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In this paper, we deal with the problem of learning decision rules from partially
uncertain data based on rough sets. The uncertainty exists in the decision

attribute and not in condition attribute values of the decision system. This
latter is represented by the belief function theory. So, we will adapt the basic

concepts of rough sets in order to generate rules, denoted belief decision rules.
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1. Introduction

The rough set theory based on approximation reasoning proposed by
Pawlak 4, 5] constitutes a sound basis for data mining. It allows reduc-
ing original data and generating in automatic way the sets of decision rules
from data (rough set classification). One enhancement of standard rough set
classification does not well perform their task in an environment character-
ized by uncertainty or incomplete data. Many researches have been done to
adapt rough sets to this kind of environment 1, 2, 6, 11]. These extensions
do not deal with partially uncertain decision attribute values in decision
system. This kind of uncertainty exists in many real-world applications like
in medicine where diseases of some patients may be partially uncertain.
In this paper, we will propose a new approach of learning decision rules
from partially uncertain data using rough sets. This uncertainty exists in
decision attribute values of decision system. The uncertainty is represented
under the belief function framework which is able to handle the partial or
total ignorance in a flexible way. The relationship between rough sets and
belief functions continues to receive the attention of many authors 3, 10].
This paper is organized as follows: Section 2 provides an overview about the
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rough set theory. Section 3 introduces the belief function theory as under-
stood in the transferable belief model (TBM). Section 4 describes our new
approach of learning decision rules by rough sets to handle the problem of
uncertainty under the belief function framework.

2. Rough set theory

This section presents the basic concepts of rough sets proposed by Pawlak
4, 5] to deal with vague concepts. A = (U, C ∪ {D}) is a decision system,
where U is a finite set of objects and C is finite set of condition attributes,
i.e., c:U → V c for c ∈ C (V c is called the value set of attribute c). In
supervised learning, D 6= C is a distinguished attribute called decision.
The rough sets adopts the concepts of indiscernibility relation to partition
training instances according to some criteria. The objects x and x’ are
indiscernible on a subset of attributes B, if they have the same values for
each attribute in subset B of A. The equivalence classes thus partitions
the object set U into disjoint subsets, denoted by U/B, and the partition
including x is denoted [x]B. The rough set approach analyses data according
to two basic concepts the lower and upper approximations for B on X,
denoted B

¯
X and B̄X respectively where

B
¯
X = {x |[x]B ⊆ X } and B̄X = {x |[x]B ∩ X 6= ∅}

The objects in B
¯
X can be certainty classified as members of X, while

the objects in B̄X can be only classified as possible members of X. After
the lower and the upper approximations have been found, the rough set
theory can be then used to derive certain and possible rules from them.

3. Belief function theory

In this section, we briefly review the main concepts underlying the TBM,
one interpretation of the belief function theory 13]. Let Θ be a finite set of
elementary events to a given problem, called the frame of discernment 12].
All the subsets of Θ belong to the power set of Θ, denoted by 2Θ. The impact
of a piece of evidence on the different subsets of the frame of discernment
Θ is represented by a basic belief assignment (bba). The bba is a function
m : 2Θ → [0, 1] such that:

∑

A⊆Θ

m(A) = 1 (1)

The value m(A), named a basic belief mass (bbm), represents the por-
tion of belief committed exactly to the event A. In the transferable belief
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model, holding beliefs and making decisions are distinct processes. Hence,
it proposes two level models:

• The credal level where beliefs are represented by belief functions.
• The pignistic level where beliefs are used to make decisions and rep-

resented by probability functions called the pigninstic probabilities
and is defined as: 13]

BetP (A) =
∑

B⊆Θ

| A ∩ B |
| B |

m(B)
(1 − m(∅)) , for all A ∈ Θ (2)

4. Rough sets under uncertainty

In this Section, a new version of learning decision rules using rough sets
from partially uncertain decision system is proposed. The uncertainty is
represented by the TBM and exists only in decision attribute values. So,
we will adapt the basic concepts of rough sets to deal with this situation.

4.1. Decision system under uncertainty

Our uncertain decision system denoted U contains n objects Oj, charac-
terized by m certain condition attribute and uncertain decision attribute.
We propose to represent the uncertainty of each object by a bba mΘ{Oj}
expessing belief on classes defined on the frame of discernment Θ.

Example: Let us take Table 1 to describe our uncertain decision sys-
tem. This latter contains eight objects, three certain condition attributes
C={Headache, Muscle-pain, Temperature} and an uncertain decision at-
tribute UD={Flu} with possible value {yes, no} representing Θ.

Table 1. Uncertain decision table.

Patient Headache Muscule-pain Temperature Flu

O1 yes yes very high mΘ{O1}(yes) = 1
O2 yes no high mΘ{O2}(yes) = 1

O3 yes yes high mΘ{O3}(yes) = 0.5 mΘ{O3}(Θ) = 0.5
O4 no yes normal mΘ{O4}(no) = 0.6 mΘ{O4}(Θ) = 0.4

O5 no yes normal mΘ{O5}(no) = 1
O6 yes no high mΘ{O6}(no) = 1

O7 no yes very high mΘ{O7}(yes) = 1
O8 no no normal mΘ{O8}(no) = 1

Note: For the patient O3, 0.5 of beliefs are exactly committed to the decision d1=yes, whereas 0.5
of beliefs is assigned to the whole of frame of discernment Θ (ignorance).
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4.2. Indiscernibility relation

Indiscernibility relation for the condition attributes is the same as in the
certain case because their values are certain. In our case is equal to:
U/C={{O1}, {O2, O6}, {O3}, {O4, O5}, {O7}, {O8}}. Indiscernibility re-
lation for the decision attribute is not the same as in the certain case. The
decision value is represented by a bba. In our case, we have two equivalence
classes d1=yes and d2=no. So, we need for optimal decision making to as-
sign each object to the most probable class. The idea is to use the pignistic
transformation. It is a function which can transform the belief function to
probability function in order to make decisions from beliefs. We suggest, for
each object Oj in the decision system U , compute the pignistic probability,
denoted BetP, by applying the pignistic transformation to mΘ{Oj}.
Example: Let continue with the same example. Table 2 shows the pignistic
probability applying to each mΘ{Oj}.

Table 2. Pignistic transformation.

mΘ BetP

mΘ{O1} BetP(yes)=1 BetP(no)=0

mΘ{O2} BetP(yes)=1 BetP(no)=0
mΘ{O3} BetP(yes)=0.75 BetP(no)=0.25

mΘ{O4} BetP(yes)=0.2 BetP(no)=0.8
mΘ{O5} BetP(yes)=0 BetP(no)=1

mΘ{O6} BetP(yes)=0 BetP(no)=1
mΘ{O7} BetP(yes)=1 BetP(no)=0

mΘ{O8} BetP(yes)=0 BetP(no)=1

The object O3 included in d1=yes, because it is the most probable class.
So, the two equivalence classes based on uncertain decision attribute are as
follows: U/UD={{O1,O2,O3,O7}, {O4,O5,O6,O8}}. If we have equal prob-
abilities, we choose one of decision attribute values arbitrarily.

4.3. Set approximation

To compute the new lower and upper approximation for our uncertain de-
cision table, we follow two steps:

(1) For each equivalence classes based on condition attributes C, combine
their bba using the operator mean. In order to check which of them has
certain bba.
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(2) For each equivalence classes X based on uncertain decision attribute,
we compute the new lower and upper approximation, as follows:

C
¯
X={x| [x]C ⊆ X and mΘ(d) = 1} and C̄X={x| [x]C ∩ X 6= ∅ }

Example: We continue with the same example to compute the new
lower and upper approximation. After the first step, we obtain the com-
bined bba for each equivalence classes U/C using operator mean. Table 3
represents the combined bba for the subset {O4, O5}.

Table 3. combined bba for {O4, O5}.

Patient mΘ(yes) mΘ(no) mΘ(Θ)

O4 0 0.4 0.6
O5 0 1 0

m 0 0.7 0.3

Next, we compute the lower and upper approximation for each equiva-
lence classes U/UD. For d1=yes, let X= {O1,O2,O3,O7}

C
¯
X={{O1}, {O7}} and C̄X={{O1}, {O2, O6}, {O3}, {O7}}

For d2=no, let Y= {O4,O5,O6,O8}

For example, the subset {O4, O5} is included to Y and it has uncertain
bba. So, we put it in the upper.

C
¯
Y={{O8}} and C̄Y={{O2, O6}, {O4, O5}, {O8}}

We can generate the decision rules from our uncertain decision table.
One of certain rules induced from lower approximation like in {O1}:
”If Headache=yes and Muscle-pain=yes and Temperature= very high then

Flu=yes”.
One of uncertain rules induced from upper approximation like in {O3}:
”If Headache=yes and Muscle-pain=yes and Temperature= high then

mΘ(yes) = 0.5 mΘ(Θ) = 0.5. It can be denoted belief decision rule.

5. Conclusion and future work

In this paper, we have proposed a new learning approach to derive decision
rules from uncertain decision system using rough sets. The uncertainty in
the decision system exists only in decision attribute values. This latter is
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represented by the belief function theory as understood by the TBM. The
belief decision rules generated from our decision table are not optimal. As a
future work, we suggest improve our new approach of learning belief decision
rules based on rough sets. We try to propose algorithm of simplification
decision table and generation algorithm of significant rules.
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