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Abstract

This thesis proposes a study of qualitative possibilistic independence relations and explores propagation

algorithms for possibilistic causal networks. We �rst show the existence of two forms of independence

relations: causal and decompositional. Then, we propose new forms of independence relations based

on plausibility relations underlying possibility distributions. The proposed relations are compared with

those already known in possibilistic framework. The obtained results are used in de�ning possibilistic

counterparts of probabilistic Bayesian networks. In fact, two kinds of networks are studied, depending

if the possibilistic conditioning is based on the minimum or the product operator. We �rst propose

an adaptation of probabilistic propagation algorithms. This adaptation shows that when we use the

product form of conditioning, we get possibilistic networks similar to probabilistic ones sharing the

same features and having the same theoretical and practical results since conditioning is de�ned in

the same way in the two frameworks. However, this is not the case with min-based networks. The

particular properties of the minimum operator, such as the idempotency, lead us to explore a new

anytime propagation approach for min-based networks which avoids the transformation of the initial

network into a junction tree, known to be a hard problem. Experimentation results show the merits

of our new propagation algorithm.

Résumé

Cette thèse propose une étude des relations d'indépendance possibilistes qualitatives et explore les

algorithmes de propagation dans les réseaux causaux possibilistes. D'abord, nous montrons l'existence

de deux types de relations d'indépendance: causales et décompositionelles. Ensuite, nous proposons de

nouvelles dé�nitions uniquement basées sur les relations de plausibilités sous-jacentes aux distributions

de possibilités. Les relations d'indépendance proposées sont comparées à celles déjà existantes dans la

théorie des possibilités. Ces résultats sur l'indépendance sont utilisés a�n de proposer une contrepartie

possibiliste des réseaux Bayésiens. En e�et, deux types de réseaux possibilistes sont étudiés selon que

le conditionnement est basé sur l'opérateur minimum ou sur l'opérateur produit. En premier lieu,

nous proposons une adaptation possibiliste des algorithmes de propagation développés dans le cadre

de la théorie des probabilités. Cette adaptation montre que les réseaux causaux basés sur l'opérateur

produit ont des propriétés très similaires aux réseaux Bayésiens, ce qui n'est pas le cas lorsque le con-

ditionnement est basé sur l'opérateur minimum. Les propriétés particulières de l'opérateur minimum

telles que l'idempotence nous ont poussé à développer un nouvel algorithme anytime pour les réseaux

causaux possibilistes basés sur le conditionnement ordinal. Le but est d'éviter la transformation coû-

teuse du graphe initial en un arbre de jonction. L'étude expérimentale montre les apports de notre

nouvel algorithme de propagation.
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General Introduction

Arti�cial Intelligence aims to model human reasoning in order to help decision makers in their

tasks. The development of expert systems is one of the most famous applications in this do-

main. Nevertheless, the �rst expert systems are unable to manipulate correctly incontrollable

variables, due to the imprecise and uncertain information characterizing the real world.

Graphical models are important tools proposed for an e�cient representation and anal-

ysis of uncertain information commonly used by an increasing number of researchers from

di�erent domains as industry [76], space [79], and medicine [77, 83]. Well-known graphical

models are probabilistic Bayesian networks [84, 94, 103], decision trees [106], In�uence dia-

grams [81, 107, 108] and Valuation Based Systems (VBS) [111, 112].

The success of graphical representations is due to their capacity of representing and han-

dling independence relationships, which have been proved to be crucial for an e�cient man-

agement and storage of the information. Moreover, graphical models meet our requirements of

explicitness and clarity since graphs topologies (nodes for variables, edges for local dependen-

cies among variables) allow a local representation and reasoning easily supported by human

mind.

Most of proposed graphical models refer to probability theory. In particular, probabilistic

Bayesian networks have been largely developed and used in real world applications. However,

this framework is only appropriate when all numerical data are available, which is not always

possible. Indeed, there are some situations, like the case of total ignorance, which are not well

handled and which can make the probabilistic reasoning unsound. This is particularly true in

probabilistic Bayesian networks when missing data do not allow any valid treatment.

Several non-classical theories of uncertainty have been proposed in order to deal with un-

certain and imprecise data such as evidence theory [110, 117, 118], Lehmann's ranked model

[96], plausibility relations [75], Spohn's ordinal conditional functions [119, 120] and possibility
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2 General Introduction

theory [54, 60, 130] issued from fuzzy sets theory [86, 128].

Possibility theory o�ers a natural and simple model to handle uncertain information. It is

an appropriate framework for experts to express their opinions about uncertainty numerically

using possibility degrees or qualitatively using total pre-order on the universe of discourse.

This theory has been used in di�erent areas such as default reasoning [19], qualitative deci-

sion [59], data fusion [20, 57] and diagnostic [44]. Possibility theory has also a logical-based

reasoning called possibilistic logic [52, 91]. This logic is an extension of classical logic where

propositional or �rst-order formulas are weighted by lower bounds and necessity (or possibil-

ity) measures.

The aim of this thesis is to develop graphical models for reasoning with qualitative uncer-

tain information. We are in particular interested in qualitative possibilistic causal networks,

which are possibilistic counterparts of probabilistic Bayesian networks. Such networks are

useful for experts which are unable to provide exact numerical values to quantify di�erent

links between variables.

Qualitative means here that we more focus on the pre-ordering on events (called plausibility

relation) induced by possibility distributions rather than on the numerical values (possibility

degrees) associated with events.

Qualitative causal possibilistic networks present a new promising area of research. In-

deed, they o�er a natural way to treat non binary variables. Moreover, they handle struc-

tured knowledge using independence relations between variables and allow local computations.

These treatments are not supported by possibilistic logic.

In possibility theory, there are two di�erent ways to de�ne the counterpart of causal prob-

abilistic (Bayesian) networks. This is due to the existence of two de�nitions of possibilistic

conditioning [38, 39, 54, 78]: product-based conditioning and min-based conditioning. When

we use the min-based conditioning, we speak about qualitative possibilistic networks.

Existing works on possibilistic graphical models are either a direct adaptation of proba-

bilistic approach (without any care to knowledge representation) or a way to perform learning

from imprecise data [69, 24]. Regarding the possibilistic propagation, there are only few works.

We can mention the possibilistic propagation in hypergraphs proposed by Dubois and Prade

[55], the adaptation of Pearl's algorithm by Fonck [63]. Gebhardt, Kruse and Borgelt have
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proposed a software for possibilistic propagation in undirected possibilistic networks, called

POSSINFER [22, 68, 69]. Shenoy has proposed a propagation algorithm in Valuation Based

Systems (VBS) [111, 113, 114, 115]. VBS are general tools since valuations maybe particu-

larized to a possibility distribution, a probability distribution, or a belief function. However,

the possibilistic version of VBS does not include the qualitative possibilistic networks [112].

In order to develop propagation algorithms for qualitative possibilistic graphical models, it

is important to de�ne qualitative counterpart of stochastic independence which is not as well

de�ned as in probability theory. Thus, the �rst part (Part I) of this thesis provides an analysis

of the notion of qualitative possibilistic independence.

There has been a considerable interest in the last few years for discussing independence

in various representation frameworks [12, 31, 37, 38, 39, 40, 41, 62, 121]. Conditional in-

dependence relations between variables play an important role in the handling of uncertain

information. From an operational point of view, two forms of independence can be distin-

guished [2, 4]:

Decompositional independence which ensures the decomposition of a joint distribution pertain-

ing to tuples of variables into local distributions on smaller subsets of variables. A reasoning

machinery can then work at a local level without losing any information.

Causal independence for expressing the lack of causality between variables. This form of in-

dependence is always characterized in semantic terms. Roughly speaking, a variable (or set of

variables) is said to have no in�uence on another variable (or set of variables) if our belief in

the value of the latter does not change when learning something about the value of the former.

These two kinds of independence are not necessarily exclusive. Ideally, a good de�nition

of independence expresses both the lack of causality (so it can be easily expressed by experts),

and is useful for computations. In the probabilistic framework causal and decompositional in-

dependence relations are equivalent, which is not the case in possibility theory. In this thesis

we investigate several de�nitions of independence based on possibility distributions and on the

ranking induced by these distributions. In addition, we provide a comparative study between

these independence relations and study their graphoid properties.

After analyzing di�erent forms of qualitative independence relations. Part II of this thesis

proposes an adaptation of probabilistic propagation algorithms. When we use the product

form of conditioning, we get possibilistic networks similar to probabilistic ones sharing the
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same features and having the same theoretical and practical results since conditioning is de-

�ned in the same way in the two frameworks. However, this is not the case with min-based

networks since they do not satisfy the so-called coherence property pointed out by Fonck [63].

Indeed, it may happen that the joint distribution associated with the possibilistic graph do not

recover the initial data provided by experts. Nevertheless, and as we will show, the coherence

problem should not be seen as a drawback either in recovering independence relations or in

the propagation process [9].

Our study of the di�erent adaptations of probabilistic propagation algorithms, shows that

the min-based propagation can be seen di�erently from the classical approach since the mini-

mum operator has di�erent properties from the product operator (used in both Bayesian and

product-based networks) like the idempotency property. Therefore, we propose in the last

part (Part III) of the thesis, a new propagation algorithm for min-based possibilistic networks

which is not a direct adaptation of classical approach. In particular, we will avoid the trans-

formation of the initial network into a junction tree known to be a hard problem [30].

The proposed algorithm is an anytime algorithm [8, 10]. It is composed of several steps

such that the longer the algorithm runs, the closer to the exact marginals we get. The �rst

step consists in transforming the initial possibilistic graph into an equivalent undirected graph,

called here for simplicity moral graph, where each node (called cluster) contains a variable from

the initial graph and its parents. The clusters are quanti�ed by local joint distributions in-

stead of the initial conditional ones.

In the second step, several stability procedures are used in order to guarantee that joint

distributions on a given cluster are in agreement with those of its adjacent clusters. We start

by a simple stability procedure which ensures that any cluster agrees with each of its adjacent

clusters on the distributions de�ned on common variables. This procedure does not guarantee

exact marginals. Thus, we propose to improve it by using a multiple nodes stability procedure

which ensures that any cluster agrees on the distributions de�ned on common variables com-

puted from 2, 3,.., n adjacent clusters. We will consider the case where nodes are all neighbors

and also the cases where nodes are restricted to parents, children and parents with children.

We also develop a best multiple nodes stability procedure which ensures that only best instances

in the distribution of each cluster agree with the best instances in the distribution computed

from several of its adjacent clusters.
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Finally, in the last step, we propose two consistency procedures providing exact marginals.

The �rst one is based on adding some links in the moral graph, while the second procedure is

based on constructing best global instances.

This thesis is organized into three parts:

Qualitative Possibilistic Independence. In this part, Chapter 1 presents non-classical the-

ories of uncertainty and essentially possibility theory. Chapter 2 proposes a qualitative un-

certainty framework where uncertainty is represented by total pre-orders on the universe of

discourse. Chapter 3 de�nes the notion of qualitative independence and compares it with basic

existing independence relations in possibility theory. This chapter also provides a software

allowing to test independence relations satis�ed by any possibility distribution or plausibility

relation.

Possibilistic Adaptation of Probabilistic Causal Networks. In this part, Chapter 4 presents

probabilistic Bayesian networks and their propagation algorithms. Chapter 5 develops a possi-

bilistic counterpart of probabilistic Bayesian networks based on the minimum and the product

operators and discusses the coherence problem. Chapter 6 develops a possibilistic adapta-

tion of exact probabilistic propagation algorithms for product and min based possibilistic

networks. More precisely, we propose an adaptation of the centralized version of Pearl's algo-

rithm [87, 103, 105] and of the probabilistic propagation in junction trees [84].

New Approach in Possibilistic Propagation. In this part, Chapter 7 proposes an anytime

propagation algorithm for min-based possibilistic networks which avoid a direct adaptation

of probabilistic propagation algorithms. Chapter 8 provides experimental results showing

the merits of our algorithm comparing with classical approaches. Moreover, it proposes a

Possibilistic Networks Toolbox (PNT) implemented with Matlab 6.0 allowing the propagation

in both min-based and product-based possibilistic networks.
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Notations and de�nitions

We �rst give some notations and de�nitions used in this thesis.

Let V = {A1, A2, ..., AN} be a set of variables,

• DA = {a1, ..., an} denotes the supposedly �nite domain associated with the variable A,

• ai denotes any instance of Ai,

• X,Y, Z, ..., denote subsets of variables from V ,

• DX = ×Ai∈XDAi denotes the cartesian product of domains of variables in X,

• x denotes any instance of X, if X = {A1, ..., An} then x = (a1, ..., an),

• Ω = ×Ai∈VDAi denotes the universe of discourse, which is the cartesian product of all

variable domains in V ,

• Each element ω ∈ Ω is called an interpretation, a possible world or a state of Ω. De-

pending on the context, we use one of the following notations:

- either tuples: ω = (a1, ..., aN )

- or conjunctions: ω = a1 ∧ ... ∧ aN , then ω[Ai] = ai.

• φ, ψ, ϕ denote the subclasses of Ω (called propositions or events) and ¬φ denotes the

complementary set of φ i.e. ¬φ = Ω− φ,

• φ ∧ ψ (resp. φ ∨ ψ) denotes the intersection (resp. the union) of φ and ψ,

• [ai] = {ω = (a1∧ ...∧aN ) : Ai = ai} denotes the set of states whose ith component is ai,

• ∀x ∈ DX , [x] = {ω = (a1 ∧ ... ∧ aN ) : ∀Ai ∈ X,Ai = ai} denotes the set of states whose
restrictions to variables in X is x.

When there is no ambiguity, we use x instead of [x] and x ∧ y (resp. x ∨ y) instead of

[x] ∧ [y] (resp. [x] ∨ [y]).
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Qualitative Possibilistic Independence
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Introduction Part I

Conditional independence relations between variables play an important role in the handling

of uncertain information. From an operational point of view, two forms of independence can

be distinguished.

Decompositional independence which ensures the decomposition of a joint distribution pertain-

ing to tuples of variables into local distributions on smaller subsets of variables. A reasoning

machinery can then work at a local level without losing any information.

Causal independence for expressing the lack of causality between variables. This form of in-

dependence is always characterized in semantic terms. Roughly speaking, a variable (or set of

variables) is said to have no in�uence on another variable (or set of variables) if our belief in

the value of the latter does not change when learning something about the value of the former.

These two kinds of independence are not necessarily exclusive. Ideally, a good de�nition

of independence expresses both the lack of causality (so it can be easily expressed by experts),

and is useful for computations. In the probabilistic framework causal and decompositional

independence relations are equivalent, which is not the case in possibility theory.

In this part, we �rst present non-classical theories of uncertainty and especially possibility

theory (Chapter 1). Then we propose a qualitative uncertainty framework where uncertainty is

represented by total pre-orders on the universe of discourse (Chapter 2). Finally we de�ne the

notion of qualitative independence and relate it to the basic existing independence relations

relative to possibility theory (Chapter 3).

10



Chapter 1

Introduction to Possibility Theory

1.1 Introduction

The decision quality is closely related to the reliability of available information which is often

imperfect due to the imprecision and uncertainty characterizing the real world. Probability

theory is appropriate to model such information when all numerical data are available. How-

ever, it is not always possible to provide precise numerical values. Indeed, there are some

situations which are not considered, in particular the case of total ignorance [61]. This is true

in Bayesian networks when missing data does not allow any valid treatment.

Several non-classical theories of uncertainty have been proposed in order to deal with un-

certain and imprecise data such as evidence theory [110, 117, 118], Lehmann's ranked model

[96], plausibility relations [75], Spohn's ordinal conditional functions [119, 120] and possibility

theory [60, 130] issued from fuzzy sets theory [86, 128].

Possibility theory, o�ers a natural and simple model to handle qualitative uncertain infor-

mation. This theory has been developed from di�erent aspects, we can mention [60],

• Reasoning. One of the tools used in reasoning is possibilistic logic which is an extension

of classical logic where propositional or �rst-order formulas are weighted by lower bounds

and necessity (or possibility) measures [52, 91].

• Default reasoning. Possibility theory also o�ers a general framework for dealing with

rules having exceptions of the form "generally, if p then q" [19].

• Qualitative decision. Possibility theory o�ers a qualitative counterpart of classical deci-

sion. Namely, in [59], an analog of von Neumann and Morgenstern postulates, intended

11
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for rational decision under ordinal uncertainty, has been proved to be equivalent to the

maximization of a qualitative utility function.

• Data Fusion. Possibility theory o�ers a variety of combination modes (including weighted,

prioritized and adaptative aggregation rules) in uncertain environments [20, 21, 57].

This Chapter proposes a brief overview of probability theory and presents basic de�nitions

of non-classical theories of uncertainty. Section 1.2 introduces some notations and de�nitions

used in this Chapter. Section 1.3 gives a brief recall on classical probability theory, evidence

theory and Spohn's ordinal conditional functions. Lastly, Section 1.4 focuses on possibility

theory and its main de�nitions and axioms.

1.2 Notations and de�nitions

We �rst give some notations and de�nitions. Let V = {A1, A2, ..., AN} be a set of variables,

• DA = {a1, ..., an} denotes the supposedly �nite domain associated with the variable A,

• ai denotes any instance of Ai,

• X,Y, Z, ..., denote subsets of variables from V ,

• DX = ×Ai∈XDAi denotes the cartesian product of domains of variables in X,

• x denotes any instance of X, if X = {A1, ..., An} then x = (a1, ..., an),

• Ω = ×Ai∈VDAi denotes the universe of discourse, which is the cartesian product of all

variable domains in V ,

• Each element ω ∈ Ω is called an interpretation, a possible world or a state of Ω. De-

pending on the context, we use one of the following notations:

- either tuples: ω = (a1, ..., aN )

- or conjunctions: ω = a1 ∧ ... ∧ aN , then ω[Ai] = ai.

• φ, ψ, ϕ denote the subclasses of Ω (called propositions or events) and ¬φ denotes the

complementary set of φ i.e. ¬φ = Ω− φ,

• φ ∧ ψ (resp. φ ∨ ψ) denotes the intersection (resp. the union) of φ and ψ,

• [ai] = {ω = (a1∧ ...∧aN ) : Ai = ai} denotes the set of states whose ith component is ai,
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• ∀x ∈ DX , [x] = {ω = (a1 ∧ ... ∧ an) : ∀Ai ∈ X = {A1, ..., An}, Ai = ai} denotes the set
of states whose restrictions to variables in X is x.

When there is no ambiguity, we use x instead of [x] and x ∧ y (resp. x ∨ y) instead of

[x] ∧ [y] (resp. [x] ∨ [y]).

In the rest of this work, we will often refer to the following example to illustrate di�erent

notions:

Example 1.1 Suppose that in a cultivated �eld, we have information about the physiolog-

ical accidents that can a�ect the culture due to bacteria, mushrooms etc., the maintenance

(chemical fertilizers, etc.) and the land yield, then:

• We can distinguish three variables i.e., physiological accidents (Pacc), maintenance (Maint)

and land yield (Yield) thus V = {PAcc,Maint, Y ield}.

• The domains associated with these variables are :

DPAcc = {Disease1(d1), Disease2(d2), NoDisease(nd)},
DMaint = {Good(gm),Medium(mm),Weak(wm)},
DY ield = {Good(gy),Weak(wy)}.

Note that, for the sake of simplicity, in some examples we only use binary variables.

This will be made precise in each use.

• The set of all states is Ω = DPAcc×DMaint×DY ield = {d1∧gm∧gy, d1∧gm∧wy, d1∧
mm ∧ gy, d1 ∧mm ∧wy, d1 ∧wm ∧ gy, d1 ∧wm ∧wy, d2 ∧ gm ∧ gy, d2 ∧ gm ∧wy, d2 ∧
mm∧ gy, d2∧mm∧wy, d2∧wm∧ gy, d2∧wm∧wy, nd∧ gm∧ gy, nd∧ gm∧wy, nd∧
mm ∧ gy, nd ∧mm ∧ wy, nd ∧ wm ∧ gy, nd ∧ wm ∧ wy}.

• A possible state is that there is no disease, and that the maintenance and the yield are

good: ω = nd ∧ gm ∧ gy. Then, ω[PAcc] = nd, ω[Maint] = gm and ω[Y ield] = gy.

• The set [nd] = {nd ∧ gm ∧ gy, nd ∧ gm ∧ wy, nd ∧mm ∧ gy, nd ∧mm ∧ wy, nd ∧ wm ∧
gy, nd ∧wm ∧wy} denotes the set of states where the instance nd of the variable PAcc

holds.

The set [gm] = {d1 ∧ gm ∧ gy, d1 ∧ gm ∧ wy, d2 ∧ gm ∧ gy, d2 ∧ gm ∧ wy, nd ∧ gm ∧
gy, nd∧ gm∧wy} denotes the set of states where the instance gm of the variable Maint

holds.

The models of the event nd∧gm are [nd∧gm] = {nd∧gm∧gy, nd∧gm∧wy} = [nd]∩[gm]

where ∩ is the set intersection symbol.
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1.3 Brief refresher on uncertainty frameworks

This Section, gives a brief recalling on the basic concepts of the classical theory on uncer-

tainty and two of the non-classical theories, namely the evidence theory and Spohn's ordinal

conditional functions.

1.3.1 Probability theory

The classical theory of probability is based on the notion of probability distribution which is

a function p : Ω→ [0, 1] satisfying Σω∈Ωp(ω) = 1. Given a probability distribution p, we can

de�ne a probability measure of any subset φ ⊆ Ω by P (φ) = Σω∈φp(ω). Other concepts of

probability theory are as follows:

• Probabilistic conditioning : in the probabilistic setting, a probability distribution p is

transformed into a new probability distribution by the arrival of a new fully certain

piece of information φ ⊆ Ω, as follows:

p(ω | φ) =


p(ω)
P (φ) if ω ∈ φ
0 otherwise.

(1.1)

• Marginalization: given a joint probability distribution p on Ω, we can derive the marginal

distributions relative to subsets of variables using the summation. Then, ∀X ⊆ V,∀x ∈
DX :

P (x) =
∑
ω∈Ω

{p(ω) : ω[X] = x}. (1.2)

• Bayes theorem: this theorem provides a mathematical rule explaining how we should

change our existing beliefs in the light of new information:

p(ω | φ) =
P (φ | ω) · p(ω)

P (φ)
. (1.3)

• Conditional independence: given three disjoint subsets of variables: X, Y and Z. The

independence relation between the variable sets X and Y in the context Z, denoted by

IProb(X,Z, Y ), is expressed by:

P (x | y ∧ z) = P (x | z), ∀x, y, z, (1.4)

or equivalently,

P (x ∧ y | z) = P (x | z) · P (y | z), ∀x, y, z. (1.5)
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This means that X is considered as Prob-independent from Y in the context Z if for

any instance z ∈ DZ , the probability degree of any x ∈ DX remains unchanged for any

value y ∈ DY .

1.3.2 Evidence theory

The evidence theory [110, 117] encodes our knowledge by a basic belief assignment (b.b.a)

which is a function m : 2Ω → [0, 1] satisfying:

(1) m(∅) = 0.

(2) Σφ⊆Ω(φ) = 1.

The term m(φ), called the basic belief mass (b.b.m) assigned to φ, represents the part of a

total and �nite amount of belief that supports the fact that the actual world belongs to φ and

does not support the fact that the actual world belongs to a strict subset of φ. If m(φ) > 0,

then φ is said to be a focal element. In the Transferable Belief Model framework [117, 118],

condition 1 is not necessary required. If m has at most one focal element φ 6= Ω, φ 6= ∅ i.e.
m(φ) = s,m(Ω) = 1− s,m(elsewhere) = 0, s ∈ [0, 1],

then its related belief function is called a simple support function.

The total amount of belief committed to any event φ is expressed by a belief function:

Bel : 2Ω → [0, 1], de�ned for any φ ⊆ Ω by:

Bel(φ) = Σψ⊆φm(ψ) = 1. (1.6)

Related to Bel is the plausibility function Pl : 2Ω → [0, 1], which quanti�es the degree of

plausibility that the actual world belongs to φ. For any φ ⊆ Ω by Pl(φ) is expressed by:

Pl(φ) = 1−Bel(¬φ). (1.7)

If all the focal elements of a basic belief assignment are singletons, then Bel is a probability

measure, and m = Bel = Pl.

Several de�nitions of conditioning are developed in evidence theory, we give here the

expression of the Dempster rule of conditioning:

Pl(ω | φ) =
Pl(ω)

Pl(φ)
. (1.8)
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1.3.3 Spohn's ordinal conditional functions

Ordinal conditional functions, known as Kappa functions [119, 120] encodes our knowledge on

the real world (generally ill known) by a function κ : Ω → N , where N is the set of natural

numbers. Kappa functions are used in belief revision [126], default reasoning [72], and iterated

belief revision [36].

A kappa distribution κ represents a grading of disbelief such that ∃ω ∈ Ω s.t. κ(ω) = 0.

The more κ(ω) decreases, the more ω is preferred. Given any kappa distribution κ, a ranking

can be de�ned on subsets φ of Ω by:

κ(φ) = min{κ(ω) | ω ∈ φ}. (1.9)

Conditioning is de�ned by Spohn in the following way:

κ(ω | φ) =

 κ(ω)− κ(φ) ifω ∈ φ
+∞ otherwise.

(1.10)

Moreover if φ ∩ ψ 6= ∅ then κ(ψ | φ) = min{κ(ω | φ) | ω ∈ φ ∧ ψ} = κ(φ ∧ ψ)− κ(φ).

From this de�nition it is easy to derive the conjunction axiom de�ned by:

κ(φ ∧ ψ) = κ(φ) + κ(ψ | φ). (1.11)

Kappa functions framework looks very similar to the probability theory [119, 120] since we

only seem to have replaced the minimum by the addition, and the addition by the multiplica-

tion. Indeed, given an ordinary probability function P de�ned over Ω, P (ω) can be seen as a

polynomial function of some small positive parameter z, for instance, α, β · z, γ · z2, etc. Thus

the probabilities assigned to any φ, and the conditional probabilities P (φ | ψ) will be rational

functions of z. The function κ(φ | ψ) is de�ned as the lowest n such that limr→0
P (φ|ψ)
rn 6= 0

which means that κ(φ | ψ) = n is of the same order of magnitude as P (φ | ψ).

1.4 Possibility theory

The possibility theory introduced by Zadeh [130] and developed by Dubois and Prade [60]

handles uncertainty in a qualitative way, but encodes it in the interval [0, 1] called possibilistic

scale.

1.4.1 Possibility distribution

The basic building block in the possibility theory is the notion of possibility distribution de-

noted by π and corresponding to a mapping from Ω to the scale [0, 1] encoding our knowledge
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on the real world, denoted by u, which is generally ill known. The possibilistic scale can be

interpreted in two manners:

- in an ordinal manner if the handled values re�ect only an ordering between the di�erent

states of the world,

- in a numerical manner if the handled values make sense in the ranking scale.

Technically, a possibility distribution is a normal fuzzy set (at least one membership grade

equal 1). For example all fuzzy numbers are possibility distributions. However, possibility the-

ory can also be derived without reference to fuzzy sets. Table 1.1 presents some interpretations

regarding to possibility distributions.

Table 1.1: Possibility distribution π

π(ω) = 0 ω = u is impossible
π(ω) = 1 ω = u is possible / unsurprising

π(ω) > π(ω′) ω = u is preferred to ω′ = u (or is more plausible)

• Normalization: A possibility distribution π is said to be α-normalized, if its normaliza-

tion degree, denoted h(π), is equal to α, namely:

α = h(π) = max
ω

π(ω). (1.12)

If α = 1, then π is simply said to be normalized.

• Marginalization: Given a joint possibility distribution π on Ω, we can derive marginal

distributions relative to subsets of variables using the maximum operator i.e. ∀X ⊆
V,∀x ∈ DX :

π(x) = maxω∈Ω{π(ω) : ω[X] = x}. (1.13)

• Combination: Given n joint possibility distributions π1,...,πn, on Ω1,...,Ωn, we can derive

the joint possibility distribution on Ω1× ...×Ωn by combining them. There are di�erent

ways to combine possibility distributions (see [20, 57] for overview). In this work, we

are interested in two forms of combination depending on the meaning of the possibilistic

scale. Indeed, in an ordinal setting, we use the minimum operator to combine di�erent

distributions. However, in a numerical setting (if the de�nition makes sense in the

ranking scale), we use the product operator to combine di�erent distributions since this

operator has no mean with values re�ecting just an ordering between di�erent states.



18 Chapter 1: Introduction to Possibility Theory

1.4.2 Possibility and necessity measures

In probability theory, the quantity P (¬φ) is fully determined by P (φ) since P (¬φ) = 1−P (φ).

Hence, if φ is not probable, then ¬φ is necessarily probable.

However, the expression "it is not possible that φ is true" not only implies that

"¬φ is possible" but it also leads to a stronger conclusion i.e. "it is necessary that ¬φ".
Moreover, the expression "it is possible that φ is true" does not entail anything about the

possibility nor the impossibility of φ.

Thus, the description of uncertainty about the occurrence of φ needs two dual measures:

the possibility measure Π(φ) and the necessity measure N(φ) = 1 − Π(¬φ) due to the weak

relationship existing between these two quantities.

Possibility measure: given a possibility distribution π, we can de�ne a mapping grading

the possibility measure of any subset φ ⊆ Ω by:

Π(φ) = maxω∈φπ(ω). (1.14)

Π(φ) is called the possibility degree of φ, it corresponds to the possibility degree to have

one of the models of φ as the real world. This measure evaluates at which level φ is consistent

with our knowledge represented by π.

For instance, let us consider that we receive an information about a new breed, in the north

pole, that the researches have named Glacyria. Thus for the question what is the possibility

that Glacyria has two legs ? we can say that it is fully possible (i.e. its possibility degree is

equal to 1) since we don't know Glacyria and we have no information that contradicts the

fact that this animal has two legs. This response is consistent with our knowledge. Table 1.2

gives main properties of possibility measures.

Necessity measure: the dual of the possibility measure of any subset φ ⊆ Ω is the

necessity measure de�ned by:

N(φ) = 1−Π(¬φ) = minω 6∈φ(1− π(ω)). (1.15)

N(φ) is called the necessity degree of φ, it corresponds to the certainty degree associated

with φ i.e. the certainty degree to have one of the models of φ as the real world. In other

terms, this measure evaluates at which level φ is certainly implied by our knowledge repre-

sented by π.
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Table 1.2: Possibility measure Π (case of normalized possibility distributions)
Π(φ) = 1 and Π(¬φ) = 0 φ is certainly true
Π(φ) = 1 and Π(¬φ) ∈]0, 1[ φ is somewhat certain
Π(φ) = 1 and Π(¬φ) = 1 total ignorance (φ is unknown)
Π(φ) > Π(ψ) φ is a priori more plausible than ψ
max(Π(φ),Π(¬φ)) = 1 φ and ¬φ cannot be both impossible ( it is the

unique link existing between Π(φ) and Π(¬φ))
Π(φ ∨ ψ) = max(Π(φ),Π(ψ)) decomposability axiom (disjunction axiom)
Π(φ ∧ ψ) ≤ min(Π(φ),Π(ψ)) conjunction axiom

For instance suppose that I receive an e-mail from my colleague Foulen saying that he is

in Paris. Then, if someone asks me is Foulen here ? I will say no since it is impossible that he

is at the same time here and in Paris. This is equivalent to say that it is necessary (certain)

that he is not here.

Table 1.3 gives main properties of necessity measures. Note that, N(φ) > 0⇒ Π(φ) = 1.

This means that an event is completely possible before being somewhat certain. This property

ensures the natural inequality N(φ) ≤ Π(φ).

Table 1.3: Necessity measure N (case of normalized possibility distributions)
N(φ) = 1 and N(¬φ) = 0 φ is certain
N(φ) ∈]0, 1[ and N(¬φ) = 0 φ is somewhat certain
N(φ) = 0 and N(¬φ) = 0 total ignorance (φ is unknown)
min(N(φ), N(¬φ)) = 0 the unique relation existing between

N(φ) and N(¬φ)
N(φ ∧ ψ) = min(N(φ), N(ψ)) conjunction axiom

1.4.3 Possibilistic conditioning

Conditioning is a crucial notion when studying independence relations. In the possibilistic

setting it consists in modifying our initial knowledge, encoded by the possibility distribution

π by the arrival of a new fully certain piece of information e. Let us denote φ = [e] the

set of models of e. The initial distribution π is then replaced by another one denoted by

π
′

= π(. | φ). Assuming that φ 6= ∅ and that Π(φ) > 0, the natural postulates for possibilistic

conditioning are:

C1: if π(ω) = 0 then π
′
(ω) = 0,

C2: ∀ω 6∈ φ, π
′
(ω) = 0,
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C3: π
′
should be normalized,

C4: ∀ω1, ω2 ∈ φ, π(ω1) > π(ω2) i� π
′
(ω1) > π

′
(ω2)

C5: if Π(φ) = 1, then ∀ω ∈ φ, π′(ω) = π(ω).

C1 says that irrelevant states remain irrelevant after conditioning, C2 con�rms that φ is a

fully certain piece of information and C3 says that the result should be a normalized possibil-

ity distribution. Moreover, C4 says that the new possibility distribution should not a�ect the

order between the states in φ. Lastly, C5 says that if φ is already consistent with the beliefs

encoded by π, then the possibility distribution remains unchanged on the models of φ. This

is in agreement with the min-based combination mode which prevails in possibility theory; no

further normalization is needed since Π(φ) = 1.

Postulates (C1-C5) do not guarantee a unique de�nition of conditioning. Indeed, the e�ect

of the axiom C2 may result in a sub-normalized possibility distribution, as shown by Example

1.2.

Note that, if we consider all the postulates except C3, then a possible de�nition of condi-

tioning can be the following one:

π(ω |m φ) =

 π(ω) if ω ∈ φ
0 otherwise.

(1.16)

Example 1.2 Let us consider two binary variables, relative to climatic conditions (CCdt) and

physiological accidents (PAcc), such that:

DCCdt = {Good(g), Bad(b)}
DPAcc = {Y es(y), No(n)} with the joint possibility distribution1 given in Table 5.6.

Consider, now that we receive a fully certain piece of information indicating that there is a

physiological accident ([y] = φ = {b ∧ y, g ∧ y} ). Then, using (1.16), the initial possibility

distribution will be transformed into the one given in Table 1.5 (see Figure 1.1). Note that the

resulting possibility distribution is sub-normalized.

Restoring the normalization, in order to satisfy C3, can be done in two di�erent ways

(when Π(φ) > 0) depending on whether we are in a qualitative setting, where the scale [0, 1]

1the instances in tables are ranked w.r.t. variables and their values. For instance, if we handle two binary
variables A and B then the �rst (resp. second, third, fourth) instances corresponds to the �rst (resp. �rst,
second, second) instance of the �rst variable with the �rst (resp. second, �rst, second) instance of the second
one i.e. a1b1, a1b2, a2b1, a2b2.
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Table 1.4: Initial distribution

ccdt pacc π(ccdt ∧ pacc)

g y 0.4
g n 1
b y 0.8
b n 0.8

Table 1.5: New distribution

ccdt pacc π(ccdt ∧ pacc | φ)

g y 0.4
g n 0
b y 0.8
b n 0

is only used for encoding an ordering between degrees (which may form a �nite set of values),

or if we are in a genuine numerical setting [54] (see Example 1.3):

• In an ordinal setting, we assign to the best elements of φ, the maximal possibility degree

(i.e. 1), then we obtain:

π(ω |m φ) =


1 if π(ω) = Π(φ) and ω ∈ φ
π(ω) if π(ω) < Π(φ) and ω ∈ φ
0 otherwise.

(1.17)

This corresponds to the min-based conditioning.

• In a numerical setting (if the de�nition makes sense in the ranking scale), we propor-

tionally shift up all elements of φ:

π(ω |p φ) =


π(ω)
Π(φ) if ω ∈ φ
0 otherwise.

(1.18)

This corresponds to the product-based conditioning.

These two de�nitions of conditioning satisfy a unique equation close to the Bayesian rule,

of the form:

∀ω, π(ω) = π(ω | φ)⊗Π(φ). (1.19)

Figure 1.1: Subnormalized possibilistic conditioning
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respectively for ⊗ are the minimum (for (1.17)) and the product (for (1.18)) operators.

The min-based conditioning (1.17) corresponds to the least speci�c solution of Equation (1.19)

�rst proposed by Hisdal [78]. If Π(φ) = 0 then, by convention π(ω |m φ) = π(ω |p φ) = 1.

Example 1.3 Let us consider the sub-normalized possibility distribution π(. | φ) obtained in

Example 1.2. We have, [y] = φ = {b ∧ y, g ∧ y}, then Π(φ) = max(0.8, 0.4) = 0.8.

• if we use the min-based conditioning expressed by (1.17), we obtain the possibility distri-

bution given in Table 1.6.

Table 1.6: Min-based conditioning

ccdt pacc π(ccdt ∧ pacc |m φ)

g y 0.4
g n 0
b y 1
b n 0

• if we use the product-based conditioning expressed by (1.18), we obtain the distribution

given in Table 1.7.

Table 1.7: Product-based conditioning

ccdt pacc π(ccdt ∧ pacc |p φ)

g y 0.5
g n 0
b y 1
b n 0

The normalization constraint on conditional possibility distributions is de�ned as follows:

Let X and Y be two subsets of V , then for any �xed instances x and y:

max{Π(x | y),Π(¬x | y)} = 1. (1.20)

1.4.4 Possibilistic Logic

Possibilistic logic [52, 91] handles qualitative uncertainty in a logical setting. A possibilistic

logic formula is a pair (p, α) where p is a propositional or a �rst-order logic formula and α its

uncertainty degree which estimates to what extent it is certain that p is true considering the

available incomplete information. More formally, (p, α) encodes N(p) ≥ α. The higher is the
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weight, the more certain is the formula. Possibilistic logic is essentially qualitative since only

the pre-ordering on the formulas is important. Namely, N(p) > N(q) means that the formula

p is more certain than q.

A possibilistic knowledge base Σ is made up of a �nite set of weighted formulas i.e.

Σ = {(φi, αi), i = 1, .., n},

where αi is the lower bound on the necessity degree N(φi). Formulas with αi = 0 are not

explicitly represented in the knowledge base.

Given a possibilistic knowledge base Σ, a unique possibility distribution is generated by

associating to each interpretation the level of compatibility with beliefs as follows:

∀ω ∈ Ω, πΣ(ω) =

 1 if ∀(φi, αi) ∈ Σ, ω ∈ [φi]

1−max{αi : (φi, αi) ∈ Σ and ω /∈ [φi]} otherwise.

(1.21)

This means that all the interpretations satisfying all the beliefs in Σ will have the highest

possibility degree, namely 1, and the other ones will be ranked w.r.t the most certain belief

that they falsify.

Example 1.4 Let r and s be two propositional symbols which stands, respectively, for it rains,

it snows. Let Σ = {(r, 0.3), (r ∨ s, 0.5)}. Then,

πΣ(r ∧ s) = πΣ(r ∧ ¬s) = 1, πΣ(¬r ∧ s) = 0.7, πΣ(¬r ∧ ¬s) = 0.5.

The two states r∧s and r∧¬s are the preferred ones since they are the only ones which are
consistent with Σ. Moreover, ¬r∧ s is preferred to ¬r∧¬s, since the highest belief falsi�ed by

¬r∧ s (i.e. (r, 0.3)) is less certain than the highest belief falsi�ed by ¬r∧¬s (i.e. (r∨ s, 0.5)).

The possibilistic inference in possibilistic logic is as e�cient as in classical logic refutation

by resolution and has been implemented in the form of an A*-like algorithm [52, 91].

1.4.5 Kappa functions vs Possibility theory

Clearly, kappa-functions and possibility theory are very closed. Indeed, rather than associate

to each state ω a degree between [0, 1], we associate to it an integer κ(ω) in the set of

natural numbers N . Given a kappa ranking κ, the following equations show how to transform

kappa-functions into possibility measures:

πκ(ω) = 2−κ(ω),Πκ(φ) = 2−κ(φ), and Nκ(φ) = 2−κ(¬φ). (1.22)
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These equations indicates that possibility transformations of kappa functions are valued

on particular rational subset in [0,1]. We can easily check that Πκ is a possibility measure.

Indeed:

Πκ(φ ∪ ψ) = 2−κ(φ∪ψ) = 2−min(κ(φ),κ(ψ)) = max(2−κ(φ), 2−κ(ψ)) = max(Πκ(φ),Πκ(ψ)).

(1.23)

Moreover, the counterpart of Spohn's conditioning in possibility theory is:

πκ(.|φ)(ω) = 2−κ(ω|φ) = 2−κ(ω)−κ(φ) =
2−κ(ω)

2−κ(φ)
=
πκ(ω)

Πκ(φ)
, ∀ω ∈ φ. (1.24)

which corresponds to the product-based conditioning (see (1.18)). Clearly, kappa-functions

can be recovered in possibility framework using the product-based conditioning. The converse

transformation is only possible when κ(ω) = −log2(π(ω)) takes its value in the set of natural

numbers N .

1.4.6 Evidence theory vs Possibility theory

In the evidence theory framework, if the focal elements φ1, ..., φn are nested (i.e., φ1 ⊆ ... ⊆
φn), then the belief function Bel is called a consonant belief function and for all φ, ψ ⊆ Ω, we

have:

Bel(φ ∧ ψ) = min(Bel(φ), Bel(ψ)); and

Pl(φ ∨ ψ) = max(Pl(φ), P l(ψ))

It is stated that in this case belief functions are necessity measures and plausibility func-

tions are possibility measures i.e. Bel = N and Pl = Π.

However, it is important to note that in this case, the Dempster rule of conditioning

de�ned by (1.8) corresponds to the product-based conditioning de�ned by (1.18) and not to

the min-based one de�ned by (1.17). This means that Valuation Based Systems [116] using

belief functions can be used to encode possibilistic networks based on the product operator,

but not those based on the minimum operator.

1.5 Conclusion

In this Chapter we have proposed a brief overview on probability theory and several of non-

classical theories of uncertainty including evidence theory, Spohn's ordinal conditional functions

and more particularly possibility theory which o�ers a natural model to handle qualitative

uncertain information. In next Chapter, we propose a qualitative uncertainty framework
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where uncertainty is represented by total pre-orders on possible states. Chapter 3 will detail

the notion of independence in possibility theory and in its underlying qualitative framework.
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Chapter 2

A New Qualitative Uncertainty

Framework

2.1 Introduction

Generally, it is easier for experts to provide a preferential relation relative to each possible

situation of the universe of discourse instead of exact numerical values as probabilities, pos-

sibilities, kappa functions etc. In this Chapter, we propose a new theoretical framework to

model the uncertainty in a qualitative way. The basic idea of this representation is to equip

the referential Ω with a total pre-order, instead of using the interval [0, 1]. This total pre-

order corresponds to a plausibility relation on Ω and simply enables us to express that some

situations are more plausible than others. Plausibility relations can be seen as qualitative

counterpart of possibility distributions.

This Chapter also introduces a further de�nition which will be helpful in easily de�ning

the notion of qualitative independence in Chapter 3, namely the notion of accepted beliefs.

The proposed qualitative framework, also also known as scale-based framework, recovers basic

de�nitions of classical possibility theory. We show, in particular, that the qualitative condi-

tioning extends the notion of possibilistic conditioning.

Section 2.2 introduces the notion of ordinal uncertainty and its representation by plausi-

bility relations. Then, Section 2.3 presents the qualitative conditioning. Section 2.4 de�nes

the notion of accepted beliefs associated with plausibility relations. Lastly, Section 2.5 studies

the major di�erences between the qualitative framework and the possibilistic one.

Proofs of this Chapter are given in Appendix A.

27
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Principle results of this Chapter are published in [2, 5].

2.2 Ordinal uncertainty

Possibility theory, presented in the previous Chapter, can be described in a qualitative way.

The basic idea of the qualitative representation of uncertainty is to equip the referential Ω

with a total pre-order1, also called a weak order, instead of using the scale [0, 1]. This total

pre-order denoted ≥π, corresponds to a plausibility relation, also called a comparative

possibility relation, on Ω and simply enables us to express that some situations are more

plausible than others. We denote =π (resp. >π, <π) the equality (resp. inequality) relation

corresponding to ≥π. Namely, the relation ω =π ω
′ (resp. ω >π ω

′, ω <π ω
′) means that ω is

as plausible as (resp. more plausible than, less plausible than) ω′.

We now give some de�nitions regarding to plausibility relations:

• Most plausible states: Given ϕ = {ω1, .., ωn} ⊆ Ω, the most plausible state(s) in the set

ϕ is de�ned by max(ϕ) s.t.

max(ϕ) = {ωi : ωi ∈ ϕ, 6 ∃ωj ∈ ϕ s.t. ωj >π ωi}. (2.1)

• Least plausible states: Given ϕ = {ω1, .., ωn} ⊆ Ω, the least plausible state(s) in the set

ϕ is de�ned by min(ϕ) s.t.

min(ϕ) = {ωi : ωi ∈ ϕ, 6 ∃ωj ∈ ϕ s.t. ωi >π ωj}. (2.2)

• Given a relation ≥π on Ω, we can lift it to a plausibility measure relation de�ned on the

subsets of Ω denoted ≥Π by (e.g., [43]):

φ ≥Π ψ i� ∀ω ∈ ψ,∃ω′ ∈ φ such that ω′ ≥π ω. (2.3)

Namely, φ ≥Π ψ holds if a best element in φ is preferred to best element(s) in ψ. In

other terms:

φ ≥Π ψ i� ∃ω ∈ max(φ), ω′ ∈ max(ψ) such that ω ≥π ω′.

The idea behind the relation ≥Π is that the agent whose epistemic state is modeled by

the plausibility relation ≥π evaluates events by their most plausible state considering

that if φ occurs, then the expected situation is among the states in max(φ) because they

are normal states.
1A relation ≥ on Ω is a total pre-order if ≥ is re�exive, transitive and for all ω1, ω2, we have either ω1 ≥ ω2

or ω2 ≥ ω1.
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This qualitative representation of uncertainty is also used in several non-monotonic for-

malisms like Lehmann's ranked models [96], plausibility relations [75], possibility theory [60],

Spohn's ordinal conditional functions [119, 120] and system of spheres of Lewis [74, 97]. In par-

ticular Spohn represents plausibility relations by means of well-ordered partitions {φ1, ..., φp}
such that:

∀i ∈ {1, .., p},∀ω, ω′ ∈ φi : ω =π ω
′,

∀i < j s.t. i ∈ {1, .., p}, j ∈ {1, .., p}, ∀ω ∈ φi,∀ω′ ∈ φj : ω >π ω
′,

that is φ1 = max(Ω), φp = min(Ω). Thus, φ1 contains the most plausible states of the world.

When φ1 = Ω, the plausibility relation ≥π is uniform and expresses complete ignorance.

For any subset X ⊆ V , the projection of ≥π on DX is denoted by ≥Xπ and is de�ned by:

x ≥Xπ x′ i� [x] ≥Π [x′]. (2.4)

If the projection of ≥π on DX is uniform, then the agent is ignorant about the subset of

variables X, or in other words, X is not informed, otherwise there is a proper subset φ∗X ⊆ DX

of plausible values of X, such that φ∗X = max(DX).

The plausibility relations satis�es the characteristic property [43]:

φ ≥Π ψ ⇒ φ ∨ ϕ ≥Π ψ ∨ ϕ.

The dual necessity relation is de�ned by:

φ ≥N ψ i� ¬ψ ≥Π ¬φ i� max(¬ψ) ≥Π max(¬φ). (2.5)

φ ≥N ψ means that the agent is more certain about φ than about ψ.

2.3 Qualitative conditioning

In the qualitative setting, conditioning consists in focusing a plausibility relation ≥π on a

subclass φ ⊆ Ω, on the basis of a new piece of fully certain information about a case at hand.

A plausibility relation restricted to φ, denoted by ≥π|φ and called conditional plausibility

relation, is obtained for answering questions on the case at hand for which only φ is known.

We denote =π|φ (resp. >π|φ, <π|φ) the equality (resp. inequality) relation corresponding to

≥π|φ. Natural postulates for qualitative conditioning are:
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A1: ∀ω1, ω2 ∈ φ, ω1 >π ω2 i� ω1 >π|φ ω2,

A2: ∀ω1 ∈ φ, ∀ω2 6∈ φ, ω1 >π|φ ω2,

A3: ∀ω1, ω2 6∈ φ, ω1 =π|φ ω2.

A1 means that the new plausibility relation should not alter the initial order between

the elements of φ. A2 con�rms that each model of φ should be preferred to any model not

belonging to φ. Finally, the last postulate A3 says that the elements not belonging to φ are

irrelevant and should be in the same equivalence class.

Regarding to postulates C1-C5 characterizing possibilistic conditioning (see Section 1.4.3),

C1 and C3 have no counterparts within A1-A3 due to the lack of the notions of normaliza-

tion and impossible states in the qualitative setting. Postulate C4 corresponds to A1 and

postulates C2 corresponds to A2 and A3. Moreover, contrary to C1-C5, the three postulates

A1-A3 determine in a unique manner the new conditional plausibility relation ≥π|φ. Indeed,
≤π|φ is obtained from ≤π by preserving the relative ordering between elements of φ, forcing

elements which are outside φ to be equally plausible, but less plausible than any element of φ.

More details on the di�erences existing between the possibilistic and qualitative frameworks

are given in Section 2.5.

The construction of conditional plausibility relations ≥π|φ is illustrated by the following

example.

Example 2.1 Let us consider two binary variables, relative to climatic conditions (CCdt) and

physiological accidents (PAcc), such that DCCdt = {Good(g), Bad(b)}, DPAcc = {Y es(y), No(n)}
with the following plausibility relation:

g ∧ n >π b ∧ y =π b ∧ n >π g ∧ y.

Consider, now that we receive a fully certain piece of information indicating that there is an

accident ([y] = {b ∧ y, g ∧ y}), then the initial plausibility relation will be modi�ed into the

following, unique, relation (see Figure 2.1): b ∧ y >π|φ g ∧ y >π|φ g ∧ n =π|φ b ∧ n. Indeed,
from A2, we have b ∧ y >π|φ g ∧ n, b ∧ y >π|φ b ∧ n, g ∧ y >π|φ g ∧ n and g ∧ y >π|φ b ∧ n.
Moreover, from A3, we have b ∧ n =π|φ g ∧ n. Then, from A1, we have b ∧ y >π|φ g ∧ y.

Note that we have a unique conditional plausibility relation contrary to the possibilistic case

(see Example 1.3).
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Figure 2.1: Qualitative conditioning

The conditional plausibility relation ≥π|φ induces a conditional plausibility measure rela-

tion ≥Π|φ between events simply de�ned as follows:

α ≥Π|φ β i� α ∧ φ ≥Π β ∧ φ.

This kind of conditioning completely ignores the previous ordering between elements out-

side φ. Viewed as a revision process, conditioning imposes that all states in ¬φ become

impossible, because φ is learned to be absolutely true. This is di�erent in what is usually

used in belief revision [67]. Indeed, for instance natural belief revision [26, 119, 120], considers

minimal change for taking φ into account. It simply consists in moving the best elements in

φ to the top level, and leaving the order between other states unchanged.

In our example, Figure 2.2 illustrates natural belief revision. Indeed, b ∧ y becomes the

more plausible state in the new relation, since it is the best one in the models of y. Then, the

second model g∧y takes the second place and then the counter models i.e. g∧n and b∧n are

less plausible than the models of y but save their initial, intrinsic, ordering. Another example

of belief revision is Papini's approach [101] which is obtained from A1, A2 and the following

postulate: [A4]: ∀ω1, ω2 6∈ φ, ω1 >π ω2 i� ω1 >π|φ ω2.

In our example, this revision mode corresponds to Figure 2.3. Indeed, only the best model

of y (i.e. b ∧ y) becomes the more plausible one in the new relation, while other states save

their initial ordering.

Figure 2.2: Natural belief revision

Figure 2.3: Revision in Papini's approach
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2.4 Accepted beliefs

We now introduce the notion of accepted beliefs which will be helpful for de�ning qualitative

independence in Chapter 3. This notion has been proposed in the context of default reasoning

in [58, 66]. We propose here a more detailed analysis.

2.4.1 De�nitions

A proposition φ is said to be accepted by the agent with plausibility relation ≥π, if and only if

φ >N ¬φ [48]. In particular, the set {φ s.t. φ >N ¬φ} is deductively closed under the classical
logic inference. In other words, the subclasses of Ω are splitted into three families: accepted

beliefs φ such that φ >Π ¬φ, rejected beliefs φ such that ¬φ >Π φ and ignored beliefs φ such

that φ =Π ¬φ. This trichotomy can be encoded as follows:
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De�nition 2.1 The acceptance function associated with a plausibility relation ≥π denoted by

Acc≥π(.) assigns to each φ a value in {−1, 0, 1} in the following way:

Acc≥π(φ) =


1 if φ >Π ¬φ
−1 if ¬φ >Π φ

0 if φ =Π ¬φ.
(2.6)

When Acc≥π(φ) = 1 (resp. Acc≥π(φ) = −1) we say that φ is accepted (resp. rejected).

Acc≥π(φ) = Acc≥π(¬φ) = 0, corresponds to the situation of total ignorance concerning φ,

i.e., φ and ¬φ are equally plausible.

Lemma 2.1 The acceptance function is equivalently de�ned as follows:

Acc≥π(φ) =


1 if max(Ω) ⊆ φ
−1 if max(Ω) ⊆ ¬φ
0 otherwise.

(2.7)

2.4.2 Properties of accepted beliefs

The following proposition summarizes the properties of the acceptance function Acc≥π :

Proposition 2.1 The properties of the acceptance function Acc≥π are:

1. It is monotonic i.e. φ ⊆ ψ ⇒ Acc≥π(φ) ≤ Acc≥π(ψ).

2. Acc≥π(φ ∧ ψ) = 1 i� Acc≥π(φ) = 1 and Acc≥π(ψ) = 1.

3. Acc≥π(φ ∧ ψ) = min(Acc≥π(φ),Acc≥π(ψ)) except if

Acc≥π(φ ∧ ψ) = −1 and Acc≥π(φ) = Acc≥π(ψ) = 0.

4. Acc≥π(¬φ) = −Acc≥π(φ).

5. Acc≥π(φ ∨ ψ) = max(Acc≥π(φ),Acc≥π(ψ)) except if

Acc≥π(φ ∨ ψ) = 1 and Acc≥π(φ) = Acc≥π(ψ) = 0.

Only the property 3 of this proposition is proved in the appendix A. Properties 1, 2 and

4 are obvious consequences of Lemma 2.1 and property 5 is trivial using properties 3 and 4.

Property 2 con�rms that the logic of accepted unconditional events is classical logic since

the acceptance of φ and the acceptance of ψ entails the acceptance of φ and ψ.
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The function Acc≥π can be extended in order to take into account a given context. Then,

a conditional acceptance function denoted by Acc≥π(.|.) is de�ned by:

Acc≥π(φ | ψ) =


1 if φ ∧ ψ >Π ¬φ ∧ ψ
−1 if ¬φ ∧ ψ >Π φ ∧ ψ
0 if φ ∧ ψ =Π ¬φ ∧ ψ.

(2.8)

When Acc is de�ned on subsets of Ω, we talk about plain beliefs, while when it is de�ned

on conditionals we talk about conditional beliefs. In a �xed context ψ, Acc≥π(. | ψ) enjoys

the same properties as function Acc≥π .

Example 2.2 Let us consider two binary variables A and B with the following plausibility

relation:

a1 ∧ b1 >π a2 ∧ b1 >π a1 ∧ b2 =π a2 ∧ b2,

then, for instance:

Acc≥π(a1) = 1,Acc≥π(a2) = −1,

Acc≥π(b1) = 1,Acc≥π(b2) = −1,

Acc≥π(a1 | b1) = 1,Acc≥π(a1 | b2) = 0,

Acc≥π(a2 | b1) = −1,Acc≥π(a2 | b2) = 0.

The plausibility relation ≥π determines Acc≥π in a unique manner. The converse is not

true. Namely, many plausibility relations can generate the same set of plain beliefs, i.e, we can

have the same Acc≥π on all events (including the states). Indeed, two plausibility relations

induce the same plain beliefs if and only if they share the same set of most plausible states,

as obviously stated by Lemma 2.1. The other parts of the relations may thus di�er.

Counter-example 2.1 Let us consider the following values of Acc≥π relative to the two bi-

nary variables A and B:

Acc≥π(a1) = Acc≥π(b1) = 1,

Acc≥π(a2) = Acc≥π(b2) = −1,

Acc≥π(a1 ∨ b1) = 1,Acc≥π(a2 ∨ b1) = 1,

Acc≥π(a1 ∨ b2) = 1,Acc≥π(a2 ∨ b2) = −1,

Acc≥π(a2 ∧ b1) = −1,Acc≥π(a2 ∧ b2) = −1,

Acc≥π(a1 ∧ b2) = −1,Acc≥π(a1 ∧ b1) = 1.
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We can check that the two plausibility relations:

a1 ∧ b1 >
′
π a2 ∧ b1 >

′
π a1 ∧ b2 =

′
π a2 ∧ b2, and

a1 ∧ b1 >
′′
π a2 ∧ b1 >

′′
π a1 ∧ b2 >

′′
π a2 ∧ b2,

generate the same information on the accepted beliefs than those given above i.e:

Acc≥π = Acc≥′π = Acc≥′′π .

Note that the di�erence between ≥′π and ≥′′π concerns the ordering between the two elements

a1 ∧ b2 and a2 ∧ b2.

If we restrict the functionAcc≥π to Ω, we can distinguish three cases (we noteAcc≥π({ω}) =

Acc≥π(ω)):

• Acc≥π(ω) = 1: in this case, ω is the unique state such that ω >π ω
′, ∀ω′ 6= ω ∈ Ω. The

state ω is then called the accepted state since {ω} >N {ω′} as well for any ω′ 6= ω. Note

that, if ∃ω such that, Acc≥π(ω) = 1, then ∀ω′ 6= ω,Acc≥π(ω′) = −1.

• When max(Ω) contains more than one plausible instance then Acc≥π(ω) ≤ 0,∀ω ∈ Ω.

More precisely, ∀ω ∈ max(Ω),Acc≥π(ω) = 0.

• Acc≥π(ω) = −1 is equivalent to ω 6∈ max(Ω), i.e. ω is not a plausible state.

So, the function Acc≥π(ω) on states only distinguish between the most plausible states

(i.e. Acc≥π(x) ≥ 0) and the less plausible ones (Acc≥π(x) = −1).

Interestingly, the restriction ofAcc≥π on Ω enables the functionAcc≥π to be reconstructed

on all subsets of Ω. Indeed, max(Ω) = {ω s.t. Acc≥π(ω) = 1} ∪ {ω s.t. Acc≥π(ω) = 0}
(one of the sets is empty), and then it is enough to apply Lemma 2.1. So, Acc≥π(ω) =

Acc≥′π(ω),∀ω ∈ Ω, if and only if, Acc≥π(φ) = Acc≥′π(φ),∀φ ⊆ Ω.

However, the set of all conditional beliefs determines in a unique manner a plausibility

relation on Ω constructed in this way:

ω1 >π ω2 i� Acc≥π({ω1} | {ω1, ω2}) = 1. (2.9)

Example 2.3 Let us consider the following conditional beliefs relative to the two binary vari-

ables A and B:

Acc≥π(a1 | b1) = 1,Acc≥π(a1 | b2) = 0,Acc≥π(a2 | b1) = −1,

Acc≥π(a2 | b2) = 0,Acc≥π(b1 | a1) = 1,Acc≥π(b1 | a2) = −1,

Acc≥π(b2 | a1) = −1,Acc≥π(b2 | a2) = 1.
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Using (2.8), these conditional beliefs induce:

a1 ∧ b1 >π a2 ∧ b1, a1 ∧ b2 =π a2 ∧ b2, a1 ∧ b1 >π a2 ∧ b1, a2 ∧ b2 =π a1 ∧ b2, a1 ∧ b1 >π a1 ∧ b2,
a2 ∧ b2 >π a2 ∧ b1, a1 ∧ b1 >π a1 ∧ b2, a2 ∧ b2 >π a2 ∧ b1.

We can check that these relations induce the following, unique, plausibility relation i.e. :

a1 ∧ b1 >π a1 ∧ b2 =π a2 ∧ b2 >π a2 ∧ b1.

Proposition 2.2 The acceptance functions Acc≥π(.) and the conditional acceptance function

Acc≥π(.|.) are related by the following Bayesian-like equation:

Acc≥π(φ ∧ ψ) = min(Acc≥π(φ | ψ),Acc≥π(ψ)) (2.10)

It may happen that Acc≥π(ψ) = 1 but Acc≥π(φ ∧ ψ) = 0 or 1 or -1.

In the following, we use Acc(.) (resp. Acc(.|.)) instead of Acc≥π(.) (resp. Acc≥π(.|.))
when there is no ambiguity.

2.5 Possibilistic framework vs Qualitative framework

Each possibility distribution π generates a unique plausibility relation ≥π de�ned by:

ω ≥π ω′ i� π(ω) ≥ π(ω′). (2.11)

Example 2.4 Let π be a possibility distribution de�ned by Table 2.1. The plausibility relation

≥π relative to π is:

a2 ∧ b2 >π a1 ∧ b1 =π a2 ∧ b1 >π a1 ∧ b2.

Table 2.1: Joint possibility distribution

a b π(a ∧ b) π′(a ∧ b)

a1 b1 0.9 0.7
a1 b2 0.2 0.5
a2 b1 0.9 0.7
a2 b2 1 1

However, a plausibility relation corresponds to an in�nity of possibility distributions as

shown by the following example.
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Example 2.5 We can check that the possibility distribution π′ given in Table 2.1 generates

the same plausibility relation than π (in the same Table) (i.e. ≥π).

Note that if we de�ne ≥π from π using (2.11) then:

φ ≥Π ψ i� Π(φ) ≥ Π(ψ).

We now focus on the major di�erences between the possibility theory and the qualitative

framework. There are at least three di�erences between using possibility distributions or

plausibility relations:

• Normalization: in possibility theory, fully plausible states receive the grade 1 (i.e. ∃ω ∈
Ω s.t. π(ω) = 1) while there is no counterpart of this notion in the qualitative setting.

• Existence of impossible states graded to 0 in possibility theory, while all states are

somewhat possible in the qualitative setting.

• Commensurability between uncertainty levels, where all rankings re�ect grades in the

same scale [0, 1]. As we will show in next Chapter, the commensurability property is

crucial in the decomposition of some qualitative independence relations.

Note that these remarks are also true for other qualitative representation frameworks, like

Spohn's ordinal conditional functions, and not only in the possibility theory.

The normalization and the existence of impossible states explain why there are several

de�nitions of possibilistic conditioning while there is a unique de�nition in the qualitative

setting. We now show that the qualitative conditioning extends the notion of possibilistic

conditioning in the case of positive possibility distributions.

Qualitative conditioning vs Possibilistic conditioning. Let π be a positive possibil-

ity distribution (i.e. ∀ω, π(ω) > 0). Let ≥π be the plausibility relation derived from π using

(2.11) (≥π is unique). Let φ ⊆ Ω be a new fully certain piece of information. Let us explain

the link between qualitative conditioning and possibilistic conditioning.

It is clear that when applying the possibilistic conditioning, we will not a�ect the order

between the models of φ (due to C4). In the same manner, the qualitative conditioning will

not alter the initial order between the models of φ (due to A1). Moreover, the possibilistic

conditioning, will decrease the possibility degree of the elements not belonging to φ to the

degree 0 (due to C2). Hence, all models of φ are preferred to ¬φ. In the same manner, the
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qualitative conditioning will move the elements not belonging to φ in the same equivalence

class which will be less preferred than the models of φ (due to A2 and A3).

The Possibilistic conditioning uses two additional postulates i.e. C1 and C3 which have

no counterpart in qualitative conditioning. However their use will not a�ect the order of in-

stances in the new conditional possibility distribution. Indeed, C1, have no e�ect since we

consider only the case of positive possibility distributions. Moreover, C3, means that the new

distribution should be normalized, thus if we use min-based conditioning (see (1.17)) we will

just assign to the best models of φ the degree 1 which will not alter its position in the new

possibility distribution. This is also true if we use product-based conditioning (see (1.18))

since we will just proportionally shift up the possibility degrees in in the new possibility dis-

tribution without modifying the order between instances.

Thus we deduce that when using possibilistic conditioning on a positive possibility dis-

tribution π (with the minimum operator or the product operator) the order of instances in

the new conditional possibility distribution is the same than in the conditional plausibility

relation computed from the plausibility relation induced from π (see Figure 2.4).

Figure 2.4: Qualitative conditioning vs possibilistic conditioning

Example 2.6 Let us continue Example 1.3. We can check that the plausibility relations in-

duced from the conditional possibility distributions obtained in Tables 1.6 and 1.7 (relative,

respectively, to min-based conditioning and product-based conditioning) are the same than the

one obtained using the qualitative conditioning (see Example 2.1).

2.6 Conclusion

In this Chapter, we have proposed a qualitative uncertainty framework where uncertainty is

represented by total pre-orders on possible states of the universe of discourse. We have also

introduced the notion of accepted beliefs which will be helpful in easily de�ning the notion

of qualitative independence in next Chapter. The proposed framework, recovers the classical

(numerical) possibility theory. In particular, we have shown that the notion of qualitative

conditioning extends the possibilistic conditioning.

Next Chapter studies di�erent independence relations relative to the proposed qualitative
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framework and compares them to the ones already existing in possibility theory [38, 39, 62, 63].
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Chapter 3

Independence for Qualitative

Uncertainty Framework

3.1 Introduction

The study of independence relations is central in multiple criteria analysis [89], in relational

data decomposition [127], in uncertain reasoning based on Bayesian networks [84, 103] and in

logical reasoning [15, 33, 90, 92]. There has been a considerable interest in Arti�cial Intelli-

gence, in the last few years, for discussing independence in various representation frameworks,

due to the success of Bayesian networks. Conditional independence relations between variables

play an important role in the handling of uncertain information. From an operational point

of view, two forms of independence can be distinguished:

• decompositional independence which ensures the decomposition of a joint distribution

pertaining to tuples of variables into local distributions on smaller subsets of variables.

The reasoning machinery can then work at a local level without losing any information.

• causal independence for expressing the lack of causality between variables. This form of

independence is always characterized in semantic terms. Roughly speaking, a variable

(or set of variables) is said to have no in�uence on another variable (or set of variables)

if our belief in the value of the latter does not change when learning something about

the value of the former.

Contrary to the decompositional independence, causal independence relations are not nec-

essarily symmetric. In other words, if a variable A is independent of B, we are not sure that B

is independent of A. These two kinds of independence relations are not necessarily mutually

exclusive. Ideally, a good de�nition of independence expresses both the lack of causality (so

41
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it can be easily expressed by experts), and is useful for computations.

In the probabilistic framework, two variables A and B are said to be decomposably in-

dependent if the joint probability on the range of (A,B) is the product of the probability

distribution of A and the probability distribution of B, i.e., P (A ∧B) = P (A) · P (B). More-

over, A and B are said to be causally independent if the probability of B given A is the same

as the probability of B, i.e., P (B | A) = P (B). In this framework causal and decompositional

independence relations are equivalent.

In possibility theory, and more generally in total pre-orderings settings, the situation is

di�erent since causal and decompositional relations are not always equivalent. In this Chapter

we investigate possible de�nitions of independence in two settings, using qualitative plausibil-

ity relations, or possibility distribution ranging on the scale [0, 1].

Di�erent works have been achieved on independence relations: de Campos and Huete

[38, 39], Fonck [62, 63], Studený [121], de Cooman and Kerre [40], del Cerro and Herzig [41],

Vejnarová [124]. However, results presented in this Chapter di�er from the previous ones since

the proposed independence relations are only based on the qualitative plausibility relations

induced by possibility distributions.

This chapter is organized as follows: Section 3.2 proposes and investigates independence

relations in qualitative framework where only the plausibility relations underlying the possi-

bility distributions are used. Then, Section 3.3 presents the existing independence relations in

possibility theory. Section 3.4 studies the e�ect of the commensurability in the decomposition

of qualitative independence relations. Section 3.5 provides a comparative study between al-

ready known de�nitions of possibilistic independence and the ones proposed in this Chapter.

Section 3.6 studies the graphoid properties of di�erent independence relations. Lastly, Section

3.7 proposes a software allowing to test independence relations satis�ed by any possibility

distribution or plausibility relation.

Proofs of this Chapter are given in Appendix B.

Principle results of this Chapter are published in [2, 3, 4, 5, 6, 7].
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3.2 Qualitative independence

In this Section we propose several causal and decomposable de�nitions of qualitative inde-

pendence. We will see in Section 3.5 that contrary to the probabilistic case, the link between

these two kinds of independence is not always obvious.

3.2.1 Causal qualitative independence

In the qualitative setting, independence relations can be thought of either in terms of qualita-

tive plausibility relations, or in terms of acceptance measures. The two views can be related,

as shown below where we present two possible de�nitions of causal independence. Basically,

the variable set X is independent of Y if upon learning any instance of Y :

- the agent's beliefs on DX i.e. the accepted (resp. rejected and ignored) instances of X are

preserved, or

- the relative ordering between instances of X is preserved.

Belief-preserving independence

The �rst notion of causal independence in the ordinal setting is concerned with the preservation

of accepted and rejected beliefs. A set of variables X can be considered as independent of Y

in the context Z, if the accepted and rejected beliefs pertaining to X, held in the context Z,

remain unchanged when some information about Y is obtained. Formally:

De�nition 3.1 Let ≥π be a plausibility relation de�ned on Ω = DV and consider three mu-

tually disjoint subsets of variables X, Y and Z forming a partition of V . X is said to be

BP-independent (BP for Belief Preserving ) of Y in the context Z, denoted by IBP (X,Z, Y ),

i� ∀φX ⊆ DX ,∀ψY ⊆ DY , ∀ϕZ ⊆ DZ ,

Acc(φX | ψY ∧ ϕZ) = Acc(φX | ϕZ). (3.1)

Compared with the notion of qualitative independence previously introduced [14, 45, 46],

this de�nition is stronger in two extents: in [14, 45] only particular events are concerned;

moreover the idea was (especially in reference [45]) to preserve accepted beliefs only and not

rejected ones.

Note that contrary to the situation in probability theory, BP-independence is not sym-

metric as shown by the counter-example below.

Counter-example 3.1 Lack of symmetry property for IBP

Let us consider two binary variables A and B with the following plausibility relation: a1∧b1 >π
a1 ∧ b2 >π a2 ∧ b2 >π a2 ∧ b1.
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Table 3.1, shows that IBP (A, ∅, B) is true, namely ∀a, b,Acc(a | b) = Acc(a). However,

IBP (B, ∅, A) is false, for instance Acc(b1) = 1 6= Acc(b1 | a2) = −1.

Table 3.1: Lack of symmetry property for IBP
a b Acc(a | b) Acc(a) Acc(b | a) Acc(b)

a1 b1 1 1 1 1
a1 b2 1 1 -1 -1
a2 b1 -1 -1 -1 1
a2 b2 -1 -1 1 -1

It is then clear that IBP (X,Z, Y ) means that �xing any instance z of Z, the set {x s.t. x∧
y ∧ z is a plausible instance in DX ∧ y ∧ z} does not depend on y. Hence, knowing some

information about Y does not alter accepted beliefs about X in context Z.

De�nition 3.1 is stated for all events de�ned by X, Y and Z, respectively, since Acc is not

a decomposable function. Nevertheless, it is enough to state it with instances of X, Y and Z

only as stated by the following proposition.

Proposition 3.1 Let ≥π be a plausibility relation de�ned on Ω = DV and consider three

mutually disjoint subsets of variables X, Y and Z forming a partition of V . The relation

IBP (X,Z, Y ) is true, i�, ∀x, y, z,

Acc(x | y ∧ z) = Acc(x | z). (3.2)

We denote by IBPS the symmetrized version1 of BP-independence relation; i.e. the variable

set X is said to be BPS-independent of Y in the context Z if:

(i)Acc(x | y ∧ z) = Acc(x | z) and

(ii)Acc(y | x ∧ z) = Acc(y | z),∀x, y, z. (3.3)

The BPS-independence relation preserves the plausible instances of X given Y and Y given

X in context Z, but does not preserve the relative ordering between instances of X (resp. Y )

in the context Y (resp. X) (except when restricting to binary variables).

Example 3.1 Let A and B be two BPS-independent variables with the following plausibility

relation ≥π: a1 ∧ b1 >π a2 ∧ b1 >π a3 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2 =π a3 ∧ b2.
By projection, the local plausibility relation relative to A is then a1 >Π a2 >Π a3.

1In what follows the su�x S is used to denote the symmetrized version of non symmetric relations.
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However, in the context b2, we have a1 >Π a2 =Π a3, thus, the relative ordering between

instances of A is not preserved in all contexts of B since a2 >Π a3 while a2 =Π a3 in the

context b2.

Order-preserving independence

The causality-oriented de�nition that we propose now simply says that X is independent of

Y in the context of Z, if for all z ∈ DZ , the local preferential ordering between the di�erent

instances of X is preserved after the revision by any instance y of Y . More formally:

De�nition 3.2 Let ≥π be a plausibility relation de�ned on three disjoint subsets of variables:

X, Y and Z. The variable set X is said to be PO-independent (PO for Preserving Ordering)

of Y in the context Z, denoted IPO(X,Z, Y ), if ∀z ∈ DZ ,∀y ∈ DY :

∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z i� xi ∧ y ∧ z >π xj ∧ y ∧ z. (3.4)

Proposition 3.2 If X is PO-independent of Y in the context Z, then X is also BP-independent

of Y in the same context. The converse in not true.

Counter-example 3.2 Let us consider a ternary variable A and a binary variable B with the

following plausibility relation: a1 ∧ b1 >π a2 ∧ b1 >π a3 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2 =π a3 ∧ b2.
We can check that A is BP-independent of B, but not PO-independent of B since the local

plausibility relation relative to A is a1 >Π a2 >Π a3. However, in the context b2, we have

a2 =Π a3, thus the relation IPO(A, ∅, B) is false, since the ordering between a2 and a3 is not

preserved in context b2.

Note that this relation is not symmetric as shown by the following counter-example:

Counter-example 3.3 Let us consider two binary variables A and B with the following plau-

sibility relation: a1 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2 >π a2 ∧ b1.

• The local plausibility relation relative to A is a1 >Π a2. Moreover, in the context b1

(resp. b2), we have a1 >Π a2 since a1 ∧ b1 >Π a2 ∧ b1 (resp. a1 ∧ b2 >Π a2 ∧ b2). Thus,
the relation IPO(A, ∅, B) is true since the ordering relative to the di�erent instances of

A is preserved for all instances of B.

• The local plausibility relation relative to B is b1 >Π b2. However, in the context a2, we

have b2 >Π b1, thus, the relation IPO(B, ∅, A) is false, since the ordering between b1 and

b2 is not preserved in the context a2.
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We denote IPOS the symmetrized version of IPO; i.e. X is said to be POS-independent of

Y in the context Z if ∀z ∈ DZ ,∀y ∈ DY ,∀x ∈ DX :

(i) ∀xi, xj ∈ DX , xi ∧ z >Π xj ∧ z i� xi ∧ y ∧ z >π xj ∧ y ∧ z, and

(ii) ∀yk, yl ∈ DY , yk ∧ z >Π yl ∧ z i� x ∧ yk ∧ z >π x ∧ yl ∧ z. (3.5)

The following proposition rewrites POS-independence in terms of Acc.

Proposition 3.3 X is POS-independent of Y in the context Z i�:

∀D′X ⊆ DX , ∀D′Y ⊆ DY such that D′X 6= ∅ and D′Y 6= ∅ and ∀x, y, z

Acc(x ∧ y | z,D′X , D′Y ) = min(Acc(x | z,D′X),Acc(y | z,D′Y )). (3.6)

From this rewriting, we deduce the following proposition:

Proposition 3.4 If X is POS-independent of Y in the context Z, then X is also BPS-

independent of Y in the same context. The converse in not true.

Counter-example 3.4 : IBPS does not imply IPOS

Let us consider a ternary variable A and a binary variable B with the following plausibility

relation: a1 ∧ b1 >π a2 ∧ b1 >π a3 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2 =π a3 ∧ b2.
We can check that A is BPS-independent of B, but not POS-independent of B since the local

plausibility relation relative to A is a1 >Π a2 >Π a3. However, in the context b2, we have

a2 =Π a3, thus, the relation IPOS(A, ∅, B) is false, since the ordering between a2 and a3 is not

preserved in the context b2.

We now compare the POS-independence relation to the well known independence relation

based on Ceteris Paribus (all else being equal) principle used in [27, 42] and de�ned by:

De�nition 3.3 Let ≥π be a plausibility relation de�ned on three disjoint subsets of variables:

X, Y and Z. The variable set X is said to be CP-independent (CP for Ceteris Paribus) of Y

in the context Z, denoted ICP (X,Z, Y ), if ∀z ∈ DZ ,∀xi, xj ∈ DX , ∀yk, yl ∈ DY ,

xi ∧ yk ∧ z >π xj ∧ yk ∧ z i� xi ∧ yl ∧ z >π xj ∧ yl ∧ z. (3.7)

Proposition 3.5 CP-independence relation is equivalent to POS-independence relation.

3.2.2 Decompositional independence

This section proposes two classes of decompositional independencies, the �rst is based on belief

decomposition and the second on remarkable plausibility relations.
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Belief decompositional independence

The idea of this independence relation is to consider two variable sets X and Y as independent

in the context Z if for any instance z of Z, the acceptance of any instance (x ∧ y) of (X,Y )

is fully determined by the acceptance of x and y. One way to relate the acceptance of (x∧ y)

to the acceptance of x and the acceptance of y is:

De�nition 3.4 Let ≥π be a plausibility relation de�ned on Ω = DV and consider three mutu-

ally disjoint subsets of variables X, Y and Z forming a partition of V . X and Y are said to be

PT-independent (PT for Preserving Top elements) in the context Z, denoted by IPT (X,Z, Y ),

i� ∀φX ⊆ DX ,∀ψY ⊆ DY , ∀ξZ ⊆ DZ

Acc(φX ∧ ψY | ξZ) = min(Acc(φX | ξZ),Acc(ψY | ξZ)). (3.8)

This de�nition is analogous to the one given in probability theory i.e. two variables A and

B are independent if the probability over A and B is fully determined by P (A) and P (B) (i.e.

P (A ∧B) = P (A) · P (B)).

Proposition 3.6 X and Y are PT-independent in the context Z as soon as De�nition 3.4

holds for all instances of X, Y and Z only, that is:

∀x, y, z,Acc(x ∧ y | z) = min(Acc(x | z),Acc(y | z)). (3.9)

It means that the set of plausible instances of a cartesian product of domains is a cartesian

product. In particular, if any of the two sets max(DX) and max(DY ) contains a simple

element then, obviously, X and Y are PT-independent. So PT-independent is a very weak

de�nition of independence (see Figure 3.1 in Section 3.5). In other terms, the acceptance of

one instance of X or of Y is enough to conclude the independence between these two variable

sets in the context Z:

Proposition 3.7 ∀z ∈ DZ , if ∃x ∈ DX such that Acc(x | z) = 1 or ∃y ∈ DY such that

Acc(y | z) = 1, then the relation IPT (X,Z, Y ) is true.

In particular, if a plausibility relation ≥π contains exactly one preferred element then all

variables are pairwise PT-independent. Moreover, we have the following strong result:

Proposition 3.8 Let X, Y , Z be three disjoint subsets of variables, then ∀x, y, z,

Acc(x ∧ y | z) 6= min(Acc(x | z),Acc(y | z))

⇔ Acc(x ∧ y | z) = −1,Acc(x | z) = 0, and Acc(y | z) = 0.
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The preservation of accepted beliefs, implicitly, implies the preservation of preferred in-

stances but the converse is not true as stated by the following proposition.

Proposition 3.9 If X is BPS-independent of Y in the context Z, then X and Y are also

PT-independent. The converse in not true.

Counter-example 3.5 : IPT does not imply IBPS

Let us consider two binary variables A and B with the following plausibility relation:

a1 ∧ b2 >π a2 ∧ b2 >π a1 ∧ b1 =π a2 ∧ b1,

we can check that A and B are PT-independent, but not BPS-independent.

Using Propositions 3.9 and 3.4, we deduce that if X is POS-independent of Y in the

context Z, then X and Y are also PT-independent and that the converse is not true.

Decompositional independence of remarkable plausibility relations

A natural way of de�ning decompositional independencies is to analyze the structure of the

plausibility relation ≥π. Indeed, a plausibility relation is said to be decomposable w.r.t. X

and Y in the context Z, i� ≥π is a function of the local orderings on (X ∪ Z) and (Y ∪ Z).

The following introduces a well known principle, called Pareto-principle:

De�nition 3.5 Let ≥π be a plausibility relation and ui, vi be two instances (not necessarily

di�erent) of Ai. Let −→u = (u1, ..., un) and −→v = (v1, ..., vn) be two vectors. Then, −→u is said to be

weakly Pareto-preferred to −→v , denoted by −→u ≥P −→v , if and only if: ∀ui, ∀vi, i ∈ {1, .., n}, ui ≥Π

vi. Moreover, −→u is said to be strictly Pareto-preferred to −→v , if and only if: −→u ≥P −→v and

∃i ∈ {1, .., n} s.t. ui >Π vi.

In general ≥P is only a partial order. Since we deal with plausibility relations which are

complete pre-orders, the following de�nition introduces a general class of plausibility relations

which are compatible with the Pareto-principle:

De�nition 3.6 Let X, Y and Z be disjoint subsets of variables. A plausibility relation ≥π
is said to be Pareto-compatible (or monotonic) on X and Y in the context Z if ∀z ∈
DZ , ∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

(xi ∧ z, yk ∧ z) ≥P (xj ∧ z, yl ∧ z) implies (xi ∧ yk ∧ z) ≥π (xj ∧ yl ∧ z)

Well known example of orderings used in the qualitative setting, which are Pareto-compatible

are the Pareto, the leximin and the leximax orderings that we brie�y present now [98].
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De�nition 3.7 Let −→u = {u1, ..., un} and −→v = {v1, ..., vn} be two vectors, and let σ and τ

be two permutations of indices such that ∀i ∈ {1, .., n}, uσ(i) >Π uσ(i+1) and vτ(i) >Π vτ(i+1).

Then,

- −→u is said to be leximin-preferred to −→v , denoted by −→u >leximin
−→v , if and only if there exists

i such that uσ(i) >Π vτ(i) and ∀j > i, uσ(j) =Π vτ(j).

- −→u is said to be leximin-equal to −→v , denoted by −→u =leximin
−→v , if and only if ∀i, uσ(i) =Π vτ(i).

The leximin ordering is a natural extension of the minimum operator which has been used

in di�erent areas like in handling con�icts in knowledge bases [13, 95], and in �exible constraint

satisfaction problems [47, 49, 50].

De�nition 3.8 Let −→u = {u1, ..., un} and −→v = {v1, ..., vn} be two vectors, and let σ and τ

be two permutations of indices such that ∀i ∈ {1, .., n}, uσ(i) >Π uσ(i+1) and vτ(i) >Π vτ(i+1).

Then,

- −→u is said to be leximax-preferred to −→v , denoted by −→u >leximax
−→v , if and only if there exists

i such that uσ(i) >Π vτ(i) and ∀j < i, uσ(j) =Π vτ(j).

- −→u is said to be leximax-equal to −→v , denoted by −→u =leximin
−→v , if and only if ∀i, uσ(j) =Π vτ(i).

We now use these orderings to characterize plausibility relations:

1. A plausibility relation ≥π is said to be Pareto-decomposable on X and Y in the

context Z, if ∀z ∈ DZ ,∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

xi ∧ yk ∧ z ≥π xj ∧ yl ∧ z if and only if

xi ∧ z ≥Π xj ∧ z and yk ∧ z ≥Π yl ∧ z.

This de�nition is very strong, in the sense that ≥π is Pareto-decomposable along X and

Y if one of the groups of variables is not informed as stated by the following proposition:

Proposition 3.10 A plausibility relation ≥π is Pareto-decomposable on X and Y if one

of the local plausibility relations on X or Y is uniform. The converse is not true.

Counter-example 3.6 Let us consider the following plausibility relation pertaining to

two binary variables A and B:

a1 ∧ b1 =π a2 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b2

We can check that the local plausibility relations on A is uniform (i.e. a1 =Π a2) while

the plausibility relation on A and B is not Pareto-decomposable.
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2. A plausibility relation ≥π is said to be leximin-decomposable on X and Y in the

context Z, if ∀z ∈ DZ ,∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

- xi ∧ yk ∧ z >π xj ∧ yl ∧ z if and only if

(i) min(xi ∧ z, yk ∧ z) >Π min(xj ∧ z, yl ∧ z) or
(ii)min(xi∧z, yk∧z) =Π min(xj∧z, yl∧z) and max(xi∧z, yk∧z) >Π max(xj∧z, yl∧z).
- xi ∧ yk ∧ z =π xj ∧ yl ∧ z if and only if

min(xi∧z, yk∧z) =Π min(xj ∧z, yl∧z) and max(xi∧z, yk∧z) =Π max(xj ∧z, yl∧z).

3. A plausibility relation ≥π is said to be leximax-decomposable on X and Y in the

context Z, if ∀z ∈ DZ ,∀xi, xj ∈ DX ,∀yk, yl ∈ DY , we have:

- xi ∧ yk ∧ z >π xj ∧ yl ∧ z if and only if

(i) max(xi ∧ z, yk ∧ z) >Π max(xj ∧ z, yl ∧ z) or
(ii)max(xi∧z, yk∧z) =Π max(xj∧z, yl∧z) and min(xi∧z, yk∧z) >Π min(xj∧z, yl∧z).
- xi ∧ yk ∧ z =π xj ∧ yl ∧ z if and only if

min(xi∧z, yk∧z) =Π min(xj ∧z, yl∧z) and max(xi∧z, yk∧z) =Π max(xj ∧z, yl∧z).

where max(a, b) =

 a if a ≥Π b

b otherwise

De�nition 3.9 X and Y are said to be Pareto-independent (resp. leximin-independent,

leximax-independent) in the context Z, denoted IPareto (resp. Ileximin, Ileximax), if the plau-

sibility relation ≥π is Pareto-decomposable (resp. leximin-decomposable, leximax-decomposable)
on X and Y in the context Z.

Proposition 3.11 If X and Y are Pareto-independent in the context Z, then they are leximin-

independent and leximax-independent . The converse is false and leximax independence is not

comparable with leximin independence.

Counter-example 3.7 : Ileximin and Ileximax do not imply IPareto and they are in-

comprable

Let us consider the following plausibility relations pertaining to a binary variable A and

ternary variable B:

a1 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b1 >π a1 ∧ b3 >π a2 ∧ b2 >π a2 ∧ b3,

a1 ∧ b1 >′π a1 ∧ b2 >′π a2 ∧ b1 >′π a2 ∧ b2 >′π a1 ∧ b3 >′π a2 ∧ b3,

with ≥π we can check that A and B are leximax-independent but neither leximin-independent,

since a1 ∧ b3 >π a2 ∧ b2 while min(a2, b2) >Π min(a1, b3), nor Pareto-independent, since
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a1 ∧ b3 >π a2 ∧ b2 while b2 >Π b3.

In addition with ≥′π we can check that A and B are leximin-independent but neither leximax-

independent since a2∧b2 >′π a1∧b3 while max(a1, b3) >′Π max(a2, b2), nor Pareto-independent

since a2 ∧ b2 >′π a1 ∧ b3 while a1 >
′
Π a2.

Proposition 3.12 Pareto, leximin and leximax independence imply POS-independence. The

converse is false.

Counter-example 3.8 : IPOS does not imply Ileximin, Ileximax and IPareto

Let A and B be two variables and ≥π, ≥′π be the plausibility relations given in Counter

example 3.7.

• with ≥π, we can check that A is POS-independent of B but that these two variables

are not leximin-independent since a1 ∧ b3 >π a2 ∧ b2 while min(a2, b2) >Π min(a1, b3).

Moreover, with ≥′π we can check that A is POS-independent of B but these two variables

are not leximax-independent since a2 ∧ b2 >′π a1 ∧ b3 while max(a1, b3) >′Π max(a2, b2).

• with the following plausibility relation:

a1 ∧ b1 >π a1 ∧ b2 >π a2 ∧ b1 >π a2 ∧ b2,

we can check that the relation IPOS(A, ∅, B) is true contrary to IPareto(A, ∅, B).

However, there are particular cases where the independence relations POS, leximin and

leximax are equivalent:

• The �rst one concerns binary variables:

Proposition 3.13 If A and B are binary variables then A is POS-independent of B in

the context of a binary variable C if and only if they are leximin-independent and if and

only if they are leximax-independent.

• The second one concerns two-level distributions:

Proposition 3.14 If ≥π is a two-level distribution, then X is POS-independent of Y

in the context of Z if and only if they are leximin-independent and if and only if they

are leximax-independent.
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3.3 Independence in Possibilistic framework

In this Section we recall well-known de�nitions of the independence relations which apply to a

possibility distribution π [38, 39, 62, 63, 122, 129]. Clearly this distribution induces a unique

plausibility relation ≥π using (2.11); this will enable us to compare the independence relations

introduced in this section to the ones in the previous sections. The comparison results will be

presented in Section 3.5.

3.3.1 Possibilistic causal independence

The idea in de�ning possibilistic causal independence relation based on the possibilistic con-

ditioning is that X is considered as independent from Y in the context Z if for any instance

z ∈ DZ , the possibility degree of any x ∈ DX remains unchanged for any value y ∈ DY . More

formally:

Π(x | y ∧ z) = Π(x | z), ∀x, y, z. (3.10)

Since possibility theory has two kinds of conditioning (see Section 1.4.3), this leads to two

de�nitions of causal possibilistic independence:

• Min-based independence relation obtained by using the min-based conditioning

(1.17) in (3.10). This form of independence called IM is not symmetric i.e. IM (X,Z, Y ) 6=
IM (Y,Z,X) where Z denotes the context variable, as pointed out by Fonck [63] and as

shown by the following Counter-example.

Counter-example 3.9 Let us consider three binary variables A, B and C with the

possibility distribution given in Table2 3.2. We can check that Π(a | b ∧ c) = Π(a |
c), ∀a, b, c i.e. IM (A,C,B) is true but, Π(b1 | a1 ∧ c1) = 1 6= Π(b1 | c1) = 0.7 i.e.

IM (B,C,A) is not true.

Table 3.2: Possibility distribution on A, B and C

a b c π(a ∧ b ∧ c)

a1 - - 0.6
a2 b1 c1 0.7
a2 b1 c2 0.8
a2 b2 c1 0.9
a2 b2 c2 1

2The symbol - in the table replaces all the instances relative to the corresponding column.
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Let us denote IMS the symmetrized version of IM suggested in [62] (called MS-independence)

∀x, y, z:
(i) Π(x |m y ∧ z) = Π(x |m z) and

(ii) Π(y |m x ∧ z) = Π(y |m z). (3.11)

This relation is a very strong one since the MS-independence between two sets of vari-

ables X and Y requires full ignorance about one of them (uniform distribution) [38, 39]

i.e.

Π(x) = 1, ∀x ∈ DX or Π(y) = 1,∀y ∈ DY .

• Product independence relation obtained by using the product-based conditioning

(1.18) in (3.10). We can rewrite this form of independence using:

Π(x ∧ y |p z) = Π(x |p z) ·Π(y |p z),∀x, y, z, (3.12)

or equivalently,

Π(x |p y ∧ z) = Π(x |p z),∀x, y, z. (3.13)

Let us denote IProd the product based independence relation. The equivalence between

(3.12) and (3.13) is true only for positive distributions. Moreover, Prod-based inde-

pendence, contrary to min-based independence, is symmetric. This de�nition can be

expressed in Spohn's ordinal function framework [119, 120] using an appropriate trans-

formation from integers to the unit scale [0, 1]. Indeed, this can be checked by showing

that product-based conditioning is equivalent to Spohn's conditioning [53, 56].

3.3.2 Possibilistic decompositional independence: non-interactivity

In the possibilistic framework, the standard decompositional independence between X and Y

in the context Z is represented by the non-interactivity relation introduced by Zadeh [129],

denoted by INI(X,Z, Y ) (NI for Non-Interactivity) and de�ned by:

Π(x ∧ y |m z) = min(Π(x |m z),Π(y |m z)),∀x, y, z. (3.14)

Proposition 3.15 The non-interactivity relation can be expressed by [62]:

Π(x ∧ y ∧ z) = min(Π(x ∧ z),Π(y ∧ z)), ∀x, y, z. (3.15)

The following proposition relates existing independence relations in possibility theory.

Proposition 3.16 MS-independence relation implies INI [64] and IProd independence rela-

tions. The converse is false. However, NI and the Prod independence relations are incompa-

rable.
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Counter-example 3.10 : IProd and INI do not imply IMS and they are incompa-

rable

Table 3.3: Relation between IProd, INI and IMS

a b π1(a ∧ b) a b π2(a ∧ b)
a1 b1 0.6 a1 b1 1
a1 b2 1 a1 b2 0.8
a2 b1 0.36 a2 b1 0.8
a2 b2 0.6 a2 b2 0.8

Let us consider two binary variables A and B with the possibility distributions given in Table

3.3. We can check that in π1, the relation IProd(A, ∅, B) is true contrary to IMS(A, ∅, B) and

INI(A, ∅, B). Moreover in π2, the relation INI(A, ∅, B) is true contrary to IMS(A, ∅, B) and

IProd(A, ∅, B).

3.4 Commensurability and the decomposition of plausibility re-

lations

The decomposition of a joint possibility distribution pertaining to tuples of variables into local

distributions on smaller subsets of variables allows to have a reasoning machinery working at

the local level without losing any information.

In the qualitative setting, forming a joint possibility relation from marginal ones is not im-

mediate due to the absence of commensurability assumption between the di�erent orderings.

Indeed, di�erent rankings are not expressing grades in the same scale and then it is impossible

to compare the states, which makes it possible to build joint possibility relations.

This problem can be solved with the help of ranking functions which make these relations

commensurable. Namely, in the possibilistic framework all the orderings are de�ned on the

same scale e.g. [0, 1], which is very important in the recomposition of joint distributions from

marginal ones.

Therefore, before decomposing the qualitative independence relations we have introduced

in this chapter i.e. Pareto, leximin, leximax, POS, BPS and PT independence, we will �rst

rede�ne them in the possibilistic framework as shown in subsection 3.3.1.

A natural way of de�ning decomposable independence relations is to analyze the structure

of the possibility distribution π de�ned on two independent variable sets X and Y in order to
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see if there is some function f such that:

π(x ∧ y) = f (Π(x),Π(y)),∀x, y.

3.4.1 Decomposition of Non-Interactivity and Product independence rela-

tions

The decomposition of the non-interactivity and the Product independence relations is trivial:

• The non-interactivity relation (see (3.14)) can be de�ned in a qualitative setting as it is

stated by the following proposition:

Proposition 3.17 Let π be a possibility distribution. Let ≥π de�ned by

ω ≥π ω
′
i� π(ω) ≥ π(ω

′
). Then, X and Y are NI-independent i�:

x ∧ y ∧ z =Π x ∧ z or x ∧ y ∧ z =Π y ∧ z,∀x, y, z. (3.16)

However, NI-independence is not interesting in a qualitative representation since it does

not allow for the recomposition of a unique global plausibility relation from local orders

de�ned on independent variables (due to the non-satisfaction of the commensurability

property), as shown by the example below.

Example 3.2 Let us consider two variables, relative to climatic conditions (CCdt) and

physiological accidents (PAcc), such that:

DCCdt = {Bad(b), Good(g)}
DPAcc = {Y es(y), No(n)} with the following local orderings:

(i) b >Π g and (ii) y >Π n.

There is no unique plausibility relation ≥π satisfying (i) and (ii) such that (CCdt) and

(PAcc) are NI-independent. Indeed, it is su�cient to consider the two plausibility rela-

tions ≥π and ≥′π:
b ∧ y >π g ∧ y >π b ∧ n =π g ∧ n,

b ∧ y >′π g ∧ y =′π b ∧ n =′π g ∧ n.

However, if the local orderings are encoded in possibility theory then we will have a

unique plausibility relation ≥π using π(ccdt ∧ pacc) = min(π(ccdt), π(pacc)), ∀ccdt ∈
DCCdt, ∀pacc ∈ DPAcc.
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Indeed, if we encode the plausibility relation ≥π by the possibility distribution given in

Table 3.4, we obtain the local distributions on the two variables (CCdt) and (PAcc) given

in Table 3.5. Then, from π(ccdt) and π(pacc) we can recover (i) and (ii) in a unique

manner using the min operator.

Table 3.4: Decomposition of NI-independence

ccdt pacc π(ccdt ∧ pacc)

b y 1
b n 0.8
g y 0.9
g n 0.8

Table 3.5: Decomposition of NI-independence
ccdt π(ccdt) pacc π(pacc)

b 1 y 1
g 0.9 n 0.8

• IProd relation enjoys the same properties as the independence relation proposed in the

probabilistic framework. In particular, we can decompose it, i.e. we can recover Π(x∧y |p
z) in a unique manner from Π(x |p z) and Π(y |p z) using the product operator.

The importance of the commensurability assumption also appears in fuzzy set based mul-

ticriteria aggregation, especially when de�ning connectives between fuzzy sets. For instance,

French [65] questions the validity of the intersection de�nition of two fuzzy sets (using the

minimum operator to de�ne the membership function associated with the intersection) when

no commensurability is assumed.

3.4.2 Decomposition of leximin and leximax independence relations

In the qualitative setting, even if a plausibility relation is leximin or leximax decomposable,

it cannot be decomposed without loss of information again due to the absence of commensu-

rability assumption.

Example 3.3 Let us consider two variables, relative to climatic conditions (CCdt) and main-

tenance (Maint), such that:

DCCdt = {Bad(bc), Good(gc)}
DMaint = {Good(gm),Medium(mm),Weak(wm)} with the following plausibility relation ≥π
which is leximin decomposable:

bc ∧ gm >π bc ∧ gm >π gc ∧mm >π bc ∧ wm >π gc ∧ wm.
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We can easily check that this plausibility relation cannot be recovered from the induced local

orders on (CCdt) and (Maint) given by:

(i) bc >Π gc and (ii) gm >Π mm >Π wm.

Indeed, it is su�cient to consider the following plausibility relation:

bc ∧ gm >′π gc ∧ gm >′π bc ∧mm >′π gc ∧mm >′π bc ∧ wm >′π gc ∧ wm,

which satis�es (i) and (ii) and which is also leximin-decomposable.

Such a problem can be solved when considering the scale-based setting. Indeed, in this

case the decomposition of leximin and leximax decomposable distributions is immediate since

we use weights represented by possibility degrees which allows the comparison between dif-

ferent interpretations. In other terms, if the plausibility relation ≥π relative to any joint

possibility distribution π is leximin or leximax decomposable then we can recover π from local

distributions. Without a common scale, the use of the leximin or leximax does not allow the

recovering of ≥π.

Example 3.4 Let π be a possibility distribution encoding the plausibility relation ≥π given in

Example 3.3 (see Table 3.6). We can recover π from the local distributions on (CCdt) and

(Maint) and the numerical scale (1,.9,.8,.7,.3,.2) using the leximin ordering. Indeed, the use

of the leximin on the local distributions provides the plausibility relation relative to π i.e.

bc ∧ gm >π bc ∧mm >π gc ∧ gm >π ∧mm >π gc ∧ wm >π gc ∧ wm.

Thus, using the numerical scale we can recover the original distribution π. For instance, the

state bc ∧ gm corresponds to the possibility degree 1.

Table 3.6: Decomposition of leximin-independence

ccdt maint π(ccdt ∧maint)

bc gm 1
bc mm 0.9
bc wm 0.3
gc gm 0.8
gc mm 0.7
gc wm 0.2
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3.4.3 Decomposition of POS-independence relation

In order to decompose the causal relation IPOS , we should see if there exists a function f such

that for each possibility distribution π (encoding some plausibility relation) where X and Y

are POS-independent, we have ∀x, x′ ∈ DX , ∀y, y′ ∈ DY :

π(x ∧ y) > π(x′ ∧ y′) i� f (Π(x),Π(y)) > f (Π(x′),Π(y′)).

The following counter-example shows that this is impossible in the general case.

Counter-example 3.11 Assume that the function f exists, then let us consider two variables,

relative to climatic conditions (CCdt) and maintenance (Maint), such that:

DCCdt = {Bad(bc),Medium(mc), Good(gc)}
DMaint = {Weak(wm),Medium(mm), Good(gm)}
with the two possibility distributions π1 and π2 given in Table 3.7.

Table 3.7: Decomposition of POS-independence

ccdt maint π1(ccdt ∧maint) π2(ccdt ∧maint)

bc wm 1 1
bc mm 0.9 0.9
bc gm 0.5 0.5
mc wm 0.8 0.8
mc mm 0.3 0.3
mc gm 0.2 0.1
gc wm 0.4 0.4
gc mm 0.1 0.2
gc gm 0 0

We have Π1(bc) = Π2(bc) = 1,Π1(mc) = Π2(mc) = 0.8,Π1(gc) = Π2(gc) = 0.4,

Π1(wm) = Π2(wm) = 1,Π1(mm) = Π2(mm) = 0.9,Π1(gm) = Π2(gm) = 0.5.

We can check that (CCdt) and (Maint) are POS-independent in both π1 and π2 since

∀ai, aj ∈ DCCdt, ∀bk ∈ Dmaint, we have Πl(ai) > Πl(aj) i� πl(ai ∧ bk) > π(aj ∧ bk),
for l = 1,2 (and the same when exchanging a and b).

Besides, π1 induces π1(mc∧gm) > π1(gc∧mm), i.e. f(Π1(mc),Π1(gm)) > f(Π1(gc),Π1(mm))

while π2 induces π2(gc ∧mm) > π2(mc ∧ gm), i.e. f(Π2(gc),Π2(mm)) > f(Π2(mc),Π2(gm)),

hence contradiction.

However, there are particular cases where decomposition can be achieved. The �rst con-

cerns binary variables, and the second two-level distributions. Indeed, in these two cases
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POS-independent is equivalent to leximin and leximax independence relations (see Proposi-

tions 3.13 and 3.14 then it can be decomposed using these two operators.

Note that the decomposition of two-level distributions can be useful for databases when the

existing tuples are preferred to absent ones.

POS-independence is a weak relation in the perspective of decomposition. The following

proposition makes the weakness of POS-independence explicit:

Proposition 3.18 X and Y are POS-independent in ≥π i� ≥π is Pareto-compatible (i.e.,

monotonic) on X and Y .

3.5 Comparative study

In Sections 3.2 and 3.3, we have established the di�erent links existing, on the one hand,

between scale-based possibilistic independence relations and, in the other hand, between in-

dependence relations expressed from plausibility relations. This Section compares all these

relations. Namely, given a joint possibility distribution π, we will relate the relations IPareto,

IPOS , Ileximin and Ileximax of Section 3.2 to the ones of Section 3.3 (i.e. INI , IMS and IProd)

by considering the plausibility relation ≥π induced from π by using (2.11).

Using Proposition 3.10, we can show the equivalence between MS and Pareto independence

relations.

Proposition 3.19 Let π be a possibility distribution, and ≥π be its associated plausibility

relation. Then, X and Y are MS-independent in π if and only if they are Pareto-independent

in ≥π.

Proposition 3.20, shows that the M-independence implies the PO-independence.

Proposition 3.20 If X is M-independent of Y in the context Z, then X is also PO-independent

of Y in the same context. The converse is not true.

Counter-example 3.12 : IPO does not imply IM

Let us consider two binary variables A and B with the possibility distribution given in Table

3.8. We can check that the relation IPO(A, ∅, B) is true contrary to IM (A, ∅, B).

Propositions 3.21 and counter-example 3.15 relate Prod-independence to POS, leximin and

leximax independencies.
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Table 3.8: Relation between IM and IPO
a b π(a ∧ b)
a1 b1 1
a1 b2 0.8
a2 b1 0.5
a2 b2 0.7

Proposition 3.21 If X and Y are Prod-independent in a strictly positive possibility distribu-

tion π, then X is POS-independent of Y in the plausibility relation induced by π. The converse

is false.

Counter-example 3.13 : IPOS does not imply IProd

Table 3.9: Relation between IPOS and IProd
a b π(a ∧ b) a b π(a ∧ b)
a1 b1 1 a2 b1 0.8
a1 b2 0.9 a2 b2 0.7
a1 b3 0.6 a2 b3 0.5

Let A and B be two variables with the strictly positive possibility distribution given in

Table 3.9. We can check that the relation IPOS(A, ∅, B) is true contrary to IProd(A, ∅, B)

since π(a2 ∧ b3) = 0.5 6= Π(a2) ·Π(b3) = 0.48.

Counter-example 3.14 IProd implies IPOS only with strictly positive distribu-

tions

Proposition 3.21 is false for non strictly positive possibility distributions. Indeed, let us

consider two binary variables A and B with the non strictly positive possibility distribution

given in Table 3.10. We can check that IProd(A, ∅, B) is true, contrary to IPOS(A, ∅, B).

Table 3.10: Relation between IProd and IPOS
a b π(a ∧ b)
a1 b1 1
a1 b2 0
a2 b1 0
a2 b2 0

In the general case, the leximin and leximax independencies are incomparable with Prod-

independence as shown by the following counter-example:
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Table 3.11: Relation between IProd, Ileximin and Ileximax
a b π(a ∧ b) a b π(a ∧ b) a b π(a ∧ b)
a1 b1 1 a2 b1 0.5 a3 b1 0.4
a1 b2 0.8 a2 b2 0.4 a3 b2 0.32

Table 3.12: Relation between IProd, Ileximin and Ileximax
a b π(a ∧ b) a b π(a ∧ b)
a1 b1 1 a2 b1 0.8
a1 b2 0.9 a2 b2 0.3
a1 b3 0.5 a2 b3 0.2

Counter-example 3.15 : IProd independence implies neither Ileximin nor Ileximax

and vice versa

Let A and B be two variables,

• with the possibility distribution given in Table 3.11, we can check that IProd(A, ∅, B)

is satis�ed while Ileximin(A, ∅, B) and Ileximax(A, ∅, B) are false. Note that the product

operator allows for compensation contrary to the leximin and leximax orderings. For

instance, if we have two pairs (Π(x),Π(y)) and (Π(x′),Π(y′)) such that Π(x) > Π(x′)

and Π(y′) > Π(y), then x ∧ y and x′ ∧ y′ will be always strictly ranked using leximin

and leximax principle. However, they can be equally ranked using the product operator

since it may happen that Π(x) · Π(y) = Π(x′) · Π(y′). This is the case in this example

since Π(a2) = 0.5 > Π(a3) = 0.4 and Π(b1) = 1 > Π(b2) = 0.8 and Π(a2) · Π(b2) =

Π(a3) ·Π(b1) = 0.4.

• with the possibility distributions given in Table 3.12, we can check that Ileximax(A, ∅, B)

is respected while IProd(A, ∅, B) is false since π(a2 ∧ b2) = 0.3 6= Π(a2) · Π(b2) =

0.72. Moreover, with the possibility distribution given in Table 3.6, we can check that

Ileximin(A, ∅, B) is respected contrary to IProd(A, ∅, B) since π(a2 ∧ b3) = 0.5 6= Π(a2) ·
Π(b3) = 0.48.

Proposition 3.22 relates NI-independence to independence relations de�ned on plausibility

relations.

Proposition 3.22 Pareto independence implies NI-independence relation (since Pareto is

equivalent to MS). Moreover, NI-independence implies PT-independence. However, this in-

dependence relation is incomparable with the other qualitative independence relations, namely

the leximin, leximax, POS and BPS independencies.

Counter-example 3.16 : INI is incomparable with Ileximin, Ileximax, IPOS and IBPS
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In the possibility distribution π2 given in Table 3.3, we can check that INI(A, ∅, B) is true.

However in the plausibility relation induced by π2 (i.e., a1∧b1 >π a1∧b2 =π a2∧b1 =π a2∧b2)
the relations Ileximin(A, ∅, B) and Ileximax(A, ∅, B) are false since a1 ∧ b2 =π a2 ∧ b2 while

max(a1, b2) >Π max(a2, b2). Moreover, IPOS(A, ∅, B) is false since the local plausibility rela-

tion relative to A is a1 >Π a2 while a1 =Π a2 in the context of b1. Lastly, IBPS(A, ∅, B) is

false since Acc(a1 | b2) = 0 6= Acc(a1) = 1.

In Table 3.12, we can check that the relation Ileximax(A, ∅, B) is respected contrary to

INI(A, ∅, B) since π(a2 ∧ b2) = 0.3 6= min(Π(a2),Π(b2)) = min(0.8, 0.9) = 0.8.

Lastly, in Table 3.9, we can check that Ileximin(A, ∅, B) is respected contrary to INI(A, ∅, B)

since π(a2 ∧ b2) = 0.7 6= min(Π(a2),Π(b2)) = min(0.8, 0.9) = 0.8. Then we can deduce that

in π the relations IPOS(A, ∅, B), IBPS(A, ∅, B) and IPT (A, ∅, B) are true contrary to NI-

independence since Ileximin implies these three independence relations (from Propositions 3.9,

3.4 and 3.11).

This counter-example shows that if we start with a complete order, and map it to a scale

(e.g. [0, 1]) then if X and Y are NI-independent (which implies that the distribution is de-

composable with the minimum operator), then it is always possible to recompose the initial

ordering from local ones de�ned on X and Y . This is possible because we can store the total

pre-order by mapping it to a totally ordered scale. However, the case where the commensura-

bility is crucial is when the expert provides local orders on X and Y and the fact that these

sets of variables are NI-independent. Then, it is no longer possible to construct the global

distribution.

Figure 3.1: Links between symmetric (a) and non-symmetric (b) independence relations

Figure 3.1 (a) illustrates the links existing between the di�erent symmetric independence

relations. Figure 3.1 (b) concerns non-symmetric independence relations. The arrows show

the inclusion between independence relations (transitivity is not explicit for sake of clarity).

The absence of arrows implies the incomparability of the independence relations. Note that

IMS and IPareto are the strongest independence relations since MS (or equivalently, Pareto)

independence between two sets of variables imply a lack of information on one of them. How-

ever, IPT is the weakest one, since it is su�cient to satisfy any independence relation in order
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to con�rm that this relation is true as stated by Proposition 3.7. Finally, we remark that

INI is implied by IMS and IPareto and that it implies IPT but it is incomparable with the

other independence relations. Unsurprisingly, there are several decompositional independence

relations according to the chosen decomposition mode. However, there is only one natural

causality-oriented independence which is POS-independence relation. Fortunately, all of de-

compositional independence relations (except INI) are also meaningful from a causality point

of view.

3.6 Graphoid properties

The independence relations can be characterized by some properties which have been initially

established for probabilistic conditional independence [25, 37, 103, 104]. These properties are

as follows:

• P1: Symmetry : I(X,Z, Y )⇒ I(Y,Z,X)

This relation asserts that in any state of knowledge Z, if Y tells us nothing new about

Y , then X tells us nothing new about Y .

• P2: Decomposition: I(X,Z, Y ∪W )⇒ I(X,Z, Y ) and I(X,Z,W )

This relation asserts that if (Y andW ) are irrelevant to X then Y (resp. W ) is irrelevant

to X.

• P3: Weak union: I(X,Z, Y ∪W )⇒ I(X,Z ∪ Y,W )

This relation asserts that the learning of an irrelevant information W , cannot transform

an irrelevant information Y into a pertinent one for X.

• P4: Contraction: I(X,Z ∪ Y,W ) and I(X,Z, Y )⇒ I(X,Z, Y ∪W )

This relation asserts that if W is irrelevant to X after receiving irrelevant information

Y , then W should be also irrelevant to X knowing Y . Together, the weak union and

this property state that irrelevant information should not modify the relevance of other

propositions.

• P5: Intersection: I(X,Z ∪W,Y ) and I(X,Z ∪ Y,W )⇒ I(X,Z, Y ∪W )

This relation states that if Y is irrelevant to X when W is known and if W is irrelevant

to X when Y is known, then neither W , nor Y , nor their combination is relevant to X.

Any independence structure that satis�es the properties P1-P4 is called a semi-graphoid. If

it also satis�es property P5 it is said to be a graphoid. It has been shown that the probabilistic

independence relation is a semi-graphoid, and it is a graphoid if the considered probability
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distribution is strictly positive (i.e. p >0) [103].

We �rst recall existing results on graphoid properties in possibilistic framework. Indeed,

Fonck [63] has shown that INI and IProd relations are semi-graphoids. Indeed INI does not

satisfy the intersection property, while IProd satis�es this property only if we consider strictly

positive distributions. IM independence relation satis�es all graphoid properties except the

symmetry and its symmetrized version IMS is a graphoid. This implies that IPareto is a graphoid

too since these two relations are equivalent as stated by Proposition 3.19.

The following propositions establish the graphoid properties of proposed independence

relations.

Proposition 3.23 IPO independence relation satis�es all graphoid properties except the sym-

metry.

For the lack of symmetry see Counter-example 3.3. Note the unexpected result: the

addition of symmetry to IPO leads to the loss of contraction and intersection properties.

Proposition 3.24 IPOS relation is not a semi-graphoid, since it satis�es the symmetry (by

de�nition), the decomposition and the weak union but neither the contraction nor the inter-

section properties.

Counter-example 3.17 : Lack of contraction property for IPOS

Let us consider three binary variables A, B and C with the following plausibility relation:

a2 ∧ b2 ∧ c1 >π a2 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c1 >π a2 ∧ b1 ∧ c2 >π a1 ∧ b2 ∧ c1 >π a1 ∧ b1 ∧ c1 >π

a1 ∧ b2 ∧ c2 >π a1 ∧ b1 ∧ c2.

It can be checked that:

IPOS(A,B,C) is true since

 ∀b, c,∀a, a′ ∈ DA, a ∧ b >Π a′ ∧ b i� a ∧ b ∧ c >π a′ ∧ b ∧ c and
∀a, b,∀c, c′ ∈ DC , c ∧ b >Π c′ ∧ b i� c ∧ a ∧ b >π c′ ∧ a ∧ b

IPOS(A, ∅, B) is true since

 ∀b,∀a, a′ ∈ DA, a >Π a′ i� a ∧ b >Π a′ ∧ b and
∀a,∀b, b′ ∈ DB, b >Π b′ i� b ∧ a >Π b′ ∧ a

However, IPOS(A, ∅, B ∪C) is not veri�ed since b2 ∧ c2 >Π b1 ∧ c1 while in the context a1, we

have b1 ∧ c1 >Π b2 ∧ c2.

Counter-example 3.18 : Lack of intersection property for IPOS

Let us consider the plausibility relation given in Counter-example 3.17. It can be checked

that:

IPOS(A,C,B) is true since

 ∀b, c,∀a, a′ ∈ DA, a ∧ c >Π a′ ∧ c i� a ∧ b ∧ c >π a′ ∧ b ∧ c and
∀a, c,∀b, b′ ∈ DB, b ∧ c >Π b′ ∧ c i� b ∧ a ∧ c >π b′ ∧ a ∧ c
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IPOS(A,B,C) is true since

 ∀b, c,∀a, a′ ∈ DA, a ∧ b >Π a′ ∧ b i� a ∧ b ∧ c >π a′ ∧ b ∧ c and
∀a, b,∀c, c′ ∈ DC , c ∧ b >Π c′ ∧ b i� c ∧ a ∧ b >π c′ ∧ a ∧ b

However, IPOS(A, ∅, B ∪C) is not veri�ed since b2 ∧ c2 >Π b1 ∧ c1 while in the context a1, we

have b1 ∧ c1 >Π b2 ∧ c2.

Proposition 3.25 Ileximax relation only satis�es the symmetry and the decomposition but not

the other graphoid properties i.e. weak union, contraction and intersection. Ileximin relation

satis�es the same properties than Ileximax.

Some properties may be recovered in particular cases. For instance in the case of two-level

distributions, Ileximax and Ileximin relations satisfy the weak union since they are equivalent

to IPOS (see Propositions 3.13 and 3.14).

Counter-example 3.19 : Lack of weak union property for Ileximax

Let us consider three variables A, B and C with the following plausibility relation:

a1 ∧ b1 ∧ c1 >π a2 ∧ b1 ∧ c1 >π a1 ∧ b2 ∧ c2 >π a3 ∧ b1 ∧ c1 =π a1 ∧ b1 ∧ c2 >π a1 ∧ b2 ∧ c1 >π

a2 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c2 >π a2 ∧ b2 ∧ c1 >π a3 ∧ b2 ∧ c2 >π a3 ∧ b1 ∧ c2 >π a3 ∧ b2 ∧ c1.

It can be checked that Ileximax(A, ∅, B ∪ C) is true since a1 =Π b1 ∧ c1 >Π a2 >Π a3 =Π

b1∧c2 >Π b2∧c1 >Π b2∧c2. However, Ileximax(A,B,C) is false since a2∧b2∧c1 >Π a3∧b2∧c2

while max(a3 ∧ b2, b2 ∧ c2) >Π max(a2 ∧ b2, b2 ∧ c1).

Counter-example 3.20 : Lack of contraction property for Ileximax

Let us consider three binary variables A, B and C with the following plausibility relation:

a1 ∧ b2 ∧ c1 >π a1 ∧ b2 ∧ c2 =π a2 ∧ b2 ∧ c1 >π a2 ∧ b2 ∧ c2 >π a1 ∧ b1 ∧ c2 >π a1 ∧ b1 ∧ c1 =π

a2 ∧ b1 ∧ c2 >π a2 ∧ b1 ∧ c1.

It can be checked that Ileximax(A, ∅, B) and Ileximax(A,B,C) are true since a1 =Π b2 >Π a2 >Π

b1 and a1 ∧ b2 =Π b2 ∧ c1 >Π a2 ∧ b2 =Π b2 ∧ c2 >Π a1 ∧ b1 =Π b1 ∧ c2 >Π a2 ∧ b1 =Π b1 ∧ c1.

However, Ileximax(A, ∅, B∪C) is false since a1∧b1∧c1 =π a2∧b1∧c2 while max(a1, b1∧c1) >Π

max(a2, b1 ∧ c2).

Counter-example 3.21 : Lack of intersection property for Ileximax

Let us consider three binary variables A, B and C with the following plausibility relation:

a1 ∧ b1 ∧ c1 =π a1 ∧ b2 ∧ c2 >π a1 ∧ b2 ∧ c1 >π a1 ∧ b1 ∧ c2 >π a2 ∧ b2 ∧ c2 >π a2 ∧ b1 ∧ c1 >π

a2 ∧ b2 ∧ c1 >π a2 ∧ b1 ∧ c2.

It can be checked that Ileximax(A,C,B) and Ileximax(A,B,C) are true since a1 ∧ c1 =Π a1 ∧
c2 =Π b1∧ c1 =Π b2∧ c2 >Π b2∧ c1 >Π b1∧ c2 >Π a2∧ c2 >Π a2∧ c1 and a1∧ b1 =Π a1∧ b2 =Π

b1 ∧ c1 =Π b2 ∧ c2 >Π b2 ∧ c1 >Π b1 ∧ c2 >Π a2 ∧ b2 >Π a2 ∧ b1. However, Ileximax(A, ∅, B ∪C)

is false since a2 ∧ b2 ∧ c2 >Π a2 ∧ b1 ∧ c1 while max(a2, b2 ∧ c2) =Π max(a2, b1 ∧ c1) and

min(a2, b2 ∧ c2) =Π min(a2, b1 ∧ c1).
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The main results regarding graphoid properties are summarized by Table 3.13 where we

have grouped the established properties concerning INI , IM , IMS , and IProd and the new ones

concerning IPareto, IPO, IPOS , Ileximax and Ileximin.

Table 3.13: Graphoid properties

Relation Symmetry Decomposition Weak union Contraction Intersection

INI yes yes yes yes no
IM no yes yes yes yes
IMS yes yes yes yes yes
IProd yes yes yes yes yes if π > 0

IPareto yes yes yes yes yes
IPO no yes yes yes yes
IPOS yes yes yes no no
Ileximax yes yes no no no
Ileximin yes yes no no no

Note that only the decompositional independence relations based on the product and the

minimum operator (i.e. IProd and INI) are "reasonable" relations with good properties since

they are semi-graphoids. Indeed, the min-based causal independence relation IMS has good

properties but is too strong (see Figure 3.1) to be practically used.

The property of semi-graphoid is crucial when developing graphical approaches in uncer-

tain reasoning as we will detail in Part II of this work.

In Part III we exploit the fact that even if the NI-independence relation is not a graphoid

(lack of intersection) it satis�es the speci�c property of idempotence of the minimum operator

which is useful for simplifying the calculus during the propagation process.

3.7 Software for testing independence relations

In this section, we propose a software implementing the possibilistic and qualitative indepen-

dence relations studied in this Chapter. This software uses Matlab 6.0. and allows to test

independence relations satis�ed by any possibility distribution or plausibility relation. It can

be incorporated in other softwares as a module for testing independence relations.

Figure 3.2 is relative to qualitative independence relations, it allows to test:

• Belief-preserving independence,

• Belief-preserving independence in its symmetrized version,
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Figure 3.2: Qualitative independence relations

Figure 3.3: Possibilistic independence relations

• Order-preserving independence,

• Order-preserving independence in its symmetrized version,

• Belief decompositional independence,

• Pareto independence,

• Leximin independence,

• Leximax independence.

Figure 3.3 is relative to possibilistic independence relations, it allows to test:

• Min-based independence,

• Min-based independence in its symmetrized version,

• Product-based independence,

• Non-interactivity.

Once one of these independence relations is selected, we should de�ne the number of vari-

ables and their cardinalities (the size of their domains). Then we should de�ne the plausibility

relation or the possibility relation relative to these variables. Finally, we should specify the

sets X, Y and Z and the software tests the validity of the chosen independence relation be-

tween X and Y in the context Z.

The following dialog boxes are relative to the independence relation studied in Counter-

example 3.5. Indeed, Figure 3.4 de�nes the number of variables and their cardinalities (i.e. two

binary variables). Then, Figure 3.5 de�nes the plausibility relation (i.e. a1 ∧ b2 >π a2 ∧ b2 >π
a1 ∧ b1 =π a2 ∧ b1). Finally Figure 3.6 speci�es the sets X, Y and Z (i.e. X = {A}, Y = {B}
and Z = ∅) and 3.7 displays the result (i.e. the relation IPT (A, ∅, B) is true).
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Figure 3.4: De�nition of the number of variables and their cardinalities

Figure 3.5: De�nition of the plausibility relation

3.8 Conclusion

In this Chapter, we have de�ned the notion of qualitative independence, and related it to the

basic existing independence relations in possibility theory. Two kinds of independence have

been investigated: causal and decompositional ones. We can observe that the independence

relations which can be used for the decomposition of a joint distribution in possibility theory

is not unique, contrary to probability theory where only the product-based independence is

used. In possibility theory, alternative operators-based independence, like leximin or leximax,

can be used as well.

The notions of independence proposed in this Chapter extend previous works in default rea-

soning [14], and belief revision [45] on independence between events to the case of variables

which are not necessarily binary.

We have shown that the use of common scale (for instance the interval [0, 1]) is important

for decomposing distributions. In addition, we have provided a comparative study between

already known de�nitions of possibilistic independence and the ones proposed in this Chapter.

This study, have shown that all of decompositional independence relations (except INI) are

meaningful from a causality point of view.

We have also studied the graphoid properties of proposed independence relations.

Lastly, we have proposed a allowing to test independence relations satis�ed by any possibility

distribution or plausibility relation.

Results of this Chapter will be used for designing possibilistic counterparts of local propagation

algorithms in causal networks. This is the aim of Parts II and III of this thesis.

Figure 3.6: De�nition of X, Y and Z (here Z = ∅)
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Figure 3.7: Result of testing I(X,Z, Y )
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Possibilistic Adaptation of

Probabilistic Causal Networks
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Introduction Part II

Directed causal possibilistic networks, which are possibilistic counterparts of Bayesian net-

works, present a new promising area of research. Indeed, they o�er a natural way to handle

structured knowledge, with non-binary variables, using independence relations between vari-

ables.

Existing works on possibilistic graphical models are either a direct adaptation of proba-

bilistic approach or a way to perform learning from imprecise data.

In possibility theory there are two di�erent ways to de�ne the counterpart of Bayesian

networks. This is due to the existence of two de�nitions of possibilistic conditioning: product-

based and min-based conditioning [38, 39, 54, 78]. In the rest of this thesis we investigate

these two kinds of networks.

In this part, we �rst present probabilistic Bayesian networks and their propagation algo-

rithms (Chapter 4). Then, we propose possibilistic counterparts of Bayesian networks based

on the minimum and the product operators and discuss the coherence problem in the case of

min-based possibilistic networks (Chapter 5). Finally, we propose a possibilistic adaptation

of exact probabilistic propagation algorithms for product-based and min-based possibilistic

networks (Chapter 6).
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Chapter 4

Probabilistic Graphical Models

4.1 Introduction

Graphical models are knowledge representation tools commonly used by an increasing number

of researchers. Most of graphical models refer to probability theory. Namely, Bayesian net-

works [84, 103, 94], decision trees [106], In�uence diagrams [107, 108, 81] and a more general

framework is Valuation Based Systems (VBS) [111, 112, 113, 114, 115].

Bayesian networks are used in several real world applications. For instance, they have

been implemented in some of Microsoft's products. One of the most famous applications

is the one used by LUMIERE project which focused on the construction and integration of

Bayesian models of a user's needs for assistance. LUMIERE research led to the O�ce As-

sistant, a Bayesian help system in O�ce'97 [80]. Moreover, Bayesian networks are also used

in industry. For instance, in [76] an expert diagnostic system (FIXIT) has been proposed

for liberating users from burdensome information-retrieval activities while incurring minimal

system-development and runtime costs. Several applications of Bayesian networks in the med-

ical �eld have also been proposed. We can mention the QMR-DT (Quick Medical Reference

Decision Theoretic) network which is a two-level graphical model where the top level of the

graph contains nodes for the diseases, and the bottom level contains nodes for the �ndings

[77, 83].

In a graphical model, we can distinguish two components, i) a graphical component which

can be a directed or undirected graph, where nodes represent variables characterizing the given

domain and links (edges or arcs) the causal relations between these variables. This graphical

component can be provided by experts or learned from data bases, ii) a numerical component

which quanti�es di�erent links and corresponds to a numerical representation of uncertainty
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depending on the graph structure.

In this Chapter, we are, in particular, interested in Bayesian networks which are Directed

Acyclic Graphs where uncertainty is encoded with conditional probabilities. We address the

propagation problem consisting in updating the network when new observations arrive.

Section 4.2, presents the basic notions and notations about DAGs. Section 4.4 introduces

Bayesian networks. Then, Section 4.6 presents Pearl's propagation algorithm in singly con-

nected DAGs [103, 105] and Section 4.7 is dedicated to the more general case of propagation

in multiply connected DAGs [84]. Finally, Section 4.8, gives a brief presentation of Valu-

ation Based Systems (VBS) which are more general graphical models proposed by Shenoy

[111, 112, 113, 114, 115].

4.2 Background and notations on graphs

Let V = {A,B,C, ...} be a �nite set of variables. Let E be a part of V × V . Then, G= (V,E)

is said to be a graph on V and E corresponds to the set of edges connecting some pairs of

nodes in V . If the edges in E are oriented then they are called arcs and G= (V,E) is said to

be a directed graph.

• for each arc AB, the node A is called its origin and B its end.

• in an arc AB, the node A is the parent of B and the node B is the child of A,

• a root is a node with no parents (in Figure 4.1(a) A is a root),

• a leaf is a node with no children (in Figure 4.1(a) B and D are leaves),

• two nodes linked by an edge (resp. arc) are said to be adjacent,

• a path in a directed graph is a sequence of nodes from one node to another using the

arcs,

• a chain in a graph is a sequence of nodes from one node to another using the edges (in

Figure 4.1(c) ACB is a path),

• a cycle is a path visiting each node once and having the same �rst and last node (in

Figure 4.1(b) ACDBA is a cycle),

• a loop is an undirected cycle (in Figure 4.1(c) ABCA is a loop),
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• a DAG is a Directed Acyclic (without cycles) Graph (Figures 3.1(a) and (b) are DAGs

while Figure 4.1(b) is not a DAG since it contains the circuit ABDCA).

• A singly connected DAG or polytree is a DAG which contains no loops, in this case

the graph obtained by dropping the directions of the links is a tree (see Figure 4.1(a)).

• A multiply connected DAG is a DAG which can contains loops (see Figure 4.1(c)

which contains a loop ABCA).

For any node A ∈ V of a DAG G corresponds the following sets:

• UA is the parent set of A,

• XA the descendant set of A, such that there is a path from A to each Xi ∈ XA,

• YA the child set of A,

• ZA the non-descendant set of A, such that ZA = V −XA.

Figure 4.1: Examples of oriented graphs

When there is no ambiguity we use U , X, Y and Z. We use a, uA, xA, yA and zA to

denote, respectively, possible instances of A, UA, XA, YA and ZA. When there is no ambiguity

we use u, x, y and z.

Example 4.1 Let us consider the node A in the DAG of Figure 4.2, then we have:

UA = {B,C}, XA = {G,H, J,K, l,M}, YA = {G,H} and ZA = {B,C,D,E, F, I}.

Figure 4.2: Example of DAG

4.3 Conditional independence in DAGs: d-separation

The DAG structure encodes independence relations without taking into account any numerical

values evaluating its links. Pearl, Verma and Geiger [70, 71, 103, 125] have investigated the

problem of determining exactly what independencies are implied by the DAG structure in a

causal network. The main results are presented in the following subsections:
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4.3.1 DAGs topology

Given two variables A and B ∈ V in a DAG G= (V,E), if there exists an arc (A,B) between

A and B, then the dependency relation is evident. However, if there exists a unique chain

between A and B containing an intermediary variable C, then we can face one of the following

three con�gurations:

Figure 4.3: DAGs topology

• Head-to-head: if we know the value of C, then A can give a supplementary information

on B and vice versa, so A and B are not independent in the context C (see Figure 4.3(a)).

For example, Physiological accidents (A), are independent of �re (B). However, if the

land yield decreases (C), we can think that it is the e�ect of any physiological accident

(A). Nevertheless, if we receive an information about several successive �res in the same

region, our belief about physiological accidents (A) decreases.

• Head-to-tail: if we know the value of C, then A will be irrelevant to C and consequently

to B, so A and B are independent in the context C (see Figure 4.3(b)).

For example, if the climatic conditions (A) are favorable to the corn culture, then the

production will be plentiful. Moreover, if the production is plentiful (C), then the corn

price (B) will decrease. If we know that the production is plentiful (C), then any

information about climatic conditions (A) is irrelevant to the corn production (C).

• Tail-to-tail: if we know the value of C, then A will be irrelevant to B and vice versa,

so A and B are independent in the context C (see Figure 4.3(c)).

For example, if the grass of my garden is wet (A), I can think that it rained yesterday

(C) and that the grass of my neighbor garden is wet too (B). However, if I'm sure that

it rained yesterday (C), I can claim that the grass of my neighbor garden is wet (B) and

any information about the state of the grass in my garden (A) has no in�uence.

4.3.2 d-separation criterion

The three cases presented above, enable us to determine, which nodes are concerned by the

arrival of any observation. This can be very helpful, especially for updating networks having

complex structure.
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De�nition 4.1 Let G = (V,E) be a DAG, Z ⊆ V and let A and B be two nodes in V − Z.
Then, a chain ρ, between A and B is said to be blocked by Z if we are in one of the following

situations:

• case 1: there is a node Zi ∈ Z on the chain ρ, such that the arcs which determine that

Zi is in ρ meet tail-to-tail at Zi.

• case 2: there is a node Zi ∈ Z on the chain ρ, such that the arcs which determine that

Zi is in ρ meet head-to-tail at Zi.

• case 3: there is a node Zi ∈ V on the chain ρ such that:

Zi and none of its dependents are in Z, and

the arcs which determine that Zi is in ρ meet head-to-head at Zi.

Using this de�nition, we can de�ne a general rule describing where an information is

blocked or not, known as the d-separation criterion:

De�nition 4.2 d-separation:

i) Let G = (V,E) be a DAG, Z ⊆ V and let A and B be two nodes in V −Z. Then, A and B

are said to be d-separated by Z if every chain between A and B is blocked by Z. We denote

this property by: < A | Z | B >G.

ii) Let G = (V,E) be a DAG, and let X, Y and Z be disjoint subsets of V . Then, X and Y are

said to be d-separated by Z if for every node Xi ∈ X and Yi ∈ Y , Xi and Yi are d-separated

by Z.

Example 4.2 In the DAG of Figure 4.4 we can detect the following d-separation relations:

• the chains FBAC and FGEC are blocked by A, since:

- the chain FBAC contains the node A such that the arcs AB and AC meet tail-to-tail

to A,

- the chain FGEC contains the node G such that the arcs FG and EG meet head-to-head

at G, in addition, neither G nor its descendants ({H}) are in A (see Figure 4.4(a)).

⇒< {F} | {A} | {C} >G .

• all the chains starting from {A,B,D} to {E,G,H} meet head-to-tail the set {F,C} (see
Figure 4.4(b)).

⇒< {A,B,D} | {F,C} | {E,G,H} >G.
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Figure 4.4: Example of d-separation

4.4 Bayesian networks

The following introduces the de�nition of Bayesian networks when a joint distribution is

available

De�nition 4.3 Let p be a joint probability distribution on the set V , and G = (V,E) be a

DAG. (G,p) is said to be a Bayesian network if each variable A ∈ V is conditionally indepen-

dent of its non-descendants (ZA) given its parents (UA).

However, in practice, a numerical representation of p(A1, .., AN ) is rarely available, thus

we should use local distributions on each node.

A Bayesian network over a set of variables V consists of two components:

- A graphical component composed of a directed acyclic graph (DAG) G re�ecting the causal

relations relative to the modeled domain.

- A numerical component consisting in a quanti�cation of di�erent links in the DAG by

a conditional probability distribution of each node A in the context of its parents (UA).

Such conditional probabilities should respect the following normalization constraints for each

variable A:

• if UA = ∅ (i.e. A is a root), then the a priori probability relative to A should satisfy:

∑
a

P (a) = 1,

• if UA 6= ∅, then the relative conditional probability relative to A in the context of its

parents UA should satisfy:

∑
a

P (a | uA) = 1.
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4.4.1 Probabilistic chain rule

Given a Bayesian network, the global joint probability distribution over the set V = {A1, ..., AN}
can be expressed as a product of the N initial conditional probabilities via the following prob-

abilistic chain rule:

pc(A1, ..., AN ) =
∏

i=1..N

P (Ai | UAi). (4.1)

The subscript c in pc is used to mark that the joint distribution is computed via the chain

rule.

Example 4.3 Given the Bayesian network represented by the DAG of Figure 4.5 and the a

priori and conditional probabilities given in Tables 4.1 and 4.2. The joint probability dis-

tribution is de�ned by: pc(a ∧ b ∧ c) = P (c | a ∧ b) · P (a) · P (b), ∀abc. For instance,

Pc(a1 ∧ b1 ∧ c1) = 0.99 · 0.01 · 0.001 = 0.0000099.

Table 4.1: A priori probabilities
a P(a) b P(b)

a1 0.01 b1 0.001
a2 0.99 b2 0.999

Table 4.2: Conditional probabilities
c a b P(c | a ∧ b) c a b P(c | a ∧ b)
c1 a1 b1 0.99 c2 a1 b1 0.01
c1 a1 b2 0.9 c2 a1 b2 0.1
c1 a2 b1 0.5 c2 a2 b1 0.5
c1 a2 b2 0.1 c2 a2 b2 0.99

Figure 4.5: Example of a DAG (V = {A,B,C})

4.4.2 Recovering independence relations

In this Section, we present an important property of the probabilistic chain rule concerning

the recovering of the independence relations implied by the DAG structure. We �rst present

general de�nitions given by Pearl [103].

De�nition 4.4 A joint distribution M de�ned on V is said to be a dependency model if it

is equipped with an independence relation IM allowing to test for any three subsets of variables

(X,Z, Y ) of V the validity of the assertion "X is independent of Y given Z".
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It is clear that any probability distribution is a dependency model since we can test for

any three subsets of variables (X,Z, Y ) the validity of the assertion "X is independent of Y

given Z" using the probabilistic independence relation IProb presented in Section 1.3.1.

De�nition 4.5 Let G be a DAG and let M be a dependency model. The DAG G is said to be

an I-map (Independency map) of M if all the independence relations implied by its structure

are valid in M . More formally:

< X|Z|Y >G⇒ IM (X,Z, Y ). (4.2)

We will see later that this property is important especially when developing propagation

algorithms since we will use the d-separation relations implied by the DAG structure G to

simplify di�erent calculus which is impossible if these relations are not valid in the joint

distribution M . To test I-mapness, for any couple (G, M), Pearl proposes the following

fundamental theorem [103]:

Theorem 4.1 Let M be any dependency model such that IM is a semi-graphoid1 and let G
be a DAG. If each variable A ∈ V , is conditionally independent of its non-descendants (ZA)

given its parents (UA), then G is a minimal I-map of M .

The probabilistic independence relation, IProb, is a semi-graphoid [103]. Moreover, in

any joint distribution pc computed using the chain rule (4.1), each variable is conditionally

independent of its non-descendants (ZA) given its parents (UA) [103]. In other terms, any in-

dependence relation implied by the DAG structure can be recovered from the joint distribution

relative to the Bayesian network and computed via the probabilistic chain rule (4.1).

4.5 Propagation in Bayesian networks

Given a joint probability distribution on the variable set V = {A1, ..., AN}, we can determine

how the realization of speci�c values of some variables a�ects the probabilities of the remain-

ing variables by marginalization. Unfortunately, assuming that we handle binary variables,

we would need to compute 2n probabilities, which is not realistic, even for small values of n.

Bayesian Networks simplify this problem by taking advantage of existing causal connec-

tions between nodes. Indeed, instead of computing the whole joint distribution relative to a

Bayesian network, in order to compute for any variable of interest Ai the probability P (Ai | e)
(where e is the total evidence), it is possible to perform local computations using probabilistic

1i.e. satis�es symmetry, decomposition, weak union and contraction (see Chapter 3).



Chapter 4: Probabilistic Graphical Models 81

inference or propagation algorithms.

The task of calculating posterior marginals on nodes in an arbitrary Bayesian network is

known to be NP-complete [30] except for singly connected graphs. Many algorithms where

developed to perform propagation in Bayesian networks [32, 34, 84, 93, 94, 100, 103, 105] but

we can partition them into two classes:

• Exact algorithms: The fundamental algorithm for exact probability propagation is the

one proposed by Kim and Pearl [87] and Pearl [102, 103]. In this algorithm, the impact

of each new piece of evidence is viewed as a perturbation that propagates in parallel

through the network, via a message passing mechanism, between neighboring variables.

In the case of singly connected networks this algorithm converges to the correct marginals

in a number of iterations equal to the diameter2 of the graph. A centralized version of

this algorithm was proposed by Poet and Shachter [105] and converges in two iterations.

However, as Pearl pointed [103], the same algorithm will not give the correct beliefs for

multiply connected networks i.e. when loops are present. Approximate methods derived

from this algorithm such as loopy belief propagation [100] where proposed for multiply

connected networks.

There are also a number of related propagation algorithms that operate on undirected

graphs, namely the Lauritzen and Spiegelhalter algorithm [94]. The principle of this

algorithm is to transform the initial graph into a junction tree which is a tree of clusters of

variables. The messages will be transmitted between clusters allowing the computation

of marginal distributions in two passes. A re�nement of this algorithm leads to HUGIN

propagation proposed by Jensen and al. [84].

• Approximate algorithms: Many models of interest, such as those with repetitive

structure, as in multivariate time-series or image analysis, make exact inference very

slow. In such cases, we should resort to approximation techniques which gives results

approaching the exact solutions. Unfortunately, approximate inference is NP-complete

[32], but we can nonetheless come up with approximations which often work well in prac-

tice. As examples of approximate methods we quote, sampling (Monte Carlo) methods

[29], loopy belief propagation [100], which entails applying Pearl's algorithm to the origi-

nal graph, even if it has loops, bounded cutset conditioning based on instantiating subsets

of the variables, in order to break loops in the graph etc.

2a diameter of a graph is the maximum length of shortest paths between two vertices in the graph. For
most regular graphs, it is a function of the number of nodes in the graph, but in general its value has to be
computed.
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In what follows, we focus on the most used exact propagation algorithms in singly and

multiply connected DAGs.

4.6 Propagation in polytrees

In this Section, we brie�y present the centralized version of Pearl's algorithm [87, 103] for

probabilistic propagation in polytrees proposed in [105]. In this algorithm the impact of

each new piece of evidence is viewed as a perturbation that propagates in parallel through the

network via a message passing between neighboring variables. Local communication between

variables is based on two kinds of messages, called λ-messages and µ-messages3 circulating,

respectively, from children to parents and from parents to children.

4.6.1 Notations

Let E be the subset of instanciated variables and e be its corresponding instance. The instance

e corresponds to the total evidence in the graph. Considering any node A in the graph, the

set E can be partitioned into the instanciated variables upstream of A denoted by E+
A and all

the rest denoted by E−A i.e. the instanciated variables below A and A itself if it is instanciated

(see Figure 4.6). These two sets are de�ned by:

• E−A = {EA, E−AY1 , ..., E
−
AYm
},

where EA corresponds to the node A and E−AYj the instanciated variables below the arc

from A to Yj ,

• E+
A = E/E−A = {E+

U1A
, ..., E+

UnA
},

where E+
UiA

denotes the instanciated variables above the arc from Ui to A.

e+
A and e−A denote , respectively, the evidence attached to the nodes in E+

A and E−A . eA

denotes the evidence attached to the node A i.e.

eA =

 a if A is instanciated to a (eA = a) or A is not instanciated

∅ otherwise (A is instanciated to eA 6= a)

In the same manner, e−AYj denotes the evidence relative to E
−
AYj

and more precisely, the

evidence below the edge from A to Yj . Moreover, e+
UiA

denotes the evidence relative to E+
UiA

and more precisely, to the evidence above the arc from Ui to A.

Example 4.4 Let us consider the DAG represented in Figure 4.2 and suppose that the in-

stanciated variables are as follows: D = d1, F = f2, A = a3, I = i2, J = j2,M = m1.

3we use µ instead of π, usually used in the literature, to avoid confusion with possibility distribution
notation.
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Figure 4.6: Partitioning of the evidence E with respect to the node A

Then, E = {A,D,F, I, J,M}, E+
A = {E−BA, E

−
CA} = {D,F}, E−A = {EA, E−AG, E

−
AH} =

{A, J, I,M}, e = {a3, d1, f2, i2, j2,m1}, e+
A = {e−BA, e

−
CA} = {d1, f2}, e−A = {eA, e−AG, e

−
AH} =

{a3, j2, i2,m1}.

4.6.2 Summary of propagation messages

The following summarizes the di�erent de�nitions of messages4 and values relative to a par-

ticular node A ∈ V . Each node is characterized by its conditional probability measure based

on the total evidence, denoted by Bel(A). This value depends on the λ-value and µ-value

relative to the node A (denoted, respectively, by λ(A) and µ(A)).

The values of λ(A) and µ(A) are computed from the λ-messages received from the children

of A and µ-messages received from its parents (denoted, respectively, by λYj (A) and µA(Ui)

where λYj (A) is the message that A receives from its child Yj and µA(Ui) is the message that

A receives from its parent Ui).

We now give the di�erent expressions which will be used later in the propagation algorithm.

• ∀a ∈ DA, the current conditional probability measure of a based on the total evidence

e is de�ned by:

Bel(a) = Pc(a | e) = α · λ(a) · µ(a), (4.3)

where α = 1∑
a
Bel(a)

is a normalization factor.

• The λ value relative to each instance a ∈ DA is de�ned in the following way:

λ(a) = Pc(a | e−A) = λA(a) ·
m∏
j=1

λYj (a), (4.4)

where λA(a) denotes local evidence related to the node A such that:

λA(a) =


0 if eA 6= a (A is instanciated to (eA 6= a)

1 otherwise (A is instanciated to a (eA = a)

or A is not instanciated).

4Proofs of these expressions are given in [103].
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This means that the local evidence is stored within each node and that it is integrated

in the λ value which is used for computing the λ-messages that each node sends to its

parents.

• The µ value relative to each instance a ∈ DA is de�ned in the following way:

µ(a) = Pc(a | e+
A) =

∑
u

P (a | u) ·
n∏
i=1

µA(ui). (4.5)

• The λ messages from A to its parent Ui, (i ∈ {1, ..n}) when Ui = ui is de�ned by:

λA(ui) = Pc(e
−
UiA
| ui) = β

∑
a

λ(a)[
∑

uk:k 6=i
P (a | u) ·

∏
k 6=i

µA(uk)], (4.6)

where β is a normalization constant.

If the graph is a rooted tree (each node has a unique parent), then this message is

simpli�es to:

λA(ui) = β
∑
a

λ(a) · P (a | u).

• The µ messages from A to its child Yj , (j ∈ {1, ..m}) when A = a is de�ned by:

µYj (a) = Pc(a | e+
AYj

) = α · λA(a) ·
∏

i=1..m,i 6=j
λYi(a) · µ(a). (4.7)

These formulae are only slightly modi�ed from those in Pearl [103] since local evidence

λA(A) (lambda from self) is stored within each node instead of creating dummy or evidence

and must be included in the formulae for each node. Note that, contrary to [105], all these

messages are normalized since the µ message is de�ned by Pc(a | e+
A) instead of Pc(a ∧ e+

A).

4.6.3 Propagation algorithm

Poet and Shachter [105] have proposed a revised polytree algorithm (centralized version) de-

veloped in a manner similar to the propagation algorithms in undirected graphs. Indeed, in

the polytree algorithm proposed by Pearl [103] each node is visited at most one for each piece

of evidence. The revised version decreases the number of messages since each node is visited

at most twice no matter how much evidence is observed. Since the number of arcs in a singly

connected graph is less than the number of nodes, this means that the number of messages

used in the revised algorithm is less than twice the number of nodes. Let s be the size of the

largest conditional probability table and N be the number of variables, then the theoretical

complexity is O(s ∗N).

This makes it particularly easy to implement. The main steps of this algorithm are as

follows:
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• Choosing the root of propagation. In this step, we should choose an arbitrary node within

the smallest connected set of nodes containing the observed nodes, denoted by S.

• Initialization. In this step, all λ and µ values and messages are initialized to the degree

1. For each root A, ∀a ∈ DA the value µ(a) is initialized to P (a). For each observed

node A, if A is instanciated to a, then λA(a) is initialized to the degree 1, otherwise it

is initialized to the degree 0.

• Collect-evidence. During, this phase each node in S �rst computes its λ and µ values

using (4.4) and (4.5), then it passes a message to its adjacent node in the pivot direction.

If this node is a parent, then the message is computed using (4.6), otherwise (i.e. it is

a child) the message is computed using (4.7). The collect evidence starts with the node

farthest from the pivot in S.

• Distribute-evidence. During, this phase each node �rst computes its λ and µ values

using (4.4) and (4.5), then it passes messages to its adjacent nodes away from the pivot

direction, beginning with the pivot itself until reaching the leaves. The computation to

the messages to sent to adjacent nodes depends on their type. Indeed, if the treated

node is a parent, then the message is computed using (4.6), otherwise (i.e. it is a child)

the message is computed using (4.7).

• Marginalization. For each node A, compute Bel(A) = Pc(a | e) using (4.3).

Example 4.5 Let us consider the DAG given in Figure 4.7(a) and suppose that we receive a

certain information about E i.e. E = e3 and about A i.e. A = a1, then the observed nodes

are E and A which means that S = {A,B,C,D,E}. Suppose that the pivot node is E, then

the message passing is summarized by Figure 4.7(b).

Figure 4.7: Example of propagation on a singly connected DAG

4.7 Propagation in multiply connected DAGs

The algorithm presented in the previous Section is only adapted for polytrees. Indeed, as Pearl

noted [103], the same algorithm will not give the correct beliefs for multiply connected net-

works. Thus, in this Section we present a more general established method for exact inference

in Bayesian networks (with singly or multiply DAGs) known as the probability propagation in
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junction trees. This method was developed by Lauritzen and Spiegelhalter [94] and re�ned by

Jensen [84] and it is the basis of HIGIN propagation software. The principle of this propaga-

tion method is to process on a new graphical representation derived from the initial Bayesian

network called junction tree and denoted by J T [84].

Each node in J T is a set of variables called clusters and denoted by Ci and each edge is

labeled with the intersection of the adjacent clusters Ci and Cj called separator and denoted

by Sij ; ci and sij denote, respectively, the possible instances of the cluster Ci and the separator

Sij ; ci[A] denotes the instance in ci of the variable A. For each cluster Ci (resp. separator

Sij) of J T , we assign a local joint distribution relative to the variables in the cluster (resp.

separator), called potential. and denoted by ψCi (resp. ψSij ).

From J T , we can associate a unique global joint probability distribution denoted by pJT

and de�ned by:

De�nition 4.6 The joint distribution associated with J T is expressed by:

pJT (A1, .., AN ) =

∏m
i=1 ψCi∏m−1
j=1 ψSij

, (4.8)

where m is the number of clusters in J T .

De�nition 4.7 Let Ci and Cj be two adjacent clusters in a junction tree J T and let Sij be

their separator. Then, the link between Ci and Cj is said to be stable or consistent if:

∑
Ci\Sij

ψCi = ψSij =
∑

Cj\Sij

ψCj . (4.9)

If all links in a junction tree are consistent, then the junction tree is said to be globally

consistent.

Jensen has shown that if a junction tree is globally consistent, then the potential of each

cluster Ci satis�es:

ψCi = Pc(Ci). (4.10)

Using this fact, we can compute the probability distribution of any variable A, using any

cluster Ci containing it by marginalizing ψCi on A as follows:

Pc(A) =
∑
Ci\A

ψCi . (4.11)
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Figure 4.8: Case of multiply connected DAG

4.7.1 Building junction trees

Given a Bayesian network with a DAG G, it is possible to construct many junction trees cor-

responding to G. However, it is important to note that the computational time required for

propagation depends on clusters size in the junction tree.

The building procedure depends on the DAG structure. Indeed, if the DAG is singly con-

nected then it is easy to construct its junction tree by forming for each node (except roots)

a cluster containing it with its parents. Then, between any two clusters with a non-empty

intersection, we should add a link with the intersection as a separator. If the resulting graph

contains cycles, then they can be broken by removing any of their links since all separators

on the cycle contain the same variable.

In the case of multiply connected graphs the situation can be more complicated as illus-

trated by the following example.

Example 4.6 Let us consider the DAG of Figure 4.8 (a), then if we apply the procedure

described for singly connected DAGs, we obtain the graph of Figure 4.8 (b) and we can see

that the cycle cannot be broken.

Before presenting the general procedure of building junction tree, we give further de�ni-

tions:

De�nition 4.8 Given a DAG G, the moral graph corresponding to G, denoted by MG, is
obtained by marrying parents of each node in G and by dropping the direction of edges.

De�nition 4.9 A moral graph MG is said to be triangulated if and only if every cycle of

length four or greater contains an edge that connects two non-adjacent nodes in the cycle.

The general procedure that allows the construction of a junction tree for any DAG struc-

ture can be performed via the following three steps [82]:

- Moralization of the initial DAG G,
- Triangulation of the moral graph,

- Building a junction tree from the triangulated moral graph.
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We will see that steps 2 and 3 are non-deterministic which explains the fact that di�erent

junction trees can be built from the same DAG.

Step 1: Constructing the moral graph. Given a DAG G, the moral graph MG
corresponding to G is obtained through the following procedure:

Algorithm 4.1: Constructing the moral graph

begin
- Create the undirected graph UG from G by dropping the directions of the arcs;
- CreateMG from UG by connecting the parent set of each nodes
(by adding edges to UG);

end

Example 4.7 Figure 4.10 represents the moral graph corresponding to the DAG of Figure

4.9. The edges added to G are shown as dashed lines (i.e. the arc between D and E parents

of F ).

Figure 4.9: A Direct Acyclic Graph

Figure 4.10: Moral Graph of the DAG in Figure 4.9

As shown in Example 4.6, the moralization can induce unbroken cycles, that is why we

should triangulate the moral graph in order to avoid them.

Step 2: Triangulating the moral graph and identifying clusters. It is possible to

have di�erent triangulations of a moral graph. In particular we can simply construct a unique

cluster containing all the variables. However such triangulation is not interesting since it does

not allow local computations.

The task of �nding an optimal triangulation is stated as an NP-complete problem [30] and

several heuristics where proposed. We now present a triangulation procedure using a node

selection criterion which is a greedy polynomial-time heuristic that produces high-quality

triangulations in real world settings [88]. The following procedure also identi�es the cluster

set (denoted by Cluster_set) using Golumbic algorithm [73] which ensures that this set should

not contain any cluster properly contained in a largest one.
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Figure 4.11: Triangulation of the moral graph in Figure 4.10

Algorithm 4.2: Triangulating the moral graph and identifying clusters

begin
Cluster_set ← ∅;
MG′ ←MG;
while there are still nodes left inMG′ do

if there exists a node A such that all its adjacent nodes are connected then
- Form a cluster C containing A and its adjacent nodes;
- Delete A fromMG′;

else
- Find a node A with the smallest number of adjacent nodes;
- Add edges to connect all of these adjacent nodes;
- For each added edge toMG′, add the same corresponding edge toMG;
- Form a cluster C containing A and its adjacent nodes;
- Delete A fromMG′;

if C 6⊂ Cluster_set then Cluster_set← Cluster_set ∪ {C};

end

Example 4.8 Figure 4.11 represents the triangulated graph, as obtained from the moral graph

in Figure 4.10. The dashed lines indicate the edges added to triangulate the moral graph. The

eliminating ordering is represented in Table 4.3.

Table 4.3: Eliminating ordering

Eliminated Induced Added Cluster_set
node cluster edges

F DEF none {DEF}
C ACE (A, E) {DEF,ACE}
B ABD (A, D) {DEF,ACE,ABD}
D DAE none {DEF,ACE,ABD,DAE}
E EA none {DEF,ACE,ABD,DAE} (EA ⊆ ACE)
A A none {DEF,ACE,ABD,DAE} (A ⊆ ACE)

Step 3: Building an optimal junction tree. To build an optimal junction tree, we

should connect the clusters identi�ed in the previous step such that all clusters on the path

between any two clusters Ci and Cj should contain Ci ∩Cj . The optimality criterion is useful

to minimize the computational time required for propagation. Indeed, if the triangulation
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generates clusters with a high weight, then the computations will be very complex and even

impossible to perform.

Given a set of m clusters (i.e. Cluster_set), we can build a junction tree by iteratively

inserting separators between pairs of clusters (denoted by Separator_set) as follows:

Algorithm 4.3: Building an optimal junction tree

begin
for i ← 1 to m do

Separator_set ← ∅;
Ci ← Cluster_set[i];
for j ← i to (m-1) do

Cj ← Cluster_set[j];
Create a candidate separator Sij for Ci and Cj ;
Separator_set ← Sij ;
Select a separator Sij from Separator_set according to the criterion
speci�ed in the sequel;

Insert the separator Sij between the clusters Ci and Cj ;

end

Choosing the appropriate separators: In order to describe the criterion for selecting sep-

arators (in the algorithm above), we need the following de�nitions:

- The weight of a node A is the number of its values.

- The weight of a cluster Ci is the product of the weights of its variables.

- The mass of a separator Sij is the number of variables it contains, or the number of variables

in Ci ∩ Cj .
The cost of a separator Sij is the product of the weights of its variables.

To ensure that the resulting junction tree satis�es the junction tree property, we should

choose the candidate separator with the largest mass. When two or more separators of equal

mass can be chosen, we can optimize the inference time on the resulting junction tree by

choosing the candidate separator with the smallest cost [85].

Example 4.9 Let us continue Example 4.8 and suppose that the variables are binary variables.

Thus, using Cluster_set={ABD,ACE,ADE,DEE} identi�ed above, we obtain the values in

Table 4.4. Then, we will choose the connecting separators DE,AE and AD to built the

junction tree illustrated in Figure 4.12.

In the following, we denote by ψtCi the potential of the cluster Ci at a step t of the
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Table 4.4: Choosing the appropriate separators

Clusters Candidate Mass Cost Choosen

separator separator

DEF, ACE E 1 2

DEF, ABD ∅ - -

DEF, ADE DE 2 4 *

ACE, ABD A 1 2

ACE, ADE AE 2 4 *

ABD, ADE AD 2 4 *

Figure 4.12: Junction tree of the DAG in Figure 4.9

propagation. t = I (resp. t = C) corresponds to the initialization (resp. global consistency)

step.

4.7.2 Propagation algorithm

Given the transformation of the DAG into a junction tree, the main steps of probability

propagation in junction trees with no evidence are as follows:
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Step 1: Initialization. The �rst step in the propagation is to initialize the junction tree

using the initial conditional distributions:

Algorithm 4.4: Initialization

begin
For each cluster Ci: ψ

I
Ci
← 1;

For each separator Sij : ψ
I
Sij
← 1;

For each variable A, choose a cluster Ci containing {A} ∪UA: ψICi ← ψICi · P (A | UA);

end

The resulted potentials encode the joint distribution relative to the junction tree. Namely,

pc = pIJT , (4.12)

where pc is the joint distribution encoded by the Bayesian network (using 4.1) and pIJT is

the joint distribution encoded by J T (using (4.8)).

The initialized junction tree can be inconsistent since this initial assignment does not

guarantee the global consistency requirement of Equation (4.9). Thus, we should run the the

second step of global propagation which ensures global consistency.

Step 2: Global propagation. The global propagation is performed by a message passing

mechanism between clusters until reaching the global consistency of the junction tree. Given a

junction tree withm clusters, the global propagation algorithm begins by choosing an arbitrary

cluster to be the pivot node and then performing 2∗ (m−1) messages passes, divided into two

phases:

• A collect-evidence phase in which each cluster passes a message to its adjacent cluster in

the pivot direction, beginning with the clusters farthest from the pivot (which correspond

to leaves). The order in which messages are sent is denoted by the postorder of the pivot.

• A distribute-evidence phase in which each cluster passes messages to its adjacent clusters

away from the pivot direction, beginning with the pivot itself. In this phase messages

circulate from the pivot until the leaves are reached. The order in which messages are

sent is denoted by the preorder of the pivot.

Example 4.10 Suppose that in the Bayesian network given in Example 4.6, we receive a

certain information on C and E. Then, we can choose the cluster ACE as the pivot, in this

case Postorder = [ABD,DEF,ADE,ACE] and Preorder = [ACE,ADE,DEF,ABD] and

the message passing is represented by Figure 4.13.
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Figure 4.13: Message passes during global propagation

In both phases of collect and distribute evidence, if a cluster Ci sends a message to its

adjacent cluster Cj , then the potentials of Ci, Cj and their separator Sij are updated as

follows:

1. Save the same potential for Ci

ψt+1
Ci
← ψtCi . (4.13)

2. Assign a new potential to Sij

ψt+1
Sij
←

∑
Ci\Sij

ψtCi . (4.14)

3. Assign a new potential to Cj :

ψt+1
Cj
← ψtCj ·

ψt+1
Sij

ψtSij
. (4.15)

The outline of the global propagation procedure is as follows:

Algorithm 4.5: Global propagation

begin
Choosing the root of propagation
- Let Pivot be an arbitrary cluster Ci to represent the root of propagation;
- Let Postorder be the vector containing the order in which messages are sent in the
distribute-evidence phase (the last node is the pivot);
- Let Preorder be the vector containing the order in which messages are sent in the
collect-evidence phase (the �rst node is the pivot);
Collect-evidence
for i ← 1 to length(Postorder)-1 do

Ci ← Postorder [i];
Cj ← adjacent cluster of Ci in Postorder ;
Post a message from Ci to Cj using (4.13), (4.14) and (4.15);

Distribute-evidence
for i ← 1 to length(Preorder) do

Ci ← Preorder [i];
Below ← adjacent clusters of Ci in Preorder ;
for j ← 1 to length(Below) do

Cj ← Below[j];
Post a message from Ci to Cj using (4.13), (4.14) and (4.15);

end
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In this message passing algorithm, a cluster passes a message to an adjacent cluster only

after it has received messages from all its other adjacent clusters. This condition ensures

global consistency of the junction tree when global propagation is completed [84].

Step 3: Marginalization. Using the consistent junction tree obtained from the previous

phase, we can now compute for each variable of interest A, the probability Pc(A) as follows:

Algorithm 4.6: Marginalization

begin
Identify a cluster Ci containing A;
Compute Pc(A) by marginalization of ψCCi on A: Pc(A)←

∑
Ci\A ψ

C
Ci
;

end

Handling the evidence. When treating the more general problem of computing Pc(A |
e), where e is the total evidence, the initialization procedure will be extended by these two

additional steps:

- For any instanciated variable A, encode the observation A = a as a likelihood ΛA de�ned by:

ΛA(a) =


1 if A is not instanciated

1 if A is instanciated for a

0 if A is instanciated but not for a.

(4.16)

- Identify a cluster Ci containing A: ψ
I
Ci
← min(ψICi ,ΛA).

By entering the observation set, the junction tree encodes pJT (V ∧ e) instead of pJT (V ).

Then, when we marginalize any cluster potential ψCCi into a variable A (s.t. A ⊆ Ci) (see

(4.11), we obtain the probability of A and e:

Pc(A ∧ e) =
∑
Ci\A

ψCCi .

However, our goal is to compute the conditional probability Pc(A | e), this value can be

easily obtained from Pc(A ∧ e) as follows:

Pc(A | e) =
Pc(A ∧ e)
Pc(e)

=
Pc(A ∧ e)∑
A Pc(A ∧ e)

. (4.17)

4.8 Valuation Based Systems

In this Section, we give a brief presentation of Valuation Based Systems (VBS) which are

more general graphical models proposed by Shenoy [111, 112, 113, 115, 114] allowing the
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representation of both decision and uncertain problems. The Framework of Valuation Based

Systems [116] is su�ciently abstract to include di�erent formalisms as probability theory,

belief functions, kappa functions and possibility theory using only the product operator [112].

. A Valuation Based System over a set of variables V consists of two components:

• a graphical component called a valuation network. In a valuation network:

- circular nodes represent random variables,

- rectangular nodes represent decision variables,

- triangular nodes represent potentials,

- diamond-shaped nodes represent utility functions,

- edges (i.e. undirected lines) linking variables to potentials and utility functions denote

the domains of these functions,

- arcs (i.e. directed lines) between variables de�ne the information constraints in the

sense that an arc from a random variable A to a decision variable B means that the

true value of A is known at the time an act from DA has to be chosen and an arc from

a decision variables B to a random variable A means that the true value of A is only

revealed after an act from DA has been chosen.

• a numerical component representing our knowledge by functions called valuations. Val-

uations are functions that assign values to the elements or frames for sets of variables and

they can be combined or marginalized. Valuations can be interpreted as probabilities,

possibilities, belief functions etc.

4.8.1 Combination and marginalization

Let V denote the set of all valuations. The inference in VBS uses the two basic operations of

combination and marginalization de�ned as follows:

• A combination is a mapping ⊗ :V×V→V, such that

1. if ρ is a valuation on X and σ is a valuation on Y , then ρ ⊗ σ is a valuation of

X ∪ Y ,

2. if either ρ or σ is not a nonzero valuation, then ρ⊗ σ is not a nonzero valuation,

3. if ρ and σ are both nonzero valuation, then ρ ⊗ σ may or may not be a nonzero

valuation.

• A marginalization is a mapping ↓ (X \ {A}) :VX → VX\{A}, such that

1. if σ are valuations X, then σ↓(X\{A}) is a valuation for (X \ {A}),

2. σ↓(X\{A}) is a nonzero valuation i� σ is a nonzero valuation.
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4.8.2 Inference in a VBS

In a VBS the combination of all valuations is called the joint valuation. Given a VBS the

inference is made by computing the marginal of the joint valuation for each variable in the

system. We �rst present three axioms that enable local computation of marginals of the joint

valuation [116]:

• A1: Commutativity and associativity of combination

Given three valuations ρ, σ, and τ relative, respectively, for X, Y , and Z then,

ρ⊗ σ = σ ⊗ ρ and ρ⊗ (σ ⊗ τ) = (ρ⊗ σ)⊗ τ).

This axiom implies that the order in which the combination is made is not important.

• A2: Order of deletion does not matter

Suppose σ is a valuation for X, and suppose A,B ∈ X, the:

(σ↓(X\{A}))↓(X\{A,B}) = (σ↓(X\{B}))↓(X\{A,B}).

This axioms implies that the order in which the variables deleted is not important.

However, di�erent deletion sequences may involve di�erent computational e�orts. Note

that the task of �nding an optimal deletion sequence has been shown as an NP-complete

problem [1]. But, there are several heuristics for �nding good deletion sequences [88].

• A3: Distributivity of marginalization over combination

Given two valuations ρ and σ relative, respectively, to X, Y , and Z and a variable

Anot ∈ Y , and A ∈ X then,

(ρ⊗ σ)↓((X∪Y )\{A}) = ρ⊗ (σ↓(X\{A})).

This axiom is crucial to make local computations since it implies that we can compute

(ρ⊗ σ)↓((X∪Y )−{A}) without computing ρ⊗ σ The combination operation in ρ⊗ σ is on

the frame for X ∪Y whereas the combination operation in (ρ⊗σ)↓((X∪Y )−{A}) is on the

frame for (X ∪ Y )− {A}.

Given a VBS, {{σ1, ..., σm},⊗, ↓} with n variables and m valuations. Suppose we have to

compute the marginal of the joint valuation for a variable A, (σ1 ⊗ ... ⊗ σm)↓{A}. The basic

idea of the fusion algorithm is to successively delete all variables but A from the VBS. The

variables maybe deleted in any sequence (see Axiom A2), but di�erent deletion sequences

may involve di�erent computational costs. When we delete a variable, we have to do a fusion
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operation on the valuations.

Let σ1, ..., σk be a set of k valuations, such that σi is a valuation for the subset of variables

Xi. Let FusX{σ1, ..., σk} denote the collection of valuations after fusing the valuations in the

set {σ1, ..., σk} w.r.t the variable A. Then,

FusX{σ1, ..., σk} = {σ↓(X−{A})} ∪ {σi | A 6∈ Xi}, (4.18)

where σ = ⊗{σi | A ∈ Xi} and X =
⋃
{Xi | A ∈ Xi}.

Given the sequence of deletion A1, A2, ..., An−1, Shenoy shows that

(σ1 ⊗ ...⊗ σm){A} = ⊗{FusAn−1{...FusA2{FusA1{σ1, ...., σm}}}}. (4.19)

After fusion, the set of valuations is changed such that all valuations that bear on A are

combined and the resulting valuation is marginalized. The other valuations (that do not bear

on A) remain unchanged.

4.9 Conclusion

In this Chapter we have presented basic de�nitions related to probabilistic Bayesian networks.

Moreover, we have detailed exact propagation algorithms in these networks. Namely, Pearl's

propagation algorithm [103, 105] and propagation in junction trees [84]. Pearl's propagation

is polynomial but only deals with singly connected DAGs while the junction tree algorithm is

NP-complete but deals with any DAG structure.

Chapters 5 presents possibilistic counterparts of Bayesian networks. Then, Chapter 6 gives

the adaptation of the centralized version of Pearl's propagation and propagation in junction

trees, for product-based and min-based possibilistic networks.
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Chapter 5

Basic De�nitions of Possibilistic

Networks

5.1 Introduction

As mentioned in Chapter 1, the possibilistic logic [52] has been well de�ned contrary to pos-

sibilistic networks. Indeed, only few works exist on directed causal possibilistic networks.

Indeed, existing works on possibilistic graphical models are either a direct adaptation of prob-

abilistic approaches (without any care to knowledge representation) or a way to perform learn-

ing from imprecise data [69, 24]. Regarding the possibilistic propagation, we can mention the

possibilistic propagation in hypergraphs proposed by Dubois and Prade [55], the adaptation

of Pearl's algorithm by Fonck [63]. Gebhardt, Kruse and Borgelt have proposed a software for

possibilistic propagation in undirected possibilistic networks, called POSSINFER [22, 68, 69].

Shenoy [112] has also proposed a possibilistic version of the propagation algorithm in Valuation

Based Systems using only the product operator. Cano, Delgado and Moral [28] have presented

a propagation system in singly connected graphs encoded by valuations. A generalized version

of this algorithm, to the case of multiply connected DAGs, has been proposed by Fonck [63].

The possibility theory o�ers two de�nitions of conditioning (see Section 1.4.3) one based

on the minimum operator and the other based on the product operator. This leads to two

possible de�nitions of directed causal possibilistic networks:

- product-based possibilistic networks: this kind of networks are very close to the probabilistic

ones, as it will be explained later.

- min-based possibilistic networks: such networks have a di�erent behaviour when comparing

them to probabilistic ones. One major di�erence concerns the so called coherence problem

99
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which is the non-recovering of initial data. We show that this problem should not be seen as

a drawback especially on independence relations.

This Chapter presents these two kinds of networks. Section 5.2 de�nes directed causal

possibilistic networks. Section 5.3 investigates product-based possibilistic networks and Sec-

tion 7.2 deals with min-based possibilistic networks and treats, in particular, the coherence

problem.

Proofs of this Chapter are given in Appendix C.

Results on coherence in min-based possibilistic networks are published in [9].

5.2 De�nition of directed causal possibilistic networks

As in probabilistic Bayesian networks, a directed causal possibilistic network over a set of

variables V is characterized by:

- A graphical component composed of a Directed Acyclic Graph (DAG) G. The DAG structure

encodes a set of independence relations exactly as in the probabilistic case. The choice of

independence relation depends on the way used in combining local conditional possibilities.

- A numerical component consisting in a quanti�cation of di�erent links in the DAG using

the conditional possibilities of each node in the context of its parents. Such conditional

distributions should respect the following normalization constraints for each variable A:

• if UA = ∅ (i.e. A is a root), then the a priori possibility relative to A should satisfy:

maxaΠ(a) = 1,∀a ∈ DA,

• if UA 6= ∅, then the conditional distribution of A in the context of its parents should

satisfy:

maxaΠ(a | uA) = 1,∀a ∈ DA, uA ∈ DUA .

If A is a binary variable, then max(Π(a | uA),Π(¬a | uA)) = 1.

5.3 Product-based possibilistic networks

A product-based possibilistic graph over a set of variables V , denoted by ΠGp, is a possibilistic

graph where conditionals are de�ned using product-based conditioning (1.18), namely,

π(ω |p φ) =


π(ω)
Π(φ) if ω ∈ φ
0 otherwise.
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Product-based possibilistic networks are appropriate for a numerical interpretation of the

possibilistic scale.

The joint distribution relative to product-based possibilistic networks, denoted be πp can

be computed in the same manner that in Bayesian networks via the following product-based

chain rule:

De�nition 5.1 (Product-based chain rule) Given a product-based possibilistic network

ΠGp, the global joint possibility distribution over the variable set V = {A1, A2, ..., AN} can be

expressed as the product of the N initial a priori and conditional possibilities via the following

product-based chain rule:

πp(A1, ..., AN ) =
∏

i=1..N

Π(Ai | UAi), (5.1)

where
∏

is the product operator.

The product-based chain rule is obtained from the (product) independence relations in-

duced by the DAG structure and local product-based conditional degrees.

Indeed, we recall that the Prod-independence relation, introduced in Section 3.3.1, is de-

�ned by Π(x | y ∧ z) = Π(x | z), ∀x, y, z to express that the variable sets X and Y are

Prod-independent in the context Z. We also recall that in the DAG "each node is indepen-

dent of its non-descendants in the context of its parents".

Therefore, the product-based chain rule can be explained in the following way:

Let d = (A1, ..., AN ) be an ordering of the variables in V such that ∀Ai, UAi ⊆ {Ai+1, ..., AN}.
Then, using product-based conditioning we have:

πp(A1, ..., AN ) = Π(A1 | A2, ..., AN ) ·Π(A2, ..., AN )

= Π(A1 | UA1) · Π(A2, ..., AN ) (since A1 is independent of its non-descendants in the context

of its parent set UA1)

Iterating the same operation on the rest of variables leads to (5.1).

Example 5.1 Let us consider the product-based possibilistic causal network presented by the

DAG of Figure 5.1 and the a priori and conditional possibility distributions given in Table 5.1.

Using the chain rule (5.1), we obtain the joint possibility distribution given in Table 5.2.

The chain rule relative to any causal network should satisfy some important properties,

especially concerning the recovering of initial data and of independence relations encoded by

the DAG structure. In what follows, we study these two properties regarding the product-

based independence relation.
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Figure 5.1: DAG of example 5.1

Table 5.1: Initial distributions
b Π(b) c Π(c) a b c Π(a | b ∧ c) a b c Π(a | b ∧ c) d a Π(d | a)

b1 1 c1 1 a1 b1 c1 1 a2 b1 c1 0.2 d1 a1 1
b2 0.3 c2 0.7 a1 b1 c2 0.6 a2 b1 c2 1 d1 a2 0.2

a1 b2 c1 1 a2 b2 c1 0.1 d2 a1 0
a1 b2 c2 0.2 a2 b2 c2 1 d2 a2 1

5.3.1 Recovering initial data

The following proposition shows that, like the probabilistic case, the product-based chain rule

allows the recovering of initial local distributions. In other terms, when we compute the joint

possibility distribution using (5.1) we always recover the initial values provided by experts.

Proposition 5.1 Let πp be the global joint possibility distribution of ΠGp computed using

(5.1). Let Π(a | uA) be the conditional distribution given by the expert on the node A and

Πp(a | uA) be the conditional possibility computed from πp. Then,

Πp(a | uA) = Π(a | uA). (5.2)

The proof of this Proposition uses the following technical Lemma [16]:

Lemma 5.1 Let X be a strict subset of V and x be a �xed instantiation of X. Let Z = V/X.

Then,

maxz{
∏
{Π(a | uA) : a ∈ z, uA ⊆ z ∧ x}} = 1. (5.3)

This Lemma means that the marginalization always provides normalized distributions.

In particular, if we consider that the set X is empty (i.e. Z = V ) then, the global joint

distribution is normalized.

Table 5.2: Global joint distribution using product-based chain rule (5.1)
a b c d πp(a ∧ b ∧ c ∧ d) a b c d πp(a ∧ b ∧ c ∧ d)

a1 b1 c1 d1 1 a2 b1 c1 d1 0.04
a1 b1 c1 d2 0 a2 b1 c1 d2 0.2
a1 b1 c2 d1 0.42 a2 b1 c2 d1 0.14
a1 b1 c2 d2 0 a2 b1 c2 d2 0.7
a1 b2 c1 d1 0.3 a2 b2 c1 d1 0.006
a1 b2 c1 d2 0 a2 b2 c1 d2 0.03
a1 b2 c2 d1 0.042 a2 b2 c2 d1 0.042
a1 b2 c2 d2 0 a2 b2 c2 d2 0.21
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Example 5.2 Let us consider the joint distribution πp calculated in Example 5.1. We �rst

illustrate Lemma 5.1. Let X = {A,B,C}, x = a1 ∧ b2 ∧ c2, and Z = {D}, then we can check

that max(Π(d1 | a1),Π(d2 | a1)) = max(1, 0.2) = 1.

Using πp, we can also check that Πp(a1 | b1∧c2) = Π(a1 | b1∧c2) = 0.6, since Π(a1 | b1∧c2) =
Πp(a1∧b1∧c2)

Πp(b1∧c2) = 0.42
0.7 = 0.6.

5.3.2 Recovering independence relations

As shown in the previous Chapter, the DAG structure encodes many independence relations

via the d-separation relations, thus we should check that these relations can be recovered

from the joint distribution computed using (5.1). This property is important especially when

developing the propagation algorithms, as we will see in Chapter 6.

In other terms, we should check that for any three disjoint subsets of V , X,Y and Z, if X

and Y are d-separated by Z, then X and Y are Prod-independent in the context Z (since we

use the product independence as independence relation relative to ΠGp).

As mentioned in Chapter 4, Pearl [103] states that to satisfy this condition the indepen-

dence relation should be a semi-graphoid (i.e. satis�es symmetry, decomposition, weak union

and contraction). Moreover, in the joint distribution computed via the chain rule, each variable

A ∈ V should be conditionally independent of its non-descendants (ZA) given its parents (UA).

These two conditions are satis�ed by the Prod-independence relation. Indeed, as mentioned

in Chapter 3, this relation is a semi-graphoid [63], moreover it satis�es the following proposition

Proposition 5.2 Let ΠGp be a product-based possibilistic network. Let πp be the joint possi-

bility distribution computed using 5.1. Then, each variable A ∈ V , is Prod-independent of the
variables in ZA given its parent set UA i.e. ∀a ∈ DA,∀uA ∈ DUA , ∀zA ∈ DZA :

Πp(a | zA ∧ uA) = Πp(a | uA). (5.4)

The proof of this proposition is similar to the one relative to the probabilistic independence

relation [103] since the Prod-independence is expressed in the same manner than this relation.

Example 5.3 Let us consider the node D in the ΠGp given in Example 5.1. We can check,

for instance, that D is Prod-independent of ZD = {A,B,C} in the context of UD = {A}.
Indeed, ∀a, b, c, d,Πp(d | a ∧ b ∧ c) = Πp(d | a) as shown in Tables 5.3 and 5.4 derived from

Table 5.2.
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Table 5.3: Conditional distribution of D in the context of A,B and C
a b c d Πp(d | a ∧ b ∧ c) a b c d Πp(d | a ∧ b ∧ c)
a1 b1 c1 d1 1 a2 b1 c1 d1 0
a1 b1 c1 d2 0.2 a2 b1 c1 d2 1
a1 b1 c2 d1 1 a2 b1 c2 d1 0
a1 b1 c2 d2 0.2 a2 b1 c2 d2 1
a1 b2 c1 d1 1 a2 b2 c1 d1 0
a1 b2 c1 d2 0.2 a2 b2 c1 d2 1
a1 b2 c2 d1 1 a2 b2 c2 d1 0
a1 b2 c2 d2 0.2 a2 b2 c2 d2 1

Table 5.4: Conditional distribution of D in the context of A

d a Πp(d | a)

d1 a1 1
d1 a2 0
d2 a1 0.2
d2 a2 1

Thus, using Proposition 5.2 and Corollary 4.1, we can give the following fundamental

proposition:

Proposition 5.3 Let ΠGp be a product-based possibilistic network. Let πp be the joint dis-

tribution relative to ΠGp. Let X, Y and Z be three disjoint subsets of V . If X and Y are

d-separated by Z in G, then X and Y are Prod-independent in the context of Z in πp. More

formally:

< X|Z|Y >G⇒ IProd(X,Z, Y ). (5.5)

In other terms, any independence relation implied by the DAG structure of a product-

based possibilistic networks ΠGp, can be recovered from the joint distribution relative to ΠGp

computed via the product-based chain rule (5.1).

5.4 Min-based possibilistic networks

A min-based possibilistic graph over a set of variables V , denoted by ΠGm, is a possibilistic

graph where conditionals are de�ned using min-based conditioning (1.17), namely,

π(ω |m φ) =


1 if π(ω) = Π(φ) and ω ∈ φ
π(ω) if π(ω) < Π(φ) and ω ∈ φ
0 otherwise.
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min-based possibilistic networks are appropriate for an ordinal interpretation of the pos-

sibilistic scale.

The joint distribution relative to min-based possibilistic networks, denoted by πm can be

computed via the following min-based chain rule:

De�nition 5.2 (min-based chain rule) Given a min-based possibilistic network ΠGm, the

global joint possibility distribution over the variable set V = {A1, A2, ..., AN} can be expressed

as the minimum of the N initial a priori and conditional possibilities via the following min-

based chain rule:

πm(A1, .., AN ) = min
i=1..N

Π(Ai | UAi). (5.6)

The min-based chain rule is derived from the (minimum) independence relations induced

by the DAG structure and local min-based conditional degrees.

Indeed, as shown in Chapter 3, several de�nitions of independence are based on the mini-

mum operator. In what follows we use the non-interactivity independence relation (introduced

in Section 3.3.2) in di�erent algorithms related to the min-based possibilistic graphs. Recall

that the non-interactivity is de�ned by:

Π(x ∧ y | z) = min(Π(x | z),Π(y | z)),∀x, y, z,

to express that the variable sets X and Y are NI-independent in the context Z.

We also recall that in the DAG "each node is independent of its non-descendants in the context

of its parents".

Therefore, the min-based chain rule can be explained in the following way:

Let d = (A1, ..., AN ) be an ordering of the variables in V such that ∀Ai, UAi ⊆ {Ai+1, ..., AN}.
Let RAi = V − UAi . Then, we have by de�nition:

πm(A1, ..., AN ) = min(Π(A1, RA1 | UA1),Π(UA1))

= min(min(Π(A1 | UA1),Π(RA1 | UA1)),Π(UA1)) (since A1 is a leaf (i.e. RA1 = ZA1) and A1

is independent of its non-descendants (i.e. ZA1) in the context of its parent set UA1)

= min(Π(A1 | UA1),Π(RA1 | UA1),Π(UA1))

= min(Π(A1 | UA1),min(Π(RA1 | UA1),Π(UA1)))

= min(Π(A1 | UA1),Π(A2, ..., AN )) (by de�nition)

Iterating the same operation on the rest of variables leads to (5.6). Note that this construction

is not similar to the product-based one.
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Example 5.4 Let ΠGm be a min-based possibilistic network de�ned by three variables A, B

and C (see Figure 5.2) and the a priori and conditional possibility distributions given in Table

and 5.5. Using the min-based chain rule (5.6) we obtain the joint possibility distribution given

in Table 5.6.

Figure 5.2: Example of a singly connected DAG

Table 5.5: Initial distributions
a Π(a) b Π(b) a b c Π(c | a ∧ b) a b c Π(c | a ∧ b)
a1 1 b1 0.3 a1 b1 c1 0.4 a2 b1 c1 0.1
a2 0.2 b2 1 a1 b1 c2 1 a2 b1 c2 1

a1 b2 c1 0.3 a2 b2 c1 1
a1 b2 c2 1 a2 b2 c2 0.1

Table 5.6: Global joint distribution using min-based chain rule (5.6)
a b c πm(a ∧ b ∧ c) a b c πm(a ∧ b ∧ c)
a1 b1 c1 0.3 a2 b1 c1 0.1
a1 b1 c2 0.3 a2 b1 c2 0.2
a1 b2 c1 0.3 a2 b2 c1 0.2
a1 b2 c2 1 a2 b2 c2 0.1

The min-based chain rule does not share the same properties than the product-based one.

Indeed, it may happen that the joint distribution associated with the network do not recover

the initial data. Nevertheless, we show that unrecovered data correspond to redundant data

that can be ignored and that they have no in�uence on independence relations.

5.4.1 Recovering initial data

A min-based possibilistic network ΠGm is said to be coherent if the application of the chain

rule (5.6) allows the recovering of the initial data provided by the expert i.e. Πm(a | uA) =

Π(a | uA) where Πm(a | uA) is the conditional possibility degree computed from πm and

Π(a | uA) is the initial degree.

As pointed out by Fonck [62] such equality does not always hold as shown by the following

counter-example:
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Counter-example 5.1 Let us reconsider the min-based possibilistic network given in Example

5.4. From Table 5.6, we can check that

Πm(c1 | a1 ∧ b1) = 1 6= Π(c1 | a1 ∧ b1) = 0.4 since Πm(a1 ∧ b1 ∧ c1) = Πm(a1 ∧ b1) = 0.3.

This is due to the fact that the initial values provided by the expert are not coherent with the

axioms of possibility distributions. Indeed, using (1.17) we always have if Π(p | q) 6= 1 then

Π(p | q) = Π(p∧ q) < Π(q). However, in our example Π(c1 | a1∧ b1) = 0.4 > Π(a1∧ b1) = 0.3.

The following proposition goes one step further and compares the exact value of Πm(a | uA)

with respect to the initial local distribution i.e. Π(a | uA). It generalizes the result given in

[16] to the case of non binary variables.

Proposition 5.4 Let πm be the global joint possibility distribution of ΠGm computed using

(5.6). Let Π(a | uA) be the conditional distribution given by the expert on the node A and

Πm(a | uA) be the conditional possibility computed from πm. Then,

either Πm(a | uA) = Π(a | uA) or Πm(a | uA) = 1.

Moreover if Πm(a | uA) = 1 6= Π(a | uA), then Π(a | uA) > Πm(uA).

The proof of this proposition needs the following technical Lemma [16] (similar to Lemma

5.1).

Lemma 5.2 Let X be a strict subset of V and x be a �xed instantiation of X. Let Z = V −X.

Then,

maxz{min{Π(a | uA) : a ∈ z, uA ⊆ z ∧ x}} = 1. (5.7)

Proposition 5.4 means that the computed joint distribution either preserves the initial

values or push them up to 1. For instance, in Example 5.4, Πm(c1 | a1 ∧ b1) is equal to 1

instead of the original value Π(c1 | a1 ∧ b1) = 0.4.

However, this should not be viewed as a drawback. Indeed, this simply means that the

experts give useless data which are aggregated by the min-based chain rule with more speci�c

(precise) ones. The following proposition shows that the initial unrecovered data can be

ignored without any e�ect on the global joint distribution.

Proposition 5.5 Let A ∈ V be a variable in ΠGm s.t. Πm(a | uA) 6= Π(a | uA). Let π′m be

a new joint distribution obtained from ΠGm by only substituting the value Π(a | uA) by the

degree 1. Then,

π′m = πm. (5.8)
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The idea of the proof of this proposition is to show that for any variable Aj with an initial

incoherent local distribution (i.e. Π(aj | uAj ) < 1 and Π(aj | uAj ) > Πm(uAj )), the joint

distribution is equal to the minimum between all initial local distributions except the one

relative to Aj (i.e. πm(v) = mini=1..N,i6=j Π(ai | uAi)). Indeed, when considering an ordering

d = (A1, ..., AN ) of the variables in V such that ∀Ai, UAi ⊆ {Ai+1, ..., AN}, we prove that the
initial incoherent local distribution relative to Aj is greater than the minimum between all

initial local distributions relative to Aj+1, .., AN (i.e. Π(aj | uAj ) > mini=j+1..N Π(ai | uAi))

Example 5.5 Let us continue Example 5.1. If we compute the possibility distributions relative

to A, B and C by marginalization of the joint distribution given by Table 5.6, we can check that

we recover all the initial values except Π(c1 | a1∧b2) since Πm(c1 | a1∧b2) is equal to 1 instead

of 0.4. However, we can recover the original possibility distribution using Πm(A),Πm(B) and

Πm(C | A,B) (see Table 5.7).

Table 5.7: New joint distribution

a b c Πm(a) Πm(b) Πm(c | a ∧ b) π′m(a ∧ b ∧ c)

a1 b1 c1 1 0.3 1 0.3
a1 b1 c2 1 0.3 1 0.3
a1 b2 c1 1 1 0.3 0.3
a1 b2 c2 1 1 1 1
a2 b1 c1 0.2 0.3 0.1 0.1
a2 b1 c2 0.2 0.3 1 0.2
a2 b2 c1 0.2 1 1 0.2
a2 b2 c2 0.2 1 0.1 0.1

This behavior also exists in possibilistic logic [16], namely a possibility distribution asso-

ciated with a possibilistic base do not guarantee to recover the exact value of the knowledge

base. for instance, it is enough to consider a knowledge base Σ = {(a, 0.8), (a∨b, 0.4)}. Then,
πΣ(a∧b) = πΣ(a∧¬b) = 1, πΣ(¬a∧b) = 0.2, πΣ(¬a∧¬b) = 0.2. Thus N(a∨b) = 1−0.2 = 0.8.

This is due to the fact that (a ∨ b, 0.4) is strictly subsumed by (a, 0.8).

5.4.2 Recovering independence relations

We now show that the NI-independence relation (used as independence relation relative to

ΠGm) recovers the whole independence relations implied by the DAG structure, exactly as in

Bayesian networks and that the initial unrecovered data have no e�ect on this independence

property.
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As mentioned in Chapter 4, to satisfy this condition the independence relation should be

a semi-graphoid. Moreover, in the joint distribution computed via the chain rule, each vari-

able A ∈ V should be conditionally independent of its non-descendants (ZA) given its parents

(UA). These two conditions are satis�ed by the NI-independence. Indeed, as mentioned in

Chapter 3, this relation is a semi-graphoid [62].

Moreover, In [16] it has been shown that in a ΠGm composed of binary variables, each

variable is NI-independent of each of its non-descendants (ZA) given its parents, in the joint

distribution induced from initial conditional distributions. The following Proposition gener-

alizes this result to the case of non binary variables and to the whole set of non-descendants

instead of only one variable pertaining to it.

Proposition 5.6 Let ΠGm be a min-based possibilistic network. Let πm be the joint possibility

distribution computed using 5.6. Then, each variable A ∈ V , is NI-independent of the variables
in ZA given its parent set UA i.e. ∀a ∈ DA,∀uA ∈ DUA ,∀zA ∈ DZA :

Πm(a ∧ uA | zA) = min(Πm(a | uA),Πm(uA | zA)). (5.9)

Example 5.6 Let ΠGm be a min-based possibilistic network de�ned by the DAG of Figure

5.1 and the initial possibility distributions given in Example 5.1. We can for instance check

that D is NI-independent of ZD = {A,B,C} in the context of UD = {A}. Indeed,
∀a, b, c, d,Πm(a ∧ b ∧ c ∧ d) = min(Πm(a ∧ d),Πm(a ∧ b ∧ c)) as shown in Tables 5.8 and 5.9.

Table 5.8: Joint distribution using min-based chain rule
a b c d πm(a ∧ b ∧ c ∧ d) a b c d πm(a ∧ b ∧ c ∧ d)

a1 b1 c1 d1 1 a2 b1 c1 d1 0.2
a1 b1 c1 d2 0 a2 b1 c1 d2 0.2
a1 b1 c2 d1 0.6 a2 b1 c2 d1 0.2
a1 b1 c2 d2 0 a2 b1 c2 d2 0.7
a1 b2 c1 d1 0.3 a2 b2 c1 d1 0.1
a1 b2 c1 d2 0 a2 b2 c1 d2 0.1
a1 b2 c2 d1 0.2 a2 b2 c2 d1 0.2
a1 b2 c2 d2 0 a2 b2 c2 d2 0.3

Thus, using Proposition 5.6 and Corollary 4.1, we can give the following fundamental

proposition:

Proposition 5.7 Let ΠGm be a min-based possibilistic network. Let πm be the joint distri-

bution relative to ΠGm. Let X, Y and Z be three disjoint subsets of V . If X and Y are
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Table 5.9: Local joint distributions
a b c πm(a ∧ b ∧ c) a b c πm(a ∧ b ∧ c) a d πm(a ∧ d)

a1 b1 c1 1 a2 b1 c1 0.2 a1 d1 1
a1 b1 c2 0.6 a2 b1 c2 0.7 a1 d2 0
a1 b2 c1 0.3 a2 b2 c1 0.1 a2 d1 0.2
a1 b2 c2 0.2 a2 b2 c2 0.3 a2 d2 0.7

d-separated by Z in G, then X and Y are NI-independent in the context of Z in πm. More

formally:

< X|Z|Y >G⇒ INI(X,Z, Y ). (5.10)

In other terms, any independence relation implied by the DAG structure of a min-based

possibilistic networks ΠGm, can be recovered from the joint distribution relative to ΠGm com-

puted via the min-based chain rule (5.6).

It is clear that there is no need to have a coherent network to satisfy this Proposition

since the initial unrecovered data have no e�ect on the value of the joint distribution due to

Propositions 5.4 and 5.5.

However, we have to mention that this Proposition is not available if MS-independence1 is

used instead of NI-independence, then we can check that the independence relations implied

by the DAG structure are not always recovered, using the min-based chain rule, as shown by

the following counter-example:

Counter-example 5.2 Let us consider the min-based possibilistic network given in Example

5.6. We can, for instance, check that the independence relation < D|UD|ZD >G is not recov-

ered. Indeed, D is not MS-independent of ZD = {A,B,C} in the context of UD = {A} since
from the joint distribution given in Table 5.8 we can check that Πm(d1 | a2 ∧ b2 ∧ c1) = 1 6=
Πm(d1 | a2) = 0.2.

1we recall that IMS , presented in Section 3.3.1, is de�ned by Π(x | y ∧ z) = Π(x | z) and Π(y | x ∧ z) =
Π(y | z),∀x, y, z to express that the variable sets X and Y are MS-independent in the context Z.
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5.5 Conclusion

In this Chapter, we have presented possibilistic counterparts of Bayesian networks. Namely,

product-based possibilistic networks and min-based possibilistic networks. We have shown

that when we use the product form of conditioning we get possibilistic networks very close to

the probabilistic ones.

Besides, networks based on Spohn's ordinal conditional functions [35, 72] and those based

on the theory of evidence (in the case of nested focal elements) encode product-based possi-

bilistic networks since they use the same conditioning (as noted in Chapter 1). In addition,

Shenoy has treated the case of possibilistic VBS using only the product operator [112].

This means that most of existing works which encodes possibilistic networks use the prod-

uct operator and hence share same theoretical and practical results than probabilistic networks.

This is not the case with min-based networks which di�er from product-based networks

since they do not satisfy the coherence property. Indeed, it may happen that the joint distri-

bution associated with the possibilistic network do not recover the initial data provided by the

experts. Nevertheless, we have shown that unrecovered data correspond to redundant data

which can be ignored and that they have no in�uence on independence relations.

Chapter 6, proposes an adaptation of probabilistic propagation algorithms to min-based

and product-based networks and shows that unrecovered data have no in�uence on the prop-

agation process too.

The last part of this thesis exploits speci�c properties of the minimum operator and pro-

poses a new propagation algorithm for min-based networks.
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Chapter 6

Possibilistic Adaptation of

Probabilistic Propagation Algorithms

6.1 Introduction

The most common task we wish to solve using possibilistic networks is possibilistic inference

or propagation which corresponds to determine how the realization of speci�c values of some

variables a�ects the remaining variables. Adaptations of well known probabilistic propagation

algorithms have been proposed in [23, 63, 69]. For instance, Fonck has proposed an adaptation

of the original version of Pearl's algorithm [63]. In this Chapter, we adapt the centralized ver-

sion of this algorithm (proposed by Poet and Shachter [105]) to possibilistic networks. Then

we study the possibilistic propagation in the more general case of junction trees.

This Chapter is composed of two main sections. Section 6.2 presents propagation in

product-based possibilistic networks. Section 6.3 studies propagation in min-based possibilistic

networks. Moreover, it shows that in such networks the initial unrecovered data have no e�ect

on the propagation process.

Proofs of this Chapter are given in Appendix D.

6.2 Propagation in product-based possibilistic networks

6.2.1 Product-based propagation in polytrees

We now propose a product-based possibilistic adaptation of probabilistic propagation algo-

rithm in polytrees presented in Section 4.6. This algorithm is based on local communication

via two kinds of messages, called λ-messages and µ-messages circulating, respectively, from

113
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children to parents and from parents to children. This massage passing is performed in a

similar way than in Pearl's algorithm [87, 103].

In the following, we use exactly the same notations than in Chapter 4 (see Section 4.6).

We now give expressions of di�erent messages (Bel(A), λ(A), µ(A), λYj (A) and µA(Ui)).

• ∀a ∈ DA, the current conditional possibility measure of a based on the total evidence e

is de�ned by:

Bel(a) = Πp(a | e) = α · λ(a) · µ(a), (6.1)

where α = 1
maxaBel(a) .

• The λ value ∀a ∈ DA is de�ned by:

λ(a) = Πp(a | e−A) = λA(a) ·
m∏
j=1

λYj (a), (6.2)

where λA(a) denotes local evidence related to the node A such that:

λA(a) =


0 if eA 6= a (A is instanciated to (eA 6= a)

1 otherwise (A is instanciated to a (eA = a)

or A is not instanciated).

• The µ value ∀a ∈ DA is de�ned by:

µ(a) = Πp(a | e+
A) = max

u
Π(a | u) ·

n∏
i=1

µA(ui). (6.3)

• The λ message from A to its parent Ui, (i ∈ {1, ..n}) when Ui = ui is de�ned by:

λA(ui) = Πp(e
−
UiA
| ui) = βmax

a
λ(a)[ max

uk:k 6=i
Π(a | u) ·

∏
k 6=i

µA(uk)], (6.4)

where β is a normalization constant.

If the graph is a rooted tree (each node has a unique parent), then this message is

simpli�es to:

λA(ui) = βmax
a

λ(a) ·Π(a | u).

• The µ message from A to its child Yj , (j ∈ {1, ..m}) when A = a is de�ned by:

µYj (a) = Πp(a | e+
AYj

) = α · λA(a) ·
∏

i=1..m,i 6=j
λYi(a) · µ(a). (6.5)

Note that these formulas are similar to those corresponding to Bayesian networks presented

in Section 4.6 but use the maximum operator instead of the addition.
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Propagation algorithm

The �rst step is to select an arbitrary node within the smallest connected set of nodes contain-

ing all of the modi�ed nodes (denoted by S), to be the pivot node. Then, a message passing

starts via two phases:

• A collect-evidence phase, in which each node in S passes a message to its adjacent nodes

in the pivot direction (each node has only one adjacent node in the pivot direction),

beginning with the node farthest from the pivot in S.

• A distribute-evidence phase, in which each node in the graph passes messages to its

adjacent nodes away from the pivot direction, beginning with the pivot itself until the

leaves in the DAG are reached.

The outline of this algorithm is as follows:

Algorithm 6.1: Product-based propagation in polytrees

begin
Choosing the root of propagation
- Let S be the smallest connected set which contains the observed nodes;
- Let Pivot be an arbitrary node within S representing the root of propagation;
- Let Postorder be the vector containing the order in which messages are sent in the distribute-
evidence phase (the last node is the pivot);
- Let Preorder be the vector containing the order in which messages are sent in the collect-
evidence phase (the �rst node is the pivot);
Initialization
- Set all λ and µ values and messages to 1;
- For each root A, µ(a)← Π(a),∀a ∈ DA;
- For each observed node A, set λA(a) to 1 if A is instanciated to a and to 0 otherwise;
Collect-evidence
for i ← 1 to length(Postorder)-1 do

A← Postorder [i];
B ← adjacent node of A in Postorder);
Compute λ(A) using (6.2), Compute µ(A) using (6.3);
if B is a parent of A then post a λ message from A to B using (6.4) else post a µ message
from A to B using (6.5)

Distribute-evidence
for i ← 1 to length(Preorder) do

A← Preorder [i];
Below ← adjacent node of A in Preorder ;
Compute λ(A) using (6.2), Compute µ(A) using (6.3)
for j ← 1 to length(Below) do

B ← Below [j];
if B is a parent of A then post a λ message from A to B using (6.4) else post a µ
message from A to B using (6.5)

Marginalization
For each node A, compute Bel(A) = Πp(a | e) using (6.1);

end
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This algorithm is developed with the same complexity as the probabilistic one i.e. O(s∗N)

where s is the size of the largest conditional possibility table and N the number of variables.

Indeed, this adaptation is also based on a two message passing and ensures that in each

direction only one message need to be sent on any arc, thus it converges in two iterations (one

for the collect and the other for the distribution) and the number of messages is less than

twice the number of nodes.

6.2.2 Product-based propagation in multiply connected DAGs

The principle of this propagation method is similar to the probabilistic propagation in junction

trees presented in Chapter 4. Indeed, it is based on the transformation of the initial DAG into

a junction tree which will be used during the propagation process.

The proposed adaptation has the same complexity than the probabilistic case and remains

NP-complete since the transformation step of the initial DAG into a junction tree remains the

same.

Junction trees (denoted by J T ) are de�ned and constructed in the same manner than in

the probabilistic case (see Section 4.7) since this procedure is completely independent of the

numerical values.

For each cluster Ci (resp. separator Sij) of J T we assign a local joint distribution, called

potential and denoted by πCi (resp. πSij ).

From J T , we can associate a unique global joint possibility distribution denoted by, πJT

de�ned by:

De�nition 6.1 The joint distribution associated with J T is expressed by:

πJT (A1, .., AN ) =

∏m
i=1 πCi∏m−1
j=1 πSij

, (6.6)

where m is the number of clusters in J T .

We now give some de�nitions regarding to junction trees:

De�nition 6.2 Let Ci and Cj be two adjacent clusters in a junction tree J T and let Sij be

their separator. Then, the link between Ci and Cj is said to be stable or consistent if:

max
Ci\Sij

πCi = πSij = max
Cj\Sij

πCj , (6.7)
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where maxCi\Sij πCi is the marginal distribution of Sij de�ned from πCi .

If all links in a junction tree are consistent, then the junction tree is said to be globally

consistent.

The following proposition shows that when a junction tree is globally consistent, then the

potential of each cluster corresponds to its local joint distribution computed from the initial

network.

Proposition 6.1 If a junction tree is globally consistent, then the potential of each cluster Ci

satis�es:

πCi = Πp(Ci). (6.8)

Using this proposition, we can compute the possibility distribution of any variable A ∈ V
in a globally consistent junction tree, using any cluster Ci containing A by marginalizing its

potential on A as follows:

Πp(A) = max
Ci\A

πCi . (6.9)

In the following, we denote by πtCi the potential of the cluster Ci at a step t of the

propagation. t = I (resp. t = C) corresponds to the initialization (resp. global consistency)

step.

Possibilistic propagation

Once the transformation of the DAG into a junction tree is performed, the propagation pro-

cess starts and it will be possible to compute for any variable A ∈ V , the possibility degree

Πp(A). The more general problem of computing Πp(A | e), where e is the total evidence, is
addressed is addressed later. We now present the principle steps of possibility propagation in

junction trees with no evidence.

Step 1: Initialization. The �rst step in the propagation is to initialize the junction tree.

In this phase we quantify the junction tree using initial possibility distributions as follows:

Algorithm 6.2: Initialization

begin
For each cluster Ci : πICi ← 1;

For each separator Sij : πISij ← 1;

For each variable A choose a cluster Ci containing {A} ∪ UA:
πICi ← πICi ·Π(A | UA);

end
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The following proposition, shows that the initialized junction tree encodes the same dis-

tribution than the initial network.

Proposition 6.2 Let ΠGp be a product-based possibilistic network. Let J T be the junction

tree corresponding to ΠGp generated by the above initialization procedure. Let πp be the joint

distribution encoded by ΠGp (using (5.1)) and πIJT be the joint distribution encoded by J T
(using (6.6)). Then,

πp = πIJT . (6.10)

The initialized junction tree can be inconsistent since this initial assignment does not guar-

antee the global consistency requirement of Equation (6.7). Thus, we should run the second

step of global propagation which ensures global consistency.

Step 2: Global propagation. Once the junction tree is initialized, the global propagation

is performed in order to make it globally consistent. The global propagation is performed via

a message passing mechanism between each cluster Ci and its adjacent cluster Cj divided into

two phases starting from an arbitrary cluster as a pivot node:

• A collect-evidence phase in which each cluster passes a message to its adjacent cluster

in the pivot direction, beginning with the clusters farthest from the pivot. In this phase

messages are starting from the leaves. The order in which messages are sent is denoted

by the postorder of the pivot.

• A distribute-evidence phase in which each cluster passes messages to its adjacent clusters

away from the pivot direction, beginning with the pivot itself. In this phase messages

circulate from the pivot until the leaves are reached. The order in which messages are

sent is denoted by the preorder of the pivot.

In both phases if a cluster Ci sends a message to its adjacent cluster Cj , then the potentials

of Ci, Cj and their separator Sij are updated as follows:

1. Save the same potential for Ci

πt+1
Ci
← πtCi . (6.11)

2. Assign a new potential to Sij

πt+1
Sij
← max

Ci\Sij
πtCi . (6.12)

3. Assign a new potential to Cj :

πt+1
Cj
← πtCj ·

πt+1
Sij

πtSij
. (6.13)
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The outline of the global propagation procedure is as follows:

Algorithm 6.3: Global propagation

begin
Choosing the root of propagation
- Let Pivot be an arbitrary cluster Ci to represent the root of propagation;
- Let Postorder be the vector containing the order in which messages are sent in the
distribute-evidence phase (the last node is the pivot);
- Let Preorder be the vector containing the order in which messages are sent in the
collect-evidence phase (the �rst node is the pivot);
Collect-evidence
for i ← 1 to length(Postorder)-1 do

Ci ← Postorder [i];
Cj ← adjacent cluster of Ci in Postorder ;
Post a message from Ci to Cj using (4.13), (4.14) and (4.15);

Distribute-evidence
for i ← 1 to length(Preorder) do

Ci ← Preorder [i];
Below ← adjacent clusters of Ci in Preorder ;
for j ← 1 to length(Below) do

Cj ← Below[j];
Post a message from Ci to Cj using (4.13), (4.14) and (4.15);

end

The following proposition shows that at each level of the global propagation procedure,

the junction tree encodes the same joint distribution:

Proposition 6.3 Let πtJT be the joint distribution relative to a junction tree J T at level t.

Let πt+1
JT be the resulted joint distribution after the modi�cation of a cluster Ci using the above

procedure. Then,

πtJT = πt+1
JT . (6.14)

From Propositions 6.2 and 6.3 we deduce that from the initialization to the global consis-

tency level, the junction tree encodes the same joint distribution.

Proposition 6.4 Let πp be the joint distribution encoded by ΠGp (using (5.1)). Let πCJT

be the joint distribution encoded by J T after the global propagation procedure (using (6.6)).

Then,

πp = πCJT . (6.15)

The following proposition shows that the collect and distribute phases are enough to make

the junction tree globally consistent.
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Proposition 6.5 The global consistency is reached after the collect and distribute phases.

Step 3: Marginalization. Using the consistent junction tree obtained from the previous

phase, we can now compute for each variable of interest A, the possibility measure Πp(A) as

follows:

Algorithm 6.4: Marginalization

begin
Identify a cluster Ci containing A;
Compute Πp(A) by marginalization of πCCi on A: Πp(A)← maxCi\A π

C
Ci
;

end

Handling the evidence

We now show how to generalize the above propagation algorithm in order to compute for any

variable A ∈ V , Πp(A ∧ e) where e is the total evidence. This evidence will be encoded by

using a likelihood Λ de�ned by:

ΛA(a) =


1 if A is not instanciated

1 if A is instanciated for a

0 if A is instanciated but not for a.

(6.16)

To handle the evidence e, we should extend the propagation procedure by transforming the

initialization step so that to incorporate any certain information. Indeed, we should encode

the evidence e as a likelihood (using (6.16)), then, we incorporate it into the junction tree by

adding these two steps to the initialization procedure:

- For any instanciated variable A, encode the observation A = a as a likelihood ΛA using

(6.16).

- Identify a cluster Ci containing A: π
I
Ci
← πICi · ΛA.

By entering the observation set, the junction tree encodes Π(V ∧ e) instead of Π(V ), and

all subsequent probabilities derived from it are probabilities of events that are conjoined with

evidence e.

Through global propagation and under the assumption that we have an evidence e, the

potential of cluster Ci encodes Πp(Ci ∧ e). Then, when we marginalize any cluster potential

πCCi into a variable A (s.t A ⊆ Ci) using (6.9), we obtain the possibility measure of A and e:

Πp(A ∧ e) = max
Ci\A

πCCi . (6.17)
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However, our goal is to compute Πp(A | e), this value can be easily obtained from Πp(A∧e)
by applying the de�nition of product-based conditioning as follows:

Πp(A | e) =
Πp(A ∧ e)

Πp(e)
=

Πp(A ∧ e)
maxA Πp(A ∧ e)

. (6.18)

6.3 Propagation in min-based possibilistic networks

In this Section, we �rst present an adaptation of the centralized version of Pearl's propagation

algorithm. We show that the initial unrecovered data have no e�ect on the propagation pro-

cess. Then, we present an adaptation of the probabilistic junction tree propagation algorithm.

6.3.1 Min-based propagation in polytrees

We now propose a min-based possibilistic possibilistic adaptation of probabilistic propagation

algorithm in polytrees presented in Section 4.6. This adaptation is slightly di�erent from the

one proposed for product-based networks. More precisely, it needs one additional step which

concerns the transformation of initial conditional distributions into local joint ones.

From graphs with conditionals to graphs with local distributions

The use of the conditional distributions is not appropriate when we want to derive the ex-

pression of the updating messages. Then, an alternative way is to use joint distributions of

each variable in the context of its parents. This is possible since the NI-independence can be

expressed in a conditional or joint form (see (3.14) and (3.15)). Thus, the question is how to

proceed in order to transform the original conditional possibilities into joint ones ?

The global joint distribution computed via the min-based chain rule (5.6) depends only on

the values which are less than the degree 1 (since we use the min operator). Moreover, (1.17)

implies that for each variable Ai,∀ai ∈ DAi ,∀uAi ∈ DUAi
:

Π(ai | uAi) =

 Π(ai ∧ uAi) if Π(ai | uAi) < Π(uAi)

1 otherwise.

Then, in the transformation process we can only consider the conditionals which are less

than 1 and ignore the rest i.e. the conditionals equal to 1 by maintaining their initial values.

Namely, we preserve the initial conditional values by considering them as joint local distri-

butions. Once the transformation is performed, one can compute the global joint possibility

distribution over the variable set V based on the local joint distributions derived from the

initial conditional ones using the following chain rule which is equivalent to (5.6):
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πm(A1, .., AN ) =
N

min
i=1

Π(Ai ∧ UAi). (6.19)

Corollary 6.1 The joint distribution obtained from initial a priori and conditional distribu-

tions using (5.6) is equivalent to the one obtained from derived local joint distributions using

(6.19).

The proof of this corollary is immediate since for each variable Ai, we replace Π(ai | uAi)
by Π(ai ∧ uAi). However, it is not possible to encode the uncertainty, in a direct manner, by

local joint distributions of each node in the context of its parents. Indeed, we can lose some

independence relations as shown by the following counter-example.

Counter-example 6.1 Let us consider the min-based possibilistic network ΠGm, composed

of the DAG of Figure 5.2 and the initial possibility distributions given in Table 6.1. Using

(6.19), we can compute the global joint distribution given in Table 6.2.

Table 6.1: Initial distributions
a Π(a) b Π(b) a b c Π(a ∧ b ∧ c) a b c Π(a ∧ b ∧ c)
a1 1 b1 1 a1 b1 c1 0.5 a2 b1 c1 1
a2 1 b2 1 a1 b1 c2 0.5 a2 b1 c2 1

a1 b2 c1 1 a2 b2 c1 1
a1 b2 c2 1 a2 b2 c2 1

Table 6.2: Global joint distribution
a b c πm(a ∧ b ∧ c) a b c πm(a ∧ b ∧ c)
a1 b1 c1 0.5 a2 b1 c1 1
a1 b1 c2 0.5 a2 b1 c2 1
a1 b2 c1 1 a2 b2 c1 1
a1 b2 c2 1 a2 b2 c2 1

From the DAG structure it is clear that A and B are independent. However from the global

joint distribution given in Table 6.2 these two variables are not NI-independent since

Πm(a1 ∧ b1) = 0.5 6= min(Πm(a1),Πm(b1)) = 1.

We now give some notations and technical lemmas relative to independence relations in

min-based possibilistic networks and useful in the development of the propagation algorithm.

Independence relations

In the following, we use exactly the same notations than in Chapter 4 (see Section 4.6).
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Proposition 6.6 summarizes independence relations in a singly connected min-based net-

work (based on NI-independence relation) regarding a particular node A. This proposition

is needed to develop di�erent expressions of values and messages used in the propagation

process.

Proposition 6.6 (Independence relations in a singly connected min-based network)

1: In the context of any node A, the two sets E+
A and E−A are NI-independent.

2: ∀Yi ∈ Y , the node A d-separates E−AYi from {E
−
AYi+1

, ..., E−AYm} (see Figure 6.1).

3: The set E+
A and the node A are NI-independent in the context U .

4: ∀Ui ∈ U,Ui and {Ui+1, ..., Un} are NI-independent in the context E+
A (see Figure 6.2).

5: ∀Ui ∈ U,Ui and {E+
Ui+1A

, ..., E+
UnA
} are NI-independent in the context E+

UiA
(see Figure

6.3).

6: ∀Ui ∈ U , E+
UiA

is d-separated from {E+
Ui+1A

, ..., E+
UnA
}.

7: Given a node A with two parents Ui and V (see Figure 6.4), then the two sets E+
V A and

E−A are NI-independent in the context of the nodes {A,Ui, V }.

8: Given a node A with two parents Ui and V (see Figure 6.5), then the two sets E−A and

U = {Ui, V } are NI-independent in the context of A.

9: Given a node A with two parents Ui and V , then the two sets E+
V A and {Ui, A} are NI-

independent in the context of V .

Figure 6.1: A d-separates E−AYi from {E
−
AYi+1

, ..., E−AYm}

Figure 6.2: Ui and {Ui+1, ..., Un} are NI-independent in the context E+
A



124 Chapter 6: Possibilistic Adaptation of Probabilistic Propagation Algorithms

Figure 6.3: Ui and {E+
Ui+1A

, ..., E+
UnA
} are NI-independent in the context E+

UiA

Figure 6.4: E+
V A and E−A are NI-independent in the context of {A,Ui, V }

Computing the messages

We now give the expression of di�erent values and messages used during the propagation

process described later.

Our goal is to compute for each node A its conditional possibility measure based on the

total evidence. In other terms, for each instance a of A, we should computeBelCdt(a) = Πm(a |
e). This value can be easily obtained from the joint distribution BelJoint(a) = Πm(a ∧ e).
Thus, we will �rst compute BelJoint(a).

Lemma 6.1 (Computing joint possibility measure)

∀a ∈ DA, the current joint possibility measure of a based on the total evidence e is de�ned by:

BelJoint(a) = Πm(a ∧ e) = min(λ(a), µ(a)) (6.20)

where λ(a) = Πm(a ∧ e−A) and µ(a) = Πm(a ∧ e+
A).

Then ∀a ∈ DA, we can compute BelCdt(a) = Πm(a | e) using BelJoint(a) = Πm(a ∧ e) by
applying the de�nition of min-based conditioning (1.17) as follows:

BelCdt(a) = Πm(a | e) =

 Πm(a ∧ e) if Πm(a ∧ e) < Πm(e) = maxa∈DA Πm(a ∧ e)
1 otherwise.

(6.21)

The expression of BelJoint(a), depends on the λ-value and µ-value relative to the node

A (denoted, respectively, by λ(A) and µ(a)) which depend on the λ-messages received from

its children and µ-messages received from its parents (denoted, respectively, by λYj (A) and

Figure 6.5: E−A and U = {Ui, V } are NI-independent in the context of A
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µA(Ui) where λYj (A) is the message that A receives from its child Yj and µA(Ui) is the message

that A receives from its parent Ui). We now detail the expression of λ(A) and µ(a).

Lemma 6.2 (Computing λ-value)

The λ value ∀a ∈ DA is de�ned by:

λ(a) = Πm(a ∧ e−A) = min(λA(a),
m

min
j=1

λYj (a)). (6.22)

where minmj=1 λYj (a)) corresponds to the minimum between the λ-messages received from the

children of A and λA(a) denotes local evidence related to the node A such that:

λA(a) =


0 if eA 6= a (A is instanciated to (eA 6= a)

1 otherwise (A is instanciated to a (eA = a)

or A is not instanciated).

Lemma 6.3 (Computing µ-value)

The µ value ∀a ∈ DA is de�ned by:

µ(a) = Πm(a ∧ e+
A) = max

u
min(Π(a ∧ u),

n
min
i=1

µA(ui)). (6.23)

where minni=1 µA(ui)) corresponds to the minimum between the µ-messages received from the

parents of A.

The following lemmas give the expressions of λ-messages received from children and µ-

messages received from parents.

Lemma 6.4 (Computing λ-message)

The λ message from A to its parent Ui, (i ∈ {1, ..n}) when Ui = ui is de�ned by:

λA(ui) = Πm(e−UiA ∧ ui) = max
a∈DA

min[λ(a), max
uk:k 6=i

(min(Π(a ∧ u),min
k 6=i

µA(uk)))]. (6.24)

If the graph is a rooted tree (each node has a unique parent), then this message is simpli�es

to:

λA(ui) = max
a

min[λ(a),Π(a ∧ u)].

Lemma 6.5 (Computing µ-message)

The µ message from A to its child Yj , (j ∈ {1, ..m}) when A = a is de�ned by:

µYj (a) = Πm(a ∧ e+
AYj

) = min(λA(a), min
i=1..m,i 6=j

λYi(a), µ(a)). (6.25)

Note that these expressions are similar to those corresponding to Bayesian networks [103]

but use the maximum (resp. minimum) operator instead of the addition (resp. product).

Moreover, they are based on initial joint distributions rather than conditional ones. Contrary

to the probabilistic case all theses messages are sub-normalized except BelCdt.



126 Chapter 6: Possibilistic Adaptation of Probabilistic Propagation Algorithms

Propagation algorithm

The propagation algorithm is basically similar to Algorithm 6.1 by using (6.20) (reps. (6.22),

(6.23), (6.24), (6.25)) instead of (6.1) (reps. (6.2), (6.3), (6.4), (6.5)). However, we should use

an additional step in the initialization phase in order to transform initial conditional distri-

butions into joint ones. We should also add a supplementary step of normalization (after the

marginalization) which allows to compute BelCdt(A) from BelJoint(A) using (6.21).

This algorithm is developed with the same complexity as the probabilistic one i.e. O(s∗N)

where s is the size of the largest conditional possibility table and N the number of variables.

Indeed, this adaptation it is also based on a two message passing and ensures that in each

direction only one message need to be sent on any arc, thus it converges in two iterations (one

for the collect and the other for the distribution) and the number of messages is less than

twice the number of nodes.

E�ect of initial unrecovered data

In the previous Chapter, we have shown that the initial unrecovered data have no in�uence

neither on the global joint distribution obtained from the min-based chain rule, nor on the

independence relations. In the following we show that these values have no e�ect either on

the propagation process.

Indeed, the propagation is equivalent to applying the min-based conditioning on the global

joint distribution, taking into account the total evidence, in order to compute the posterior

distribution relative to each variable. This is equivalent to say that the interesting values in the

propagation process is the joint distribution, which is independent on the initial unrecovered

data as stated by proposition 5.5, and the total evidence.

Example 6.1 Let us reconsider the min-based possibilistic graph ΠGm given in Example 7.1

and suppose that we receive a certain information about B (i.e. B = b1), then the initial joint

distribution πm (see Table 6.3) obtained from the min-based chain rule (5.6) is transformed

into π′m (see Table 6.3). Then, from π′m, we can compute the impact of the certain information

on A and C: BelJoint(A)=[0.3 0.2], BelJoint(C)=[0.3 0.3]. Then, using these values we can

compute the conditional possibilities using (1.17): BelCdt(A)=[1 0.2], BelCdt(C)=[1 1].

The same phenomena is observed with our propagation algorithm. Indeed, each variable

A will compute at least one time its µ value de�ned by (6.23). It is clear that the value of this

message is based on the minimum between the initial conditional distribution relative to A
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Table 6.3: Joint distribution with evidence (B = b1)
a b c πm(a ∧ b ∧ c) π′m(a ∧ b ∧ c ∧ e)
a1 b1 c1 0.3 0.3
a1 b1 c2 0.3 0.3
a1 b2 c1 0.3 0
a1 b2 c2 1 0
a2 b1 c1 0.1 0.1
a2 b1 c2 0.2 0.2
a2 b2 c1 0.2 0
a2 b2 c2 0.1 0

(since we take Π(a∧u) = Π(a | u)) and the messages obtained from its parents (minni=1µA(ui)).

To illustrate this relation let us consider that A has a single parent B which is a non

instanciated root then µ(a) = min(Π(a ∧ b), µA(b)).

Moreover, from (6.25) we have, µA(b) = min(λB(b), µ(b)) = min(1,Π(b)) = Π(b).

Indeed, λB(b) = 1 since B is non instanciated and µ(b) = Π(b) since it is a root.

This implies that µ(a) = min(Π(a ∧ b),Π(b)). Then, if the initial conditional distribution

on A does not respect the axioms of possibility distribution i.e.

∃a,∃b s.t Π(a | b) 6= 1 > Π(b), then Π(a ∧ b) > Π(b) (since we take Π(a ∧ u) = Π(a | u)).

which implies that µ(a) = min(Π(a ∧ b),Π(b)) = Π(b)

This means that the unrecovered initial data (here Π(a ∧ b)) are eliminated by the minimum

operator in (6.23) and has no e�ect in the propagation process.

Example 6.2 Let us apply our propagation algorithm in the min-based possibilistic network

ΠGm given in Example 6.1:

• Choosing the root : S ← {B}, Pivot← B, Postorder ← [B], Preorder ← [B,C,A]

• Initialization

1. Transformation of Π(C | A,B) into Π(C,A,B)

2. Set all λ and µ values and messages to 1

3. The root nodes are A and B, then: µ(A)=[1 0.2], µ(B)=[0.3 1]

4. The observed node is B (B = b1) then: λB(B)=[1 0]

• Collect-evidence: We can escape this phase since the only instanciated variable is the

pivot
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• Distribute-evidence: The messages are passed from the pivot node to the rest of the

network with the following values:

1. Preorder[1] =B: µ(B)=[ 0.3 1], λ(B)=[1 0]

Post a µ message from B to C: λC(B)=[0.3 0]

2. Postorder[2] =C: µ(C)=[0.3 0.3], λ(C)=[1 1]

Post a λ message from C to A: λC(A)=[0.3 0.3]

3. Postorder[3] =A: µ(A)=[1 0.2], λ(A)=[0.3 0.3]

• Marginalization: BelJoint(A)=[0.3 0.2], BelJoint(C)=[0.3 0.3]

• Normalization: BelCdt(A)=[1 0.2], BelCdt(C)=[1 1].

Note that we �nd the same values than in Example 6.1. It is clear that initial unrecovered

distribution Π(c1 | a1 ∧ b1) (see Example 5.1) has no e�ect on updated values since it has been

eliminated when computing µ(C). Indeed:

µ(c1) = max[min(Π(a1, b1, c1),min(µC(a1), µC(b1))),min(Π(a1, b2, c1),min(µC(a1), µC(b2))),

min(Π(a2, b1, c1),min(µC(a2), µC(b1))),min(Π(a2, b2, c1),min(µC(a2), µC(b2)))]

= max[min(0.4,min(1, 0.3)),min(0.1,min(1, 0)),min(0.3,min(1, 0.3)),min(1,min(1, 0))]

= max[0.3, 0, 0.3, 0] = 0.3

6.3.2 Min-based propagation in multiply connect DAGs

The principle of this propagation method is similar to the probabilistic propagation in junction

trees presented in Chapter 4. Indeed, it is based on the transformation of the initial DAG into

a junction tree which will be used during the propagation process.

Junction trees relative to min-based possibilistic networks are de�ned and constructed in

the same manner than in product-based networks (see Section 6.2.2).

The proposed adaptation has the same complexity than the probabilistic case and remains

NP-complete since the transformation step of the initial DAG into a junction tree remains the

same. In Chapter 7, we propose a new algorithm which avoids this step.

Given a junction tree J T , we can compute a unique global joint possibility distribution

denoted by, πJT de�ned by:

De�nition 6.3 The joint distribution associated with J T is expressed by:

πJT (A1, .., AN ) = min
i=1..N

πCi , (6.26)
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where m is the number of clusters in J T .

Proposition 6.7 shows that when a junction tree is globally consistent1, then the potential

of each cluster corresponds to its local joint distribution computed from the initial network.

Proposition 6.7 If a junction tree is globally consistent, then the potential of each cluster Ci

satis�es:

πCi = Πm(Ci). (6.27)

Using this proposition, we can compute the possibility distribution of any variable A in

a globally consistent junction tree, using any cluster Ci containing A by marginalizing its

potential on A, as follows:

Πm(A) = max
Ci\A

πCi . (6.28)

Possibilistic propagation

Once the transformation of the DAG into a junction tree is performed, the propagation pro-

cess can start and it will be possible to compute for any variable A ∈ V , the possibility degree
Πm(A). The more general problem of computing Πm(A | e), where e is the total evidence, is
addressed in Section later. We now present the principle steps of possibility propagation in

junction trees with no evidence.

Step 1: Initialization. The �rst step in the propagation is to initialize the junction tree.

In this phase we quantify the junction tree using initial possibility distributions as follows:

Algorithm 6.5: Initialization

begin
For each cluster Ci : πICi ← 1;

For each separator Sij : πISij ← 1;

For each variable A choose a cluster Ci containing {A} ∪ UA:
πICi ← min(πICi ,Π(A | UA));

end

The following proposition, shows that the initialized junction tree encodes the same dis-

tribution than the initial network.

Proposition 6.8 Let ΠGm be a min-based possibilistic network. Let J T be the junction tree

corresponding to ΠGm using the above initialization procedure. Let πm be the joint distribution

1consistency is de�ned in the same manner than in product-based junction trees (see De�nition 6.2).
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encoded by ΠGm (using (5.6)) and πIJT be the joint distribution encoded by J T (using (6.26)).

Then,

πm = πIJT . (6.29)

The output of this step can be an inconsistent junction tree since this initial assignment

does not guarantee the global consistency requirement. Thus, we should run the second step

of global propagation which ensures global consistency.

Step 2: Global propagation. Once the junction tree is initialized, the global propaga-

tion is performed in order to make it globally consistent. The global propagation is performed

via a message passing mechanism between each cluster Ci and its adjacent cluster Cj in the

same manner than in probabilistic junction trees.

If a cluster Ci sends a message to its adjacent cluster Cj , then the potentials of Ci, Cj and

their separator Sij are updated as follows:

1. Save the same potential for Ci

πt+1
Ci
← πtCi . (6.30)

2. Assign a new potential to Sij

πt+1
Sij
← max

Ci\Sij
πtCi . (6.31)

3. Assign a new potential to Cj :

πt+1
Cj
← min(πtCj , π

t+1
Sij

). (6.32)

The global propagation algorithm is similar to Algorithm 6.3 by using (6.30) (reps. (6.31),

(6.32)) instead of (6.11) (reps. (6.12), (6.13)).

The following proposition shows that at each level of the global propagation procedure,

the junction tree encodes the same joint distribution:

Proposition 6.9 Let πtJT be the joint distribution relative to a junction tree J T at level t.

Let πt+1
JT be the resulted joint distribution after the modi�cation of a cluster Ci using the above

procedure. Then,

πtJT = πt+1
JT . (6.33)

From Propositions 6.8 and 6.9 we deduce that from the initialization to the global consis-

tency level, the junction tree encodes the same joint distribution.
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Proposition 6.10 Let πm be the joint distribution encoded by ΠGp (using (5.6)). Let πCJT

be the joint distribution encoded by J T after the global propagation procedure (using (6.26)).

Then,

πm = πCJT . (6.34)

The following proposition shows that the collect and distribute phases are enough to make

the junction tree globally consistent.

Proposition 6.11 The global consistency is reached after the collect and distribute phases.

Step 3: Marginalization. Using the consistent junction tree obtained from the previous

phase, we can now compute for any variable of interest A, the possibility measure Πm(A) as

follows:

Algorithm 6.6: Marginalization

begin
Identify a cluster Ci containing A;
Compute Πm(A) by marginalization of πCCi on A: Πm(A)← maxCi\A π

C
Ci
;

end

Handling the evidence

The above algorithm can be easily extended to handle evidence so that to compute for any

variable A ∈ V , the possibility degree Πm(A∧ e) where e is the total evidence. This evidence
will be encoded by using a likelihood Λ expressed by (6.16). To handle the evidence e, we

should extend the propagation procedure by transforming the initialization step so that to

incorporate any certain information. Indeed, we should encode the evidence e as a likelihood

(using (6.16)), then, we incorporate it into the junction tree by adding these two steps to the

initialization procedure:

- For any instanciated variable A, encode the observation A = a as a likelihood ΛA using

(6.16).

- Identify a cluster Ci containing A: π
I
Ci
← min(πICi ,ΛA).

Through global propagation and under the assumption that we have an evidence e, the

potential of any cluster Ci encodes Πm(Ci ∧ e). Then, when we marginalize any cluster

potential πCCi into a variable A (s.t A ⊆ Ci) using (6.28), we obtain the possibility measure of

A and e:

Πm(A ∧ e) = max
Ci\A

πCCi . (6.35)
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However, our goal is to compute Πm(A | e), this value can be easily obtained from Πm(A∧e)
by applying the de�nition of min-based conditioning as follows:

Πm(A | e) =

 Πm(A ∧ e) if Πm(A ∧ e) < Πm(e) = maxA Πm(A ∧ e)
1 otherwise.

(6.36)

6.4 Conclusion

In this Chapter, we have proposed a possibilistic adaptation of exact probabilistic propaga-

tion algorithms for product and min based possibilistic networks. The complexity of these

algorithms is the same than the probabilistic ones.

Moreover, we have shown that the initial unrecovered data have no e�ect on the propa-

gation process in the case of min-based possibilistic networks. This result is complementary

with the one obtained in Chapter 5 on the coherence problem, where we have shown that

unrecovered data correspond to redundant data.

This adaptation reinforces our �rst conclusion about the similarity between product-based

possibilistic networks and Bayesian networks and shows that this is not exactly the case for

min-based possibilistic networks where the adaptation is not direct and needs some transforma-

tions, notably on initial data since we should handle joint distributions instead of conditional

ones.

The proposed algorithms have been implemented in a software called Possibilistic Networks

Toolbox (PNT) presented in Chapter 8.
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Introduction Part III

The study of di�erent adaptations of probabilistic propagation algorithms for the possibilistic

framework has shown that min-based propagation can be seen di�erently from the classical

approaches since the minimum operator has di�erent properties from the product operator

(used in both Bayesian and product-based networks) like the idempotency property.

Therefore, we propose, in this part, a new propagation algorithm for min-based possibilis-

tic networks which is not a direct adaptation of classical approaches. In particular, we will

avoid the transformation of the initial network into a junction tree which is known to be a

hard problem [30]. This is the aim of chapter 7.

Chapter 8 provides experimental results regarding the quality of our propagation algorithm

comparing with classical approaches. Moreover, it proposes a Possibilistic Networks Toolbox

(PNT) allowing the propagation in both min-based and product-based possibilistic networks.
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Chapter 7

Anytime Propagation Algorithm for

Min-Based Possibilistic Networks

7.1 Introduction

In the previous Chapter we have shown that product-based possibilistic networks are very close

to Bayesian networks since conditioning is de�ned in the same way in the two frameworks.

This is not the case with min-based networks. Indeed, the minimum operator has di�erent

properties from the product operator like the idempotency property. Hence, we propose, in

this Chapter, a new propagation algorithm for such networks which is not a direct adaptation

of probabilistic propagation algorithms, as we have done in previous Chapter. In particular,

we will avoid the transformation of the initial network into a junction tree which is known to

be a hard problem [30].

The proposed algorithm is an anytime algorithm. It is composed of several steps, which

progressively get close to exact possibility degrees (i.e. converges to exact values). The �rst

step, consists in transforming the initial possibilistic graph into an equivalent undirected graph,

called here for simplicity moral graph, where each node (called cluster) contains a variable from

the initial graph and its parents. The clusters are quanti�ed by local joint possibility distri-

butions instead of the initial conditional ones. Then, several stability procedures are used in

order to guarantee that joint distribution relative to any cluster is in agreement with those of

its adjacent clusters.

We start by a simple stability procedure which ensures that any cluster agrees with each of

its adjacent clusters on the distributions de�ned on common variables. This procedure does

135
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not guarantee exact marginals. Thus, we propose to improve it by using a multiple nodes sta-

bility procedure which ensures that any cluster agrees on the distributions de�ned on common

variables computed from 2, 3,.., n adjacent clusters. We will consider, the case where nodes

are all neighbors and also the cases where nodes are restricted to parents, children and parents

with children. We also consider a best multiple nodes stability procedure which ensures that

only best instances in the distribution of each cluster agree with the best instances in the dis-

tribution computed from several of its adjacent clusters. Finally, we propose two consistency

procedures which ensures exact marginals. The �rst one is based on adding some links in the

moral graph while the second procedure is based on constructing best global instances.

As we will see in Chapter 8, our algorithm provides better results than the direct adapta-

tion of junction tree algorithm (proposed in Chapter 6).

The rest of this Chapter is organized as follows, Section 7.2 introduces the notion of

α-normalized min-based possibilistic networks. Section 7.3 introduces the basic ideas of our

propagation algorithm. Section 7.4 describes the initialization procedure. Section 7.6 details

the simple stability procedure. Section 7.7 presents the multiple nodes stability procedure.

Section 7.8 details the best multiple nodes stability procedure. Section 7.9 describes the selection

of stability procedures. Section 7.10 proposes the two consistency procedures. Finally, Section

7.11 considers the case of integrating the evidence.

Proofs of this Chapter are given in Appendix E.

Main results of this Chapter are published in [8, 10, 11].

7.2 α-normalized possibilistic networks

We �rst need to introduce the notion of α-normalized possibilistic networks which will be

used later to represent sub-normalized possibility distributions. This notion is an extension

of possibilistic networks introduced in Chapter 5.

De�nition 7.1 An α-normalized min-based possibilistic network over a set of variables V ,

denoted by αΠGm, is composed of a DAG (Directed Acyclic Graph) where nodes represent

variables and arcs encode the link between the variables as follows:

• if UA = ∅ (i.e. A is a root), then the a priori possibility relative to A should satisfy:

maxaΠ(a) = α,∀a ∈ DA,
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• if UA 6= ∅, then the conditional distribution of A in the context of its parents should

satisfy:

maxaΠ(a | uA) = α,∀a ∈ DA, uA ∈ DUA .

If A is a binary variable, then max(Π(a | uA),Π(¬a | uA)) = α.

When α = 1, we recover classical min-based possibilistic networks introduced in Chapter 5.

Given all the a priori and conditional possibilities, the joint distribution relative to the set

V , denoted by πm, is de�ned , exactly as in classical min-based possibilistic networks, by the

min-based chain rule (5.6) expressed by:

πm(A1, .., AN ) = min
i=1..N

Π(Ai | UAi).

An important property of α-normalized networks is expressed by the following proposition:

Proposition 7.1 Let αΠGm be an α-normalized min-based possibilistic network. Let πm

be the joint distribution computed from (5.6). Then, πm is α-normalized (in the sense of

De�nition 1.12). Namely:

h(πm) = α. (7.1)

Example 7.1 Let us consider the α-normalized min-based possibilistic network αΠGm com-

posed by the DAG of Figure 7.1 and the initial distributions given in Tables 7.1 and 7.2.

Table 7.1: Initial distributions
a Π(a) b a Π(b | a) c a Π(c | a)

a1 1 b1 a1 1 c1 a1 0.3
a2 0.9 b1 a2 0 c1 a2 1

b2 a1 0.4 c2 a1 1
b2 a2 1 c2 a2 0.2

Table 7.2: Initial distributions
d b c Π(d | b ∧ c) d b c Π(d | b ∧ c)
d1 b1 c1 1 d2 b1 c1 1
d1 b1 c2 1 d2 b1 c2 0
d1 b2 c1 1 d2 b2 c1 0.8
d1 b2 c2 1 d2 b2 c2 1

These a priori and conditional possibilities encode the joint distribution relative to A,B,C

and D using (5.6) as follows: ∀a, b, c, d, πm(a ∧ b ∧ c ∧ d) = min(Π(a),Π(b | a),Π(c | d),Π(d |
b∧ c). For instance πm(a1 ∧ b2 ∧ c2 ∧ d1) = min(1, 0.4, 1, 1) = 0.4. Moreover we can check that

h(πm) = 1 (see the distribution πm given in Table 7.3).
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Figure 7.1: Multiply Connected DAG of Example 7.1

Next Section, proposes basic ideas of our new propagation algorithm developed for α-

normalized min-based possibilistic networks.

7.3 Basic ideas

Given an α-normalized min-based possibilistic network αΠGm, our propagation algorithm

provides for each variable the set of its most plausible instances. It also allows the computation

for any instance of interest a, relative to a subset of variables, its possibility degree Πm(a)

inferred from αΠGm. To compute Πm(a), we �rst de�ne a new possibility distribution πa

from πm as follows:

πa(ω) =

 πm(ω) if ω[A] = a

0 otherwise
(7.2)

Then, from πa, it can be checked that:

Πm(a) = h(πa) = max
ω

πa(ω). (7.3)

Indeed, Πm(a) is the marginal distribution relative to the instance of interest a. By de�-

nition this value is computed by marginalization of the joint distribution πm on the instance

a, thus:

⇒ Πm(a) = maxω πm(ω) if ω[A] = a

= maxω πa(ω) (using (7.2))

= h(πa) (using (1.12)).

Note that, in general, πa is sub-normalized i.e. h(πa) < 1.

Example 7.2 Let us continue Example 7.1. The initial distributions encode the joint distri-

bution πm given in Table 7.3 using (5.6).

Suppose that we are interested with the value of Πm(D = d2). From the joint distribution πm,

we can compute the new possibility distribution πd2 using (7.2) (see Table 7.3). Computing

Πm(D = d2) is then immediate since it is su�cient to take the maximal value in this new

sub-normalized distribution i.e. Πm(D = d2) = h(πd2) = 0.8. This value is computed from

the global joint distribution which is not always possible especially with a great number of

variables. Thus, our aim is to �nd the same value, but locally.
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Table 7.3: Joint distributions πm et πd2
a b c d πD πd2 a b c d πD πd2
a1 b1 c1 d1 0.3 0 a2 b1 c1 d1 0 0
a1 b1 c1 d2 0.3 0.3 a2 b1 c1 d2 0 0
a1 b1 c2 d1 1 0 a2 b1 c2 d1 0 0
a1 b1 c2 d2 0 0 a2 b1 c2 d2 0 0
a1 b2 c1 d1 0.3 0 a2 b2 c1 d1 0.9 0
a1 b2 c1 d2 0.3 0.3 a2 b2 c1 d2 0.8 0.8
a1 b2 c2 d1 0.4 0 a2 b2 c2 d1 0.2 0
a1 b2 c2 d2 0.4 0.4 a2 b2 c2 d2 0.2 0.2

The principle of the proposed propagation method is to shift up instances with maximal

degrees to the top level via a stabilization process described below. Thus, for each variable

we will provide the set of its most plausible instances. If we are interested with the more par-

ticular problem of computing the possibility degree Πm(a) of an instance of interest a relative

to a subset of variables, then we should shift up this instance to the top level. This procedure

is summarized in Figure 7.2 which explains how to compute in a local manner, the possibility

degree Πm(a).

Note that computing Πm(a) corresponds to possibilistic inference with no evidence. The

more general problem of computing Πm(a | e), where e is the total evidence, is advocated in

Section 7.11.

Basic steps of our propagation algorithm are:

• Initialization. Transforms the initial network into an equivalent secondary structure,

called here for simplicity moral graph, composed of clusters of variables obtained by

adding to each node its parents. Then, quanti�es the moral graph using initial condi-

tional distributions.

• Incorporation of an instance of interest. Incorporates the instance of interest (if any) in

the initialized moral graph.

• Simple Stability Procedure (SSP). Ensures that any cluster agrees with each of its adja-

cent clusters (i.e. neighbors) on the distributions de�ned on common variables.

• Multiple nodes Stability Procedure (MSP). Ensures that any cluster agrees on the dis-

tributions de�ned on common variables computed from 2, 3,.., n adjacent clusters. We

will consider, the case where nodes are all neighbors and also the cases where nodes are

restricted to parents, children and parents with children.
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• Best Multiple nodes Stability Procedure (BMSP). Ensures that only best instances in the

distribution of each cluster agree with the best instances in the distribution computed

from several of its adjacent clusters.

• Consistency procedure. Ensures exact marginals. Two consistency procedures are pro-

posed, the �rst is based on adding some links in the moral graph while the second is

based on constructing best global instances.

Figure 7.2: Propagation algorithm (with an instance of interest a)

We now detail di�erent steps of our propagation algorithm.

7.4 Initialization

The �rst step in the initialization procedure is to transform the initial network into an equiv-

alent secondary structure, called moral graph for simplicity of notation, and denoted byMG.
Each node in the moral graph MG is called a cluster and it is constructed by adding to

each node (variable) from the initial network its parent set. This construction way insures

that for any variable Ai corresponds only one cluster inMG denoted by Ci.

Between any two clusters Ci and Cj with a non-empty intersection exits an edge labeled

with a separator, denoted by Sij , containing the common variables in Ci and Cj .

Once the moral graph is constructed, the initial conditional distributions are transformed

into local joints in order to quantify it. Namely, for each cluster Ci ofMG, we assign a local

joint distribution relative to its variables, called potential and denoted by πtCi where t corre-

sponds to the propagation level i.e.,

- t=I: corresponds to the initialized potentials,

- t=S: corresponds to the simple stability procedure potentials,

- t=nP (resp. nC, nPC, nN): corresponds to the n-parents (resp. n-children, n-parents-

children, n-neighbors) stabilized potentials (e.g. 2P corresponds to the two-parents stabilized

potentials),

- t=n-best-P (resp. n-best-C, n-best-PC, n-best-N): corresponds to the n-best-parents

stabilized potentials (resp. n-best-children, n-best-parents-children, n-best-neighbors) stabi-

lized potentials,

- t=C: corresponds to the consistent potentials.
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We denote by ci and sij the possible instances of the cluster Ci and the separator Sij , respec-

tively; ci[A] denotes the instance in ci of the variable A.

For each moral graphMG, we can associate a unique possibility distribution de�ned by:

De�nition 7.2 The joint distribution associated withMG, denoted πMG is expressed by:

πMG(A1, .., AN ) = min
i=1..N

πtCi . (7.4)
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Figure 7.3: Moral graph of the DAG in Figure 7.1

The outline of this �rst phase of the initialization procedure is as follows:

Algorithm 7.1: From conditional to local joint distributions

begin
1. Building the moral graph:
- For each variable Ai, form a cluster Ci = {Ai} ∪ UAi ;
- Between any two clusters Ci and Cj with a non-empty intersection, add an edge
labeled with a separator Sij corresponding to their intersection.
2. Quantify the moral graph:
For each cluster Ci: π

I
Ci
← Π(Ai | UAi);

end

It is clear that the joint distribution encoded by the initialized moral graph is equivalent

to the one encoded by the initial network since the local joint distributions in clusters are

equal to the initial local conditional distributions.

Example 7.3 Let us consider the network treated in Example 7.1. The moral graph corre-

sponding to this network is represented in Figure 7.3. This moral graph contains four clusters

(i.e. A, AB, AC, BCD) relative respectively to A, B, C and D. The initial distributions are

transformed into local joint ones as shown by Table 7.4.

Table 7.4: Initialized potentials of A, AB, AC and BCD
a πIA a b πIAB a c πIAC b c d πIBCD b c d πIBCD
a1 1 a1 b1 1 a1 c1 0.3 b1 c1 d1 1 b2 c1 d1 1
a2 0.9 a1 b2 0.4 a1 c2 1 b1 c1 d2 1 b2 c1 d2 0.8

a2 b1 0 a2 c1 1 b1 c2 d1 1 b2 c2 d1 1
a2 b2 1 a2 c2 0.2 b1 c2 d2 0 b2 c2 d2 1

7.5 Incorporation of an instance of interest

The proposed propagation algorithm allows the computation for each variable the set of its

most plausible instances. If we are interested with the more particular problem of computing

the possibility degree Πm(a) of an instance of interest a relative to a subset of variables, then

we should incorporate it in MG such that the possibility distribution obtained from MG is

equal to πa computed using (7.2). This can be obtained by modifying the potential of the
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clusters relative to the instance of interest a = a1∧, ..,∧aM i.e. ∀i ∈ {1, ..,M},

πICi(ci)←

 πICi(ci) if ci[Ai] = ai

0 otherwise
(7.5)

The following proposition shows that the moral graph obtained by incorporating the in-

stance of interest a leads, indeed, to the possibility distribution πa.

Proposition 7.2 Let αΠGm be an an α-normalized min-based possibilistic network. LetMG
be the moral graph corresponding to αΠGm given by the initialization procedure.

Let πa be the joint distribution given by (7.2) (which is obtained after incorporating the

instance of interest a). Let πMG be the joint distribution encoded byMG (given by (7.4)) after

the initialization procedure. Then,

πa = πIMG . (7.6)

Example 7.4 Let us continue Example 7.1 and suppose that we are interested with the value

of Πm(D = d2). Table 7.5 represents the potential of the cluster BCD after incorporating this

instance.

Table 7.5: Initialized potential of BCD after incorporating the evidence D = d2

b c d πIBCD b c d πIBCD
b1 c1 d1 0 b2 c1 d1 0
b1 c1 d2 1 b2 c1 d2 0.8
b1 c2 d1 0 b2 c2 d1 0
b1 c2 d2 0 b2 c2 d2 1

The following subsections present several stabilizing procedures which aim to approach the

exact value of h(πa) (hence Πm(a)). They are based on the notion of stability, which means

that adjacent clusters agree on marginal distributions de�ned on common variables.

7.6 Simple Stability Procedure (SSP)

Simple stability procedure ensures that any cluster agrees with each of its adjacent clusters

(i.e. neighbors) on the distributions de�ned on common variables. More formally,

De�nition 7.3 Let Ci and Cj be two adjacent clusters in a moral graph MG and let Sij be

their separator. The separator Sij is said to be stable if:

max
Ci\Sij

πtCi = max
Cj\Sij

πtCj (7.7)
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where maxCi\Sij π
t
Ci

(resp. maxCj\Sij π
t
Cj
) is the marginal distribution of Sij de�ned from πtCi

(resp. πtCj ).

A moral graphMG is said to be stable if all of its separators are stable.

The simple stability procedure is performed via a message passing mechanism between

di�erent clusters. Each separator collects information from its adjacent clusters, then di�uses

it to each of them, in order to update them by taking the minimum between their initial

potential and the one di�used by their separator. This operation is repeated until there is no

modi�cation on the cluster's potentials. The potentials of any adjacent clusters Ci and Cj

(with separator Sij) are updated as follows:

• Collect evidence (Update separator):

πt+1
Sij
← min( max

Ci\Sij
πtCi , max

Cj\Sij
πtCj ). (7.8)

• Distribute evidence (Update clusters):

πt+1
Ci
← min(πtCi , π

t+1
Sij

). (7.9)

πt+1
Cj
← min(πtCj , π

t+1
Sij

). (7.10)

These two steps are repeated until reaching the stability of all clusters as described by the

following procedure:

Algorithm 7.2: Simple stability procedure

begin
whileMG is not stable do

for each separator Sij do
- Collect evidence in Sij from Ci and Cj using (7.8);
- Distribute evidence from Sij to Ci and Cj using (7.9) and (7.10);

end

In this procedure, a separator will be treated if one of its corresponding clusters has been

modi�ed. Moreover, a cluster will be treated if one of its corresponding separators has been

modi�ed. Thus, the moral graph is considered as stable if none of its clusters has been modi�ed.

It can be shown that the simple stability is reached after a �nite number of message passes,

which can be evaluated as follows:

Let N be the number of clusters,M be the number of separators and P the number of values in
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the possibilistic scale relative to all the clusters. The iteration in the simple stability procedure

is repeated until there is no modi�cation in the clusters. The maximal number of iterations

occurs when a degree is modi�ed in one cluster during one iteration, thus we can have at most

N ∗ P iterations. Each iteration runs O(M) times the Collect-Distribute evidence. Thus, the

theoretical complexity is O(N ∗M ∗ P ) and hence the stability is a polynomial procedure.

The following proposition shows that at each level of the simple stability procedure, the

moral graph encodes the same joint distribution:

Proposition 7.3 Let πtMG be the joint distribution relative to a moral graph MG at level t.

Let πt+1
MG be the resulted joint distribution after the modi�cation of two adjacent clusters Ci

and Cj using equations (7.8), (7.9) and (7.10). Then,

πtMG = πt+1
MG . (7.11)

From Propositions 7.2 and 7.3 we deduce that from the initialization to the simple stability

level, the moral graph encodes the same joint distribution:

Proposition 7.4 Let πa be the joint distribution given by (7.2). Let πSMG be the joint distri-

bution encoded byMG after the simple stability procedure. Then,

πa = πSMG . (7.12)

The following proposition shows that if a moral graph is stabilized, then the maximum value

of all its cluster's potentials is the same.

Proposition 7.5 LetMG be a stabilized moral graph. Then, ∀Ci,

α = maxπSCi . (7.13)

Remark: Let d = (C1, ..., CN ) be any ordering of the clusters such that UAi ⊆ {A1, ..Ai−1}.
In the implementation proposed in Appendix F, the order in which messages circulate during

the simple stability procedure depends on d. Indeed, we start with the last cluster in d which

is stabilized w.r.t. of all its neighbors, then its predecessor will be treated and it will be

stabilized w.r.t. of all its neighbors except those who already use it. A cycle is achieved when

all the clusters are treated. This process will be repeated until reaching the stability.

Example 7.5 Figure 7.4 illustrates one cycle of the message passing during the stabilization

procedure if we consider that the clusters are ordered as follows: d = (A,AB,AC,BCD):

1-2: communication between BCD and AC via the separator C,

3-4: communication between BCD and AB via the separator B,
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Figure 7.4: Message passing during the simple stability procedure

5-6: communication between AC and A via the separator A,

7-8: communication between AC and AB via the separator A,

9-10: communication between AB and A via the separator A.

Example 7.6 Let us consider the moral graph initialized in Example 7.3. Note �rst that this

moral graph is not stable. For instance, the separator A between the two clusters AB and A

is not stable since maxAB\A π
I
AB(a2) = 1 6= πIA(a2) = 0.9.

Suppose now that we are only interested with the most plausible instances in each variable,

then we will apply the simple stability procedure (arrows in Figure 7.4 illustrate one message

passes during SSP). At stability level we obtain the potentials given in Table 7.6. Note that,

the maximum potential is the same in the four clusters i.e. maxπSA = maxπSAB = maxπSAC =

maxπSBCD = 1. From Table 7.6, we can deduce that the most plausible instance relative to A

(resp. B, C, D) is a1 (resp. b1, c2, d1).

Suppose now that we are interested with the value of Πm(D = d2), then we should incorporate

d2 in the moral graph as already done in Example 7.4 and apply the simple stability proce-

dure. The stabilized potentials are given in Table 7.7. Note also that maxπSA = maxπSAB =

maxπSAC = maxπSBCD = 0.9.

Table 7.6: Stabilized potentials
a πSA a b πSAB a c πSAC b c d πSBCD b c d πSBCD
a1 1 a1 b1 1 a1 c1 0.3 b1 c1 d1 0.9 b2 c1 d1 0.9
a2 0.9 a1 b2 0.4 a1 c2 1 b1 c1 d2 0.9 b2 c1 d2 0.8

a2 b1 0 a2 c1 0.9 b1 c2 d1 1 b2 c2 d1 0.9
a2 b2 0.9 a2 c2 0.2 b1 c2 d2 0 b2 c2 d2 0.9

Table 7.7: Stabilized potentials with D = d2

a πSA a b πSAB a c πSAC b c d πSBCD b c d πSBCD
a1 0.9 a1 b1 0.9 a1 c1 0.3 b1 c1 d1 0 b2 c1 d1 0
a2 0.9 a1 b2 0.4 a1 c2 0.9 b1 c1 d2 0.9 b2 c1 d2 0.8

a2 b1 0 a2 c1 0.9 b1 c2 d1 0 b2 c2 d1 0
a2 b2 0.9 a2 c2 0.2 b1 c2 d2 0 b2 c2 d2 0.9

It is important to mention that the simple stability procedure does not guarantee that the

degree α corresponds to the exact degree Πm(a) = h(πa) since the equality h(πSMG) = α is

not always veri�ed. More formally:
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Proposition 7.6 Let α be the maximal degree generated by the simple stability procedure

(which is unique c.f. Proposition 7.5). Then,

α ≥ Πm(a). (7.14)

Indeed, from 7.2 and 7.3, we have,

Πm(a) = h(πa) = maxω πa(ω) = maxω{mini=1..Nπ
S
Ci

(ω), s.t. ω[A] = a}.
Moreover, ∀Ci, πSCi(ω) ≤ α (since α is the maximum value in all clusters), thus Πm(a) ≤ α.

For instance, we can check in the previous example that h(πSMG) = 0.8 > 0.9. Neverthe-

less, as we will see in next Chapter, experimental results show that, in general, this equality

holds.

7.7 Multiple nodes Stability Procedure (MSP)

As mentioned before, the simple stability procedure does not always guarantee exact marginals.

Thus, our idea is to improve it by considering stability with respect to a greater number of

adjacent clusters. Indeed, for each cluster Ci, corresponding to a node Ai, we can distinguish

these particular sets within its adjacent clusters:

- parents, containing the clusters relative to the parents of Ai,

- children, containing the clusters relative to the children of Ai,

- parents-children, containing parents of Ai and its children,

- neighbors, containing all adjacent clusters of Ai.

Example 7.7 Let us consider the network composed of the DAG in Figure 7.5 (a) and the

initial distributions given by Tables 7.8, 7.9, 7.10, 7.11, 7.12 and 7.13. Let us consider, for

instance, the cluster ABC (see the moral graph in Figure 7.5 (b)), then its parents are A

and B, it children are ABE and CFG, its parents-children are A,B,ABE and CFG and its

neighbors are A,B,ABE,CFG and ABD. This example will be continued to explain multiple

nodes stability procedure.

Figure 7.5: DAG and moral graph of Example 7.7
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Table 7.8: A priori distributions
a Π(a) b Π(b)

a1 1 b1 1
a2 0.9363 b2 0.8552
a3 0.2240

Table 7.9: Conditional distribution of C in the context of A and B
a b c Π(c | a ∧ b) a b c Π(c | a ∧ b) a b c Π(c | a ∧ b)
a1 b1 c1 0.5463 a2 b1 c1 1 a3 b1 c1 0.5692
a1 b1 c2 1 a2 b1 c2 0.5088 a3 b1 c2 1
a1 b1 c3 0.6707 a2 b1 c3 0.5064 a3 b1 c3 0.5590
a1 b2 c1 1 a2 b2 c1 0.1795 a3 b2 c1 1
a1 b2 c2 0 a2 b2 c2 1 a3 b2 c2 0.2239
a1 b2 c3 0.7141 a2 b2 c3 0.5655 a3 b2 c3 0.4059

Table 7.10: Conditional distribution of D in the context of A and B
a b d Π(d | a ∧ b) a b c Π(d | a ∧ b) a b d Π(d | a ∧ b)
a1 b1 d1 0.8215 a2 b1 c1 1 a3 b1 c1 0.3328
a1 b1 d2 1 a2 b1 c2 0.9946 a3 b1 c2 1
a1 b2 d1 1 a2 b2 c1 0.7363 a3 b2 c1 1
a1 b2 d2 0 a2 b2 c2 1 a3 b2 c2 0.2788

Ideally, we want to perform the n-neighbors stability where n is the cardinality of the

neighbor set relative to each cluster. In other terms, each cluster will be stabilized with

respect to all its neighbors. However, this can be impossible especially when many clusters

share the same variables. To avoid this problem, we propose several stability procedures where

we consider a less number of adjacent clusters. More precisely, we study four cases (where

n > 1):

• n-parents stability ensuring for each cluster its stability w.r.t its parents,

• n-children stability ensuring for each cluster its stability w.r.t. its children,

• n-parents-children stability ensuring for each cluster its stability w.r.t its parents and

children,

• n-neighbors stability ensuring for each cluster its stability w.r.t. all its adjacent clusters

(i.e. neighbors).

In n-parents (resp. n-children, n-parents-children, n-neighbors) stability procedure, we will

vary the number of parents (resp. children, parents-children, neighbors) by �rst considering
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Table 7.11: Conditional distribution of E in the context of A, B and C
a b c e Π(e | a ∧ b ∧ c) a b c e Π(e | a ∧ b ∧ c) a b c e Π(e | a ∧ b ∧ c)
a1 b1 c1 e1 0.7563 a2 b1 c1 e1 1 a3 b1 c1 e1 0.9959
a1 b1 c1 e2 1 a2 b1 c1 e2 0.7605 a3 b1 c1 e2 1
a1 b1 c1 e3 0.4750 a2 b1 c1 e3 0.2092 a3 b1 c1 e3 0.2387
a1 b1 c2 e1 0.8161 a2 b1 c2 e1 1 a3 b1 c2 e1 0.8246
a1 b1 c2 e2 1 a2 b1 c2 e2 0.6098 a3 b1 c2 e2 1
a1 b1 c2 e3 0 a2 b1 c2 e3 0.1911 a3 b1 c2 e3 0.2965
a1 b1 c3 e1 0.7544 a2 b1 c3 e1 1 a3 b1 c3 e1 0.3467
a1 b1 c3 e2 1 a2 b1 c3 e2 0.6776 a3 b1 c3 e2 1
a1 b1 c3 e3 0.6902 a2 b1 c3 e3 0 a3 b1 c3 e3 0.4550
a1 b2 c1 e1 1 a2 b2 c1 e1 0.5346 a3 b2 c1 e1 1
a1 b2 c1 e2 0.4855 a2 b2 c1 e2 1 a3 b2 c1 e2 0.9249
a1 b2 c1 e3 0.3390 a2 b2 c1 e3 0.1979 a3 b2 c1 e3 0.4534
a1 b2 c2 e1 1 a2 b2 c2 e1 0.7398 a3 b2 c2 e1 1
a1 b2 c2 e2 0 a2 b2 c2 e2 1 a3 b2 c2 e2 0.5185
a1 b2 c2 e3 0 a2 b2 c2 e3 0.4158 a3 b2 c2 e3 0.2562
a1 b2 c3 e1 1 a2 b2 c3 e1 0.6012 a3 b2 c3 e1 1
a1 b2 c3 e2 0.3983 a2 b2 c3 e2 1 a3 b2 c3 e2 0
a1 b2 c3 e3 0.7246 a2 b2 c3 e3 0.4443 a3 b2 c3 e3 0.4154

Table 7.12: Conditional distribution of F in the context of E
e f Π(f | e) e f Π(f | e) e f Π(f | e)
e1 f1 0.7646 e2 f1 1 e3 f1 0.5797
e1 f2 1 e2 f2 0.6381 e3 f2 1

two parents (resp. children, parents-children, neighbors), then three parents (resp. children,

parents-children, neighbors) until reaching n parents (resp. children, parents-children, neigh-

bors) where n is the cardinality of parents (resp. children, parents-children, neighbors) relative

to each cluster.

To illustrate the multiple nodes stability, we only present two-parents stability. The

principle of this procedure is to ensure for each cluster, having at least two parents, its stability

with respect to each pair of them. More formally:

De�nition 7.4 Let Ci be a cluster in a moral graphMG, let Cj and Ck be two parents of Ci.
Let Sij be the separator between Ci and Cj and Sik be the separator between Ci and Ck. Let

C = Cj ∪ Ck and let S = Sij ∪ Sik. Let πC be the joint distribution computed from πtCj and

πtCk . The cluster Ci is said to be stable with respect to its two parents Cj and Ck if:

max
Ci\S

πtCi = max
C\S

πC , (7.15)
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Table 7.13: Conditional distribution of C in the context of A and B
c f g Π(g | c ∧ f) c f g Π(g | c ∧ f) c f g Π(g | c ∧ f)

c1 f1 g1 0.2742 c2 f1 g1 1 c3 f1 g1 0.2126
c1 f1 g2 1 c2 f1 g2 0.5067 c3 f1 g2 1
c1 f1 g3 0.4066 c2 f1 g3 0.2142 c3 f1 g3 0.6568
c1 f2 g1 1 c2 f2 g1 0 c3 f2 g1 1
c1 f2 g2 0.2104 c2 f2 g2 1 c3 f2 g2 0.4538
c1 f2 g3 0.3430 c2 f2 g3 0.8111 c3 f2 g3 0.6424

where maxCi\S π
t
Ci

(resp. maxC\S πC) is the marginal distribution of S de�ned from πtCi
(resp. πC).

In a similar way, a cluster Ci is said to be two-parents stable if it is stable with respect

to each pair of its parents. Then, a moral graph MG is said to be two-parents stable if all

of its clusters are two-parents stable.

The updating of any cluster Ci with respect to two of its parents Cj and Ck is performed

as follows:

• Compute the potential of C using Cj and Ck:

πC ← min(πtCj , π
t
Ck

). (7.16)

• Compute the potential of S using C:

πS ← max
C\S

πC . (7.17)

• Update the potential of Ci using S:

πt+1
Ci
← min(πtCi , πS). (7.18)

Algorithm 7.3: Two-parents stability procedure

begin
Modi�cation ← true;
while Modi�cation do

StabilizeMG using the simple stability procedure;
Modi�cation ← false;
i ← 1;
while i <= N and not Modi�cation do

Stabilize Ci with respect to each pair of its parents, Cj and Ck using (7.18);
if Ci potential changes then Modi�cation← true;
i ← i+1;

end
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Note that the simple stability procedure is used after each modi�cation since it is an e�-

cient procedure which allows to minimize the application of the two-parents stability.

The following proposition shows that at each level of the two-parents stability procedure,

the moral graph encodes the same joint distribution:

Proposition 7.7 Let πtMG be the joint distribution relative to a moral graph MG at level t.

Let πt+1
MG be the resulted joint distribution after the modi�cation of a cluster Ci with respect to

its two parents Cj and Ck using equation (7.18). Then,

πtMG = πt+1
MG . (7.19)

From Propositions 7.2, 7.4 and 7.7 we deduce that from the initialization to the two-parents

stability level, the moral graph encodes the same joint distribution:

Proposition 7.8 Let πa be the joint distribution given by (7.2). Let π2P
MG be the joint distri-

bution encoded byMG after the two-parents stability procedure. Then,

πa = π2P
MG . (7.20)

Example 7.8 Let us consider the inconsistent stabilized moral graph of Example 7.6. The

two-parents stabilized potential of the cluster BCD with respect to its two parents AB and AC

is given by Table 7.14. Note, for instance, that the potential of c2 ∧ b2 ∧ d2 decreases from 0.9

to 0.4. Thus, we should re-stabilize the moral graph using the simple stability procedure (see

Table 7.15). We can check that the resulted moral graph is two-parents stabilized. Moreover,

we have h(π2P
MG) = 0.8, in other terms, we have reached the consistency degree of πd2.

Table 7.14: Two-parents stabilized potential of BCD
b c d π2P

BCD b c d π2P
BCD

b1 c1 d1 0 b2 c1 d1 0
b1 c1 d2 0.3 b2 c1 d2 0.8
b1 c2 d1 0 b2 c2 d1 0
b1 c2 d2 0 b2 c2 d2 0.4

Table 7.15: re-stabilized potentials
a πSA a b πSAB a c πSAC b c d πSBCD b c d πSBCD
a1 0.4 a1 b1 0.3 a1 c1 0.3 b1 c1 d1 0 b2 c1 d1 0
a2 0.8 a1 b2 0.4 a1 c2 0.4 b1 c1 d2 0.3 b2 c1 d2 0.8

a2 b1 0 a2 c1 0.8 b1 c2 d1 0 b2 c2 d1 0
a2 b2 0.8 a2 c2 0.2 b1 c2 d2 0 b2 c2 d2 0.4
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The following proposition shows that the two-parents stability improves the simple stability

procedure:

Proposition 7.9 Let α1 be the maximal degree generated by the simple stability procedure

(which is unique c.f. Proposition 7.5). Let α2 be the maximal degree generated by the two-

parents stability. Then,

α1 ≥ α2 ≥ Πm(a). (7.21)

The proof of this proposition is immediate since before applying the two-parents stability

procedure we use the simple stability procedure, then (7.18) will be applied on each cluster

w.r.t. each pair of its parents. Thus, the potential of each cluster will be decreased or saved

since from (7.18) πt+1
Ci

= min(πtCi , πS) and hence the maximal potential relative to each cluster

(i.e. α1) will be decreased or saved.

Example 7.9 Let us continue Example 7.7. Let the instance of interest be b1 ∧ d1 ∧ g2. The

two-parents stabilized potentials are given by Tables 7.16, 7.17, 7.18, 7.19, 7.20 and 7.21. We

can check that these potentials are inconsistent since α2 = 0.8215 while Πm(b1 ∧ d1 ∧ g2) =

0.8161. Moreover, it can be checked the exact value of Πm(b1 ∧ d1 ∧ g2) is not reached neither

with n-parents nor with n-children stability. However, it can be reached with two-parents-

children stability.

Table 7.16: Two-parents stabilized potentials of A and B
a π2P

A b π2P
B

a1 0.8215 b1 0.8215
a2 0.8215 b2 0
a3 0.2240

Table 7.17: Two-parents stabilized potentials of ABC
a b c π2P

ABC a b c π2P
ABC a b c π2P

ABC

a1 b1 c1 0.5463 a2 b1 c1 0.8215 a3 b1 c1 0.2240
a1 b1 c2 0.8215 a2 b1 c2 0.5088 a3 b1 c2 0.2240
a1 b1 c3 0.6707 a2 b1 c3 0.5064 a3 b1 c3 0.2240
a1 b2 - 0 a2 b2 - 0 a3 b2 - 0

Table 7.18: Two-parents stabilized potentials of ABD
a b d π2P

ABD a b d π2P
ABD a b d π2P

ABD

a1 b1 d1 0.8215 a2 b1 d1 0.8215 a3 b1 d1 0.2240
a1 b2 - 0 a2 b2 - 0 - - - 0
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Table 7.19: Two-parents stabilized potentials of ABCE
a b c e π2P

ABCE a b c e π2P
ABCE a b c e π2P

ABCE

a1 b1 c1 e1 0.5463 a2 b1 c1 e1 0.8215 a3 b1 c1 e1 0.2240
a1 b1 c1 e2 0.5463 a2 b1 c1 e2 0.7605 a3 b1 c1 e2 0.2240
a1 b1 c1 e3 0.4750 a2 b1 c1 e3 0.2092 a3 b1 c1 e3 0.2240
a1 b1 c2 e1 0.8161 a2 b1 c2 e1 0.5088 a3 b1 c2 e1 0.2240
a1 b1 c2 e2 0.8215 a2 b1 c2 e2 0.5088 a3 b1 c2 e2 0.2240
a1 b1 c2 e3 0 a2 b1 c2 e3 0.1911 a3 b1 c2 e3 0.2240
a1 b1 c3 e1 0.6707 a2 b1 c3 e1 0.5064 a3 b1 c3 e1 0.2240
a1 b1 c3 e2 0.6707 a2 b1 c3 e2 0.5064 a3 b1 c3 e2 0.2240
a1 b1 c3 e3 0.6707 a2 b1 c3 e3 0 a3 b1 c3 e3 0.2240
a1 b2 - - 0 a2 b2 - - 0 a3 b2 - - 0

Table 7.20: Two-parents stabilized potentials of EF
e f π2P

EF e f π2P
EF e f π2P

EF

e1 f1 0.7646 e2 f1 0.8215 e3 f1 0.5797
e1 f2 0.8215 e2 f2 0.6381 e3 f2 0.6707

Remark: All results presented with two-parents stability are also available for any mul-

tiple nodes stability procedure.

7.8 Best Multiple nodes Stability Procedure (BMSP)

The stability procedures MSP, presented above, can be limited by the number of considered

adjacent clusters. For instance, if we want to use n-neighbors stability, we can be limited in the

computation of the cartesian product relative to the n-neighbors of some clusters especially

when they have a high number of neighbors. In order to avoid this problem, we will relax

the multiple nodes stability procedure by only computing the best instances in the cartesian

product, denoted by best_nodes_instances.

The main motivation, of this procedure called, best multiple nodes stability, is that we only

need to compute the maximal value in πa, (i.e. h(πa)), and not the whole distribution πa.

The idea is to �rst apply the simple stability procedure, then to cover for any cluster Ci its n

considered adjacent clusters (which can be parents, children, parents-children, neighbors) in

order to construct the best instances relative to these clusters.

Once the elements in best_nodes_instances are constructed, we can compute the best in-

stances relative to the separators existing between Ci and its parents (resp. children, parents-

children, neighbors) (denoted by sep_instances_from_nodes) and compare them with the
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Table 7.21: Two-parents stabilized potentials of CFG
c f g π2P

CFG c f g π2P
CFG c f g π2P

CFG

c1 f1 g1 0 c2 f1 g1 0 c3 f1 g1 0
c1 f1 g2 0.8215 c2 f1 g2 0.5067 c3 f1 g2 0.6707
c1 f1 g3 0 c2 f1 g3 0 c3 f1 g3 0
c1 f2 g1 0 c2 f2 g1 0 c3 f2 g1 0
c1 f2 g2 0.2104 c2 f2 g2 0.8215 c3 f2 g2 0.4538
c1 f2 g3 0 c2 f2 g3 0 c3 f2 g3 0

ones computed from Ci (denoted by sep_instances_from_cluster). These two sets are incoher-

ent if instances in sep_instances_from_nodes are di�erent from those in sep_instances_from_cluster.

In this case, we should decrease the potential of incoherent instances in Ci (i.e. incoherent

with sep_instances_from_nodes) to the next value in the possibilistic scale containing all the

degrees relative to the considered adjacent clusters and re-stabilize the moral graph again.

The following algorithm summarizes the outline of best multiple nodes stability procedure

in the case of parents1.

Algorithm 7.4: n-best parents stability procedure

begin
Modi�cation ← true;
while Modi�cation do

StabilizeMG using the simple stability procedure;
Let α be the maximum (best) degree in clusters;
Modi�cation ← false;
i ← 1;
while i <= N and not Modi�cation do

- Let parents be the parents of Ci;
- Let separators be the set of separators existing between Ci and parents;
- Let best_nodes_instances be the set of best instances in the joint distribution relative
to parents;
- Let sep_instances_from_nodes be the instances relative to separators computed
from best_nodes_instances;
- Let sep_instances_from_cluster be the instances relative to separators computed
from Ci;
if sep_instances_from_nodes 6= sep_instances_from_cluster then

Decrease the potential of incoherent instances in Ci to the next value in the pos-
sibilistic scale relative to parents;
Modi�cation←true;

i ← i+1;

end

1This algorithm is the same for children (resp. parents-children, neighbors) by simply replacing parents by
children (resp. parents-children, neighbors).
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Remark: In the proposed implementation detailed in Appendix F, we use the follow-

ing heuristics to determine the order in which clusters in parents are treated to compute

best_nodes_instances:

• we start by the clusters having the less number of best instances,

• when two or more clusters have the same number of best instances, we choose the

candidate cluster with the large number of variables appearing in the treated cluster.

Another possible heuristic, will be to choose the cluster adding the less number of instances

in best_nodes_instances.

The following example illustrates n-best-neighbors stability procedure:

Example 7.10 Let us consider the cluster CEFG in Figure 7.6, having three neighbors ABC,

CDE and F . The Figure shows the best instances in each cluster (for instance the best instance

in the cluster F is f1). The best instances in the joint distribution relative to the nodes in

ABC, CDE and F (i.e. best_nodes_instances) is constructed by �rst considering the cluster

F since it contains the less number of best instances then, CDE and �nally ABC.

From best_nodes_instances, we can check that the best instances relative to the three separators

C, E and F are sep_instances_from_nodes={c1∧e1∧f1, c1∧e2∧f1}. However, from CEFG,

we have sep_instances_from_cluster={ c1∧ e1∧ f1, c2∧ e1∧ f2}. It is clear that the instance

c2 ∧ e1 ∧ f2 ∧ g1 is incoherent with sep_instances_from_nodes, thus we should decrease its

degree from α to the next degree in the possibilistic scale relative to ABC, CDE and F and

re-stabilize the moral graph using the simple stability procedure.

Figure 7.6: Example of n-best-neighbors stability

7.9 Selection of stability procedures

This section summarizes how to use the stability procedures presented in the above section.

Indeed, ideally we want to apply n-neighbor stability. However, as shown by experimental

results in next Chapter, this procedure is limited by its running time. Moreover, it can be

limited by the size of joint distributions it computed. Thus, the idea is to choose the appropri-

ate stability procedure regarding to the allowed running time and the system capacity. This



156 Chapter 7: Anytime Propagation Algorithm for Min-Based Possibilistic Networks

choice is explained by a global propagation algorithm.

Figure 7.7 summarizes the preference between multiple nodes stability procedures (MSP)

and best multiple nodes stability procedures (BMSP) starting by those providing best approx-

imation of exact marginals (see experimental results in next Chapter). Note that n-parents

(resp. n-best-parents) and n-children (resp. n-best-children) stability procedures are incom-

parable2 but they provide the same approximation of exact marginals (as it will be shown by

Table 8.2). However, n-parents (resp. n-best-parents) stability is more reasonable with respect

to the running time that is why, it selected before n-children (resp. n-best-children) stability.

Figure 7.7: Preference between stability procedure

The selection of stability procedure can be described as follows:

We �rst run n-neighbors stability (where n is the number of neighbors relative to each cluster).

If this procedure is not limited (either by running time or by system capacity), then we can

stop the program since it is the more e�cient one (as shown by experimental results in next

Chapter) and the application of the remaining procedures will not improve the result.

If we cannot run n-neighbors stability, then we should select the more e�cient stabil-

ity procedure within MSP (except n-neighbors) respecting the running time and the system

capacity. Moreover, we should select the more e�cient stability procedure within BMSP re-

specting the running time and the system capacity. The selected procedure in BMSP should

be incomparable with the procedure chosen in MSP. For instance, if we run n-parents-children

procedure then it is useless to run the n-best-parents-children procedure and it is su�cient to

apply n-best-neighbors procedure (which is incomparable with n-parents-children).

The following algorithm summarizes the global propagation procedure under the assump-

tion that the running time is unlimited.

2n-parents (resp. n-best-parents) stability does not imply n-children (resp. n-best-children) stability and
vice versa.
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Algorithm 7.5: Global propagation procedure

begin
Run n-neighbors stability procedure;
if blocked then

nodes_type=[neighbors, parent-children, parents, children];
1. Selection of MSP (the most preferred is n-1 neighbors the least preferred is 2-children)
MSP_chosen ← false;
i ← 1;
nodes_number ← n-1;
while (not MSP_chosen) and (i ≤ 4) do

MSP_nodes_type ← nodes_type[i];
Run the multiple nodes stability procedure using MSP_nodes_type and
nodes_number;
if the selected procedure is blocked then

if nodes_number > 2 then nodes_number ← nodes_number-1;
else

i ← i+1 ;
nodes_number ← n;

else MSP_chosen ← true;

2. Selection of BMSP (the most preferred is n-best-neighbors the least preferred is
n-best-children)
BMSP_chosen ← false;
j ← 1;
while (not BMSP_chosen) and (j < i) and (j ≤ 4) do

BMSP_nodes_type ← nodes_type[j];
Run the best multiple nodes stability procedure using BMSP_nodes_type;
if the selected procedure is blocked then j ← j+1 ;
else BMSP_chosen ← true;

end

If we consider the running time parameter, then we should stop the global stability procedure

when reaching the allowed time.

7.10 Consistency procedure

Given a stabilized moral graph MG, such that α is the maximum potential in its clusters

(which is the same due to Proposition 7.5), our aim is to check ifMG provides exact marginals

(i.e. α = h(πtMG)) by avoiding the computation of the global joint distribution which is

practically impossible especially when handling a great number of variables. In what follows,

we propose two ways to test and ensure consistency, the �rst one is based on adding some

links in the moral graph while the second is based on constructing best global instances.
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7.10.1 Consistency procedure by adding links

To explain the consistency procedure by adding links, we �rst need a further de�nition:

De�nition 7.5 A cluster Ci relative to the variable Ai is said to be consistent if for any

instance uAi of UAi :

max
ai

πtCi(ai ∧ uAi) = α. (7.22)

We provide now a practical way to check the consistency of a moral graph.

Proposition 7.10 A moral graphMG is said to be consistent if all its clusters are consis-

tent.

The proof of this proposition is based on Proposition 7.1 and the following technical lemma:

Lemma 7.1 Let MG be a stabilized moral graph and let πSMG be its joint distribution. If all

the clusters ofMG are consistent, then there exists an α-DAG G′ such that its joint distribution
π′m is equal to πSMG i.e.

πSMG = π′m. (7.23)

Case of consistency. In the case where the moral graph is consistent, the computation

of α is immediate with the help of Proposition 7.1 and Lemma 7.1. Indeed, it is su�cient

to take α as the maximal potential of any cluster i.e. α = πCCi . Thus, if we have already

incorporated an instance of interest a, then we can consider α as the exact value of Πm(a) i.e.

Πm(a) = maxπCCi = α.

Case of inconsistency. If there exists a variable Ai ∈ V where ∃uAi s.t. maxai π
t
Ci

(ai ∧
uAi) = β < α, then the moral graph is not yet consistent (due to De�nition 7.22). In this

case, the inconsistency can be dropped from each inconsistent cluster Ci by replacing for any

instance uAi s.t. maxai π
t
Ci

(ai ∧ uAi) = β < α, the potential β by α. However, the degree β

should be retrieved. Thus, the idea is to check if the parents of Ai are linked (i.e. there exists

a cluster which contains UAi) or if the degree β already exists in the parents of Ci. If none if

these two cases occur, we should create new links between variables in UAi . More precisely,

we select a parents of Ai and we add to its parent set the remaining variables in UAi . The

quanti�cation of the new links allows the incorporation of the degree β. The outline of this

algorithm is summarized as follows:
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Algorithm 7.6: Consistency procedure by adding links

begin
Modi�cation ← true;
while Modi�cation do

StabilizeMG using the simple stability procedure;
Let α be the maximum (best) degree in clusters;
Modi�cation ← false;
i ← 1;
while i <= N and not Modi�cation do

if Ci has more than one parent then
if Ci is inconsistent in the sense of De�nition 7.5 then

Let X be the set of all instances uAi s.t. maxai π
t
Ci

(ai ∧ uAi) = β < α;
if 6 ∃ a cluster containing UAi and the degree β does not exist in the
parents of Ci then

Modi�cation ← true;
1. Drop inconsistency
For any instance uAi in X, replace the degree β by α;
2. Retrieve the degree β
2.0. Add new links between parents:
Let Aj be any of the parents of Ai:
- Add to Cj , T = UAi \ {Aj}: UAj ← UAj ∪ T
- Update the separators associated with Cj
2.1. Update Cj potential:
πt+1
Cj
← min(πtCj , πnew)

where πnew(uAi) =

{
β if uAi ∈ X
α otherwise

i ← i+1

end

Note that if Ci is an inconsistent cluster, then it is useless to replace α by β if there exists

a cluster which contains UAi or if the degree β already exists in the parents of Ci. Indeed, this

modi�cation will not be followed by an application of the simple stability procedure (since we

will not add new links) and this can give wrong results regarding the most plausible instances

in each variable.

Proposition 7.11 shows that at each level of the checking and recovering consistency pro-

cedure, the moral graph encodes the same joint distribution:

Proposition 7.11 Let πtMG be the joint distribution relative to a moral graphMG at level t.
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Figure 7.8: Modi�ed Moral Graph

Let πt+1
MG be the resulted joint distribution obtained as result of the procedure above. Then,

πtMG = πt+1
MG . (7.24)

From Propositions 7.2, 7.4 and 7.11 we deduce that from the initialization to the consis-

tency level, the moral graph encodes the same joint distribution.

Proposition 7.12 Let πa be the joint distribution given by (7.2). Let πCMG be the joint dis-

tribution encoded byMG after the checking and recovering consistency procedure. Then,

πa = πCMG . (7.25)

Example 7.11 Let us consider the moral graph stabilized in Example 7.6. We can check that

this moral graph is inconsistent, for instance maxπSAB = 0.9 while h(πd2) = 0.8. This is due

to the cluster BCD corresponding to the variable D since

max(πSBCD(b2 ∧ c1 ∧ d1), πSBCD(b2 ∧ c1 ∧ d2)) = 0.8 < 0.9 and

max(πSBCD(b1 ∧ c2 ∧ d1), πSBCD(b1 ∧ c2 ∧ d2)) = 0 < 0.9.

This means that X = {b1 ∧ c2, b2 ∧ c1}.
Thus we should modify the potential of BCD and modify for instance the cluster AC by

considering B as a new parent of C (so that to respect the topological order of variable which

is d = (A,B,C,D) i.e. ancestors before descendants). This entails a modi�cation of the moral

graph as shown in Figure 7.8. The new potentials of BCD and ABC are given in Table 7.22

and the re-stabilization potentials are given in Table 7.23. These potentials does not satisfy the

consistency in the sense of De�nition 7.5. For instance, max(πSAB(a1 ∧ b1), πSAB(a1 ∧ b2)) =

0.4 6= 0.8. However, the parents of all clusters having more than one parent are linked, thus

no modi�cation will be made on the moral graph and the consistency procedure stops which

means that the consistency is reached. Thus, the possibility degree Πm(d2) corresponds to the

maximum potential in clusters i.e. Πm(d2) = 0.8.

7.10.2 Consistency procedure by computing global instances

The principle of this procedure is to check if there exists a global instance having the same pos-

sibility degree than the maximal value inside the stabilized clusters (i.e. α) without computing

the global joint distribution. Indeed, we will apply the same principle than n-best stability

procedure by only computing the best instances (called best_global_instances) in this joint
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Table 7.22: Potentials of BCD and ABC after modi�cation

b c d πt+1
BCD a b c πtAC πnew(BC) πt+1

ABC = min(πtAC , πnew)

b1 c1 d1 0 a1 b1 c1 0.3 0.9 0.3

b1 c1 d2 0.9 a1 b1 c2 0.9 0 0

b1 c2 d1 0.9 a1 b2 c1 0.3 0.8 0.3

b1 c2 d2 0 a1 b2 c2 0.9 0.9 0.9

b2 c1 d1 0 a2 b1 c1 0.9 0.9 0.9

b2 c1 d2 0.9 a2 b1 c2 0.2 0 0

b2 c2 d1 0 a2 b2 c1 0.9 0.8 0.8

b2 c2 d2 0.9 a2 b2 c2 0.2 0.9 0.2

Table 7.23: Re-stabilized potentials after incorporating D = d2

a πSA a b πSAB a b c πSABC a b c πSABC b c d πSBCD b c d πSBCD
a1 0.4 a1 b1 0.3 a1 b1 c1 0.3 a2 b1 c1 0 b1 c1 d1 0 b2 c1 d1 0

a2 0.8 a1 b2 0.4 a1 b1 c2 0 a2 b1 c2 0 b1 c1 d2 0.3 b2 c1 d2 0.8

a2 b1 0 a1 b2 c1 0.3 a2 b2 c1 0.8 b1 c2 d1 0 b2 c2 d1 0

a2 b2 0.8 a1 b2 c2 0.4 a2 b2 c2 0.2 b1 c2 d2 0 b2 c2 d2 0.4

distribution using compute_best_global_instances. The idea is to �rst apply the stability

procedures, then to cover all the clusters by only saving the best instances (i.e. having the

maximum degree) of each of them and by combining them while eliminating the incoherent in-

stances. In the proposed implementation, detailed in Appendix F, we use the following heuris-

tics to determine the order in which clusters are treated to compute best_global_instances:

- we start by the clusters having the less number of best instances,

- when two or more clusters have the same number of best instances, we choose the candidate

cluster with the large number of variables appearing in the treated cluster.
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Algorithm 7.7: compute_best_global_instances

begin
exist_global_instance ← 1;
best_global_instances ← ∅;
pos_treated_cluster ← 1;
Let nb_clusters be the number of clusters inMG;
Let big_domain be the domain relative to all clusters;
Let clusters_order be the order in which the clusters are treated (using the heuristic
described above);
treated_cluster ← clusters_order(pos_treated_cluster);
A�ect the best instances in treated_cluster to best_global_instances;
Let treated_var be the variable set in treated_cluster ;
Let scale be the possibilistic scale containing the possibilistic degrees in treated_cluster ;
if nb_clusters>2 then

next ← 1;
pos_treated_cluster ← 2;
while (pos_treated_cluster ≤ nb_clusters) and (next = 1) do

treated_cluster ← clusters_order(pos_treated_cluster);
Combine best_global_instances with best instances in treated_cluster ;
if incoherence then

next ← 0;
exist_global_instance ← 0;

else
Update treated_var using variables in treated_cluster ;
Update scale using possibilistic degrees in treated_cluster ;
pos_treated_cluster ← pos_treated_cluster + 1;

end

This procedure stops if all clusters are treated, or if all the best instances of the treated

cluster are incoherent with those of already treated clusters.

Case of consistency. If we are able to construct at least one global instance having the

degree α (i.e. exist_global_instance = 1), then the moral graph is consistent. Thus, if we

have already incorporated an instance of interest a, then we can take α as the exact value of

Πm(a) i.e. Πm(a) = maxπCCi = α.

Case of inconsistency. If exist_global_instance = 0, then the moral graph is not yet

consistent and we should decrease the maximal potential in the clusters from α to the next

degree in the set of treated clusters and re-stabilize the moral graph again. The following

algorithm gives the outline of this procedure:
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Algorithm 7.8: Consistency procedure by computing global instances

begin
Modi�cation ← true;
while Modi�cation do

StabilizeMG at using the simple stability procedure;
Let α be the maximum (best) degree in the clusters;
Let clusters be the set of all clusters inMG;
Let best_global_instances be the set of best global instances with degree α com-
puted from clusters using compute_best_global_instances ;
Modi�cation ← false;
if exist_global_instance= 0 then

Decrease the maximal degree in all cluster from α to the next degree in the set
of treated clusters ;
Modi�cation←true;

end

Example 7.12 Let us reconsider the network treated in Examples 7.7 and 7.9 . The stabilized

potentials are the same than the two-parents stabilized potentials given in Tables 7.16, 7.17,

7.18, 7.19, 7.20 and 7.21. We can check that these potentials are not consistent since we are

not able to construct a global instance with the degree α1 = 0.8215. Thus, the consistency pro-

cedure based on computing global instances, will decrease this degree to the following one in the

scale of possibility degrees relative to all clusters (i.e. [0, 0.1911, 0.2092, 0.2104, 0.2240,

0.4538, 0.4750, 0.5064, 0.5067, 0.5088, 0.5463, 0.5797, 0.6381, 0.6707, 0.7605, 0.7646,

0.8161 0.8215]). In other terms, the value 0.8215 in the stabilized clusters will be replaced by

0.8161 and we apply the simple stability procedure again. The re-stabilized potentials are equal

to the two-parents stabilized ones while replacing the value 0.8215 by 0.8161. We can check

that these potentials are consistent since we are able to construct a global instance with the

degree α1 = 0.8161 i.e. a1∧b1∧c2∧d1∧e1∧f2∧g2. This means that Πm(d1∧b1∧g2) = 0.8161.

7.11 Handling evidence

The proposed algorithm can be easily extended in order to take into account a new evidence e

which corresponds to the value of instanciated variables. Indeed, if we are only interested with

the most plausible instances of each variable in the context of the evidence e, then we should

incorporate it in the moral graph and apply the propagation algorithm described above. Then,

it is su�cient to take maximal instances in each cluster as the most plausible ones.

However, if we are interested with the computation of Πm(a | e), where a is the instance



164 Chapter 7: Anytime Propagation Algorithm for Min-Based Possibilistic Networks

of interest, then we should call the above propagation algorithm several times in order to

compute successively Πm(e) and Πm(a ∧ e). Then, using the min-based conditioning, we get:

Πm(a | e) =

 Πm(a ∧ e) if Πm(a ∧ e) < Πm(e)

1 otherwise

Example 7.13 Let us consider the network treated in Example 7.1. Suppose that we receive

the certain information D = d2. If we are only interested with the most plausible instances of

each variable in the context of this evidence, then it is su�cient to compute Πm(d2) as already

done in Example 7.11. Indeed, from Table 7.23, we can deduce that the most plausible instance

in A (resp. B, C) in the context of D = d2 is a2 (resp. b2, c1).

Suppose now that we are interested with the value of Πm(a1 | d2). In other terms, we want to

compute the impact of the evidence D = d2 on the particular instance a1 of the variable A.

Then, we should �rst compute Πm(d2) then Πm(a1∧d2). Thus, we will integrate A = a1 in the

consistent moral graph (obtained in Example 7.11) and apply the propagation procedure again.

The resulted potentials are given in Table 7.24. These potentials does not satisfy the consistency

in the sense of De�nition 7.5. However, the parents of all clusters having more than one parent

are linked, thus no modi�cation will be made on the moral graph and the consistency procedure

stops which means that the consistency is reached. Thus, Πm(a1 ∧ d2) = 0.4, which implies

that Πm(a1 | d2) = 0.4 since Πm(a1 ∧ d2) < Πm(d2) = 0.8.

Table 7.24: Stabilized potentials after incorporating D = d2 and A = a1

a πSA a b πSAB a b c πSABC b c d πSBCD
a1 0.4 a1 b1 0.3 a1 b1 c1 0.3 b1 c1 d1 0
a2 0 a1 b2 0.4 a1 b1 c2 0 b1 c1 d2 0.3

a2 b1 0 a1 b2 c1 0.3 b1 c2 d1 0
a2 b2 0 a1 b2 c2 0.4 b1 c2 d2 0

a2 b1 c1 0 b2 c1 d1 0
a2 b1 c2 0 b2 c1 d2 0.3
a2 b2 c1 0 b2 c2 d1 0
a2 b2 c2 0 b2 c2 d2 0.4
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7.12 Conclusion

In this Chapter we have proposed an anytime propagation algorithm for min-based possibilistic

networks. Indeed, the longer it runs, the closer to the exact marginals we get.

The proposed algorithm avoids the transformation of the initial network into a junction

tree which is known to be a hard problem [30].

The principle of our propagation algorithm is to �rst transform the initial possibilistic

graph into an equivalent undirected graph, called moral graph. Then, several stability pro-

cedures are proposed in order to get close to exact marginals. We study in particular three

procedures,

- Simple stability procedure, ensuring that any cluster agrees with each of its adjacent clusters

(i.e. neighbors) on the distributions de�ned on common variables. This procedure is polyno-

mial.

- Multiple nodes Stability Procedure, ensuring that any cluster agrees on the distributions de-

�ned on common variables computed from 2, 3,.., n adjacent clusters. This procedure is also

polynomial (provides that the joint distribution on considered adjacent clusters has a reason-

able size).

- Best Multiple nodes Stability Procedure, ensuring that only best instances in the distribution

of each cluster agree with the best instances in the distribution computed from several of its

adjacent clusters. This procedure is polynomial in running time, however its space complex-

ity depends on the number of best instances in the joint distribution relative to considered

adjacent clusters (which can be parents, children, parents-children, neighbors).

The choice of appropriate stability procedure depends on the allowed running time and on

the system capacity. Thus, we have proposed a global propagation procedure describing the

best strategy in selecting stability procedures under these two constraints in order to provide

best results anytime we stop the propagation process.

Finally, we have proposed two consistency procedures which ensures exact marginals. The

�rst one is based on adding some links in the moral graph while the second procedure is

based on constructing best global instances. These procedures are applied when stability

procedure have been achieved. Note that the consistency procedure by computing global

instances bene�ts more from stability procedures.

The consistency procedure by adding links is limited since it can enlarge some clusters with

additional variables. However, the maximum number of added variables, due to an inconsistent

cluster, does not exceed the maximal cardinality of parents of the variable associated with the

inconsistent cluster. Moreover, this procedure can be directly applied for revising a min-based

possibilistic graph by integrating a new piece of knowledge (and not simply an evidence or
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observation). Namely, it can be used to construct a new DAG taking into account this new

knowledge.

We should note that the results which can be provided by the anytime propagation algo-

rithm and the classical ones are somewhat di�erent. Indeed, classical propagation algorithms

(see Chapter 6) allow to determine how any evidence on some variables a�ects the remaining

variables, thus running them when there is no evidence seems to be meaningless. Our prop-

agation algorithm can be used in such case and it will provide the most plausible instances

relative to all variables (given initial distributions) and their possibility degree.

Appendix F contains a detailed analysis of procedures used in the implementation of our

propagation algorithm.

Next Chapter shows that our propagation algorithm provides better results than the direct

adaptation of junction tree algorithm (proposed in Chapter 6).



Chapter 8

Implementation and Experimentations

8.1 Introduction

In this Chapter we present the experimentation results relative to the possibilistic propagation

algorithms. Indeed, using the algorithms proposed in Chapters 6 and 7, we propose a Possi-

bilistic Networks Toolbox (PNT) implemented with Matlab 6.0 in order to handle possibilistic

propagation. PNT proposes several propagation algorithms allowing both the product-based

and the min-based propagation in possibilistic networks. The implementation of possibilistic

adaptation of Pearl's algorithm and junction tree algorithm is based on the Bayes Net Toolbox

(BNT) which is an open-source Matlab package for directed graphical models [99].

This Chapter is composed of two parts. Section 8.2 provides experimental results regarding

the quality of our new anytime propagation algorithm with respect to exact marginals. More-

over, it studies the running time relative to di�erent procedures of this algorithm. Section 8.3

explains the use of Possibilistic Networks Toolbox (PNT) and its main options.

8.2 Experimental results

In this Section, we provide experimental results regarding the quality of the stability pro-

cedures with respect to exact marginals. We also study the running time relative to these

procedures. The experimentation is performed on random possibilistic networks generated as

follows:

8.2.1 Experimental data

This Section explains which kind of graphical structures we have used during the experimental

process.
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Figure 8.1: Example of a DAG with 4 levels

Figure 8.2: The QMR belief network

Graphical component

Two DAG's structures have been used:

STRUCTURE 1 : In this structure the DAGs are generated randomly, by just varying three

parameters: the number of nodes, their cardinalities (size of their domains) and the maximum

number of parents.

STRUCTURE 2: In this structure, we choose special cases of DAGs where nodes are parti-

tioned into levels such that nodes of level i only receive arcs either from nodes of the same

level, or from level i− 1. For instance the DAG of Figure 8.1 has 4 levels: the �rst contains 5

nodes, the second 7 nodes, the third 3 nodes and the fourth 5 nodes.

Note that, if we consider only two levels by omitting the intra-levels links, this structure corre-

sponds to well known networks as the QMR (Quick Medical Reference) network [77, 83] which

consists of a combination of statistical and expert knowledge for approximately 600 signi�cant

diseases and approximately 4000 �ndings. The diseases and the �ndings are arranged in a

bi-partite graph as shown by Figure 8.2, and the diagnosis problem is to infer a probability

distribution for the diseases given a subset of �ndings.

An other variant of this structure can also be used in assistance for the computer network

security system in the areas of intrusion detection and in particular in partial pattern matching

and anomaly detection [123]. Indeed partial pattern matching can be accomplished by repre-

senting the input or symptom events (E1: event1, E2: event2, E3: event3, E4:event4) and the

output or initiating events attacks (A1: attack1, A2: attack2, A3: attack3, A4: attack4) as

nodes in a network as shown by Figure 8.3. Moreover, the network of Figure 8.4 is a simple

example of the user modeling approach in anomaly detection task. The nodes are as follows:

U: user type, A: application importance, D: high damage potential, SU: gain root privilege,

M: multiple login errors, L: login error, J: joint distribution.
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Figure 8.3: Belief network for pattern matching allowing for multiple attacks

Figure 8.4: Belief network for anomaly detection

Numerical component

Once the DAG structure is �xed, we generate random conditional distributions of each node

in the context of its parents, respecting the normalization constraints. Then, we also generate

random variable of interest.

8.2.2 Stability vs exact marginals

In the �rst experimentation we propose to test the quality of the stability with respect to the

exact marginals h(πa) (i.e. Πm(a)). Regarding the STRUCTURE 1, we have noted that the

simple stability and the two-nodes stability provides, respectively, 99% and 99, 999% of exact

results. That is why, we use STRUCTURE 2 considering 19 levels from 2 to 20. At each level

we generate 300 networks with a number of nodes varying between 40 and 60 nodes, since we

are limited, in some cases, by the junction tree algorithm1 which is unable to treat complex

networks with a great number of nodes. Table 8.1 represents di�erent parameters for this

experimentation.

Table 8.1: Parameters of the experimentation of stability vs exact marginals
levels nodes links levels nodes links

2 45 68 12 40 83
3 40 80 13 49 106
4 45 88 14 50 107
5 40 90 15 49 103
6 40 81 16 48 99
7 40 81 17 51 106
8 40 85 18 54 112
9 40 85 19 57 119
10 40 84 20 60 125
11 40 85

1The junction tree algorithm (c.f. Chapter 6) is used for providing exact values of h(πa).



170 Chapter 8: Implementation and Experimentations

Figure 8.5: Stability vs exact marginals

Figure 8.6: Two-nodes stability vs exact marginals

Figure 8.5, shows the results of this experimentation. At each level (from 2 to 20), the

�rst (resp. second, third, forth) bar from the left represents the percentage of the networks

where the simple stability (resp. two-nodes, three-nodes, multiple nodes, best multiple nodes)

stability leads to consistency (i.e. generates the exact marginals). The values relative to two-

nodes (resp. three-nodes, multiple nodes, best multiple nodes) correspond to the average of

the percentages obtained with two-parents (resp. three-parents, n-parents, n-best-parents),

two-children (resp. three-children, n-child, n-best-child), two-parents-children (resp. three-

parents-children, n-parents-children, n-best-parents-children) and two-neighbors (resp. three-

neighbors, n-neighbors, n-best-neighbors) which are represented by Figure 8.6 (resp. 8.7, 8.8,

8.9). Summary of all these percentages is given in Table 8.2.

Figure 8.7: Three-nodes stability vs exact marginals
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Figure 8.8: n-nodes stability vs exact marginals

Figure 8.9: n-best-nodes stability vs exact marginals

It is clear that the higher the number of adjacent clusters considered in di�erent stability

procedures, the better the quality of results. Indeed, in multiple nodes stability procedures

n-nodes stability is better than three-nodes stability which is better than two-nodes stability

since they provide, respectively, 99.87%, 99.82%, 99.59% of exact marginals.

Moreover, Figure 8.5 shows that stability degrees, even with simple stability, are a good

estimation of exact marginals (96, 42%). In addition, we remark that the quality of estimation

depends on the number of levels in the DAG since with a small number of levels (2, 3 and 4),

the simple stability procedure is su�cient to reach exact marginals (see Figure 8.5).

Figure 8.10 represents the running time between di�erent stability procedures using STRUC-

TURE 1 with DAGs of 30 nodes and 50 links in average. It is clear that the simple stability

procedure is the faster one, while the n-nodes stability is the slowest one. This result is unsur-

prising since all the stability procedures use at least one time the simple stability procedure.

Moreover, n-nodes stability uses a greater number of clusters than three-nodes and two-nodes

stability.

Figure 8.11 (resp. 8.12, 8.13, 8.14) represents details of values obtained with two-nodes

(resp. three-nodes, n-nodes, n-best-nodes) stability and shows that the running time grows

exponentially when using neighbors (i.e. two-neighbors, three-neighbors, n-neighbors, n-best-

neighbors) which is an expected result since neighbors includes parents and children.

More generally, multiple nodes stability procedures can block if they use a great number

of adjacent clusters (i.e. parents, children, parents-children or neighbors) since they are based

on the computation of their joint distribution. More precisely, if there exists a cluster such

that its adjacent clusters, used in the stabilization procedure, form a joint distribution with

more than 7000000 instances, then the program is unable to provide an answer and blocks.
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Table 8.2: Summary of the experimentation of stability vs exact marginals
Stability procedure Percentage of exact marginals

Simple stability 96.42%

Two-parents 99.53%
Two-children 99.53%
Two-parents-children 99.58%
Two-neighbors 99.74%

Two-nodes stability 99.59%

Three-parents 99.82%
Three-children 99.82%
Three-parents-children 99.82%
Three-neighbors 99.84%

Three-nodes stability 99.82%

n-parents 99.84%
n-children 99.84%
n-parents-children 99.84%
n-neighbors 100%

n-nodes stability 99.87%

n-best-parents 99.84%
n-best-children 99.84%
n-best-parents-children 99.84%
n-best-neighbors 99.84%

n-best-nodes stability 99.84%

Figure 8.10: Running time between di�erent stability procedures

From Table 8.2 we can see that n-parents (resp. n-best-parents) and n-children (resp. n-

best-children) stability procedures provide the same approximation of exact marginals. How-

ever, from Figure 8.10 it is clear that n-parents (resp. n-best-parents) stability is more rea-

sonable with respect to the running time that is why it is more e�cient than n-children (resp.

n-best-children) stability.

Figure 8.11: Running time between di�erent two-nodes stability procedures
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Figure 8.12: Running time between di�erent three-nodes stability procedures

Figure 8.13: Running time between di�erent multiple nodes stability procedures

8.2.3 Correlation between exact marginals and stability degrees

We are now interesting with the correlation between exact marginals and the ones generated

by the stabilization procedure. This experimentation is performed on 100 random networks

with 20 levels and 60 nodes (using STRUCTURE 2). Then, we compare the possibility degree

of the instance of interest generated by the junction tree algorithm (exact marginals) with

those generated by the simple stability procedure.

Figure 8.15 shows results of this experimentation. Again we con�rm that the simple

stability procedure is a good estimation of exact marginals. Indeed, it is clear that in the cases

where the equality, between exact marginals and those obtained from the stability procedure,

does not hold, the gap is not important. Indeed, in this experimentation the possibilistic scale

contains 87 values and the gap between exact marginals and stability degrees, when they are

di�erent is equal to 5.67 values in average.

8.2.4 Comparing junction tree algorithm with the anytime algorithm

We also have compared experimentally the junction tree algorithm with simple stability pro-

cedure. In this experimentation, using STRUCTURE 1, we vary the ratio Links/Nodes in

order to test the limitation of the junction tree algorithm.

This experimentation shows that with networks containing 40 (resp. 50, 60) nodes, the

junction tree algorithm is blocked from the ratio 3.55 (resp. 2.72, 1.78). This is due to the

size of clusters it generates in the phase of building the junction tree. Indeed, if the number of

instances in any cluster contains 7000000 instances, then the algorithms is unable to initiate it.

Figure 8.14: Running time between di�erent Best multiple nodes stability procedures
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Figure 8.15: Correlation plots between exact marginals and somple stability procedure degrees

However, in such examples the simple stability procedure provides a result in a few seconds

since it just passes messages between clusters having a limited size corresponding to each node

with its parent set. Nevertheless, we should not forget that the simple stability procedure only

provides good estimation of marginals but not the exact ones. Note that when the junction

algorithm is not blocked, it is faster that the simple stability procedure but the di�erence does

not exceed few seconds.

Using the exact procedure based on computing global instances, we can get exact marginals

but this procedure can takes a long running time. For instance with networks having 60 nodes

and a ratio of 1.78 this procedure provides a result in 4133,49 seconds. In other terms,

computing global instances can only be limited by the running time but never blocks due to

the system capacity contrary to the junction tree algorithm.

8.3 Possibilistic Networks Toolbox (PNT)

In this Section we propose a Possibilistic Networks Toolbox (PNT) implemented with Matlab

6.0 in order to handle possibilistic propagation. Appendix F contains a detailed analysis of

procedures used to implement this software. PNT o�ers the following propagation algorithms:

• for min-based possibilistic networks:

- propagation in polytrees,

- propagation in junction trees,

- anytime propagation.

• for product-based possibilistic networks:

- propagation in polytrees,

- propagation in junction trees.

The implementation of possibilistic adaptation of probabilistic propagation in polytrees

and in junction trees is based on the Bayes Net Toolbox (BNT) which is an open-source Mat-

lab package for directed graphical models [99].

The main menu of PNT is represented by Figure 8.16. We now explain its di�erent options.
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Figure 8.16: Main menu

8.3.1 De�nition of network structure

This option (see Figure 8.17) allows the speci�cation of the DAG structure by adding or

deleting nodes or links. The addition of any node is done by choosing its position, its name

and its parent set within existing nodes.

For instance Figures 8.18, 8.19, 8.20 and 8.21 represent di�erent steps relative to the addition

of the the node D to the DAG relative to the possibilistic network used in Example 7.1.

Figure 8.17: De�nition of the network structure

Figure 8.18: Choice of the position of the node D

8.3.2 Network Quanti�cation

This option allows the quanti�cation a constructed network by providing the cardinality and

the initial distributions relative to each node. Moreover it allows the de�nition of the observed

nodes and the variable of interest.

De�nition of cardinalities and initial distributions

Given a DAG structure, this option (see Figure 8.22) allows its quanti�cation. The �rst step

is to de�ne the cardinality of each variable in order to construct the network structure. The

second step is to provide the initial local conditional possibility distribution of each variable

in the context of its parents.

Figures 8.23, 8.24 and 8.25 are relative to the quanti�cation of the possibilistic network of

Example 7.1.
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Figure 8.19: De�nition of the name of the new node (D)

Figure 8.20: Selection of the parents of D within A, B and C (UD = {B,C})

De�nition of evidence and instance of interest

The de�nition of total evidence can be done via De�ne evidence option (see Figure 8.26)

by selecting the observed variables and their certain instances. In the same manner, De�ne

Instance of Interest option (see Figure 8.27) allows the de�nition the instance of interest by

selecting variables of interest. Note that the de�nition of evidence is necessary except with

the anytime propagation algorithm. Indeed, propagation algorithms in junction trees and in

polytrees are meaningless if the evidence is not speci�ed.

Figures 8.28 and 8.29 are relative to the evidence D = d2 and the instance of interest

A = a1.

8.3.3 Min-based propagation

Given a product-based possibilistic network and the set of observed nodes, we can call any of

the following propagation algorithms.

Propagation in polytrees

The min-based propagation in polytrees (see Figure 8.31) is based in the algorithm presented

in Section 6.3.1. If we call this algorithm with a multiply connected DAG, then an error

message is displayed. Otherwise, the propagation result is provided.

Figure 8.21: DAG of Example 7.1
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Figure 8.22: De�nition of cardinalities and initial distributions

Figure 8.23: Example of de�nition of cardinalities

Figure 8.24: Example of initial conditional distributions

Figure 8.25: Example of initial conditional distributions

Figure 8.26: De�nition of evidence

Figure 8.27: De�nition of instance of interest

Figure 8.28: Selection of the observed node D and its instance d2

Figure 8.29: Selection of the variable of interest A and its instance a1

Figure 8.30: Coloration of the observed variable D (blue) and the variable of interest A (red)

Figure 8.31: Min-based propagation in polytrees
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Figure 8.32: Min-based propagation in junction trees

Propagation in junction trees

The min-based propagation algorithm in junction trees (see Figure 8.32) is based in the algo-

rithm presented in Section 6.3.2.

Anytime algorithm

Once the network is de�ned, the anytime propagation algorithm (see Figure 8.33) provides

results of propagation which depend on the de�nition of evidence and instance of interest.

Indeed,

• if the evidence and the instance of interest are speci�ed, then the propagation algorithm

displays the conditional possibility degree of the instance of interest in the context of

evidence,

• if only the evidence is speci�ed, then it displays the most plausible instances relative to

the remaining variables i.e. those which are not observed,

• if only the instance of interest is speci�ed, then it displays the possibility degree of this

instance (with no context),

• if neither the evidence nor the instance of interest are speci�ed, then it displays the most

plausible instances relative to all variables (given initial distributions).

We can also choose the procedures to apply during the propagation process. In this case,

we should specify if we want to apply the consistency procedure or not (see Figure 8.35). If

it is the case then we should select one of the two proposed consistency procedures (i.e. add

links or compute best global instances) (see Figure 8.34). Otherwise, we should specify the

number and the type of nodes to consider in the selected stability procedure (see Figures 8.34

and 8.36)).

Figure 8.37 shows the propagation result relative to the evidence D = d2 and the instance

of interest A = a1 (i.e. Πm(a1 | d2)) using a simple stability procedure. Moreover, Figure 8.38

shows the propagation result if we run the propagation algorithm with neither evidence nor

instance of interest (which corresponds to the result obtained in Example 7.6).
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Figure 8.33: Anytime Propagation

Figure 8.34: De�nition of consistency options

Figure 8.35: De�nition of stability options

Figure 8.36: De�nition of stability options

Figure 8.37: Value of Πm(a1 | d2) = 0.4

Figure 8.38: Most plausible instances
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Figure 8.39: Product-based propagation in polytrees

Figure 8.40: Product-based propagation in junction trees

8.3.4 Product-based propagation

Given a product-based possibilistic network and the set of observed nodes, we can call any of

the following propagation algorithms.

Propagation in polytrees

The min-based propagation in polytrees (see Figure 8.39) is based in the algorithm presented

in Section 6.2.1. If we call this algorithm with a multiply connected DAG, then an error

message is displayed. Otherwise, the propagation result is provided.

Propagation in junction trees

The min-based propagation algorithm in junction trees (see Figure 8.40) is based in the algo-

rithm presented in Section 6.2.2.

8.4 Conclusion

The experimentation results, provided in this Chapter, show that our new algorithm (described

in Chapter 7) gives better results than a direct adaptation of probabilistic propagation algo-

rithm.

Indeed, the simple stability procedure can be applied e�ciently to any DAG structure.

Moreover, it provides a high number of exact marginals (i.e. 96.42%). Other re�ned stability

procedures improve the rate of correct exact marginals (for instance n-nodes stability provides

99.87% of exact marginals), without a huge increasing of the running time (with a DAG having

60 nodes, the additional running time is between 10 and 60 seconds).

These results are interesting since they show that with networks having complex structures

with a great number of nodes, we can use simple stability procedure which is a polynomial

procedure. Indeed, in such cases junction tree algorithm can generate huge clusters where local

computations are impossible, and blocks.
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The second part of this Chapter has illustrated our implementation of di�erent propagation

algorithms for min-based and product-based possibilistic networks and have shown the use of

our Possibilistic Networks Toolbox (PNT).
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Conclusion

This thesis has contributed to the development of graphical models for reasoning under uncer-

tainty in possibility theory framework. Uncertainty is either encoded numerically using the

unit interval [0,1] or qualitatively using a total pre-order between events.

We have addressed the question of de�ning independence relations in possibility theory.

We have �rst introduced a qualitative framework where uncertainty is represented by total

pre-orders on possible states of the universe of discourse. This framework recovers basic de�ni-

tions of classical possibility theory. For instance, the qualitative conditioning extends standard

possibilistic conditioning.

Then, we have noticed that there are two kinds of independence: causal and decomposi-

tional. Causal independence relations can be simply de�ned using notions of accepted, ignored

and rejected beliefs. Decompositional independence relations are de�ned using other operators

di�erent from the two traditional ones: minimum and product operators. These two kinds of

independence are equivalent in probability theory, while in possibilistic setting we only have

decompositional independence which implies causal ones.

Our main contribution regarding independence relations is the proposition of new def-

initions obtained from the analysis of the plausibility ordering induced from a possibility

distribution. Obviously, these new de�nitions have been compared with existing ones and

their graphoid properties have been studied.

Our results on independence relations can be used in multiple criteria analysis and in

relational data decomposition. They can also be used for de�ning other forms of qualitative

networks. For instance, Brafmann and col. [27] have proposed a new qualitative network where

inside each node a plausibility relation is used instead of possibility degrees. They use Ce-

teris Paribus independence (i.e. CP-independence) which is, as we have shown, equivalent to

the qualitative independence relation based on preserving orderings (i.e. POS-independence).
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Therefore, our study of graphoid properties can be useful for showing the coherence of prop-

agation algorithms based on Ceteris Paribus independence.

Another main contribution of this thesis is the development of graphical models for possi-

bility theory framework. We have �rst developed a direct adaptation of the centralized version

of Pearl's algorithm [87, 103, 105] and of the probabilistic propagation in junction trees [84]

for min-based and product-based possibilistic networks. This allows us to conclude that when

we use the product form of conditioning, we get possibilistic networks close to the probabilis-

tic ones, sharing the same features and having the same theoretical and practical results. It

is also important to note that other existing graphical models like Valuation Based Systems

[111, 112] or networks based on Spohn's ordinal conditional functions [35, 72] only allow to

recover product-based networks and not the min-based ones. In fact, min-based networks have

di�erent behavior since they do not satisfy the so-called coherence property. Indeed, it may

happen that the joint distribution associated with the possibilistic graph do not recover the

initial data provided by experts. Nevertheless, we have shown that unrecovered data have no

e�ect either on independence relations or on the propagation process.

The particular properties of the minimum operator, such as the idempotency, lead us to

explore a new propagation approach for min-based networks which avoids the transformation

of the initial network into a junction tree, known to be a hard problem.

The proposed algorithm is an anytime algorithm. It is composed of several steps, which

progressively converge to the exact marginals. The experimentation results show that our new

algorithm gives better results than a direct adaptation of the probabilistic propagation algo-

rithm. Indeed, the simple stability procedure can be applied e�ciently to any DAG structure,

including those where the junction tree algorithm blocks. Moreover, it provides a high number

of exact marginals (i.e. 96.42%). Other re�ned stability procedures improve the rate of correct

exact marginals (for instance n-nodes stability provides 99.87% of exact marginals), without

a huge increasing of running time (with a DAG having 60 nodes, the additional running time

is between 10 and 60 seconds).

We have also proposed a Possibilistic Networks Toolbox (PNT) implemented with Matlab

6.0, in order to handle possibilistic propagation in both product-based and min-based possi-

bilistic networks.
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An interesting future work is to compare the graphical-based representation of uncertain

information with the logic-based one. Recently, a study of the links existing between pos-

sibilistic logic and possibilistic graphical models has been proposed by Benferhat and col.

[17, 18]. This work provides theoretical results to encode possibilistic logic bases into possi-

bilistic graphs. It also studies the translation of possibilistic graphs into possibilistic logic.

Such results can be interesting to take the advantage of both frameworks. Nevertheless, the

complexity of proposed methods is not yet performed.

From application point of view, qualitative possibilistic networks can be used in assistance

for the computer network security system in the areas of intrusion detection [123]. Indeed,

in such applications qualitative results, for instance on the attack nature are expected rather

than exact numerical values. Besides, the responding time is crucial due to the danger which

can follow an attack of the computer system.

Another line of research will be to handle decision variables by studying possibilistic in-

�uence diagrams. Indeed, most of the proposed methods for propagation in probabilistic

in�uence diagrams are based on propagation on probabilistic Bayesian networks [109, 132].

The same idea can be used on possibility theory by using propagation results obtained in

this thesis. Such a development needs the qualitative decision concepts recently presented in

possibility theory [51, 59, 131].
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Appendix A

Proofs of Chapter 2

Proof of Proposition 2.1 We want to prove that

(i) Acc≥π(φ ∧ ψ) 6= min(Acc≥π(φ),Acc≥π(ψ))

⇔ Acc≥π(φ ∧ ψ) = −1,Acc≥π(φ) = 0, and Acc≥π(ψ) = 0.

Let us consider the possible values of Acc≥π(φ ∧ ψ):

• Acc≥π(φ ∧ ψ) = 1 ⇒ Acc≥π(φ) = 1 and Acc≥π(ψ) = 1 (using property 2)

Hence, Acc≥π(φ ∧ ψ) = min(Acc≥π(φ),Acc≥π(ψ)).

• Acc≥π(φ ∧ ψ) = 0⇒ ∃φ′, ψ′ s.t. φ ∧ ψ =π φ
′ ∧ ψ′ (at least φ′ 6=Π φ or ψ′ 6=Π ψ)

If we assume that φ′ 6=Π φ, then Acc≥π(φ) = 0 and Acc≥π(ψ) ≥ 0

⇒ Acc≥π(φ ∧ ψ) = min(Acc≥π(φ),Acc≥π(ψ)).

• Acc≥π(φ∧ψ) = −1. Using (i), we deduce that (i1) Acc≥π(φ) ≥ 0 and (i2) Acc≥π(ψ) ≥
0.

If we assume that Acc≥π(φ) = 1, then φ >π ¬φ. Thus, we can distinguish two cases:

� φ ∧ ¬ψ is more plausible than ¬φ ∧ ψ and ¬φ ∧ ¬ψ
⇒ Acc≥π(ψ) = −1 which contradicts (i2).

� φ∧ψ is more plausible than ¬φ∧ψ and ¬φ∧¬ψ. In this case φ∧¬ψ is more plausible

than φ ∧ ψ (since Acc≥π(φ ∧ ψ) = −1) ⇒ Acc≥π(ψ) = −1 which contradicts (i2).

Proof of Proposition 2.2 Let φ and ψ be subclasses of Ω, we need to prove that:

Acc(φ ∧ ψ) = min(Acc(φ | ψ),Acc(ψ)). The possible values that Acc(φ ∧ ψ) can take on

are:

• Acc(φ ∧ ψ) = 1 ⇒ φ ∧ ψ >Π ¬(φ ∧ ψ) = max(¬φ ∧ ψ, φ ∧ ¬ψ,¬φ ∧ ¬ψ) and hence

φ ∧ ψ >Π ¬φ ∧ ψ which implies Acc(φ | ψ) = 1.
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• Acc(φ ∧ ψ) = −1⇒ φ ∧ ψ <Π ¬(φ ∧ ψ).

⇒ max(Ω) ⊆ (¬φ ∧ ψ) ∨ (φ ∧ ¬ψ) ∨ (¬φ ∧ ¬ψ),

- if ¬φ ∧ ψ ⊆ max(Ω) then Acc(φ | ψ) = −1,

- else max(Ω) ⊆ ¬ψ, ψ <Π ¬ψ which implies that Acc(ψ) = −1.

• Acc(φ ∧ ψ) = 0⇒ φ ∧ ψ =Π ¬(φ ∧ ψ)

⇒ φ ∧ ψ ⊆ max(Ω) and (¬φ ∧ ψ) ∨ (φ ∧ ¬ψ) ∨ (¬φ ∧ ¬ψ) ∩max(Ω) 6= ∅,
- if ¬φ ∧ ψ ⊆ max(Ω) ⇒ Acc(φ | ψ) = 0 (since φ ∧ ψ =Π ¬φ ∧ ψ)
and Acc(ψ) ≥ 0 (since φ ∧ ψ ⊆ ψ),
- else max(Ω) ⊆ ¬φ ⇒ Acc(φ | ψ) = 1 (since φ ∧ ψ >Π ¬φ ∧ ψ)
and Acc(ψ) = 0 (since ψ =Π maxω∈[ψ] ω =Π ¬ψ =Π maxω∈[¬ψ] ω).



Appendix B

Proofs of Chapter 3

For the sake of simplicity, the context appearing behind the conditioning bar is omitted in the

some of the following proofs.

B.1 Proofs for independence relations

Proof of Proposition 3.1 Let ≥π be a plausibility relation de�ned on Ω = DV and consider

three mutually disjoint subsets of variables X, Y and Z forming a partition of V . We want to

prove that the relation IBP (X,Z, Y ) is true, i�, ∀x, y, z,Acc(x | y∧z) = Acc(x | z). The inde-
pendence relation IBP (X,Z, Y ) implies this Proposition trivially by replacing φX by x, ψY by

y and ϕZ by z in (3.1). Thus it is enough to prove that if ∀x, y, z,Acc(x | y∧ z) = Acc(x | z)
then IBP (X,Z, Y ). Since Acc on instances of X characterizes the acceptance function on

subsets of DX , it follows that ∀y, z Acc(φX | y ∧ z) =Acc(φX | z). Now it is obvious

that plausibility measure relations ψ1 >Π ϕ1 and ψ2 >Π ϕ2 imply ψ1 ∨ ψ2 >Π ϕ1 ∨ ϕ2

and the same for =Π. Hence, from φX ∧ y ∧ z >Π ¬φX ∧ y ∧ z ∀y ∈ ψY ,∀z ∈ ϕZ imply

φX ∧ ψY ∧ ϕZ >Π ¬φX ∧ ψY ∧ ϕZ , and the same with =Π. Hence, IBP (X,Z, Y ) holds.

Proof of Proposition 3.2 We want to prove that if X is PO-independent of Y , then X

is also BP-independent of Y . We can distinguish three cases:

- Acc(x) = 1, this means that ∀x′, x >Π x′. Therefore, ∀x′, x ∧ y >π x′ ∧ y, Acc(x | y) = 1.

- Acc(x) = −1, this means that ∃x′ s.t. x′ >Π x. Then using PO-independence we deduce

that ∃x′ s.t. x′ ∧ y >π x ∧ y which implies Acc(x | y) = −1

- Acc(x) = 0, this means that ∃x′ s.t. x =Π x′ and 6 ∃x′′ s.t. x′′ >Π x

⇒ x ∧ y =π x
′ ∧ y and 6 ∃x′′ s.t. x′′ ∧ y =π x ∧ y

⇒ Acc(x | y) = 0.
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Proof of Proposition 3.3 Let φ = D′X and ψ = D′Y .

- Firstly we prove that if ∀φ ⊆ DX , ∀ψ ⊆ DY s.t. φ 6= ∅ and ψ 6= ∅, ∀x, y,
Acc(x ∧ y | φ ∧ ψ) = min(Acc(x | φ),Acc(y | ψ)) then X is POS-independent of Y .

Assume that (i) Acc(x ∧ y | φ ∧ ψ) = min(Acc(x | φ),Acc(y | ψ))

then ∀x, x′,∀y, we have:
Acc(x ∧ y | {x, x′} ∧ y) = min(Acc(x | {x, x′}),Acc(y | y))

⇔ Acc(x | {x, x′} ∧ y) = Acc(x | {x, x′})
since Acc(y | y) = 1, and Acc(x ∧ y | {x, x′} ∧ y) = Acc(x | {x, x′} ∧ y).

If Acc(x | {x, x′}) = 1 (resp. 0,-1), then x >Π x′ (resp. x =Π x′, x′ >Π x)

⇒ Acc(x | {x, x′} ∧ y) = 1 (resp. 0,-1)

⇒ x ∧ y >π x′ ∧ y (resp. x ∧ y =π x
′ ∧ y, x′ ∧ y >π x ∧ y).

Therefore, X is PO-independent of Y , Moreover Y is PO-independent of X since (i) is obvi-

ously symmetric. Hence, X is POS-independent of Y .

- Let us show the converse. Assume that X and Y are POS-independent.

First suppose that Acc(x | φ) = −1. Then ∃x′ ∈ φ such that x′ >Π x

⇒ x′ ∧ y >π x ∧ y (since IPOS is true)

⇒ Acc(x ∧ y | φ ∧ ψ) = −1 (by de�nition). The same conclusion holds if Acc(y | ψ) = −1.

Now, we have three remaining cases (other cases, are obtained by symmetry):

• Acc(x | φ) = 1 and Acc(y | ψ) = 1.

Assume that Acc(x ∧ y | φ ∧ ψ) 6= 1 (i.e. 0 or -1)

⇒ ∃x′ ∈ φ, y′ ∈ ψ such that x′ ∧ y′ ≥π x ∧ y
Moreover, x >Π x′ (since Acc(x | φ) = 1)

⇒ x ∧ y >π x′ ∧ y (since IPOS is true)

⇒ x′ ∧ y′ ≥π x ∧ y >π x′ ∧ y
⇒ x′ ∧ y′ >π x′ ∧ y
⇒ y′ ≥Π y(since IPOS is true). Hence contradiction with Acc(y | ψ) = 1.

• Acc(x | φ) = 0 and Acc(y | ψ) = 1.

Assume that Acc(x ∧ y | φ, ψ) 6= 0 (i.e. -1 or 1), then we can consider two subcases:

- Acc(x ∧ y | φ ∧ ψ) = −1 ⇒ ∃x′ ∈ φ, y′ ∈ ψ such that x′ ∧ y′ >π x ∧ y
Moreover, y >Π y′ (since Acc(y | ψ) = 1)

⇒ x ∧ y >π x ∧ y′ (since IPOS is true)

⇒ x′ ∧ y′ >π x ∧ y′

⇒ x′ >Π x (since IPOS is true). Hence contradiction with Acc(x | φ) = 0.

- Acc(x ∧ y | φ ∧ ψ) = 1 ⇒ ∀x′ ∈ φ,∀y′ ∈ ψ, x ∧ y >π x′ ∧ y′
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⇒ ∀x′, x ∧ y >π x′ ∧ y ⇒ x >Π x′ (since IPOS is true).

Hence contradiction with Acc(x | φ) = 0.

• Acc(x | φ) = 0 and Acc(y | ψ) = 0.

Assume that Acc(x ∧ y | φ ∧ ψ) 6= 0 (i.e. -1 or 1), then we can consider two subcases:

- Acc(x ∧ y | φ ∧ ψ) = −1 ⇒ ∃x′ ∈ φ, y′ ∈ ψ such that x′ ∧ y′ >π x ∧ y
Moreover, y =Π y′ (since Acc(y | ψ) = 0)

⇒ x ∧ y =π x ∧ y′ (since IPOS is true)

⇒ x′ ∧ y′ >π x ∧ y′

⇒ x′ >Π x(since IPOS is true). Hence contradiction with Acc(x | φ) = 0.

- Acc(x ∧ y | φ ∧ ψ) = 1 ⇒ ∀x′ ∈ φ,∀y′ ∈ ψ, x ∧ y >π x′ ∧ y′

⇒ ∀x′, x ∧ y >π x′ ∧ y ⇒ ∀x′, x >Π x′ (since IPOS is true).

Hence contradiction with Acc(x | φ) = 0.

Proof of Proposition 3.4 We want to prove that POS-independence implies the BPS-

independence. This relation is true. Indeed, if we let D′X = DX and D′Y = {y} in (3.6) we

obtain:

Acc(x ∧ y | DX , {y}) = min(Acc(x | DX),Acc(y | {y}))
⇔ Acc(x | {y}) = Acc(x) (since Acc(x ∧ y | DX , {y}) = Acc(x | {y}),
Acc(x | DX) = Acc(x) and Acc(y | {y}) = 1)

which leads to case (i) of (3.3). The case (ii) of (3.3) is obtained by symmetry by letting

D′X = {x} and D′Y = DY in (3.6).

Proof of Proposition 3.5 We want to prove that CP-independence is equivalent to the

POS-independence.

• Suppose that X and Y are CP-independent but not POS-independent i.e.

xi > xj but ∃y s.t. xi ∧ y ≤ xj ∧ y
From CP-independence xi ∧ y ≤ xj ∧ y ⇒ ∀y′, xi ∧ y′ ≤ xj ∧ y′

⇒ max{xi ∧ y′} ≤ max{xi ∧ y′} ⇒ xi ≤ xj
Hence contradiction.

• Suppose that X and Y are POS-independent but not CP-independent i.e.

xi ∧ y > xj ∧ y but ∃y′ s.t. xi ∧ y′ ≤ xj ∧ y′

The relation xi ∧ y > xj ∧ y implies xi > xj ,

⇒ xi ∧ y′ > xj ∧ y′ (From POS-independence)

Hence contradiction.
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Proof of Proposition 3.6 We want to prove that X and Y are PT-independent in the con-

text Z as soon as De�nition 3.4 holds for instances only. To see it, note that (3.9) does not

hold only if Acc(x ∧ y | z) = −1 and Acc(x | z) = Acc(y | z) = 0 due to the properties of

Acc given in Subsection 2.4.

This case can only be observed if the set of plausible instances of X (resp. Y ) contains

more than one element, including x (resp. y). So, x ∈ max(DX), y ∈ max(DY ), | DX |> 1

and | DY |> 1, and (3.9) does not hold if x ∧ y is not a plausible instance in DX × DY .

So (3.9) means that max(DX × DY ) = max(DX) × max(DY ) in any context z. Hence

∀ϕZ ⊆ DZ ,max(DX ×DY )×DZ = max(DX)×max(DY )×DZ . However, De�nition (3.4)

does not apply only if:

Acc(φX ∧ ψY | ϕZ) = −1,Acc(φX | ϕZ) = 0, and Acc(ψY | ϕZ) = 0.

It is equivalent to say that:

φX ∧ ¬ψY ∧ ϕZ =π ¬φX ∧ ψY ∧ ϕZ ≥π ¬φX ∧ ¬ψY ∧ ϕZ >π φX ∧ ψY ∧ ϕZ .

However, it implies thatmax(DX) overlaps φX and ¬φX , max(DY ) overlaps ψY and ¬ψY ,
and ∀x∧y ∈ φX ∧ψY ∧max(DX)×max(Dy), x∧y 6∈ max(DX×DY ). Hence, we have proved

that in context ϕZ , the equality Acc(x ∧ y | ϕZ) = min(Acc(x | ϕZ),Acc(y | ϕZ)) does not

hold. It implies that ∃z ∈ ϕZ , such that (3.9) does not hold. So (3.9) implies PT-independence.

Proof of Proposition 3.7 We want to prove that the acceptance of one instance of X

or of Y is enough to conclude PT-independence between these two variable sets in the context

Z. More formally, we want to prove that ∀z ∈ DZ ,

if ∃x ∈ DX s.t. Acc(x | z) = 1, or if ∃y ∈ DY s.t. Acc(y | z) = 1,

then the relation IPT (X,Z, Y ) is true.

We analyze the possible situations (the other are obtained by symmetry):

(a) Acc(x | z) = 1 and Acc(y | z) = 0⇒ min(Acc(x | z),Acc(y | z)) = 0

(b) Acc(x | z) = 1 and Acc(y | z) = 1⇒ min(Acc(x | z),Acc(y | z)) = 1

(c) Acc(x | z) = 1 and Acc(y | z) = −1⇒ min(Acc(x | z),Acc(y | z)) = −1

• In the case (a) we have x ∧ z >Π ¬x ∧ z and y ∧ z =Π ¬y ∧ z
⇒ max(x ∧ y ∧ z, x ∧ ¬y ∧ z) >π max(¬x ∧ y ∧ z,¬x ∧ ¬y ∧ z) and
max(x ∧ y ∧ z,¬x ∧ y ∧ z) =π max(x ∧ ¬y ∧ z,¬x ∧ ¬y ∧ z)
⇒ x ∧ y ∧ z =π x ∧ ¬y ∧ z >π max(¬x ∧ y ∧ z,¬x ∧ ¬y ∧ z)
⇒ Acc(x ∧ y | z) = 0

• In the case (b) we have x ∧ z >Π ¬x ∧ z and y ∧ z >Π ¬y ∧ z
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⇒ max(x ∧ y ∧ z, x ∧ ¬y ∧ z) >π max(¬x ∧ y ∧ z,¬x ∧ ¬y ∧ z) and
max(x ∧ y ∧ z,¬x ∧ y ∧ z) >π max(x ∧ ¬y ∧ z,¬x ∧ ¬y ∧ z)
⇒ x ∧ y ∧ z >π max(¬x ∧ y ∧ z, x ∧ ¬y ∧ z,¬x ∧ ¬y ∧ z)
⇒ Acc(x ∧ y | z) = 1

• In the case (c) we have x ∧ z >Π ¬x ∧ z and ¬y ∧ z >Π y ∧ z
⇒ max(x ∧ y ∧ z, x ∧ ¬y ∧ z) >π max(¬x ∧ y ∧ z,¬x ∧ ¬y ∧ z) and
max(x ∧ ¬y ∧ z,¬x ∧ ¬y ∧ z) >π max(x ∧ y ∧ z,¬x ∧ y ∧ z)
⇒ x ∧ ¬y ∧ z >π max(¬x ∧ y ∧ z, x ∧ y ∧ z,¬x ∧ ¬y ∧ z)
⇒ Acc(x ∧ y | z) = −1

Proof of Proposition 3.8 We want to prove that,

(i) Acc(x ∧ y) 6= min(Acc(x),Acc(y))⇔ Acc(x ∧ y) = −1,Acc(x) = 0, and Acc(y) = 0.

Let us consider the di�erent cases of Acc(x ∧ y):

• Acc(x ∧ y) = 1⇒ x ∧ y >π x′ ∧ y′, ∀x′ ∈ DX \ {x}, ∀y′ ∈ DY \ {y}
⇒ x >Π x′ and y >Π y′,∀x′ ∈ DX \ {x},∀y′ ∈ DY \ {y}
⇒ Acc(x) = 1 and Acc(y) = 1

Hence, Acc(x ∧ y) = min(Acc(x),Acc(y)).

Thus, this case is impossible since it contradicts (i).

• Acc(x ∧ y) = 0⇒ ∃x′, y′ s.t. x ∧ y =π x
′ ∧ y′ (at least x′ 6=Π x or y′ 6=Π y)

If we assume that x′ 6=Π x, then Acc(x) = 0 and Acc(y) ≥ 0

⇒ Acc(x∧y) = min(Acc(x),Acc(y)). Thus, this case is impossible since it contradicts

(i).

• Acc(x∧ y) = −1. Then, using (i) we deduce that (i1) Acc(x) ≥ 0 and (i2) Acc(y) ≥ 0.

If we assume that Acc(x) = 1, then we can distinguish two cases:

� x ∧ ¬y is more plausible than ¬x ∧ y and ¬x ∧ ¬y
⇒ Acc(y) = −1 which contradicts (i2).

� x∧y is more plausible than ¬x∧y and ¬x∧¬y. In this case x∧¬y is more plausible

than x ∧ y (since Acc(x ∧ y) = −1) ⇒ Acc(y) = −1 which contradicts (i2).

Proof of Proposition 3.9 We want to prove that if X and Y are BPS-independent then

they are PT-independent. Suppose that X and Y are BPS but not PT-independent:

⇒ ∃x,∃y, s.t. Acc(x ∧ y) 6= min(Acc(x),Acc(y))

⇒ min(Acc(x | y),Acc(y)) 6= min(Acc(x),Acc(y)) (From Proposition 2.2)

Hence Acc(x | y) 6= Acc(x).
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So X and Y are not PO-independent. Hence they cannot be BPS-independent.

Proof of Proposition 3.10 We want to prove that if a plausibility relation ≥π is Pareto-

decomposable along X and Y then one of the local plausibility relations on X or Y should be

uniform. Suppose that none of the distributions on X and Y is uniform, that is ∃x, x′, ∃y, y′,
s.t. x >Π x′ and y >Π y′. Then the two states x ∧ y′ and x′ ∧ y are not comparable. Indeed:

- if x ∧ y′ ≥π x′ ∧ y, this relation contradicts the Pareto-ordering since y′ 6≥Π y,

- if x′ ∧ y ≥π x ∧ y′, this relation contradicts the Pareto-ordering since x′ 6≥Π x.

This result contradicts the assumption that ≥π encodes a complete preorder.

Proof of Proposition 3.11

- Proof that IPareto implies Ileximin. Suppose that X and Y are Pareto-independent but

not leximin-independent, then we can distinguish two cases:

- Case 1: ∃x, y,∃x′, y′, s.t. x ∧ y >π x′ ∧ y′ and
min(x, y) <Π min(x′, y′), or

min(x, y) =Π min(x′, y′) and max(x, y) ≤Π max(x′, y′)

Since Pareto-independence is respected x ∧ y >π x′ ∧ y′

⇒ x >Π x′ and y >Π y′

⇒ min(x, x′) >Π min(y, y′) and max(x, x′) >Π max(y, y′).

Hence contradiction.

- Case 2: ∃x, y,∃x′, y′, s.t. x ∧ y =π x
′ ∧ y′ and

min(x, y) 6=Π min(x′, y′), or max(x, y) 6=Π max(x′, y′)

Since Pareto-independence is respected x ∧ y =π x
′ ∧ y′

⇒ x =Π x′ and y =Π y′

⇒ min(x, y) =Π min(x′, y′), and max(x, y) =Π max(x′, y′)

A contradiction again.

- Proof that IPareto implies Ileximax. This proof can be done in the same manner as

IPareto(X,Z, Y )⇒ Ileximax(X,Z, Y ).

Proof of Proposition 3.12

- Proof that Ileximin implies IPOS . Suppose that not i.e. X and Y are leximin but not

POS-independent then we can distinguish two possible situations (other cases, are obtained

by symmetry):

- Case 1: ∃x, y,∃x′, y′ s.t. x ≥Π x′ and x ∧ y <π x′ ∧ y
Since leximin-independence is respected, x ∧ y <π x′ ∧ y
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⇒

 min(x, y) <Π min(x′, y) or

min(x, y) =Π min(x′, y) and max(x, y) <Π max(x′, y)

⇒ x <Π x′. Hence contradiction.

- Case 2: ∃x, y,∃x′, y′ s.t. x >Π x′ and x ∧ y ≤π x′ ∧ y
Since leximin-independence is respected x ∧ y ≤π x′ ∧ y
⇒ min(x, y) ≤Π min(x′, y) and max(x, y) ≤Π max(x′, y)

⇒ x ≤Π x′. Hence contradiction.

Proof of Proposition 3.13

- Proof that IPOS is equivalent to Ileximin in the binary case. The leximin-

independence implies POS-independence in the general case (see Proposition 3.11). Thus, it is

enough to prove that POS-independence implies leximin-independence in the binary case.i.e.,

A and B are POS but not leximin-independent i.e. ∃a, b,∃a′, b′ s.t.
(i) a∧ b >π a′∧ b′ but the relation a∧ b >leximin a′∧ b′ is false. This may happen in two cases:

- Case 1: min(a, b) <Π min(a′, b′) ⇒ min(a, b) <Π a′ and min(a, b) <Π b′

Suppose that a ≤Π b then we have a <Π a′ and a <Π b′

From the POS-independence, a <Π a′ implies:

(ii) a ∧ b <π a′ ∧ b and (iii) a ∧ b′ <π a′ ∧ b′

From (i),(ii) and (iii) we have a ∧ b′ <π a′ ∧ b′ <π a ∧ b <π a′ ∧ b
which contradicts a <π b

′.

- Case 2: min(a, b) =Π min(a′, b′) and max(a, b) ≤Π max(a′, b′)

Suppose that a ≤Π b then we have a =Π min(a′, b′) and b ≤Π max(a′, b′)

Suppose now that a′ ≤Π b′ then we have a =Π a′ and b ≤Π b′.

From the POS-independence, b ≤Π b′ implies:

(ii) a ∧ b ≤π a ∧ b′ and (iii) a′ ∧ b ≤π a′ ∧ b′

From (i),(ii) and (iii) we have a′ ∧ b ≤π a′ ∧ b′ <π a ∧ b ≤π a ∧ b′

which contradicts a =Π a′.

- Proof that IPOS is equivalent to Ileximax in the binary case. This can be done in

the same manner as IPOS is equivalent to Ileximin.

Proof of Proposition 3.14

- Proof that IPOS is equivalent to Ileximin if we have two-levels distributions.

The leximin-independence implies POS-independence in the general case (see Proposition 3.11).

Thus, it is enough to prove that POS-independence implies leximin-independence. Suppose

that A and B are POS but not leximin-independent i.e. ∃a, a′, ∃b, b′ s.t. (i) a ∧ b >π a′ ∧ b′

but the relation a ∧ b >leximin a′ ∧ b′ is false. This may happen in two cases:
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- Case 1: min(a, b) <Π min(a′, b′) ⇒ min(a, b) <Π a′ and min(a, b) <Π b′

Suppose that a ≤Π b then from Case 1 of the previous proof, we have

a ∧ b′ <π a′ ∧ b′ <π a ∧ b <π a′ ∧ b which contradicts the fact that the distributions have only

two levels.

- Case 2: min(a, b) =Π min(a′, b′) and max(a, b) ≤Π max(a′, b′)

Suppose that a ≤Π b then we have a =Π min(a′, b′) and b ≤Π max(a′, b′)

Suppose now that a′ ≤Π b′ then we have a =Π a′ and b ≤Π b′.

From the POS-independence, a =Π a′ and b ≤Π b′ imply respectively:

a ∧ b =π a
′ ∧ b and a ∧ b′ =π a

′ ∧ b′

a ∧ b ≤π a ∧ b′ and a′ ∧ b ≤π a′ ∧ b′

Moreover, from (i) we deduce that a∧ b is among the top elements (i.e. Acc(a∧ b) = 1) since

we have two-levels distributions. Thus a ∧ b =π a ∧ b′ =π a
′ ∧ b′.

Hence contradiction.

- Proof that IPOS is equivalent to Ileximax if we have two-levels distributions.

This can be done in the same manner as IPOS is equivalent to Ileximin.

Proof of Proposition 3.15 We need to prove that

(a) Π(x ∧ y |m z) = min(Π(x |m z),Π(y |m z)),∀xyz
⇔ (b) Π(x ∧ y ∧ z) = min(Π(x ∧ z),Π(y ∧ z)), ∀xyz.
Firstly we prove that (a)⇒ (b). Assume that (a) is true, then this means we have two cases:

- Case 1: Π(x |m z) < Π(y |m z)⇒ Π(x ∧ y |m z) = Π(x |m z)

(resp. Π(x |m z) > Π(y |m z)⇒ Π(x ∧ y |m z) = Π(y |m z))

⇒ Π(x ∧ y |m z) = Π(x |m z) < 1 (otherwise if Π(x |m z) = 1 we will have a contradiction

with Π(x |m z) < Π(y |m z))

⇒ (i) Π(x ∧ y |m z) = Π(x |m z) = Π(x ∧ y ∧ z) = Π(x ∧ z) < Π(z)

Moreover, we have by de�nition Π(y ∧ z) ≤ Π(z), then:

• if (i1) Π(y ∧ z) = Π(z) then (i) + (i1) ⇒ Π(x ∧ z) < Π(y ∧ z) = Π(z)

⇒ Π(x ∧ y ∧ z) = Π(x ∧ z) < Π(y ∧ z),

• if (i2) Π(y ∧ z) < Π(z)⇒ Π(y |m z) = Π(y ∧ z)
and we have by assumption Π(x |m z) < Π(y |m z), thus

(i) + (i2) ⇒ Π(x ∧ z) < Π(y ∧ z)
⇒ Π(x ∧ y ∧ z) = Π(x ∧ z) < Π(y ∧ z)

- Case 2: Π(x |m z) = Π(y |m z)⇒ (i) Π(x ∧ y |m z) = Π(x |m z) = Π(y |m z)

Moreover, we have by de�nition Π(x ∧ y |m z) = 1 or Π(x ∧ y ∧ z), then:
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• if (i1) Π(x ∧ y |m z) = 1 then (i)+(i1) ⇒ Π(x ∧ y |m z) = Π(x |m z) = Π(y |m z) = 1

⇒ Π(x ∧ y ∧ z) = Π(x ∧ z) = Π(y ∧ z) = Π(z),

• if (i2) Π(x ∧ y |m z) = Π(x ∧ y ∧ z)
(i)+(i2) ⇒ Π(x ∧ y |m z) = Π(x |m z) = Π(y |m z) = Π(x ∧ y ∧ z) = Π(x ∧ z) =

Π(y ∧ z) < Π(z)

We now prove that (b)⇒ (a), assume that (b) is true, this again corresponds to two possible

cases:

- Case 1: Π(x ∧ z) < Π(y ∧ z)⇒ (i) Π(x ∧ y ∧ z) = Π(x ∧ z)
(resp. Π(x ∧ z) > Π(y ∧ z)⇒ Π(x ∧ y ∧ z) = Π(y ∧ z))

Moreover, we have by de�nition Π(x ∧ z) ≤ Π(z), then:

• if (i1) Π(x ∧ z) = Π(z) then (i) + (i1) ⇒ Π(x ∧ y ∧ z) = Π(x ∧ z) = Π(z)

⇒ Π(x ∧ y |m z) = Π(x |m z) = 1

Moreover, Π(y ∧ z) = Π(z)

(since Π(x ∧ y ∧ z) ≤ Π(x ∧ z) ≤ Π(z) by de�nition and Π(x ∧ y ∧ z) = Π(z) from (i)

and (i1))

⇒ Π(y |m z) = 1

⇒ Π(x ∧ y |m z) = Π(x |m z) = Π(y |m z) = 1,

• if (i2) Π(x ∧ z) < Π(z) then (i) + (i2) ⇒ Π(x ∧ y ∧ z) = Π(x ∧ z) < Π(z)

⇒ Π(x ∧ y |m z) = Π(x ∧ y ∧ z) and Π(x |m z) = Π(x ∧ z)
thus Π(x ∧ y |m z) = Π(x |m z) (since Π(x ∧ y ∧ z) = Π(x ∧ z))
Moreover, Π(y ∧ z) ≤ Π(y |m z) (by de�nition)

and we have by assumption Π(x ∧ z) < Π(y ∧ z), thus
Π(x ∧ z) < Π(y ∧ z) ≤ Π(y |m z)

thus Π(x ∧ y |m z) = Π(x |m z) < Π(y |m z)

- Case 2: Π(x ∧ z) = Π(y ∧ z)⇒ (i) Π(x ∧ y ∧ z) = Π(x ∧ z) = Π(y ∧ z).
Moreover, we have by de�nition Π(x ∧ y ∧ z) ≤ Π(z), then:

• if (i1) Π(x ∧ y ∧ z) < Π(z) then (i)+(i1) ⇒ Π(x ∧ z) = Π(y ∧ z) < Π(z)

thus Π(x ∧ y |m z) = Π(x ∧ y ∧ z)Π(x |m z) = Π(x ∧ z) and
Π(y |m z) = Π(y ∧ z)
⇒ Π(x ∧ y |m z) = Π(x |m z) = Π(y |m z) (from (i))

• if (i2) Π(x ∧ y ∧ z) = Π(z) then (i)+(i2) ⇒ Π(x ∧ z) = Π(y ∧ z) = Π(z)

⇒ Π(x ∧ y |m z) = Π(x |m z) = Π(y |m z) = 1.
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Proof of Proposition 3.16 We want to prove that IMS implies IProd. Suppose that ∃x,∃y,
such that (i) Π(x ∧ y) 6= Π(x) ·Π(y).

Suppose that the distribution on X is uniform (from Proposition 3.19), then Π(x) = 1, thus

Π(x ∧ y) < 1 (since Π(x ∧ y) < Π(y)). Hence, Π(y | x) = Π(x ∧ y).

Moreover Π(y | x) = Π(y) since X and Y are MS-independent.

Hence contradiction.

Proof of Proposition 3.17We want to prove that the non-interactivity relation (see (3.14))

can be de�ned in a purely relational setting. The proof is immediate X and Y are NI-

independent means Π(x∧ y ∧ z) = min(Π(x∧ y),Π(x∧ z)). Namely, Π(x∧ y ∧ z) = Π(x∧ y)

or Π(x ∧ y ∧ z) = Π(y ∧ z) which is equivalent to: x ∧ y ∧ z =Π x ∧ y or x ∧ y ∧ z =Π y ∧ z
(since if ω ≥π ω′ i� π(ω) ≥ π(ω′) then φ ≥Π ψ′ i� Π(φ) ≥ Π(ψ′)).

Proof of Proposition 3.18 It is obvious that if X and Y are MS-independent then they are

Pareto-independent from Propositions 3.10 and the fact that MS-independence implies that

one of the local plausibility relations on DX or DY should be uniform.

We now prove that if X and Y are Pareto-independent then they are MS-independent in π.

Suppose that ∃x,∃y, such that Π(x | y) 6= Π(x), then we can distinguish two cases:

- Case 1: Π(x) = 1 ⇒ Π(x | y) < 1

⇒

 Π(x ∧ y) < Π(y) (conditioning de�nition) and

Π(x ∧ y) < Π(x) (indeed Π(x | y) = Π(x ∧ y) < 1 = Π(x))

⇒ ∃x′,∃y′, s.t. Π(x ∧ y) < Π(x′ ∧ y) and Π(x ∧ y) < Π(x ∧ y′)
⇒ ∃x′,∃y′, s.t. x ∧ y <π x′ ∧ y and x ∧ y <π x ∧ y′

Since the plausibility relation ≥π is Pareto-decomposable, ∃x′,∃y′, s.t. x <Π x′ and y <Π y′

which contradicts proposition 3.10.

- Case 2: Π(x) 6= 1, then the two possible situations are:

• Π(x | y) = 1

⇒ Π(x ∧ y) = Π(y) (conditioning de�nition)

⇒ ∀x′,Π(x ∧ y) ≥ Π(x′ ∧ y).

⇒ ∀x′, x ∧ y ≥π x′ ∧ y.
Since the plausibility relation ≥π is Pareto-decomposable, we have ∀x′, x ≥Π x′ thus x

is the top element. However, from Π(x) < 1 we deduce that x is not the top element.

Hence contradiction.

• Π(x | y) 6= Π(x) < 1
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⇒


Π(x ∧ y) < Π(y) (conditioning de�nition) and

Π(x ∧ y) < Π(x) (indeed we have by de�nition Π(x ∧ y) ≤ Π(x)

moreover Π(x | y) = Π(x ∧ y) 6= Π(x))

⇒ ∃x′,∃y′, s.t. Π(x ∧ y) < Π(x′ ∧ y) and Π(x ∧ y) < Π(x ∧ y′)
⇒ ∃x′,∃y′, s.t. x ∧ y <π x′ ∧ y and x ∧ y <π x ∧ y′

Since the plausibility relation≥π is Pareto-decomposable, ∃x′,∃y′, s.t. x <Π x′ and y <Π

y′ which contradicts proposition 3.10.

Proof of Proposition 3.19 We want to prove that X and Y are MS-independent in a pos-

sibility distribution π if and only if they are Pareto-independent in its associated plausibility

relation ≥π. We �rstly prove that given a plausibility relation π, then if X and Y are Pareto-

independent in its associated plausibility relation ≥π then they are MS-independent in π.

Suppose that ∃x,∃y, such that Π(x | y) 6= Π(x). Since Π(x) ∈ [0, 1] we can distinguish two

cases:

- Case 1: Π(x) = 1 ⇒ Π(x | y) < 1

⇒

 Π(x ∧ y) < Π(y) (conditioning de�nition) and

Π(x ∧ y) < Π(x) (indeed Π(x | y) = Π(x ∧ y) < 1 = Π(x))

⇒ ∃x′, ∃y′, s.t.

 Π(x ∧ y) < Π(x′ ∧ y) and

Π(x ∧ y) < Π(x ∧ y′)

⇒ ∃x′, ∃y′, s.t.

 x ∧ y <π x′ ∧ y and

x ∧ y <π x ∧ y′

Since the plausibility relation ≥π is Pareto-decomposable, ∃x′, ∃y′, s.t. x <Π x′ and y <Π

y′ which contradicts proposition 3.10.

- Case 2: Π(x) 6= 1, then the two possible situations are:

• Π(x | y) = 1

⇒ Π(x ∧ y) = Π(y) (conditioning de�nition)

⇒ ∀x′,Π(x ∧ y) ≥ Π(x′ ∧ y).

⇒ ∀x′, x ∧ y ≥π x′ ∧ y.
Since the plausibility relation ≥π is Pareto-decomposable, we have ∀x′, x ≥Π x′ thus x

is the top element. However, from Π(x) < 1 we deduce that x is not the top element.

Hence contradiction.

• Π(x | y) 6= Π(x) < 1
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⇒


Π(x ∧ y) < Π(y) (conditioning de�nition) and

Π(x ∧ y) < Π(x) (indeed we have by de�nition Π(x ∧ y) ≤ Π(x)

moreover Π(x | y) = Π(x ∧ y) 6= Π(x))

⇒ ∃x′,∃y′, s.t.

 Π(x ∧ y) < Π(x′ ∧ y) and

Π(x ∧ y) < Π(x ∧ y′)

⇒ ∃x′,∃y′, s.t.

 x ∧ y <π x′ ∧ y and

x ∧ y <π x ∧ y′

Since the plausibility relation≥π is Pareto-decomposable, ∃x′, ∃y′, s.t. x <Π x′ and y <Π

y′ which contradicts proposition 3.10.

We now prove that if X and Y are MS-independent in a possibility distribution π then

they are Pareto-independent in its associated plausibility relation ≥π . Suppose that
(a) ∃x, y,∃x′, y′ s.t. x ∧ y ≥π x′ ∧ y′ but x <Π x′. Since MS is respected, we have: Π(x | y) = Π(x) and

Π(x | y′) = Π(x)

Moreover, from (a) we deduce that x is not the top element i.e. Π(x) < 1, thus: (i) Π(x | y) = Π(x) < 1 and

(ii) Π(x | y′) = Π(x) < 1

Moreover:

• Π(x ∧ y) < Π(y), indeed we have by de�nition Π(x ∧ y) ≤ Π(y) but if Π(x ∧ y) = Π(y)

then Π(x | y) = 1 which contradicts (i).

• Π(x∧y′) < Π(y′), indeed we have by de�nition Π(x∧y′) ≤ Π(y′) but if Π(x∧y′) = Π(y′)

then Π(x | y′) = 1 which contradicts (ii).

Thus (b):

 Π(x ∧ y) = Π(x) < 1 and Π(x ∧ y) < Π(y) and

Π(x ∧ y′) = Π(x) < 1 and Π(x ∧ y′) < Π(y′)

(a) + (b) ⇒ (c): min(Π(y),Π(y′)) > Π(x ∧ y′) = Π(x ∧ y) = Π(x) ≥ Π(x′ ∧ y′).

Moreover we have Π(x′ | y′) = Π(x′) (From MS) and Π(x′ ∧ y′) < Π(y′) (From (c)).

Then we can deduce that Π(x′ ∧ y′) = Π(x′). If we use this relation in (c) we obtain

Π(x) ≥ Π(x′)⇒ x ≥Π x′ which contradicts (a).

Proof of Proposition 3.20 We want to prove that if X and Y are M-independent in a
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possibility distribution π, then they are PO-independent in the plausibility relation induced

by π. Suppose that X and Y are not PO-independent then, we can distinguish two cases:

• ∃x, x′,∃y s.t. x >Π x′ but x ∧ y ≤π x′ ∧ y
⇒ (i) Π(x) > Π(x′) but (ii) Π(x ∧ y) ≤ Π(x′ ∧ y).

Since M-independence is respected, we have Π(x ∧ y) = Π(x) and Π(x′ ∧ y) = Π(x′).

When using these two relations in (ii) we obtain Π(x) ≤ Π(x′) which contradicts (i).

• ∃x, x′,∃y s.t. x =Π x′ but x ∧ y >π x′ ∧ y (or x ∧ y <π x′ ∧ y)
⇒ (i) Π(x) = Π(x′) but (ii) Π(x ∧ y) > Π(x′ ∧ y) (or Π(x ∧ y) < Π(x′ ∧ y)).

Since M-independence is respected, we have Π(x ∧ y) = Π(x) and Π(x′ ∧ y) = Π(x′).

When using these two relations in (ii) we obtain Π(x) < Π(x′) which contradicts (i).

Proof of Proposition 3.21 We want to prove that if X and Y are Prod-independent in a

strictly positive possibility distribution π, then they are POS-independent in the plausibility

relation induced by π. Suppose that X and Y are not POS-independent then, the possible

situations are:

• ∃x, x′, ∃y s.t. x >Π x′ but x ∧ y ≤π x′ ∧ y
⇒ (i) Π(x) > Π(x′) but (ii) Π(x ∧ y) ≤ Π(x′ ∧ y).

Since Prod-independence is respected, we have:

Π(x ∧ y) = Π(x) ·Π(y), and Π(x′ ∧ y) = Π(x′) ·Π(y).

When using these two relations in (ii) we obtain:

Π(x) ·Π(y) ≤ Π(x′) ·Π(y)

⇒ Π(x) ≤ Π(x′) which contradicts (i).

• ∃x, x′, ∃y s.t. x =Π x′ but x ∧ y >π x′ ∧ y (or x ∧ y <π x′ ∧ y)
⇒ (i) Π(x) = Π(x′) but (ii) Π(x ∧ y) > Π(x′ ∧ y) (or Π(x ∧ y) < Π(x′ ∧ y))

Since Prod-independence is respected, we have:

Π(x ∧ y) = Π(x) ·Π(y), and Π(x′ ∧ y) = Π(x′) ·Π(y).

When using these two relations in (ii) we obtain:

Π(x) ·Π(y) < Π(x′) ·Π(y)

⇒ Π(x) < Π(x′) which contradicts (i).

Proof of Proposition 3.22 We want to prove that if X and Y are NI-independent in a

strictly positive possibility distribution π, then they are PT-independent in the plausibility

relation induced by π.

Suppose X and Y are NI-independent but not PT-independent. More formally, ∃x,∃y s.t. (i)
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Acc(x ∧ y) 6= min(Acc(x),Acc(y)).

Hence Acc(x ∧ y) = −1, Acc(x) = 0, Acc(y) = 0 (from Proposition 2.1 item 3). Hence

π(x ∧ y) < 1,Π(x) = 1,Π(y) = 1. This is impossible since NI-independence implies that

∀x ∈ DX ,∀y ∈ DY , π(x ∧ y) = min(Π(x), π(y)).

B.2 Proofs for graphoid properties

Proof of Proposition 3.23

- Decomposition property for IPO.

We want to prove that IPO(X, ∅, Y ∪W )⇒ IPO(X, ∅, Y ) and IPO(X, ∅,W ).

By symmetry we only prove that IPO(X, ∅, Y ∪W )⇒ IPO(X, ∅, Y ).

Thus, we need to prove that:

if (i) ∀y ∈ DY , ∀w ∈ DW , ∀xi : xj ∈ DX , xi >Π xj i� xi ∧ y ∧ w >π xj ∧ y ∧ w
then (ii) ∀y ∈ DY : ∀xi, xj ∈ DX , xi >Π xj i� xi ∧ y >Π xj ∧ y.

Let us consider two instances xi, xj ∈ DX s.t. xi >Π xj (resp. xi =Π xj)

This implies that ∀y ∈ DY ,∀w ∈ DW , xi∧y∧w >π xj ∧y∧w (resp. xi∧y∧w =π xj ∧y∧w)
(from (i))

⇒ ∀y ∈ DY ,maxwxi ∧ y ∧w >π maxwxj ∧ y ∧w (resp. maxwxi ∧ y ∧w =π maxwxj ∧ y ∧w)
⇒ ∀y ∈ DY , xi ∧ y >Π xj ∧ y (resp. xi ∧ y =Π xj ∧ y).

- Weak union property for IPO.

We want to prove that IPO(X, ∅, Y ∪W )⇒ IPO(X,Y,W ).

Thus, we need to prove that:

if (i) ∀y ∈ DY , ∀w ∈ DW : ∀xi, xj ∈ DX , xi >Π xj i� xi ∧ y ∧ w >π xj ∧ y ∧ w
then (ii) ∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi ∧ y >Π xj ∧ y i� xi ∧ y ∧ w >π xj ∧ y ∧ w.

Let xi, xj ∈ DX , y
′ ∈ DY and w′ ∈ DW s.t.

xi ∧ y′ ∧ w′ >π xj ∧ y′ ∧ w′ (resp. xi ∧ y′ ∧ w′ =π xj ∧ y′ ∧ w′)
This implies that xi >Π xj (resp. xi =Π xj) (from (i))

⇒ ∀y ∈ DY ,∀w ∈ DW , xi ∧ y ∧ w >π xj ∧ y ∧ w (resp. xi ∧ y ∧ w =π xj ∧ y ∧ w) (from (i))

⇒ ∀y ∈ DY ,maxwxi ∧ y ∧w >π maxwxj ∧ y ∧w (resp. maxwxi ∧ y ∧w =π maxwxj ∧ y ∧w)
⇒ ∀y ∈ DY , xi ∧ y >Π xj ∧ y (resp. xi ∧ y =Π xj ∧ y)
⇒ xi ∧ y′ >Π xj ∧ y′ (resp. xi ∧ y′ =Π xj ∧ y′) (when Y takes the particular instance y′)

- Contraction property for IPO.
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We want to prove that IPO(X,Y,W ) and IPO(X, ∅, Y )⇒ IPO(X, ∅, Y ∪W ).

Thus, we need to prove that:

if (i) ∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi ∧ y >Π xj ∧ y i� xi ∧ y ∧w >π xj ∧ y ∧w and (ii)

∀y ∈ DY ,∀xi, xj ∈ DX : xi >Π xj i� xi ∧ y >Π xj ∧ y
then (iii) ∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi >Π xj i� xi ∧ y ∧ w >π xj ∧ y ∧ w.

Let us consider two instances xi, xj ∈ DX s.t. xi >Π xj (resp. xi =Π xj)

This implies that ∀y ∈ DY , xi ∧ y >Π xj ∧ y (resp. xi ∧ y =Π xj ∧ y) (from (ii))

⇒ ∀y ∈ DY , ∀w ∈ DW , xi ∧ y ∧ w >π xj ∧ y ∧ w (resp. xi ∧ y ∧ w =π xj ∧ y ∧ w) (from (i)).

- Intersection property for IPO.

We want to prove that IPO(X,W, Y ) and IPO(X,Y,W )⇒ IPO(X, ∅, Y ∪W ).

Thus we need to prove that:

if (i) ∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi ∧ y ∧w >π xj ∧ y ∧w i� xi ∧w >Π xj ∧w and (ii)

∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi ∧ y ∧ w >π xj ∧ y ∧ w i� xi ∧ y >Π xj ∧ y
then (ii) ∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi ∧ y ∧ w >π xj ∧ y ∧ w i� xi >Π xj

Suppose that ∃x′, x′′ ∈ DX , y
′ ∈ DY , w

′ ∈ DW s.t. x′ >Π x′′ (resp. x′ =Π x′′) while

x′′ ∧ y′ ∧ w′ >π x′ ∧ y′ ∧ w′ (resp. x′ ∧ y′ ∧ w′ 6=π x
′′ ∧ y′ ∧ w′)

⇒ x′′ ∧ y′ >Π x′ ∧ y′ (resp. x′ ∧ y′ 6=π x
′′ ∧ y′) (from (ii))

⇒ ∀w ∈ DW , x
′′ ∧ y′ ∧ w >π x

′ ∧ y′ ∧ w (resp. x′ ∧ y′ ∧ w 6=π x
′′ ∧ y′ ∧ w) (from (ii))

⇒ ∀w ∈ DW , x
′′ ∧ w >Π x′ ∧ w (resp. x′ ∧ w 6=Π x′′ ∧ w ) (from (i))

⇒ maxwx
′′ ∧ w >Π maxwx

′ ∧ w (resp. maxwx
′ ∧ w 6=Π maxwx

′′ ∧ w)
⇒ x′′ >Π x′ (resp. x′ 6=Π x′′)

Hence contradiction.

Proof of Proposition 3.24

Decomposition property for IPOS . We want to prove that

IPOS(X, ∅, Y ∪W )⇒ IPOS(X, ∅, Y ). Thus, we need to prove that if (i1)∀y ∈ DY , ∀w ∈ DW : ∀xi, xj ∈ DX , xi >Π xj i� xi ∧ y ∧ w >π xj ∧ y ∧ w and

(i2)∀x ∈ DX : ∀yk, yl ∈ DY ,∀wm, wn ∈ DW , yk ∧ wm >Π yl ∧ wn i� yk ∧ wm ∧ x >π yl ∧ wn ∧ x

then

 ∀y ∈ DY : ∀xi, xj ∈ DX , xi >π xj i� xi ∧ y >π xj ∧ y, and
∀x ∈ DX : ∀yk, yl ∈ DY , yk >Π yl i� yk ∧ x >π yl ∧ x

Suppose that

∃x′, x′′,∃y′ s.t. (a) x′ >π x′′ and (b) x′ ∧ y′ ≤π x′′ ∧ y′. Then, we have ∀y ∈ DY ,∀w ∈
DW , x

′ ∧ y ∧ w >π x
′′ ∧ y ∧ w(From (a) and (i1))
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⇒ ∀y ∈ DY , x
′ ∧ y >Π x′′ ∧ y (By maximization on W ).

Hence, contradiction with (b) since y′ can take the particular value y.

Suppose now that ∃y′, y′′, ∃x′ s.t. (a) y′ >π y′′ and (b) y′ ∧ x′ ≤π y′′ ∧ x′.
From (a) we can deduce that it exists a particular value w′ of W such that

∀w ∈ DW , y
′ ∧ w′ >π y′′ ∧ w, thus ∀x ∈ DX ,∀w ∈ DW , y

′ ∧ w′ ∧ x >π y′′ ∧ w ∧ x (From (i2))

⇒ y′ ∧ x >Π y′′ ∧ x (since ∀x ∈ DX , y
′ ∧ w′ is more plausible than y′′ ∧ w for any value w of

W including the particular value w'). Hence contradiction with (b).

The proof for IPOS(X,Z,W ) is analogous.

Weak union property for IPOS . We want to prove that IPOS(X, ∅, Y ∪W )⇒ IPOS(X,Y,W ).

Thus, we need to prove that if: (i1)∀y ∈ DY , ∀w ∈ DW : ∀xi, xj ∈ DX , xi >Π xj i� xi ∧ y ∧ w >π xj ∧ y ∧ w and

(i2)∀x ∈ DX : ∀yk, yl ∈ DY , ∀wm, wn ∈ DW , yk ∧ wm >Π yl ∧ wn i� yk ∧ wm ∧ x >π yl ∧ wn ∧ x

then:

 ∀y ∈ DY ,∀w ∈ DW : ∀xi, xj ∈ DX , xi ∧ y >π xj ∧ y i� xi ∧ y ∧ w >π xj ∧ y ∧ w and

∀x ∈ DX ,∀y ∈ DY : ∀wm, wn ∈ DW , wm ∧ y >Π wn ∧ y i� wm ∧ x ∧ y >π wn ∧ x ∧ y
Suppose that ∃x′, x′′, ∃y′, ∃w′ s.t.
(a) x′ ∧ y′ ∧ w′ >π x′′ ∧ y′ ∧ w′ and (b) x′ ∧ y′ ≤π x′′ ∧ y′.
Then, we have x′ >Π x′′ (From (a) and (i1))

⇒ ∀w ∈ DW , x
′ ∧ y′ ∧ w >π x

′′ ∧ y′ ∧ w (From (i1))

⇒ x′ ∧ y′ >π x′′ ∧ y′ ((By maximization on W).) which contradicts (b).

Suppose now that ∃w′, w′′, ∃x′, ∃y′, s.t.
(a) w′ ∧ y′ >π w′′ ∧ y′ and (b) w′ ∧ x′ ∧ y′ ≤π w′′ ∧ x′ ∧ y′

then, we have y′ ∧ w′ >Π y′ ∧ w′′ (From (a))

⇒ y′ ∧ w′ ∧ x′ >π y′ ∧ w′′ ∧ x′(From (i2))

⇒ x′ ∧ y′ ∧ w′ >π x′ ∧ y′ ∧ w′′

Moreover x′ ∧ y′ ∧ w′ ≤ _πx′ ∧ y′ ∧ w′′ (From (b)), hence contradiction.

Proof of Proposition 3.25

- Decomposition property for Ileximax.

We want to prove that Ileximax(X, ∅, Y ∪W )⇒ Ileximax(X, ∅, Y ) and Ileximax(X, ∅,W ).

By symmetry we only prove that if (i) Ileximax(X, ∅, Y ∪W ) is true then (ii) Ileximax(X, ∅, Y )

is true.

Suppose that Ileximax(X, ∅, Y ∪W ) is true but not Ileximax(X, ∅, Y ).

Let us consider the two cases where Ileximax(X, ∅, Y ) is falsi�ed:

Case 1: ∃x, x′ ∈ DX ,∃y, y′ ∈ DY s.t. (a) x ∧ y >Π x′ ∧ y′ but
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(i1) max(x, y) <Π max(x′, y′) or

(i2) max(x, y) =Π max(x′, y′) and min(x, y) ≤Π min(x′, y′)

By de�nition we have x ∧ y =Π maxwx ∧ y ∧ w and x′ ∧ y′ =Π maxwx
′ ∧ y′ ∧ w

Let wi be one of the instances of W which maximizes x ∧ y and wj be one of the instances of
W which maximizes x′ ∧ y′, then:
x ∧ y =Π x ∧ y ∧ wi and x′ ∧ y′ =Π x′ ∧ y′ ∧ wj

From (a) we have x ∧ y ∧ wi >π x′ ∧ y′ ∧ wj then from (i) this relation implies:

(ii1) max(x, y ∧ wi) >Π max(x′, y′ ∧ wj) or
(ii2) max(x, y ∧ wi) =Π max(x′, y′ ∧ wj) and min(x, y ∧ wi) >Π min(x′, y′ ∧ wj)

Then it is enough to show that y ∧ wi =Π y and y′ ∧ wj =Π y′ in order to prove that

(i1) and (i2) contradict (ii1) and (ii2).

Let us prove that y ∧ wi =Π y (the proof of y′ ∧ wj =Π y′ is analogous).

By de�nition we have : (b) y =Π maxwy ∧ w =Π max(y ∧ wi,maxw′i 6=wiy ∧ w
′
i)

Moreover wi maximizes x ∧ y then ∀w′i ∈ DW s.t. w′i 6=Π wi:

x ∧ y ∧ wi ≥π x ∧ y ∧ w′i. Then,

• if x ∧ y ∧ wi >π x ∧ y ∧ w′i, then from (i), we can distinguish two cases:

� max(x, y ∧ wi) >Π max(x, y ∧ w′i)
⇒ max(x, y ∧ wi) >Π x and max(x, y ∧ wi) >Π y ∧ w′i
⇒ y ∧ wi >Π x (otherwise x >Π x)

⇒ y ∧ wi >Π y ∧ w′i

� max(x, y ∧ wi) =Π max(x, y ∧ w′i) and min(x, y ∧ wi) >Π min(x, y ∧ w′i)
⇒ min(x, y ∧ w′i) <Π x and min(x, y ∧ w′i) <Π y ∧ wi
⇒ y ∧ w′i <Π x (otherwise x <Π x)

⇒ y ∧ wi >Π y ∧ w′i

• if x ∧ y ∧ wi =π x
′ ∧ y′ ∧ w′i, then from (i) we deduce that:

max(x, y ∧ wi) =Π max(x, y ∧ w′i) and min(x, y ∧ wi) =Π min(x, y ∧ w′i)
⇒ y ∧ wi =Π y ∧ w′i

Thus, it is clear that ∀w′i 6= wi, y ∧wi ≥Π y ∧w′i, so from (b) we deduce that y =Π y ∧wi.
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Case 2: ∃x, x′ ∈ DX ,∃y, y′ ∈ DY s.t. (b) x ∧ y =Π x′ ∧ y′ but
(i1) max(x, y) 6=Π max(x′, y′) or (i2) min(x, y) 6=Π min(x′, y′)

From (b) we have x ∧ y ∧ wi =π x
′ ∧ y′ ∧ wj where wi is one of the instances of W which

maximizes x ∧ y and wj is one of the instances of W which maximizes x′ ∧ y′.
From (i), x ∧ y ∧ wi =π x

′ ∧ y′ ∧ wj implies:

(ii1) max(x, y ∧ wi) =Π max(x′, y′ ∧ wj) and (ii2) min(x, y ∧ wi) =Π min(x′, y′ ∧ wj).
Moreover, we have shown above that y ∧ wi =Π y and that y′ ∧ wj =Π y′ then (i1) and (i2)

contradict (ii1) and (ii2).



Appendix C

Proofs of Chapter 5

C.1 Proofs relative to product-based possibilistic networks

Proof of Proposition 5.1 Let πp be the global joint possibility distribution of ΠGp com-

puted using (5.1). Let Π(a | uA) be the conditional distribution given by the expert on the

node A and Πp(a | uA) be the conditional possibility computed from πp. We want to prove

that, Πp(a | uA) = Π(a | uA). For any node A ∈ V , let:
- uA be a possible instantiation of the parent set UA,

- xA be a possible instantiation of the descendants set XA,

- yA be a possible instantiation of the children set YA,

- zA be a possible instantiation of the non-descendants set ZA.

Note that for each T ∈ V \ (XA ∪ A), we satisfy UT ∩ (XA ∪ A) = ∅. Indeed, if there is
Z ∈ UT ∩ (XA ∪A), then this simply means that the variable T is also a descendant of A and

hence contradicts the fact that T ∈ V \XA. Then using the product-based chain rule (5.1),

we have:

Πp(a ∧ uA) = maxxA,zA{πp(a ∧ zA ∧ xA ∧ uA)}
= maxxA,zA{Π(a | uA) ·

∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA} ·

∏
{Π(e | uE) :

e ∈ xA, uE ⊆ a ∧ xA}} (Note that uB ∩ (xA ∧ a) = ∅ due to the above remark)

= Π(a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}} ·maxxA{

∏
{Π(e | uE) :

e ∈ xA, uE ⊆ a ∧ xA}}

From Lemma 5.1, we have maxxA{
∏
{Π(e | uE) : e ∈ xA, uE ⊆ a ∧ xA}} = 1

(since (a ∧ xA) ∈ ((a ∧ uA ∧ zA) ∧ xA)) , then:

(i) Πp(a ∧ uA) = Π(a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}}

= Π(a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}} ·max(Π(a | uA),
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Π(¬a | uA)) (since max(Π(a | uA),Π(¬a | uA)) = 1)

= Π(a | uA) ·max[

Π(a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}},

Π(¬a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}}]

= Π(a | uA) ·max[

Π(a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}} ·

maxxA{
∏
{Π(e | uE) : e ∈ xA, uE ⊆ a ∧ xA}},

Π(¬a | uA) ·maxzA{
∏
{Π(b | uB) : b ∈ uA} ·

∏
{Π(c | uC) : c ∈ zA}} ·

maxxA{
∏
{Π(e | uE) : e ∈ xA, uE ⊆ ¬a ∧ xA}}]

(Indeed from Lemma 5.1, we have maxxA{
∏
{Π(e | uE) : e ∈ xA, uE ⊆ a ∧ xA}} = 1, and

maxxA{
∏
{Π(e | uE) : e ∈ xA, uE ⊆ ¬a ∧ xA}} = 1)

= Π(a | uA) ·max[Πp(a ∧ uA),Πp(¬a ∧ uA)] (From (i))

= Π(a | uA) ·Πp(uA)

Then Π(a | uA) =
Πp(a∧uA)

Πp(uA) = Πp(a | uA) since we have by de�nition:

Πp(a | uA) =
Πp(a∧uA)

Πp(uA) .

C.2 Proofs relative to min-based possibilistic networks

Proof of Proposition 5.4 Let πm be the global joint possibility distribution of ΠGm com-

puted using (5.6). Let Π(a | uA) be the conditional distribution given by the expert on the

node A and Πm(a | uA) be the conditional possibility computed from πm. We want to prove

that:

either Πm(a | uA) = Π(a | uA) or Πm(a | uA) = 1.

Moreover if Πm(a | uA) = 1 6= Π(a | uA), then Π(a | uA) > Πm(uA)

Let:

- a be a �xed instance of A, and ¬a = DA − {a}
- uA be a possible instantiation of the parent set UA,

- xA be a possible instantiation of the descendants set XA,

- zA be a possible instantiation of the non-descendants set ZA,

- α1 = Π(a | uA),

- α2 = Π(¬a | uA),

- β1 = min{Π(b | uB) : b ∈ uA, uB ⊆ zA},
- γ1 = min{Π(c | uC) : c ∈ zA},
- δ1 = min{Π(e | uE) : e ∈ xA, uE ⊆ a ∧ xA ∧ uA ∧ zA},
- δ2 = min{Π(e | uE) : e ∈ xA, uE ⊆ ¬a ∧ xA ∧ uA ∧ zA}.
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Then using the min-based chain rule (5.6), we have:

Πm(a ∧ uA) = maxxA,zA πm(a ∧ uA ∧ zA ∧ xA)

= maxxA,zAmin(α1, β1, γ1, δ1) (from 5.6)

= maxzAmin(α1, β1, γ1,maxxA δ1)

= (i) min[α1,maxzAmin(β1, γ1,maxxA δ1)]

= min[α1,maxzAmin(β1, γ1)] (from Lemma 5.2)

= min[α1,Max{min[α1,maxzAmin(β1, γ1)],min[α2,maxzAmin(β1, γ1)]}]
(since max(α1, α2) = 1 from the normalization condition)

= min[α1,Max{min[α1,maxzAmin(β1, γ1,maxxA δ1)],min[α2,maxzAmin(β1, γ1,maxxA δ2)]}]
(from Lemma 5.2)

= min[α1,Max{Πm(a ∧ uA),Πm(¬a ∧ uA)}] (from (i))

= min[α1,Πm(uA)] (by de�nition)

= min[Π(a | uA),Πm(uA)] (by recovering the value of α1)

Then, we can distinguish two cases:

• Π(a | uA) = 1⇒ Πm(a ∧ uA) = Πm(uA)

hence using the de�nition of conditioning, we get Πm(a | uA) = 1

• Π(a | uA) = α < 1⇒ Πm(a ∧ uA) = min(α,Πm(uA)) Then,

� if α ≤ Πm(uA) then using the de�nition of conditioning, we get Πm(a | uA) = α

� if α > Πm(uA) then Πm(a ∧ uA) = Πm(uA)

hence using the de�nition of conditioning, we get Πm(a | uA) = 1

Note that the only case where the conditional value is not recovered is where α > Πm(uA).

Proof of Proposition 5.5 Let A ∈ V be a variable in ΠGm s.t. Πm(a | uA) 6= Π(a | uA). Let

π′m be a new joint distribution obtained from ΠGm by only substituting the value Π(a | uA)

by the degree 1. We want to prove that π′m = πm.

Let V ′ ⊆ V s.t. ∀Aj ∈ V ′, Π(aj | uAj ) < 1 and (i) Π(aj | uAj ) > Πm(uAj ). Then it is

enough to show that for any variable Aj ∈ V ′: πm(v) = minNi=1,i 6=j Π(ai | uAi).
Let d = (A1, ..., AN ) be an ordering of the variables in V such that ∀Ai, UAi ⊆ {Ai+1, ..., AN}

and let Aj be any node in V'. We �rst prove that:

(ii) Πm(aj+1, ..., aN ) = mini=j+1..N Π(ai | uAi)
Indeed, we have by de�nition:

Πm(aj+1, ..., aN ) = maxa1..aj mini=1..N Π(ai | uAi)
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= maxa1..aj min(mini=1..j Π(ai | uAi),mink=j+1..N Π(ak | uAk))

= min(maxa1..aj mini=1..j Π(ai | uAi),mink=j+1..N Π(ak | uAk))

= mini=j+1..N Π(ai | uAi) (since maxa1..aj mini=1..j Π(ai | uAi) = 1 from Lemma 5.2)

Moreover, UAj ⊆ {Aj+1, ..., AN} implies : (iii) Πm(uAj ) ≥ Πm(aj+1, ..., aN ).

Then from (i), (ii) and (iii) we deduce that: Π(aj | uAj ) > mini=j+1..N Π(ai | uAi).
Moreover, from the min-based chain rule, we have

πm(v) = min(Π(a1 | uA1), ...,Π(aj | uAj ), ...,Π(aN | uAN )) thus,

πm(v) = mini=1..N,i6=j Π(ai | uAi). This means that Π(aj | uAj ) does not intervene in the

value of πm(v) and that we can substitute it by the degree 1.

Proof of Proposition 5.6 Let ΠGm be a min-based possibilistic network. Let πm be the joint

possibility distribution computed using 5.6. We want to prove that each variable A ∈ V , is
NI-independent of the variables in ZA given its parent set UA i.e. ∀a ∈ DA, ∀uA ∈ DUA ,∀zA ∈
DZA : Πm(a ∧ uA | zA) = min(Πm(a | uA),Πm(uA | zA)).

Let:

- a be a �xed instance of A, and ¬a = DA − {a}
- uA be a possible instantiation of the parent set UA,

- xA be a possible instantiation of the descendants set XA,

- zA be a possible instantiation of the non-descendants set ZA,

- α1 = Π(a | uA),

- α2 = Π(¬a | uA),

- β1 = min{Π(b | uB) : b ∈ uA, uB ⊆ zA},
- γ1 = min{Π(c | uC) : c ∈ zA},
- δ1 = min{Π(e | uE) : e ∈ xA, uE ⊆ a ∧ xA ∧ uA ∧ zA},
- δ2 = min{Π(e | uE) : e ∈ xA, uE ⊆ ¬a ∧ xA ∧ uA ∧ zA}.

We �rst show that (i) Πm(a ∧ zA ∧ uA) = min(Π(a | uA),Πm(zA | uA))

We have by de�nition : Πm(a ∧ zA ∧ uA) = maxxAπm(a ∧ uA ∧ zA ∧ xA)

= maxxAmin(α1, β1, γ1, δ1) (From 5.6)

= (ii) min(α1, β1, γ1,maxxAδ1)

= min[α1, β1, γ1] (from Lemma 5.2)

= min[α1,Max{min[α1, β1, γ1],min[α2, β1, γ1]}]
(since max(α1, α2) = 1 from the normalization condition)

= min[α1,Max{min[α1, β1, γ1,maxxAδ1],min[α2, β1, γ1,maxxAδ2]}] (from Lemma 5.2)

= min[α1,Max{Πm(a ∧ uA ∧ zA),Πm(¬a ∧ uA,∧zA)}] (from (ii))
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= min[α1,Πm(zA ∧ uA)] (by de�nition)

= min[Π(a | uA),Πm(zA ∧ uA)] (by recovering the value of α1)

Our aim is to prove that (iii) Πm(a ∧ zA | uA) = min(Πm(a | uA),Πm(zA | uA)).

Then, we can distinguish two cases:

- Case (a): Π(a ∧ zA | uA) = 1

⇒ Πm(a ∧ zA ∧ uA) = Πm(uA) (from the conditioning de�nition)

⇒ Πm(zA ∧ uA) = Πm(uA) and Πm(a ∧ uA) = Πm(uA)

(since Πm(a ∧ zA ∧ uA) ≥ Πm(zA ∧ uA) and Πm(a ∧ zA ∧ uA) ≥ Πm(a ∧ uA))

⇒ Πm(a | uA) = Πm(zA | uA) = 1 (from the conditioning de�nition).

- Case (b): Π(a ∧ zA | uA) 6= 1

⇒ Πm(a ∧ zA | uA) = Πm(a ∧ zA ∧ uA) < Πm(uA) (from the conditioning de�nition)

Then, using (i) the expression (iii) is equivalent to :

(iv) min(Πm(a | uA),Πm(zA | uA)) = min(Π(a | uA),Πm(zA | uA)).

To show (iv), we can distinguish two cases:

• Πm(zA | uA) 6= 1

⇒ Πm(zA ∧ uA) = Πm(zA | uA) (from the conditioning de�nition). Then,

� if Πm(a | uA) = Π(a | uA) then the equality (iv) holds

� if Πm(a | uA) 6= Π(a | uA)

⇒ Πm(a | uA) = 1 and Π(a | uA) > Πm(uA) ≥ Πm(zA∧uA) (from Proposition 5.4)

Hence the equality (iv) holds.

• Πm(zA | uA) = 1

⇒ Πm(zA ∧ uA) = Πm(uA) (from the conditioning de�nition)

In this case the expression (iv) is equivalent to :

(v) Πm(a | uA) = min(Π(a | uA),Πm(zA | uA))

Moreover, we have min(Π(a | uA)) = Πm(a ∧ zA ∧ uA) < 1 (from (i) and (b))

Then Πm(a | uA) < 1

⇒ Πm(a | uA) = Π(a | uA) < Πm(uA) (from the conditioning de�nition)

Hence the equality (v) holds.
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Appendix D

Proofs of Chapter 6

Proofs relative to product-based possibilistic networks

Proof of Proposition 6.1 We want to prove that if a junction tree is globally consistent,

then for each cluster Ci, πCi = Πp(Ci). This relation is true if the juntion tree contains a

unique node. Suppose now that it is true for a junction tree with n nodes, thus we show that

it is also true with (n+1) nodes.

Let Ci be a leaf of J T connected to the cluster Cj and let Sij be their separator (see �gure

D.1). Let J T ′ = J T \ Ci and V ′ be the universe relative to the junction tree J T ′.

Figure D.1: Ci is a leaf of the J T linked to Cj

We have (i) πJT = πJT ′ .
πCi
πSij

(from 6.6)

Let D = Ci\Sij and H = Cj \Sij , then from the junction tree property: D∩V ′ = ∅ (other-
wise Ci is connected to an other cluster in J T ′ i.e J T ′ ∩Ci 6= ∅ which contradicts J T ′ = J T \
Ci). Since the junction tree J T is consistent, then maxDπCi = maxHπCj = πSij , thus:

maxDπJT

= maxD(πJT ′ ·
πCi
πSij

) (from (i))

= πJT ′ .
maxDπCi
πSij

(since D ∩ V ′ = ∅)

= πJT ′ .
πSij
πSij

(from consistency property)

= πJT ′

Thus πJT ′ corresponds to the joint distribution relative to J T ′. Then from the induction
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hypothesis we have, (ii) maxV \CkπJT = πCk , for all CK ∈ J T ′.
Moreover, maxV \CiπJT

= maxV ′\Sij (πJT ′ .
πCi
πSij

) (since V \ Ci = V ′ \ Sij)

= maxV ′\SijπJT ′ .
πCi
πSij

(since Ci ∩ (V ′ \ Sij) = ∅)

Moreover, Cj ∈ J T ′ then from (ii) we obtain, maxV \CjπJT = πCj , thus πCj corresponds

to the local distribution on Cj . In addition, the marginalization of πJT ′ on V
′ \ Sij is equiv-

alent to the marginalization of πCj on Sij , since Sij only exists in Cj i.e.

maxV ′\SijπJT ′ = maxCj\SijπCj . This implies that:

maxV ′\SijπJT ′ ·
πCi
πSij

= maxCj\SijπCj .
πCi
πSij

= πSij ·
πCi
πSij

(from consistency property)

= πCi .

Proof of Proposition 6.2 Let ΠGp be a min-based possibilistic network. Let J T be the

junction tree corresponding to ΠGp generated by the above initialization procedure. Let πp

be the joint distribution encoded by ΠGp and π
I
JT be the joint distribution encoded by J T

(using (6.6)). We want to prove that πp = πIJT . We have:

πIJT =

∏
i=1..m

πCi∏
j=1..m−1

πSij

=

∏
i=1..N

Π(Ai|UAi )
1 (from initialization procedure)

= πp.

Proof of Proposition 6.3 Let πtJT be the joint distribution relative to a junction tree

J T at level t. Let πt+1
JT be the resulted joint distribution after the modi�cation of a cluster

Ci using the above procedure. We want to prove that πtJT = πt+1
JT .

When a cluster Ci sends a message to a cluster Cj , then only the potentials of Cj and Sij

are changed. Therefore, to show this proof it is enough to prove that the fraction of Cj 's and

Sij 's potentials remains unchanged i.e
πt+1
Cj

πt+1
Sij

=
πtCj
πtSij

.

Using (6.13) we have:
πt+1
Cj

πt+1
Sij

=

πtCj
.
πt+1
Sij

πt
Sij

πt+1
Sij

=
πtCj
πtSij

.

Proof of Proposition 6.5We want to prove that the collect and distribute phase are enough

to make the junction tree globally consistent. This is equivalent to show that the link between
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any two adjacent clusters Ci and Cj becomes consistent after the collect and distribute evi-

dence phases.

We denote π′Ci (resp. π′Sij ) the potential of any cluster Ci (resp. separator Sij) in the

collect evidence phase and π
′′
Ci

(resp. π
′′
Sij

) the potential of any cluster Ci (resp. separa-

tor Sij) in the distribute evidence phase. Thus our aim is to show that for any cluster Ci,

π
′′
Ci

= πCCi and for any separator Sij , π
′′
Sij

= πCSij . In other terms we should show that

maxCi\Sij π
′′
Ci

= π
′′
Sij

= maxCj\Sijπ
′′
Cj
.

Let the �rst message to be passed between Ci and Cj (in collect phase) be from Ci to Cj

then π′Sij = maxCi\Sij π
I
Ci
. Next, when in the distribute evidence the message from Cj to Ci

has to be passed, the potentials of Sij and Ci have not been changed. Indeed, Ci has not

received further messages since it sends message to Cj only if it has received messages from

all its other adjacent clusters. Then,

maxCi\Sij π
′′
Ci

= maxCi\Sij (π
′
Ci
·
π
′′
Sij

π′Sij
) (from (6.13))

=
π
′′
Sij

π′Sij
·maxCi\Sij π

′
Ci

=
π
′′
Sij

π′Sij
·π′Sij (since the potentials of Sij and Ci have not been changed after Ci sends a message

to Cj in the collect evidence phase i.e maxCi\Sij π
′
Ci

= π′Sij from (6.11) and (6.12))

= π
′′
Sij

= maxCj\Sij π
′
Cj

(from (6.12))

= maxCj\Sij π
′′
Cj

(from (6.11))

Moreover, in the distribute evidence phase, each node receives only one message, therefore

after receiving the message from Cj , the potential of Ci will not change. Therefore the link

between Ci and Cj is consistent.
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Proofs relative to min-based possibilistic networks

Proof of Proposition 6.6

1: We want to prove that in the context of any node A, the two sets E+
A and E−A are NI-

independent.

Let Y ′ = E−A \ EA. The variables in Y ′ are d-separated from E+
A by A. Indeed, ∀B ∈

E+
A , ∀C ∈ Y ′, the chain between B and C contains A and the arcs which determine that

A is in this chain meet it head to tail (case 2 of d-separation)

⇒ (i) Π(a ∧ e+
A ∧ y′) = min(Π(a ∧ e+

A),Π(a ∧ y′)),∀a.
Moreover, (i) is equivalent to Π(a ∧ e+

A ∧ y′ ∧ eA) = min(Π(a ∧ e+
A),Π(a ∧ y′ ∧ eA)),∀a

⇒ Π(a ∧ e+
A ∧ e

−
A) = min(Π(a ∧ e+

A),Π(a ∧ e−A)), ∀a (since E−A = Y ′ ∪ EA).

2: We want to prove that ∀Yi ∈ Y , A d-separates E−AYi from {E
−
AYi+1

, ..., E−AYm} (see Figure
6.1). This relation corresponds to case 1 of d-separation. Indeed, ∀B ∈ E−AYi ,
∀C ∈ {E−AYi+1

, ..., E−AYm} the chain between B and C contains A and the arcs which

determine that A is in this chain meet it tail to tail.

3: We want to prove that E+
A and A are NI-independent in the context U . Let U ′ = E+

A/U

be the instanciated variables in E+
A except the parent set of A and U ′′ = U ∩ E+

A be

the instanciated parents of A. The variables in U ′ are d-separated from A by the set U

since ∀B ∈ U ′, the chain between B and A contains a node Ui ∈ U and the arcs which

determine that Ui is in this chain meet it head to tail (case 2 of d-separation).

⇒ (i) Π(u′ ∧ a ∧ u) = min(Π(u′ ∧ u),Π(a ∧ u)), ∀a,∀u

• If U ′′ = ∅ then (i) is equivalent to :

Π(e+
A ∧ a ∧ u) = min(Π(e+

A ∧ u),Π(a ∧ u)), ∀a,∀u (since U ′′ = ∅ implies e+
A = U ′)

• If U ′′ 6= ∅ then (i) is equivalent to :

(ii) Π(u′ ∧ a ∧ u) = min(Π(u′ ∧ u),Π(a ∧ u)),∀a,∀u s.t u[U ′′] = e+
A[U ′′]

Let u′′ = u[U ′′], then (ii) is equivalent to:

Π(u′ ∧ a ∧ u ∧ u′′) = min(Π(u′ ∧ u ∧ u′′),Π(a ∧ u)), ∀a,∀u s.t u[U ′′] = e+
A[U ′′]

⇒ Π(e+
A ∧ a ∧ u) = min(Π(e+

A ∧ u),Π(a ∧ u)),∀a,∀u s.t u[U ′′] = e+
A[U ′′]

(since E+
A = U ′ ∪ U ′′)

4: We want to prove that ∀Ui ∈ U,Ui and {Ui+1, ..., Un} are NI-independent in the context

E+
A (see Figure 6.2). Let U'={Ui+1, ..., Un}, U ′′ = E+

A ∩ U ′, U ′′′ = U ′ \ U ′′ then:

• If Ui is not instanciated, then E
+
A d-separates Ui and U

′′′ (case 3 of d-separation

indeed ∀Uj ∈ U ′′′ the chain between Ui and Uj contains A and the arcs which
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determine that A is in this chain meet it head to head, and A 6∈ E+
A and Y 6∈ E+

A )

⇒ Π(ui ∧ u′′′ ∧ e+
A) = min(Π(ui ∧ e+

A),Π(u′′′ ∧ e+
A)), ∀ui, ∀u′′′

⇒ Π(ui ∧ u′′′ ∧ u′′ ∧ e+
A) = min(Π(ui ∧ e+

A),Π(u′′′ ∧ u′′ ∧ e+
A)), ∀ui,∀u′′′ where

u′′ = e+
A[U ′′]

⇒ Π(ui ∧ u′ ∧ e+
A) = min(Π(ui ∧ e+

A),Π(u′ ∧ e+
A)), ∀ui,∀u′ where u′[U ′′] = e+

A[U ′′]

• If Ui is instanciated (i.e Ui ⊆ E+
A ) we should verify that Ui and U

′ are independent

in the context of E+
A i.e

Π(ui ∧ u′ ∧ e+
A) = min(Π(ui ∧ e+

A),Π(u′ ∧ e+
A)),∀u′

This is equivalent to prove that:

Π(u′ ∧ e+
A) = min(Π(e+

A),Π(u′, e+
A), ∀u′ (since Ui is instanciated i.e. Ui ⊆ E+

A ).

This relation is true since Π(e+
A) ≥ Π(u′ ∧ e+

A).

5: We want to prove that ∀Ui ∈ U,Ui and {E+
Ui+1A

, ..., E+
UnA
} are NI-independent in the

context E+
UiA

(see Figure 6.3). Let U ′ = {E+
Ui+1A

, ..., E+
UnA
}, then:

• If Ui is not instanciated, then E
+
UiA

d-separates Ui and U
′ (case 3 of d-separation in-

deed ∀B ∈ U ′ the chain between Ui and B contains A and the arcs which determine

that A is in this chain meet it head to head, and A 6∈ E+
U1A

and Y 6∈ E+
U1A

).

• If Ui is instanciated (i.e Ui ⊆ E+
UiA

) we should verify that Ui and U
′ are independent

in the context of E+
UiA

i.e

Π(ui ∧ u′ ∧ e+
UiA

) = min(Π(ui ∧ e+
UiA

),Π(u′ ∧ e+
UiA

))

This is equivalent to prove that:

Π(u′, e+
UiA

) = min(Π(e+
UiA

),Π(u′ ∧ e+
UiA

)) (since Ui ⊆ E+
UiA

)

This relation is true since Π(e+
UiA

) ≥ Π(u′ ∧ e+
UiA

).

6: We want to prove that ∀Ui ∈ U , E+
UiA

is d-separated from {E+
Ui+1A

, ..., E+
UnA
}.

∀B ∈ E+
UiA

,∀C ∈ {E+
Ui+1A

, ..., E+
UnA
} the chain between B and C contains A and the

arcs which determine that A is in this chain meet it head to head, and A 6∈ ∅ and Y 6⊂ ∅.

7: We want to prove that given a node A with two parents Ui and V (see Figure 6.4), then

the two sets E+
V A and E−A are NI-independent in the context of the nodes {A,Ui, V }.

Let V'= E+
V A \V and Y ′ = E−A \EA. The variables in V ′ are d-separated from Y ′ by the

set {A,Ui, V } since ∀B ∈ V ′, ∀C ∈ Y ′, the chain between B and C contains A and the

arcs which determine that A is in this chain meet it head to tail (case 2 of d-separation).

⇒ (i) Π(v′ ∧ y′ ∧ a ∧ ui ∧ v) = min(Π(v′ ∧ a ∧ ui ∧ v),Π(y′ ∧ a ∧ ui ∧ v)), ∀a,∀ui, ∀v

• If V is not instanciated, then (i) is equivalent to:

Π(v′ ∧ v ∧ y′ ∧ a∧ ui ∧ eA) = min(Π(v′ ∧ v ∧ a∧ ui),Π(y′ ∧ a∧ ui ∧ eA)),∀a,∀ui, ∀v
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⇒ Π(e+
V A∧e

−
A∧a∧ui∧v) = min(Π(e+

V A∧a∧ui∧v),Π(e−A∧a∧ui∧v)),∀a,∀ui,∀v
(since V is not instanciated implies that E+

V A = V ′ and E−A = Y ′ ∪ EA)

• If V is instanciated, then (i) is equivalent to:

Π(v′ ∧ y′ ∧ a ∧ ui ∧ v) = min(Π(v′ ∧ a ∧ ui ∧ v),Π(y′ ∧ a ∧ ui ∧ v)),∀a,∀ui where
v = e+

V A[V ]

⇒ Π(v′ ∧ y′ ∧ a∧ui ∧ v ∧ v) = min(Π(v′ ∧ a∧ui ∧ v ∧ v),Π(y′ ∧ a∧ui ∧ v)), ∀a,∀ui
where v = e+

V A[V ] (since Π(v ∧ v) = Π(v))

⇒ Π(e+
V A∧e

−
A∧a∧ui∧v) = min(Π(e+

V A∧a∧ui∧v),Π(e−A∧a∧ui∧v)),∀a,∀ui,∀v
(since E+

V A = V ′ ∪ V and E−A = Y ′ ∪ EA)

8: We want to prove that given a node A with two parents Ui and V (see Figure 6.5), then

the two sets E−A and U = {Ui, V } are NI-independent in the context of A.

Let Y ′ = E−A \EA. The variables in Y ′ are d-separated from U = {Ui, V } by A. Indeed,

∀B ∈ Y ′,∀C ∈ U , the chain between B and C contains A and the arcs which determine

that A is in this chain meet it head to tail (case 2 of d-separation)

⇒ (i) Π(a ∧ u, y′) = min(Π(a ∧ u),Π(a ∧ y′)),∀a,∀u.
Then (i) is equivalent to Π(a ∧ u ∧ y′ ∧ eA) = min(Π(a ∧ u),Π(a ∧ y′ ∧ eA)), ∀a,∀u
⇒ Π(a ∧ u ∧ e−A) = min(Π(a ∧ u),Π(a ∧ e−A)),∀a,∀u since E−A = Y ′ ∪ EA.

9: We want to prove that given a node A with two parents Ui and V , then the two sets E+
V A

and {Ui, A} are NI-independent in the context of V .

Let V'= E+
V A/V . The variables in V

′ are d-separated from {Ui, A} by V since ∀B ∈ V ′,
∀C ∈ {Ui, A}, the chain between B and C contains V and the arcs which determine

that V is in this chain meet it head to tail (case 2 of d-separation).

⇒ (i) Π(v′ ∧ ui ∧ a ∧ v) = min(Π(v′ ∧ v),Π(ui ∧ a ∧ v)), ∀ui,∀a,∀v

• If V is not instanciated, then (i) is equivalent to:

Π(e+
V A ∧ ui ∧ a ∧ v) = min(Π(e+

V A ∧ v),Π(ui ∧ a ∧ v)),∀ui, ∀a,∀v
(since V is not instanciated implies that E+

V A = V ′)

• If V is instanciated, then (i) is equivalent to:

Π(v′ ∧ v ∧ ui ∧ a∧ v) = min(Π(v′ ∧ v ∧ v),Π(ui ∧ a∧ v)),∀ui,∀a where v = e+
V A[V ]

(since Π(v ∧ v) = Π(v))

⇒ Π(e+
V A ∧ ui ∧ a∧ v) = min(Π(e+

V A ∧ v),Π(ui ∧ a∧ v)), ∀ui,∀a where v = e+
V A[V ]

(since E+
V A = V ′ ∪ V )

Proof of Lemma 6.1 ∀a ∈ DA, the current joint possibility measure of a based on the total

evidence e is de�ned by BelJoint(a) = Πm(a ∧ e) = Πm(a ∧ e−A, e
+
A)
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= min(Πm(a ∧ e−A),Πm(a ∧ e+
A))

since E+
A and E−A are NI-independent in the context of A (From relation 1 in Proposition 6.6).

Let λ(a) = Πm(a ∧ e−A) and µ(a) = Πm(a ∧ e+
A), then BelJoint(a) = min(λ(a), µ(a)).

Proof of Lemma 6.2 The λ value ∀a ∈ DA is de�ned by λ(a) = Πm(a∧ e−A) = Πm(a∧ eA ∧
e−AY1 ∧ ... ∧ e

−
AYm

).

Thus, if A is not instanciated then:

λ(a) = Πm(a ∧ e−AY1 ∧ ... ∧ e
−
AYm

) = min(Πm(a),Πm(a ∧ e−AY1),Πm(a ∧ e−AY2 ∧ ... ∧ e
−
AYm

))

Since ∀Yi ∈ Y , A d-separates E−AYi from {E
−
AYi+1

, ..., E−AYm} (From relation 2 in Proposition

6.6). When iterating the same operation on Πm(a ∧ e−AY2 ∧ ... ∧ e
−
AYm

), we obtain:

λ(a) = min(Πm(a ∧ e−AY1),Πm(a ∧ e−AY2), ...,Πm(a ∧ e−AYm)

Let λYj (a) = Πm(a ∧ e−AYj ) then λ(a) = min(minmj=1 λYj (a)).

Instead of creating dummy or evidence nodes we consider that local evidence is stored

within each node. Let λA(a) be the local evidence related to the node A such that:

λA(a) =

 0 if eA 6= a (A is instanciated to (eA 6= a)

1 otherwise (A is instanciated to a (eA = a) or A is not instanciated )

Thus a more general formula of λ(a) is de�ned by: λ(a) = min(λA(a),minmj=1 λYj (a)).

Proof of Lemma 6.3 The µ value ∀a ∈ DA is de�ned by:

µ(a) = Πm(a ∧ e+
A)

= maxu Πm(a ∧ e+
A ∧ u)

= maxu(min(Πm(e+
A ∧ u),Πm(a ∧ u)))

since E+
A and A are NI-independent in the context U (From relation 3 in Proposition 6.6).

Moreover, ∀Ui ∈ U,Ui and {Ui+1, ..., Un} are NI-independent in the context E+
A (From relation

4 in Proposition 6.6), then:

Πm(e+
A ∧ u) = Πm(u1 ∧ ... ∧ un ∧ e+

A)

= min(Πm(u1 ∧ e+
A),Πm(u2 ∧ ... ∧ un ∧ e+

A))

= min(Πm(u1 ∧ e+
U1A
∧ ... ∧ e+

UnA
),Πm(u2 ∧ ... ∧ un ∧ e+

U1A
∧ ... ∧ e+

UnA
))

= min(min(Πm(u1 ∧ e+
U1A

),Πm(e+
U1A
∧ ... ∧ e+

UnA
)),Πm(u2 ∧ ... ∧ un ∧ e+

U1A
∧ ... ∧ e+

UnA
))

Since ∀Ui ∈ U,Ui and {E+
Ui+1A

, ..., E+
UnA
} are NI-independent in the context E+

UiA
(From

relation 5 in Proposition 6.6), then:

Πm(e+
A ∧ u) = min(Πm(u1 ∧ e+

U1A
),Πm(e+

U1A
∧ ...∧ e+

UnA
),Πm(u2 ∧ ...∧ un ∧ e+

U1A
∧ ...∧ e+

UnA
))

= min(Πm(u1 ∧ e+
U1A

),Πm(u2 ∧ ... ∧ un ∧ e+
U1A
∧ ... ∧ e+

UnA
))
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(since Πm(e+
U1A
∧ ... ∧ e+

UnA
) ≥ Πm(u2 ∧ ... ∧ un ∧ e+

U1A
∧ ... ∧ e+

UnA
)).

If we iterate the same operation on Πm(u2 ∧ ... ∧ un, e+
U1A
∧ ... ∧ e+

UnA
)), we obtain:

Πm(e+
A ∧ u) = min(Πm(u1 ∧ e+

U1A
),Πm(u2 ∧ e+

U2A
)...Πm(un ∧ e+

UnA
),Πm(e+

U1A
∧ ... ∧ e+

UnA
))

Moreover, Πm(e+
U1A
∧ ... ∧ e+

UnA
) = min(Πm(e+

U1A
),Πm(e+

U2A
∧ ... ∧ e+

UnA
))

since ∀Ui ∈ U , E+
UiA

is d-separated from {E+
Ui+1A

, ..., E+
UnA
} (From relation 6 in Proposition

6.6). Then, if we iterate the same operation on Πm(e+
U2A
∧ ... ∧ e+

UnA
), we obtain:

Πm(e+
U1A
∧ ... ∧ e+

UnA
) = min(Πm(e+

U1A
), ...,Πm(e+

UnA
)). Then,

Πm(e+
A ∧ u)

= min(Πm(u1 ∧ e+
U1A

),Πm(u2 ∧ e+
U2A

), ...,Πm(un ∧ e+
UnA

),min(Πm(e+
U1A

), ...,Πm(e+
UnA

)))

= min(Πm(u1 ∧ e+
U1A

),Πm(u2 ∧ e+
U2A

), ...,Πm(un ∧ e+
UnA

),Πm(e+
U1A

), ...,Πm(e+
UnA

))

= min(Πm(u1 ∧ e+
U1A

),Πm(u2 ∧ e+
U2A

), ...,Πm(un ∧ e+
UnA

))

(since ∀i ∈ {1..n},Πm(e+
UiA

) ≥ Πm(ui ∧ e+
UiA

))

Then, µ(a) = maxumin(Πm(a ∧ u),minni=1 Πm(ui ∧ e+
UiA

))

= maxumin(Π(a ∧ u),minni=1 Πm(ui ∧ e+
UiA

)).

We substitute here Πm(a∧u) by Π(a∧u) since we show later that if the initial distributions

(Π(a∧u)) are not coherent with the axioms of the possibility theory then they are eliminated

by the minimum operator. Moreover we have shown in Chapter 5 that in the incoherence case

Πm(a ∧ u) = 1 which means that this value is also eliminated by the minimum operator.

Let µA(ui) = Πm(ui ∧ e+
UiA

), then µ(a) = maxumin(Π(a ∧ u),minni=1 µA(ui)).

Proof of Lemma 6.4 In order to compute λA(ui), we will proceed in the same manner

than the probabilistic case by considering that all parents of A except Ui form a single node

V = U − Ui (see Figure D.2). Then, the set E−UiA can be decomposed into e−A (depending

on A's children) and E+
V A (depending on A's parents except Ui): E

−
UiA

= E+
V A ∪ E

−
A where

E+
V A =

⋃
k 6=iE

+
UkA

.

Figure D.2: Evidence used in the derivation of λA(Ui)

The λ message from A to its parent Ui, (i ∈ {1, ..n}) when Ui = ui is de�ned by

λA(ui) = Πm(e−UiA ∧ ui). Thus when considering that E−UiA = E+
V A ∪ E

−
A , we have:

λA(ui) = Πm(e+
V A ∧ e

−
A ∧ ui) = maxa maxv Πm(e+

V A ∧ e
−
A ∧ ui ∧ a ∧ v)
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The two sets E+
V A and E−A are NI-independent in the context of the nodes {A,Ui, V } (From

relation 7 in Proposition 6.6), then:

Πm(e+
V A ∧ e

−
A ∧ a ∧ ui ∧ v) = min(Πm(e+

V A ∧ a ∧ ui ∧ v),Πm(e−A ∧ a ∧ ui ∧ v))

= min(Πm(e+
V A ∧ ui ∧ a ∧ v),min(Πm(e−A ∧ a),Πm(ui ∧ a, v)))

since E−A and U = {Ui, V } are NI-independent in the context of A (From relation 8 in Propo-

sition 6.6).

Moreover E+
V A and {Ui, A} are NI-independent in the context of V (From relation 9 in Propo-

sition 6.6), then:

Πm(e+
V A ∧ e

−
A ∧ ui ∧ a ∧ v)

= min[min(Πm(e+
V A ∧ v),Πm(ui ∧ a ∧ v)),min(Πm(e−A ∧ a),Πm(ui ∧ a ∧ v))]

= min[Πm(e+
V A ∧ v),Πm(ui ∧ a ∧ v),Πm(e−A ∧ a),Πm(ui ∧ a ∧ v)]

= min[Πm(e+
V A ∧ v),Πm(e−A ∧ a),Πm(ui ∧ a ∧ v)], then:

λA(ui) = maxa maxvmin(Πm(e+
V A ∧ v),Πm(e−A ∧ a),Πm(ui ∧ a ∧ v))

When restoring the meaning of V , we obtain:

Πm(ui ∧ a ∧ v) = Πm(a ∧ u)

Πm(e+
V A ∧ v) = mink 6=i Πm(uk ∧ e+

UkA
) = mink 6=i µA(uk)

Moreover Πm(e−A ∧ a) = λ(a), then:

maxa maxvmin[Πm(e+
V A ∧ v),Πm(e−A ∧ a),Πm(ui ∧ a ∧ v)]

= maxa maxuk:k 6=imin[λ(a),mink 6=i µA(uk),Πm(a ∧ u)]

= maxa maxuk:k 6=imin[λ(a),min(mink 6=i µA(uk),Πm(a ∧ u))]

= maxamin[λ(a),maxuk:k 6=i(min(mink 6=i µA(uk),Πm(a ∧ u)))]

(since λA does not depend on uk)

= maxamin[λ(a),maxuk:k 6=i(min(Πm(a ∧ u),mink 6=i µA(uk)))]

= maxamin[λ(a),maxuk:k 6=i(min(Π(a ∧ u),mink 6=i µA(uk)))].

We substitute here Πm(a∧u) by Π(a∧u) since we show later that if the initial distributions

(Π(a∧u)) are not coherent with the axioms of the possibility theory then they are eliminated

by the minimum operator. Moreover we have shown in Chapter 5 that in the incoherence case

Πm(a ∧ u) = 1 which means that this value is also eliminated by the minimum operator.

Proof of Lemma 6.5 The µ message from A to its child Yj , (j ∈ {1, ..,m}) when A = a

is expressed by µYj (a) = Πm(a ∧ e+
AYj

). This value can be computed by splitting the entire

evidence e into E+
AYj

and E−AYj . For instance, in Example 4.4, if we consider the variable A

and its child H then, E = EAH+ ∪ EAH− = {A,D,F, J, I,M} where EAH+ = {A,D,F, J}
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and EAH− = {I,M}.

Therefore, e+
AYj

= e/e−AYj so µYj (a) = Πm(a ∧ e/e−AYj ).
Moreover, BelJoint(a) = Πm(a ∧ e) = min(λ(a), µ(a))

= min(min(λA(a),minmi=1 λYi(a)), µ(a))

= min(λA(a),minmi=1 λYi(a), µ(a)) (from (6.20) and (6.22)), then

µYj (a) = Πm(a ∧ e/e−AYj ) = min(λA(a),mini=1..m,i 6=j λYi(a), µ(a)).

Proof of Proposition 6.7 We want to prove that if a junction tree is globally consistent,

then for each cluster Ci, πCi = Πm(Ci). This relation is true if the juntion tree contains a

unique node. Suppose now that it is true for a junction tree with n nodes thus we show that

it is also true with (n+1) nodes.

Let Ci be a leaf of J T connected to the cluster Cj and let Sij be their separator (see �gure

D.1). Let J T ′ = J T \Ci and V ′ be the universe relative to the junction tree J T ′. We have

(i) πJT = min(πJT ′ , πCi) (from 6.26)

Let D = Ci \ Sij and H = Cj \ Sij , then from the junction tree property: D ∩ V ′ = ∅
(otherwise Ci is connected to an other cluster in J T ′ i.e J T ′ ∩Ci 6= ∅ which contradicts

J T ′ = J T \ Ci).

Since the junction tree J T is consistent, then maxDπCi = maxHπCj = πSij , thus:

maxDπJT = maxDmin(πJT ′ , πCi) (from (i))

= min(πJT ′ ,maxDπCi) (since D ∩ V ′ = ∅)
= min(πJT ′ , πSij ) (from consistency property)

= πJT ′ (Indeed, suppose that πSij < πJT ′ for a particular instance sij , then πSij < πCj

which contradicts the consistency property.

Thus πJT ′ corresponds to the joint distribution relative to J T ′. Then from the induction

hypothesis, (ii) maxV \CkπJT = πCk , for all CK ∈ J T ′.
Moreover, maxV \CiπJT = maxV ′\Sijmin(πJT ′ , πCi) (since V \ Ci = V ′ \ Sij)

= min(πCi ,maxV ′\SijπJT ′) (since Ci ∩ (V ′ \ Sij) = ∅)

Moreover, Cj ∈ J T ′ then from (ii) we obtain, maxV \CjπJT = πCj , thus πCj corresponds

to the local distribution on Cj . In addition, the marginalization of πJT ′ on V
′ \ Sij is equiv-

alent to the marginalization of πCj on Sij , since Sij only exists in Cj i.e.

maxV ′\SijπJT ′ = maxCj\SijπCj



Proofs of Chapter 6 223

This implies that, min(πCi ,maxV ′\SijπJT ′) = min(πCi ,maxCj\SijπCj )

= min(πCi , πSij ) (from consistency property)

= πCi (since πSij = maxDπCi).

Proof of Proposition 6.8 Let ΠGm be a min-based possibilistic network. Let J T be

the junction tree corresponding to ΠGm using the above initialization procedure. Let πm be

the joint distribution encoded by ΠGm and πIJT be the joint distribution encoded by J T
(using (6.26)). We want to prove that πm = πIJT . We have: πIJT = mini=1..mπ

I
Ci

= min(mini=1..mΠ(Ai | UAi), 1) (from initialization procedure)

= mini=1..mΠ(Ai | UAi)
= πm.

Proof of Proposition 6.9 Let πtJT be the joint distribution relative to a junction tree

J T at level t. Let πt+1
JT be the resulted joint distribution after the modi�cation of a cluster

Ci using the above procedure. We want to prove that πtJT = πt+1
JT .

To show this proof it is enough to prove that when a cluster Ci sends a message to a cluster

Cj , then mink=1..m π
t
Ck

= min(mink=1..m π
t
Ck
, πt+1
Cj

) since only the potential of Cj is changed

in the expression of the joint distribution.

min(mink=1..m π
t
Ck
, πt+1
Cj

) = min(mink=1..m π
t
Ck
,min(πtCj , π

t+1
Sij

)) (from 6.32)

= min(mink=1..m π
t
Ck
, πtCj , π

t+1
Sij

)

= min(mink=1..m π
t
Ck
, πt+1
Sij

) (since πtCj ≤ mink=1..m π
t
Ck
. Indeed, πtCj is included in the ex-

pression mink=1..m π
t
Ck
)

= min(mink=1..m π
t
Ck
,maxCi\Sij π

t
Ci

) (from 6.31)

= mink=1..m π
t
Ck

(since maxCi\Sij π
t
Ci
≤ πtCi ≤ mink=1..m π

t
Ck
).

Proof of Proposition 6.11 We want to prove that the collect and distribute phase are

enough to make the junction tree globally consistent. This is equivalent to show that the

link between any two adjacent clusters Ci and Cj becomes consistent after the collect and

distribute evidence phases.

We denote π′Ci (resp. π
′
Sij

) the potential of any cluster Ci (resp. separator Sij) in the col-

lect evidence phase and π
′′
Ci

(resp. π
′′
Sij

) the potential of any cluster Ci (resp. separator

Sij) in the distribute evidence phase. Thus our aim is to show that for any cluster Ci,

π
′′
Ci

= πCCi and for any separator Sij , π
′′
Sij

= πCSij . In other terms we should show that

maxCi\Sij π
′′
Ci

= π
′′
Sij

= maxCj\Sijπ
′′
Cj
.
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Let the �rst message to be passed between Ci and Cj (in collect phase) be from Ci to Cj

then π′Sij = maxCi\Sij π
I
Ci
. Next, when in the distribute evidence the message from Cj to Ci

has to be passed, the potentials of Sij and Ci have not been changed. Indeed, Ci has not

received further messages since it sends message to Cj only if it has received messages from

all its other adjacent clusters. Then,

maxCi\Sij π
′′
Ci

= maxCi\Sij min(π′Ci , π
′′
Sij

) (from (6.32))

= min(π
′′
Sij
,maxCi\Sij π

′
Ci

)

= min(π
′′
Sij
, π′Sij ) (since the potentials of Sij and Ci have not been changed after Ci sends a

message to Cj in the collect evidence phase i.e maxCi\Sij π
′
Ci

= π′Sij from (6.30) and (6.31))

= π
′′
Sij

= maxCj\Sij π
′
Cj

(from (6.31))

= maxCj\Sij π
′′
Cj

(from (6.30))

Moreover, in the distribute evidence phase, each node receives only one message, therefore

after receiving the message from Cj , the potential of Ci will not change. Therefore the link

between Ci and Cj is consistent.



Appendix E

Proofs of Chapter 7

Proof of Proposition 7.1 Let αΠGm be an α-normalized min-based possibilistic network.

Let πm be the joint distribution computed from (5.6). We want to prove that h(πm) = α.

To show this proof, it is enough to �nd a particular instance v of V , such that Π(a | uA) =

α,∀a ∈ v and uA ⊆ v. Such v can be obtained, in a constructive way, as follows:

Algorithm E.1: Construction of the instance v

begin
Let v be a global instantiation of V containing initially s.t. v ← ∅;
while V 6= ∅ do

- Select a variable A of V such that A has no parent in V (First, we start by roots).;
- Select an instance a of A such that Π(a | uA) = α and uA ⊆ v (such instance
always exists due to the normalization constraint of α-normalized min-based pos-
sibilistic networks);
- v ← v ∧ a;
- V ← V − {A};

end

At the end of this procedure, all the variables in V are instanciated and we have ∀a ∈ v :

Π(a | uA) = α and uA ⊆ v. Therefore, min{Π(a | uA) : a ∈ v and uA ∈ v) = α, hence

h(πm) = α.

Proof of Proposition 7.2 Let αΠGm be an α-normalized min-based possibilistic network.

LetMG be the moral graph corresponding to αΠGm given by the initialization procedure. Let

πa be the joint distribution given by (7.2) (which is obtained after incorporating the instance

a of the variable of interest A). Let πIMG be the joint distribution encoded byMG (given by

(7.4)). We want to prove that πa = πIMG .

• Let πIMG be the joint distribution encoded byMG after the transformation of the initial

225
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DAG into a moral graph (step 1 of the initialization procedure), then from (7.4) :

πIMG = mini=1..N π
I
Ci

= mini=1..NΠ(Ai | Ui) (since from the initialization procedure : ∀Ci, πICi = Π(Ai | Ui))
= πm (From (5.6))

• Let πICi be the potential of the cluster Ci relative to the variable of interest Ai after its

incorporation (step 2 of the initialization procedure). Let πIMG be the joint distribution

encoded byMG after updating Ci using (7.4), then

πIMG = min(πIMG , π
I
Ci

). Thus from (7.4) we have:

πIMG(ω) =

 πIMG(ω) if ω[Ai] = ai

0 otherwise

=

 πm(ω) if ω[Ai] = ai

0 otherwise
(since πIMG = πm as shown before)

= πa(ω) (using (7.2))

⇒ πIMG = πa.

Proof of Proposition 7.3 Let πtMG be the joint distribution relative to a moral graphMG
at level t. Let πt+1

MG be the resulted joint distribution after the modi�cation of two parents Ci

and Cj using equations (7.8), (7.9) and (7.10). We want to prove that πtMG = πt+1
MG .

To show this proof it is enough to prove that min(πt+1
Ci

, πt+1
Cj

) = min(πtCi , π
t
Cj

). This relation

is true, indeed:

min(πt+1
Ci

, πt+1
Cj

)

= min(min(πt+1
Sij

, πtCi),min(πt+1
Sij

, πtCj )) (From (7.9) and (7.10))

= min(πtCi , π
t
Cj
, πt+1
Sij

)

= min(πtCi , π
t
Cj
,min(maxCi\Sijπ

t
Ci
,maxCj\Sijπ

t
Cj

)) (From (7.8))

= min(πtCi , π
t
Cj
,maxCi\Sijπ

t
Ci
,maxCj\Sijπ

t
Cj

)

= min(πtCi , π
t
Cj

) (since maxCi\Sijπ
t
Ci
≥ πtCi and maxCj\Sijπ

t
Cj
≥ πtCj ).

Proof of Proposition 7.5We want to prove that when the moral graph MG is one-neighbor

stabilized then all the clusters have the same maximum value i.e. ∀Ci,maxπSCi = α.

Let Ci and Cj (s.t. i < j) be any two clusters in MG such that maxciπ
S
Ci

= α, then we will

show that maxcjπ
S
Cj

= α.

Between the two clusters Ci and Cj exists at least one path (otherwise they will be discon-

nected which is impossible by construction).

Let A = Ci ∩Ci+1 be the separator existing between Ci and Ci+1. Let c
m
i be one instance
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of Ci having the maximum potential i.e. πSCi(c
m
i ) = α and let a = cmi [A].

From the stability condition πSCi(c
m
i ) = α⇒ πSA(a) = α.

Thus ∃ci+1 s.t ci+1[A] = a and πSCi+1
(ci+1) = α otherwise maxCi+1\Aπ

S
Ci+1

(a) < α which

contradicts the stability condition, this implies that maxci+1π
S
Ci+1

(ci+1) = α

When iterating the same operation on (Ci+1, ..., Cj), we deduce that maxπ
S
Cj

= α.

Proof of Proposition 7.7 Let πtMG be the joint distribution relative to a moral graph

MG at level t. Let πt+1
MG be the resulted joint distribution after the modi�cation of Ci with re-

spect to its two parents Cj and Ck using equation (7.18). We want to prove that πtMG = πt+1
MG .

To show this proof it is enough to prove that min(πt+1
Ci

, πtCj , π
t
Ck

) = min(πtCi , π
t
Cj
, πtCk). This

relation is true, indeed:

min(πt+1
Ci

, πtCj , π
t
Ck

)

= min(min(πtCi , πS), πtCj , π
t
Ck

) (From 7.18 )

= min(πtCi , πS , π
t
Cj
, πtCk)

= min(πtCi ,maxC\S π
t
C , π

t
Cj
, πtCk) (From (7.17))

= min(πtCi ,maxC\Smin(πtCj , π
t
Ck

), πtCj , π
t
Ck

) (From (7.16))

= min(πtCi ,min(maxCj\Sij π
t
Cj
,maxCk\Sik π

t
Ck

), πtCj , π
t
Ck

)

= min(πtCi ,maxCj\Sij π
t
Cj
,maxCk\Sik π

t
Ck
, πtCj , π

t
Ck

)

= min(πtCi , π
t
Cj
, πtCk) (since maxCj\Sij π

t
Cj
≥ πtCj and maxCk\Sik π

t
Ck
≥ πtCk).

Proof of Lemma 7.1 Let MG be a moral graph and let πMG be its joint distribution.

We want to prove that if all the clusters of MG are consistent, then there exists an α-DAG

G′ such that its joint distribution π′m is equal to πMG .

The α-DAG G′ can be constructed from the moral graphMG by a�ecting a node Ai to each

cluster Ci (s.t. Ai ∪ UAi ⊆ Ci). Then, each link relative to Ai in G′ is quanti�ed by trans-

forming the joint distribution relative to Ci into a conditional one.

This transformation is possible since any cluster Ci of MG is consistent, which means that

for any instance uAi of UAi (where Ai is the variable relative to Ci),

maxai π
t
Ci

(ai ∧ uAi) = α (from 7.22).

Thus, when transforming the joint distribution relative to Ci into a conditional one, we obtain

maxai Π(ai | uAi) = α which satis�es the normalization constraint of α-normalized min-based

possibilistic networks. Moreover, using (7.4) and (5.6), respectively, we have:

- πMG(A1, .., AN ) = mini=1..N πCi(Ai ∧ UAi) and
- π′m(A1, .., AN ) = mini=1..N Π(Ai | UAi).
Thus, we deduce that πMG = π′m since we consider that Π(Ai | UAi) = πCi(Ai ∧ UAi).
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Proof of Proposition 7.10 We want to prove that a moral graph MG is consistent if

all its clusters are consistent. This is equivalent to prove that h(πMG) = α.

LetMG be an a moral graph such that all its clusters are consistent. Then, from Lemma 7.1,

it exists an α-DAG G′ such that its joint distribution π′m satis�es πMG = π′m. Moreover, from

Proposition 7.1 we have h(π′m) = α. Thus, h(πMG) = α.

Proof of Proposition 7.11 Let πtMG be the joint distribution relative to a moral graph

MG at level t. Let πt+1
MG be the resulted joint distribution obtained as result of the modi�ca-

tion procedure. We want to prove that πtMG = πt+1
MG .

Let Ci be an inconsistent cluster (relative to the variable Ai) and Cj be its parent cluster

created in step 2.0 of the modi�cation procedure.

To show the proof, it is enough to prove that for any particular instances ci and cj of of

Ci and Cj , respectively, we satisfy: min(πtCi(ci), π
t
Cj

(cj)) = min(πt+1
Ci

(ci), π
t+1
Cj

(cj)).

Let uAi = ci[UAi ], we can distinguish three cases:

• maxai π
t
Ci

(ai ∧ uAi) = α.

In this case, πt+1
Ci

(ci) = πtCi(ci) and πt+1
Cj

(cj) = πtCj (cj) since the cluster is consistent

with respect to uAi . Thus, the equality is trivial.

• maxai π
t
Ci

(ai ∧ uAi) = β < α and πtCi(ci) < β. Then:

(i1) πt+1
Ci

(ci) = πtCi(ci) < β (since the modi�cation will be performed on the potential c′i

s.t πtCi(c
′
i) = maxai π

t
Ci

(ai ∧ uAi) = β). Thus, two situations can occur:

� πtCj (cj) ≤ β ⇒ πt+1
Cj

(cj) = πtCj (cj). In this case, the equality is trivial.

� πtCj (cj) > β ⇒ πtCj (cj) > πtCi(ci) (since π
t
Ci

(ci) < β)

⇒ (ii1) min(πtCj (cj), π
t
Ci

(ci)) = πtCi(ci).

Moreover, πtCj (cj) > β implies that πt+1
Cj

(cj) = β (step 2.1 of the modi�cation

procedure). Thus, from (i1) and (ii1) we deduce that min(πtCi(ci), π
t
Cj

(cj)) =

min(πt+1
Ci

(ci), π
t+1
Cj

(cj)) = πtCi(ci) = πt+1
Ci

(ci).

• maxai π
t
Ci

(ai ∧ uAi) = β < α and πtCi(ci) = β. Then:

(i2) ⇒ πt+1
Ci

(ci) = α > πtCi(ci).

Thus, two situations can occur:

� πtCj (cj) ≤ β ⇒ πtCj (cj) ≤ π
t
Ci

(ci) (since π
t
Ci

(ci) = β)

⇒ (ii2) min(πtCj (cj), π
t
Ci

(ci)) = πtCj (cj).
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Moreover, πtCj (cj) ≤ β implies that πt+1
Cj

(cj) = πtCj (cj) (step 2.1 of the modi�cation

procedure). Thus, from (i2) and (ii2) we deduce that min(πtCi(ci), π
t
Cj

(cj)) =

min(πt+1
Ci

(ci), π
t+1
Cj

(cj)) = πtCj (cj) = πt+1
Cj

(cj)

� πtCj (cj) > β ⇒ πtCj (cj) > πtCi(ci) = β (since πtCi(ci) = β)

⇒ min(πtCj (cj), π
t
Ci

(ci)) = πtCi(ci) = β.

Moreover, πtCj (cj) > β implies that πt+1
Cj

(cj) = β (step 2.1 of the modi�cation

procedure). Thus, min(πt+1
Ci

(ci), π
t+1
Cj

(cj)) = min(πtCj (cj), π
t
Ci

(ci)) = β.
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Appendix F

A Detailed Analysis of Procedures

Used in the Anytime Propagation

Algorithm

This appendix presents the main data structures and procedure used in the implementation

of our anytime propagation algorithm studied in Chapter 7.

F.1 Data structures

The �rst step, in this propagation algorithm, is to create the possibilistic network called pnet

and de�ned as follows:

pnet : Record begin
- nodes: 1-by-N matrix,
row vector containing nodes in a topological order (ancestors before descendants);
- node_sizes: 1-by-N matrix
node_sizes(i) is the number of values node i can take on (its arity);
- dag: N-by-N matrix
dag(i, j) = 1 if and only if i is parent of j;
- CPD: 1-by-N cell array of matrices
Each cell CPD{i} contains a tabular_cpd object de�ned by:
∗ CPD{i}.self : Node i
∗ CPD{i}.CPT : A vector containing the initial Conditional Possibility Distribution of node i
in the context of its parents;

end

Once the the possibilistic network is de�ned, it is possible to create its moral graph and to

perform propagation on it. To do so, we use a principle class: MG_inf_engine (Moral Graph

inference engine) relative to the manipulation of moral graphs and to the global propagation.
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Figure F.1: Multiply Connected DAG of Example F.1

An object of the class MG_inf_engine is called engine and is de�ned by:

engine : Record begin
- clusters: C-by-C cell array of matrices,
clusters{i} corresponds to the nodes in cluster i;
- separators: C-by-C cell array of matrices,
separator{i, j} corresponds to the nodes in the separator existing between
clusters{i} and clusters{j};
- clpot: 1-by-C cell array of matrices.
Each cell clpot{i} contains a discrete potential object (dpot) de�ned by:
∗ clpot{i}.domain : 1-by-N matrix containing the variables existing in the cluster i,
∗ clpot{i}.sizes : 1-by-N matrix containing the sizes of the variables existing in the
cluster i,
∗ clpot{i}.T: corresponds to the potential of cluster i.

end

The following example illustrates the values taken by di�erent �elds of the pnet and

engine records.

Example F.1 Let us consider the min-based possibilistic network ΠGm treated in the previous

Chapter. This ΠGm composed by the DAG of Figure F.1 is quanti�ed by the initial distributions

given in Tables F.1 and F.2. The variable of evidence is D, its value is d2, the variable of

interest is A and the instance of interest is a2.

Table F.1: A priori and conditional possibilities
a Π(a) b a Π(b | a) c a Π(c | a)

a1 1 b1 a1 1 c1 a1 0.3
a2 0.9 b1 a2 0 c1 a2 1

b2 a1 0.4 c2 a1 1
b2 a2 1 c2 a2 0.2

Table F.2: Conditional possibilities
d b c Π(d | b ∧ c) d b c Π(d | b ∧ c)
d1 b1 c1 1 d2 b1 c1 1
d1 b1 c2 1 d2 b1 c2 0
d1 b2 c1 1 d2 b2 c1 0.8
d1 b2 c2 1 d2 b2 c2 1

To encode such possibilistic network, we should �rst de�ne the topological order (i.e. an-

cestors before descendants) which can be [ABCD] or [ACBD]. In the next, we will choose
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[ABCD] i.e. A = 1, B = 2, C = 3 and D = 4. Then, the pnet record takes the following

values:

• pnet.nodes= [1 2 3 4]

• pnet.node_sizes= [2 2 2 2]

• pnet.dag=


0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0


For instance the value 1 in the line 1 column 2 means that the variable 1 (A) is a parent

of the variable 2 (B).

• The conditional possibility distributions are stored as multidimentional arrays (pnet.CPD)

where the variables are arranged s.t the low numbered parents come before the high num-

bered one:

pnet.CPD= [1x1 tabular_cpd] [1x1 tabular_cpd] [1 x1 tabular_cpd] [1x 1 tabular_cpd]

� pnet.CPD{1}.self = 1

pnet.CPD{1}.CPT =

 1

0.9


The order of instances in pnet.CPD{1}.CPT is as follows:

 1

2


The value 1 (resp. 2) corresponds to the �rst (resp. second) instance of the variable

1 (A).

� pnet.CPD{2}.self = 2

pnet.CPD{2}.CPT =

 1 0.4

0 1


The order of instances in pnet.CPD{2}.CPT is as follows:

 11 12

21 22


The value 11 (resp. 21, 12, 22) corresponds to the �rst (resp. second, �rst, second)

instance of the the variable 1 (A) and the �rst (resp. �rst, second, second) instance

of the variable 2 (B).
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� pnet.CPD{3}.self = 3

pnet.CPD{3}.CPT =

 0.3 1

1 0.2


The order of instances in pnet.CPD{3}.CPT is as follows:

 11 12

21 22


The value 11 (resp. 21, 12, 22) corresponds to the �rst (resp. second, �rst, second)

instance of the the variable 1 (A) and the �rst (resp. �rst, second, second) instance

of the variable 3 (C).

� pnet.CPD{4}.self = 4

pnet.CPD{4}.CPT=

 1 1 1 0

1 1 0.8 1


The order of instances in pnet.CPD{4}.CPT is as follows:

 111 121 112 122

211 221 212 222


The value 111 (resp. 211, 121, 221, 112, 212, 122, 222) corresponds to the �rst

(resp. second, �rst, second, �rst, second, �rst, second) instance of the the variable

2 (B), the �rst (resp. �rst, second, second, �rst, �rst, second, second) instance of

the variable 3 (C) and to the �rst (resp. �rst, �rst, �rst, second, second, second,

second) instance of the variable 4 (D).

The moral graph corresponding to this possibilistic network is represented by the engine

record which takes the following values:

• engine.clusters = [1] [1x2 double] [1x2 double] [1x3 double]

engine.clusters{1} =[1] (i.e the cluster 1 contains the variable 1 (A))

engine.clusters{2} =[1 2] (i.e the cluster 2 contains the variables 1 and 2 (AB))

engine.clusters{3} =[1 3] (i.e the cluster 3 contains the variables 1 and 3 (AC))

engine.clusters{4}=[2 3 4] (i.e the cluster 4 contains the variables 2, 3 and 4 (BCD))

• engine.separators =


[] [1] [1] []

[] [] [] [2]

[] [] [] [3]

[] [] [] []


For instance the value 1 in the line 1 column 2 means that there exists a separator

containing the variable 1 (A) between the cluster 1 (A) and the cluster 2 (AB).
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• engine.clpot=[1x1 dpot] [1x1 dpot] [1x1 dpot] [1x1 dpot]

� engine.clpot{1}.domain: [1]

engine.clpot{1}.sizes: [2]

engine.clpot{1}.T:

 1

0.9


� engine.clpot{2}.domain= [1 2]

engine.clpot{2}.sizes: [2 2]

engine.clpot{2}.T:

 1 0.4

0 1


� engine.clpot{3}.domain: [1 3]

engine.clpot{3}.sizes: [2 2]

engine.clpot{3}.T:

 0.3 1

1 0.2


� engine.clpot{4}.domain: [2 3 4]

engine.clpot{4}.sizes: [2 2 2]

engine.clpot{4}.T:

 1 1 1 0

1 1 0.8 1


After incorporating the evidence (D = d2) in this cluster it will be transformed into:

engine.clpot{4}.domain: [2 3 4]

engine.clpot{4}.sizes: [2 2 2]

engine.clpot{4}.T:

 0 0 1 0

0 0 0.8 1


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F.2 Principle programs

In this Section we present the principle procedures for building possibilistic networks and

moral graphs. Then, we give main procedures relative to the anytime propagation algorithm.

F.2.1 Building a possibilistic network structure

mk_pnet: Makes the possibilistic network structure (i.e. pnet) using the initial dag (i.e.

dag), the node sizes (i.e. node_sizes) and the list of nodes (i.e. nodes).

Algorithm F.1: mk_pnet

Data: dag, node_sizes, nodes

Result: pnet

begin
n ← length(dag);
pnet.dag ← dag;
pnet.node_sizes ← node_sizes(:)';
pnet.nodes ← nodes;

end

F.2.2 Initialization procedure

• MG_inf_engine: (constructor of the class MG_inf_engine) creates a moral graph

from the initial possibilistic network (i.e. pnet) composed of a cluster set (i.e. en-

gine.clusters) using dag_to_clusters and a separator set (i.e. engine.separators). Each

cluster i.e. engine.clusters{i} contains the node i and its parents and each separator

i.e. engine.separators{i, j} contains the intersection of its relative clusters i.e. en-

gine.clusters{i} and engine.clusters{j}.

Algorithm F.2: MG_inf_engine

Data: pnet

Result: engine

begin
N ← length(pnet.dag);
engine.clusters ← dag_to_clusters(pnet);
num_clusters ← length(engine.clusters);
for i←1 to num_clusters do

for j←(i+1) to num_clusters do
engine.separators{i, j} ← engine.clusters{i} ∩ engine.clusters{j};

end
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• dag_to_clusters: generates the cluster set from the initial possibilistic network (i.e.

pnet) by adding to each variable i its parent set (i.e. ps).

Algorithm F.3: dag_to_clusters

Data: pnet

Result: clusters
begin

N ← length(pnet.dag);
ns ← pnet.node_sizes(:);
clusters ← {};
j ← 1;
for i ← 1 to N do

ps ← parents(pnet.dag, i);
clusters{j} ← ps ∪ {i};
j ← j+1;

end

F.2.3 Global propagation

• global_propagation: Using the initial conditional distributions (i.e. pnet.CPD), this

procedure �rst initializes the potentials of di�erent clusters (i.e. engine.clpot) using

quantify_clusters procedure. The propagation result depends on the evidence (i.e. evi-

dence) and the instance of interest (i.e. interest). Indeed,

� if the evidence and the instance of interest are speci�ed, then this procedure pro-

vides the conditional possibility degree of the instance of interest in the context of

evidence,

� if only the evidence is speci�ed, then this procedure provides the most plausible

instances relative to all variables (except observed ones),

� if only the instance of interest is speci�ed, then this procedure provides the possi-

bility degree of this instance (with no context),

� if neither the evidence nor the instance of interest are speci�ed, then this proce-

dure provides the most plausible instances relative to all variables (given initial

distributions).

The global propagation uses the propagation parameters on consistency and stabiliza-

tion procedures (i.e. ck_cst, nodes_type, nb_nodes) to call enter_instance_propagate

procedure.
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Algorithm F.4: global_propagation

Data: engine, interest, evidence, ck_cst, nb_nodes, nodes_type

Result: Poss_degree, best_instances

begin
Poss_degree ← [];
best_instances ← [];
pnet ← pnet_from_engine(engine);
ns ← pnet.node_sizes(:);
N ← length(pnet.dag);
CPDpot ← quantify_clusters(pnet, N);
if evidence 6= ∅ then

if interest 6= ∅ then
[engine, pnet, Bel_evidence, clpot] ← enter_instance_propagate(engine, pnet,
CPDpot, evidence, ck_cst, nb_nodes, nodes_type) ;
[engine, pnet, Bel_joint_interest_evidence, clpot] ← en-
ter_instance_propagate(engine, pnet, clpot, interest, ck_cst, nb_nodes,
nodes_type) ;
if Bel_joint_interest_evidence = Bel_evidence then

Poss_degree ← 1;

else
Poss_degree ← Bel_joint_interest_evidence;

else
[engine, pnet, Poss_degree , clpot] ← enter_instance_propagate(engine, pnet,
CPDpot, evidence, ck_cst, nb_nodes, nodes_type) ;
best_instances ← de�ne_best_instances(clpot, N, Poss_degree);

else
if interest 6= ∅ then

[engine, pnet, Poss_degree , clpot] ← enter_instance_propagate(engine, pnet,
CPDpot, interest, ck_cst, nb_nodes, nodes_type) ;

else
[engine, pnet, Poss_degree, clpot] ← enter_instance_propagate(engine, pnet,
CPDpot, evidence, ck_cst, nb_nodes, nodes_type) ;
best_instances ← de�ne_best_instances(clpot, N, Poss_degree);

end

• enter_instance_propagate: This procedure uses incorporate_instance to incorpo-

rate the evidence (i.e. evidence) or the instance of interest (i.e. interest) in its relative

clusters. If we want to apply the consistency procedure by adding links (i.e. ck_cst=1 )

then, the propagation is performed via an iterative process of stabilization and check-

ing consistency using stabilization and consistency_by_adding_links, successively until

reaching the global consistency (i.e. global_consistency =1 ).

If we want to apply the consistency procedure by testing the global instances (i.e.

ck_cst=2 ) then, the propagation is performed via an iterative process of stabilization

and consistency using stabilization and consistency_by_computing_global_instances,
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successively until reaching the global consistency (i.e. global_consistency =1 ). Other-

wise (i.e. ck_cst=0 ), we just stabilize the moral graph at the speci�ed type of nodes

(i.e. nodes_type) and number of nodes (i.e. nb_nodes).

Algorithm F.5: enter_instance_propagate

Data: engine, pnet, potential, instance, ck_cst, nb_nodes, nodes_type

Result: engine, pnet, Bel_instance, clpot

begin
ns ← pnet.node_sizes(:);
C ← length(engine.clusters);
clpot ← potential;
if instance 6= ∅ then

var_instance ← �nd(instance 6= ∅);
for i ← 1 to length(var_instance) do

cl_var_instance ← engine.clq_ass_to_node(var_instance(i)) ;
[clpot{cl_var_instance}] ← incorporate_instance (clpot{cl_var_instance},
var_instance(i), instance{var_instance(i)}, ns);

if ck_cst=1 then
global_consistency ← 0;
while global_consistency=0 do

[clpot, alpha_stable] ← stabilize(pnet, engine, clpot, C, ns, nb_nodes, nodes_type);
[engine, pnet, clpot, global_consistency]
← consistency_by_adding_links(engine, pnet, clpot, C, alpha_stable, ns);

Bel_instance ← alpha_consistency;

else
if ck_cst=2 then

global_consistency ← 0;
while global_consistency=0 do

[clpot, alpha_stable] ← stabilize(pnet, engine, clpot, C, ns, nb_nodes,
nodes_type);
[engine, clpot, global_consistency, alpha_consistency]
← consistency_by_computing_global_instances(engine, clpot, al-
pha_stable, C);

Bel_instance ← alpha_consistency;

else
[clpot, alpha_stable] ← stabilize(pnet, engine, clpot, C, ns, nb_nodes, nodes_type);
Bel_instance ← alpha_stable;

engine.clpot ← clpot;

end
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F.2.4 Stabilization procedures

• stabilize: This procedure calls the di�erent stabilization procedures depending on the

type of nodes (i.e. nodes_type which can be parents, children, parents-children, neigh-

bors) and number of nodes (i.e. nb_nodes where the value 1 (resp. 2, 3, n-best, n) is

relative to simple (resp. two-nodes, three-nodes, n-best-nodes, n-nodes) stability).

Algorithm F.6: stabilize

Data: pnet, engine, clpot, C, ns, nb_nodes, nodes_type

Result: clpot, alpha_stable

begin
switch nb_nodes do

case 1
[clpot] ← simple_stability(engine, pnet, clpot, C);
alpha_stable ← maximum_value(clpot{1});

case 2
modif_pot←1;
while modif_pot=1 do

[clpot] ← simple_stability(engine, pnet, clpot, C);
[clpot, modif_pot] ← two_nodes_stability(pnet, engine, clpot, C, ns,
nodes_type);

alpha_stable ← maximum_value(clpot{1});

case 3
modif_pot←1;
while modif_pot=1 do

[clpot] ← simple_stability(engine, pnet, clpot, C);
[clpot, modif_pot] ← three_nodes_stability(pnet, engine, clpot, C, ns,
nodes_type);

alpha_stable ← maximum_value(clpot{1});

case n-best
modif_pot←1;
while modif_pot=1 do

[clpot] ← simple_stability(engine, pnet, clpot, C);
[clpot, modif_pot]← best_multiple_nodes_stability (pnet, engine, clpot, C,
ns, nodes_type);

alpha_stable ← maximum_value(clpot{1});

case n
modif_pot←1;
while modif_pot=1 do

[clpot] ← simple_stability(engine, pnet, clpot, C);
[clpot, modif_pot] ← multiple_nodes_stability (pnet, engine, clpot, C, ns,
nodes_type);

alpha_stable ← maximum_value(clpot{1});

end
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• simple_stability: This procedure ensures that any cluster agrees with each of its

neighbors on the distributions de�ned on common variables. Let d = (C1, ..., CN ) be any

ordering of the clusters such that UAi ⊆ {A1, ..Ai−1}. In the implementation proposed in

Appendix F, the order in which messages circulate during the simple stability procedure

depends on d. Indeed, we start with the last cluster in d which is stabilized w.r.t. of all

its neighbors, then its predecessor will be treated and it will be stabilized w.r.t. of all

its neighbors except those who already use it. A cycle is achieved when all the clusters

are treated. This process will be repeated until reaching the stability (i.e stable=1).

Algorithm F.7: simple_stability

Data: engine, pnet, clpot, C

Result: clpot

begin
stable ← 0;
while stable = 0 do

for i ← C down to 1 do
for j ← i-1 down to 1 do

if engine.separators{j, i} 6= ∅ then
seppot{j, i} ← marginalize_pot(clpot{i}, engine.separators{j, i});
sauvpot{j, i} ← seppot{j, i};
seppot{j, i} ← marginalize_pot(clpot{j}, engine.separators{j, i});
seppot{j, i} ← minimize_by_pot(sauvpot{j, i}, seppot{j, i});
clpot{i} ← minimize_by_pot(clpot{i}, seppot{j, i});
clpot{j} ← minimize_by_pot(clpot{j}, seppot{j, i});

test ← 1;
i ← 1;
while (i ≤ C) and (test = 1) do

for j ← i+1 to C do
if engine.separators{j, i} 6= ∅ then

seppot{i, j} ← marginalize_pot(clpot{i}, engine.separators{i, j});
sauvpot{i, j} ← seppot{i, j};
seppot{i, j} ← marginalize_pot(clpot{j}, engine.separators{i, j});
equal ← test_equality(sauvpot{i, j}, seppot{i, j});
if equal = 0 then test ← 0;

j ← j+1;

i ← i+1;

if test = 1 then stable ← 1;

end
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• two_nodes_stability: This procedure ensures for each cluster having at least two

nodes (i.e. nodes_type which can be neighbors, parents, children or parents-children)

its stability with respect to each pair of them using the procedure newpot_n_nodes.

Algorithm F.8: two_nodes_stability

Data: pnet, engine, clpot, C, ns, nodes_type

Result: clpot, modif_pot

begin
modif_pot ← 0;
i ← 1;
while (i ≤ C) and (modif_pot = 0) do

nodes ← de�ne_nodes(pnet.dag, engine, i, nodes_type, C);
if length(nodes) ≥ 2 then

j ← 1;
while j ≤ length(nodes)-1 and modif_pot=0 do

�rst_node ← nodes(j);
k ← 1;
while k ≤ length(nodes) and modif_pot=0 do

second_node ← nodes(k);
two_nodes ← �rst_node ∪ second_node;
[clpot{i}, modif_pot] ← newpot_n_nodes(clpot{i}, clpot,
two_nodes, ns);
k ← k+1;

j ← j+1;

i ← i+1;

end
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• three_nodes_stability: This procedure ensures for each cluster having at least three

nodes (i.e. nodes_type which can be neighbors, parents, children or parents-children)

its stability with respect to each pair of them using the procedure newpot_n_nodes.

Algorithm F.9: three_nodes_stability

Data: pnet, engine, clpot, C, ns, nodes_type

Result: clpot, modif_pot

begin
modif_pot ← 0;
i ← 1;
while (i ≤ C) and (modif_pot = 0) do

nodes ← de�ne_nodes(pnet.dag, engine, i, nodes_type, C);
if length(nodes) ≥ 3 then

j ← 1;
while j ≤ length(nodes)-2 and modif_pot=0 do

�rst_node ← nodes(j);
k ← j+1;
while k ≤length(nodes)-1 and modif_pot=0 do

second_node=nodes(k);
k ← k+1;
while l ≤ length(nodes) and modif_pot=0 do

third_node=nodes(l);
three_nodes= �rst_node ∪ second_node ∪ third_node;
[clpot{i}, modif_pot] ← newpot_n_nodes(clpot{i}, clpot,
three_nodes, ns);
l ← l+1;

k ← k+1;

j ← j+1;

else
if length(nodes) =2 then

j ← 1;
while j ≤ length(nodes)-1 and modif_pot=0 do

�rst_node ← nodes(j);
k ← 1;
while k ≤ length(nodes) and modif_pot=0 do

second_node ← nodes(k);
two_nodes ← �rst_node ∪ second_node;
[clpot{i}, modif_pot] ← newpot_n_nodes(clpot{i}, clpot,
two_nodes, ns);
k ← k+1;

j ← j+1;

i ← i+1;

end
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• multiple_nodes_stability: This procedure ensures for each cluster its stability with

respect to all its nodes (i.e. nodes_type which can be parents, children, parents-children

or neighbors) using the newpot_n_nodes procedure.

Algorithm F.10: multiple_nodes_stability

Data: pnet, engine, clpot, C, ns, nodes_type

Result: clpot, modif_pot, cap_max

begin
modif_pot ← 0;
i← 1;
while (i≤C) and (modif_pot=0) do

nodes←de�ne_nodes(pnet.dag, engine, i, nodes_type, C);
if length(nodes)>1 then

[clpot{i}, modif_pot, cap_max]← newpot_n_nodes(clpot{i}, clpot, nodes,
ns);

i←i+1;

end

• de�ne_nodes: Using the type of nodes (i.e. nodes_type), this procedure de�nes the

node set which can be neighbors, parents, children or parents-children.

Algorithm F.11: de�ne_nodes

Data: adj_mat, engine, i, nodes_type, C

Result: nodes
begin

ps←parents(adj_mat, i);
cs←children(adj_mat, i);
switch nodes_type do

case 'parents' nodes← ps
case 'children' nodes← cs
case 'parents-children' nodes← ps ∪ cs
case 'neighbors'

nodes← [];
for j ← 1 to C do

if j 6= i then
if engine.clusters{i} ∩ engine.clusters{j} 6= ∅ then

nodes← nodes ∪ j;

end
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• newpot_n_nodes: This procedure modi�es the potential of a cluster (i.e. potcl)

using the cartesian product of some of its nodes which can be parents, children, parents-

children or neighbors (i.e. nodes). The main steps of this procedure are:

- compute the domain relative to variables in nodes (i.e. big_domain),

- compute the potential relative to big_domain (i.e. potential),

- compute the domain of the separators between the treated cluster and nodes (i.e onto),

- marginalize the potential of the clusters to the separators (i.e. inter),

- compute the new potential of the cluster using inter (i.e. potcl),

- compare the initial potential of the cluster and the new one. If it is modi�ed, then

modif_pot takes the value 1.

Algorithm F.12: newpot_n_nodes

Data: potcl, clpot, nodes, ns

Result: potcl, modif_pot

begin
save_pot ← potcl.T;
big_domain ← [];
for i ← 1 to length(nodes) do

big_domain ← big_domain ∪ clpot{nodes(i)}.domain;

p_inter ← dpot(big_domain, ns(big_domain));
potential ← p_inter;
for i ← 1 to length(nodes) do

p_inter.T ← extend_domain_table(clpot{nodes(i)}.T, clpot{nodes(i)}.domain,
clpot{nodes(i)}.sizes, p_inter.domain, p_inter.sizes);
potential.T ← min(potential.T, p_inter.T);

onto ← [];
for i ← 1 to length(nodes) do

onto ← onto ∪ (potcl.domain ∩ clpot{nodes(i)}.domain);

inter ← marginalize_pot(potential, onto);
potcl ← minimize_by_pot(potcl, inter);
modif_pot ← 0;
if save_pot 6= potcl.T then modif_pot ← 1;

end
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• best_multiple_nodes_stability : This procedure ensures for each cluster its sta-

bility with respect to the best instances of its nodes (which can be parents, children,

parents-children or neighbors) using the procedure newpot_n_best_nodes.

Algorithm F.13: best_multiple_nodes_stability

Data: pnet, engine, clpot, C, ns, nodes_type

Result: clpot, modif_pot

begin
modif_pot ← 0;
i ← 1;
while (i ≤ C) and (modif_pot = 0) do

nodes ← de�ne_nodes(pnet.dag, engine, i, nodes_type, C);
if length(nodes)>1 then

[clpot{i}, modif_pot] ← newpot_n_best_nodes(clpot{i}, clpot, nodes,
ns);

i ← i+1;

end

• newpot_n_best_nodes: This procedure updates the potential of a cluster using the
best instances in the cartesian product relative to its nodes (i.e. nodes) which can be

parents, children, parents-children or neighbors. The main steps of this procedure are:

- compute the best instances in each node (i.e. sauv_max_index ) and the order in which

we should cover them (i.e. clusters_order ) using extract_best_instances,

- compute the domain relative to variables in nodes (i.e. big_domain),

- compute the best instances (i.e. having the maximal degree) in the cartesian product

relative to big_domain (i.e. best_nodes_instances) using compute_best_nodes_instances.

- compute the domain of the separators between the treated cluster and nodes (i.e onto),

- compute best instances relative to onto from best_nodes_instances

(i.e sep_instances_from_nodes) using extract_onto,

- compute best instances relative to onto from best_cl_instances

(i.e sep_instances_from_cluster) using extract_onto,

- test the coherence between sep_instances_from_nodes and sep_instances_from_cluster,

- if incoherence (i.e uncoherent_instances 6= ∅), then we should decrease the degree of

incoherent instances by choosing the next degree in scale.
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Algorithm F.14: newpot_n_best_nodes

Data: potcl, clpot, nodes, ns

Result: potcl, modif_pot

begin
modif_pot ← 0;
scale ← de�ne_scale(clpot, nodes);
pos_val_in_scale ← length(scale);
big_domain ← [];
for i ← 1 to length(nodes) do big_domain ← big_domain ∪ clpot{nodes(i)}.domain);
val_max_nodes← scale(pos_val_in_scale);
[sauv_max_index, clusters_order ] ← extract_best_instances(potcl, val_max_nodes,
clpot, nodes);
cap_max ← 0;
[best_nodes_instances] ←
compute_best_nodes_instances(sauv_max_index, big_domain, potcl, clpot, nodes,
clusters_order );
onto ← [];
for i ← 1 to length(nodes) do

onto ← onto ∪ (potcl.domain ∩ clpot{nodes(i)}.domain);

sep_instances_from_nodes ← extract_onto(potcl, onto, big_domain,
best_nodes_instances);
[best_cl_instances] ← extract_best_instances(potcl, val_max_cluster);
sep_instances_from_cluster← extract_onto(potcl, onto, potcl.domain, best_cl_instances,
'val+pos');
pos_incoherent_instance ← 1;
incoherent_instances ← [];
for i ← 1 to length(sep_instances_from_cluster) do

j ← 1;
my_test ← 0;
while j ≤ length(sep_instances_from_nodes) and my_test = 0 do

if sep_instances_from_nodes{j} = sep_instances_from_cluster {i}.val then
my_test ← 1;

j ← j+1;

if my_test = 0 then
incoherent_instances(pos_incoherent_instance) ←
sep_instances_from_cluster {i}.pos;
pos_incoherent_instance ← pos_incoherent_instance+1;

if incoherent_instances = ∅ then
x ← �nd(scale = val_max_nodes);
if x 6=1 then

potcl.T(incoherent_instances) ← scale(x-1);
modif_pot ← 1;

end
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F.2.5 Consistency procedures

As described in Section 7.10, the consistency can be applied via two procedures. The �rst one

(i.e. consistency_by_computing_global_instances) checks the existence of a global instance by

constructing the best elements in the cartesian product using compute_best_global_instances.

The second procedure (i.e. consistency_by_adding_links) ensures the consistency by com-

puting from each cluster the potential of its parents.

• consistency_by_computing_global_instances: This procedure tests the exis-

tence of a global consistency using compute_best_global_instances. If such instance

exists (i.e. exists_global_instance=1), then the moral graph is consistent.

Otherwise, (i.e. exists_global_instance=0) we should decrease the maximal value in the

clusters using decrease_in_scale.

Algorithm F.15: consistency_by_computing_global_instances

Data: engine, clpot, alpha_stable, C

Result: engine, clpot, global_consistency, alpha_consistency

begin
exists_global_instance ← 0;
[exists_global_instance, scale, sauv_index_clusters] ←
compute_best_global_instances(alpha_stable, clpot, C);
if exists_global_instance=0 then

for i ← 1 to C do
clpot{i} ← decrease_in_scale(scale, alpha_stable, clpot{i},
sauv_index_clusters{i});

global_consistency ← 0;

else
global_consistency ← 1;

alpha_consistency ← maximum_value(clpot{1}, C);

end
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Algorithm F.16: compute_best_global_instances

Data: val_max, clpot, C

Result: exist_global_instance, scale, sauv_index_clusters, cap_max

begin
scale ← []; exist_global_instance ← 1; treated_var ← [];
best_global_instances ← []; big_domain ← [];
[sauv_max_index, clusters_order ] ← extract_best_instances(C, val_max, clpot);
for i ← 1 to C do big_domain ← big_domain ∪ clpot{i}.domain;
pos_treated_cluster ← C;
�rst_cluster ← clusters_order (pos_treated_cluster);
for i ← 1 to length(sauv_max_index{�rst_cluster}) do

best_global_instances{i} ← zeros(1, length(big_domain));

treated_cluster ← clpot{�rst_cluster};
dom ← treated_cluster.domain;
equiv_pos_dom ← �nd_equiv_posns(dom, big_domain);
for i ← 1 to length(sauv_max_index{�rst_cluster}) do

best_global_instances{i}([equiv_pos_dom]) ← [sauv_max_index{�rst_cluster}{i}];

treated_var ← treated_var ∪ dom;
scale ← update_scale(scale, treated_cluster);
if C>2 then

next ← 1;
pos_treated_cluster ← 2;
while (pos_treated_cluster ≤ C) and (next = 1) do

next_cluster ← clusters_order (pos_treated_cluster);
treated_cluster ← clpot{next_cluster};
treated_coherent ← 0;
dom ← treated_cluster.domain;
equiv_pos_dom ← �nd_equiv_posns(dom, big_domain);
if dom ∩ treated_var 6= ∅ then treated ← 0;
else treated ← 1;
treated_var ← treated_var ∪ dom;
scale ← update_scale(scale, treated_cluster);
position_big_instance ← 1;
sauv_best_global_instances ← best_global_instances;
nb_best_global_instances ← length(best_global_instances)
best_global_instances ← [];
val_max_clusters ← sauv_max_index{next_cluster};
length_val_max_clusters ← length(val_max_clusters);
for i ← 1 to length_val_max_clusters do

one_cluster_instance ← sauv_max_index{next_cluster}{i}
for j ← 1 to nb_best_global_instances do

if treated =1 then
one_big_instance ← sauv_best_global_instances{j};
test_coherence ← test_coherence_instance(one_cluster_instance,
one_big_instance, equiv_pos_dom);

if (treated=0) or (test_coherence = 1) then
treated_coherent ← 1;
best_global_instances{position_big_instance}
← sauv_best_global_instances{j};
best_global_instances{position_big_instance}([equiv_pos_dom])
← [sauv_max_index{next_cluster}{j}];
position_big_instance ← position_big_instance+1;

if treated_coherent = 0 then
next ← 0; exist_global_instance ← 0; scale ← sort(scale);

pos_treated_cluster ← pos_treated_cluster+1;

end
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• consistency_by_adding_links: This procedure ensures the global consistency by

computing from each cluster having at least one parent the potential of its parents (i.e.

pot_parents).

Then, we check if this distribution contains some values less than alpha-stable using

check_consistency_cluster. If so, then the cluster is inconsistent. In this case we should

�rst test the following situations before dropping its inconsistency:

� if the degree β exists in the parents of Ci (this test is performed using check_beta),

� if the parents of the treated cluster are already linked in the DAG (i.e. all_linked=0)

(from the construction or from additional links of a previous step).

If none of these cases is true, then we should modify the inconsistent cluster as follows:

1. Modi�cation of the potential of the inconsistent cluster (replace beta by alpha-stable

using modify_pot)

2. Retrieval of beta by adding links between parents of i (i.e. ps) using add_links.

To do so, we choose the parent in the maximum position (i.e. parent_index ) and

transform the other parents (i.e. rest_parents) as its parents in its corresponding

cluster (i.e. q) so that to respect the topological order.

Note that this consistency procedure starts from the leaves clusters until reaching the

roots (i.e. from cluster number C down to number 1).
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Algorithm F.17: consistency_by_adding_links

Data: engine, pnet, clpot, C, alpha_stable, ns

Result: engine, pnet, clpot, global_consistency

begin
global_consistency ← 1;
i ← C;
while (global_consistency = 1) and (i ≥ 1) do

ps ← parents(pnet.dag, i);
if length(ps) > 1 then

pot_parents ← marginalize_pot(clpot{i}, ps);
consistency ← check_consistency_cluster(C, pot_parents, alpha_stable);
if (consistency = 0) then

modif_pot ← 0;
test_beta ← 1;
test_beta ← check_beta(pot_parents, clpot, ns, ps, alpha_stable);
if test_beta=0 then

parent_index ← max_position(ps);
p ← ps(parent_index);
q ← engine.clq_ass_to_node(p);
rest_parents ← ps - p;
pp ← parents(pnet.dag, p);
all_linked ← 0;
if rest_parents ⊆ pp then all_linked ← 1;
if all_linked = 0 then

clpot{i} ← modify_pot(clpot{i}, ps, alpha_stable, ns);
[engine, pnet, clpot, modif_pot]← add_links(engine, pnet, ns, ps,
clpot, p, q, parent_index, pot_parents, alpha_stable);
if (modif_pot = 1) then global_consistency ← 0;

i ← i-1;

alpha_consistency ← maximum_value(clpot{1});

end
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