have noticed that there are two main kinds of limitations. First, some

methods lack the graphical component that allow to assess preference compactly. Second,

remarkable problem on the ordering induced by some methods. Obviously, we wanted to

propose a new model that is able to overcome these problems.

Moreover, another main contribution of this work is the proposal of a new approach,

based on product-based possibilistic networks, for representing preferences. In this ap-

proach, possibility degrees may remain symbolic but stands for numbers. As we saw,

the representation is particularly faithful to the user’s preferences. The ordering between

interpretations that can be obtained from this compact representation fully agrees with

the inclusion ordering associated with the violation of preference statements. Besides, the

relative importance of preferences can be easily taken into account when available.

Furthermore, we observed that the expressive power of our approach is even more

important than the CP-nets. This latter, is sometimes unable to represent some kinds of

preferences while the possibilistic network for preferences is perfectly able to display them.

Finally, further research is still needed for investigating the potential of possibilistic

48
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networks in greater detail. Since preference possibilistic networks deal only with acyclic

graph, we aim at extending the application of this approach to be able to handle cyclic pref-

erence. Moreover, we can extend our approach in order to handle the uncertainty in both

variable dependence and preference relation under the possibilistic framework. Besides,

possibilistic networks can be studied in depth where we can compare the complexity of the

queries performed to the other approaches. In addition to that, it would be interesting to

apply our approach in several real problems.
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