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Abstract

Credits’ granting is a fundamental question for which every credit institution is con-

fronted and one of the most complex tasks that it has to deal with. This task is based

on analyzing and judging a large amount of receipts credits’ requests. Typically, credit

scoring databases are often large and characterized by redundant and irrelevant fea-

tures. With so many features, classification methods become more computational

demanding. This difficulty can be solved by using feature selection methods. Many

such methods are proposed in literature such as filter and wrapper methods. Filter

methods select the best features by evaluating the fundamental properties of data,

making them fast and simple to implement. However, they are sensitive to redun-

dancy and there are so many filtering methods proposed in previous work leading

to the selection trouble. Wrapper methods select the best features according to the

classifier’s accuracy, making results well-matched to the predetermined classification

algorithm. However, they typically lack generality since the resulting subset of fea-

tures is tied to the bias of the used classifier. The purpose of this thesis is to build

simple and robust credit scoring models based on selecting the most relevant features.

Three feature selection methods are proposed. First we propose a new filter rank ag-

gregation based on an optimization method using genetic algorithms and similarity.

Second, we introduce an ensemble wrapper feature selection method based on an im-

proved exhaustive search. Combining both methods seems a natural choice to benefit

from their advantages and avoid their shortcomings. Thus, a three stage feature se-

lection using quadratic programming is considered. Based on different performance

criteria and on four real credit datasets our three methods are evaluated. Results

show that feature subsets selected by the proposed methods are either superior or at

least as adequate as those selected by their competitor methods.

Keywords: Feature selection, filter, wrapper, hybrid, rank aggregation.
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Résumé

L’octroi de crédit est une question fondamentale à laquelle chaque établissement de

crédit est confronté. Il s’agit de l’une des tâches les plus complexes qu’il doit traiter.

Cette tâche est basée sur l’analyse et le jugement d’une grande quantité de deman-

des de crédit reçues. Généralement, les bases de données utilisées en credit scoring

sont très grandes et se caractérisent par la présence de variables redondantes et non

significatives. Avec tant de variables, les méthodes de classification deviennent plus

complexes. Cette difficulté peut être résolue en utilisant des méthodes de sélection

de variables. De nombreuses méthodes de sélection de variables ont été proposées en

littérature dont les méthodes filtre et wrapper. D’une part les méthodes filtre choisis-

sent les meilleures variables en évaluant les propriétés fondamentales des données, ce

qui les rend rapides et faciles à mettre en œuvre. Cependant, ils ne tiennent pas en

compte de la redondance entre les variables. De plus la multitude des méthodes filtre

proposées dans les travaux antérieurs pose le problème de choix de la méthode la plus

appropriée. D’autre part les méthodes wrapper choisissent les meilleures variables

selon le taux de classification généré par un classifieur, de ce fait le résultat est bien

adopté à l’algorithme de classification utilisé. Cependant, ces méthodes manquent de

généralité puisque le sous-ensemble résultant de variables est biaisé par le classifieur

utilisé. Le but de cette thèse est de construire des modèles de credit scoring simples

et robustes tout en sélectionnant les variables les plus pertinentes. D’abord nous

proposons une nouvelle méthode filtre d’agrégation de rangs basée sur l’optimisation,

les algorithmes génétiques et la similarité. Dans un second temps, nous présentons

une méthode d’ensemble wrapper de sélection de variables basée sur une recherche

exhaustive améliorée. La combinaison des deux méthodes semble un choix naturel

pour profiter de leurs avantages et éviter leurs défauts. Ainsi, nous proposons une

troisième méthode de sélection à trois niveaux utilisant la programmation quadra-

tique. En se basant sur différents critères de performance et sur quatre bases de

données réelles de crédit, nous avons évalué nos trois méthodes. Les résultats obtenus

par les sous-ensembles de variables choisis par les méthodes proposées sont meilleurs

ou au moins aussi pertinents que ceux donnés par les méthodes concurrentes.

Mots clés: Sélection de variables, filter, wrapper, hybride, agrégation des rangs.
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Introduction

Motivations for feature selection in credit scoring

Failures of financial institutions are generally related to their inability of controlling

an ensemble of financial risks. Different kinds of risks exist but the most important

one is credit risk. Credit granting decision is an important and widely studied topic

in the lending industry. The set of decision models and their underlying methods

that serve lenders in granting consumer credits are called credit scoring (CS) (Zhang

et al. 2010).

The general scheme in CS is to use the credit history of previous customers to compute

the new applicant’s defaulting risk (Tsai and Wu 2008; Thomas 2009). The collected

portfolio, i.e. collection of booked loans, is used to build a CS model that would

be used to identify the association between the applicant’s characteristics and how

good or bad is the credit worthiness of the applicant. Generally, portfolios used

for the scoring task are voluminous and they are in the range of several thousands.

These portfolios are characterized by noise, missing values by redundant or irrelevant

features and complexity of distributions (Piramuthu 2006). The number of considered

features is called data dimension and high dimensionality in the feature space has

advantages but also some serious shortcomings. In fact, as the number of features

increases more computation is required and model accuracy and scoring interpretation

are reduced (Liu and Schumann 2005; Howley et al. 2006). One solution is to perform

a feature selection on the original data.

Feature selection is a term commonly used in machine learning to describe existing

1



Introduction

set of methods to reduce a dataset to a convenient size for processing and investigation.

This process involves not only a pre-defined cutoff on the number of features that can

be considered when building a credit model but also the choice of appropriate features

based on their relevance to the study (Fernandez 2010). Further, it is often the case

that finding the correct subset of predictive features is an important problem in its

own right.

Research questions in feature selection

Three main classes of feature selection are identified in the literature (Rodriguez

et al. 2010): filter, wrapper and hybrid feature selection methods.

Usually, filter methods choose the best features by using some informative mea-

sure. Various filtering methods and their modifications are proposed in the literature

leading to the selection trouble of how to choose the best criterion for a specific feature

selection task (Wu et al. 2009). This question is still an open research field. In order

to handle this issue, ensemble methods, i.e rank aggregation, could be an interesting

solution (Dietterich 2000; Dittman et al. 2013). Aggregation methods provide robust

results where the issue of selecting the appropriate filter is alleviated to some level

(Saeys et al. 2008). However, in many cases, where rankings are incomplete or highly

similar features are given divergent rankings, effective rank aggregation becomes a

difficult task (Sculley 2007). These difficulties may be addressed by considering sim-

ilarity between features in various ranked lists in addition to their rankings. The

intuition is that similar features should receive similar rankings given an appropriate

measure of similarity.

Filter feature selection does not take into account the properties of the classifier,

as it performs usually statistical tests on variables. Therefore, results obtained from

a wrapper are different from that of a filter because the former actually takes into

consideration the classifier proprieties. In fact, using a single classifier in the wrap-

per evaluation process may influence the final selection result because each particular

classifier has its own specificity and nature (Chrysostomou 2008). When the classifier

is changed, due of its bias, the result may differ in terms of the amount of time, the

2



Introduction

accuracy and the number of selected features. As such, a possible remedy for this

drawback is to use an ensemble of classifiers and combine their outcomes. Neverthe-

less, we have a reduced knowledge about the effects of using multiple classifiers on

feature selection applied to CS tasks, specially the effects of using different number

of classifiers with similar or different nature (Chrysostomou et al. 2008). Then, we

focus on how the number and the nature of the used classifiers affect the number of

selected features and the accuracy of the credit model.

In order to find the best subset of features to be evaluated, the ideal approach is

to perform a complete search in the whole search space (Chan et al. 2010). However,

searching all possibilities is sometime unrealistic (Liu and Yu 2005). Hence, in order

to minimize the number of evaluations done by the classifier, and at the same time

maintain the accuracy, we look for a combined search algorithm that reduces the

number of possible candidates using a mixture between complete and heuristic search

methods.

Usually, hybrid feature selection methods, combining the two discussed approaches,

are needed to serve more complicated purposes, (Wu et al. 2009). In fact, constructing

a hybrid feature selection process benefitting from advantages of filters and wrappers

is a very interesting research question. The challenge here is how to make these two

methods work together in order to hid the shortcomings of each one.

Thesis structure

This thesis is organized as follows: in Chapter 2 we review the necessary back-

ground for this work and the relevant literature. In Chapter 3 we propose a new rank

aggregation approach based on optimization, genetic algorithm (GA) and similarity

for CS. In Chapter 4 we introduce an ensemble wrapper feature selection based on an

improved exhaustive search for CS. Chapter 5 presents a hybrid three-stage feature

selection approach using quadratic programming for CS. Finally, Chapter 6 summa-

rizes the key findings along with their limitations and underlines some possible future

research topics.
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1.1 Introduction

Feature selection is a fundamental topic in CS. As such, this chapter will provide an

overview of CS in Section (1.2). Then, in order to provide a foundation to the most

commonly used feature selection methods in CS, a brief introduction of the basics

of feature selection is given in Section (1.3) namely search direction, search strategy,

evaluation function and stopping criterion. Subsequently, Section (1.4) explains how

feature selection is performed using filter, wrapper and hybrid feature selection with

some examples and a brief comparison between theses three approaches. Then, Sec-

tion (1.5) introduces the used datasets throughout this thesis. In Section (1.6) the

performance measures are given.

1.2 Credit scoring: state of the art

Credit risk is one of the major issues in financial research (Matjaz 2012; Jiang 2009).

Over the past few years, many companies fell apart and were forced into bankruptcy

or to a significantly constrained business activity because of the deteriorated financial

and economic situation (Haizhou and Jianwu 2011). When banks are unprepared to a

variation in the economic activity they will probably suffer from huge credit losses. In

fact it is very obvious that credit risk increases in economic depression. However, this

effect could increase when bank experts under or over estimate the creditworthiness

of credit applicants. Expressing why some companies or individuals do default while

others don’t and what are the main factors that drive credit risk and how to build

robust credit model is very important for financial stability.
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1.2.1 Background of credit scoring

CS is basically a way of recognizing the different groups in a population when one

cannot see the characteristics that separate the groups but only related ones (Thomas

2000). This idea of differentiating between groups in the same population was first

introduced in statistics by Fisher (1936). He wanted to distinguish between three

varieties of iris by measurements of the physical size of the plants. Then Durand

(1941) was the first to recognize that one could use the same techniques to discriminate

between good and bad loans. His research was done in the context of a research project

for the US National Bureau of Economic Research. Since then, CS was a true success

and banks started using it for their predictive activities (Thomas et al. 2002).

CS consists of the evaluation of the risk related to lending money to an organi-

zation or a person. In the past few years, the business of credit products increased

enormously. Approximately every day, individual’s and company’s records of past

lending and repaying transactions are collected and evaluated (Hand and Henley

1997). This information is used by lenders such as banks to evaluate an individual’s

or company’s means and willingness to repay a loan. According to Yang (2001) the

set of collected information makes the deciders task simple because it helps deter-

mine: whether to extend credit duration or to modify a previously approved credit

limit and to quantify the probability of default, bankruptcy or fraud associated to a

company or a person. When assessing the risk related to credit products, different

problems arise depending on the context and the different types of credit applicants.

Sadatrasoul et al. (2013) summarize different kinds of scoring as follows: application

scoring, behavioral scoring, collection scoring and fraud detection.

Application scoring

Application scoring refers to the assessment of the credit worthiness for new appli-

cants. It quantifies the risks associated with credit requests by evaluating the social,

demo-graphic, financial and other data collected at the time of the application.
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Behavioral scoring

Behavioral scoring involves principles that are similar to application scoring with the

difference that it refers to existing customers. As a consequence, the analyst already

has evidence of the borrower’s behavior with the lender. Behavioral scoring models

analyze the consumer’s behavioral patterns to support dynamic portfolio management

processes.

Collection scoring

Collection scoring is used to divide customers with different levels of insolvency into

groups, separating those who require more decisive actions from those who don’t

need to be attended to immediately. These models are distinguished according to the

degree of delinquency (early, middle, late recovery) and allow a better management of

delinquent customers, from the first signs of delinquency (30-60 days) to subsequent

phases and debt write-off.

Fraud detection

Fraud scoring models rank the applicants according to the relative likelihood that an

application may be fraudulent.

We will address the application scoring problem also known as consumer CS. In

this context the term credit will be used to refer to an amount of money that is

borrowed to a credit applicant by a financial institution and which must be repaid

with interest in a regular interval of time. The probability that an applicant will

default must be estimated from information about the applicant provided at the time

of the credit application and the estimate will serve as the basis for an accept or a

reject decision. According to Sadatrasoul et al. (2013), accurate classification is of

benefit both to the creditor in terms of increased profit or reduced loss and to the

applicant in terms of avoiding over commitment. Deciding whether or not to grant

a credit is generally carried out by banks and various other organizations. It is an

economic activity which has seen rapid growth over the last 30 years.
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Traditional methods of deciding whether to grant credit to a particular individual

use human judgment of the risk of default based on experience of previous decisions

(Thomas et al. 2002). Nevertheless, economic demands resulting from the arising

number of credit requests, joined with the emergence of new machine learning meth-

ods, have led to the development of sophisticated models to help the credit granting

decision.

Statistical CS models, called scorecards or classifiers, use predictors from appli-

cation forms and other sources to estimate the probabilities of defaulting. A credit

granting decision is taken by comparing the estimated probability of defaulting with

a suitable threshold (Bardos 2001). Standard statistical methods used in the industry

for developing scorecards are discriminant analysis (DA), linear regression (LinR) and

logistic regression (LR). Despite their simplicity, Tufféry (2007) and Thomas (2009)

show that both DA and LR prediction need strong assumptions on data. Hence, other

models based on data mining methods are proposed. These models do not lead to

scorecards but they indicate directly the class of the credit applicant (Jiang 2009).

Artificial intelligence methods such as decision trees (DT), artificial neural networks

(ANN), K-nearest-neighbor (KNN) and support vector machines (SVM) can be used

as alternative methods for CS (Bellotti and Crook 2009). These methods extract

knowledge from training datasets without any assumption on the data distributions.

The classification methods are described in Appendix (A). A brief summary about

the used classification methods in this thesis is included in Chapter 3.

1.2.2 Basic notations in credit scoring

In what follows, we present the main notations which will be used in this CS context.

Let Ω the population of credit applicants. We denote by χ the space of observations

in Rd defined by the random variable X given by

X : Ω→ χ ⊂ Rd

i xi = (x1i , x
2
i , ..., x

d
i ).

(1.1)

8



Chapter 1: Overview of Feature Selection

We have n individuals described by d variables as shown by the matrix x given below:

x =


x11 ... xd1

... ... ...

x1n ... xdn


Let X denote the set of features such that X = (X1, X2, ..., Xd). The n observations

are divided into two groups, where the group label of an applicant i is represented

through the modalities {0, 1} of a binary target variable Y , where the label 0 denotes

a bad applicant and 1 a good one. We denote by Y = (y1, . . . , yn) the vector of class

labels for the n instances. Figure (1.1) summarizes the process of CS and its basic

notions.

Figure 1.1: The process of credit scoring.

1.2.3 Proprieties of financial data

According to Hand and Henley (1997) CS portfolios are frequently voluminous and

they are in the range of several thousands, over 100000 applicants measured by more

than 100 variables are quite common. These portfolios are characterized by missing

values, complexity of distributions and by redundant or irrelevant features (Piramuthu

2006). Clearly, applicants characteristics will vary from one situation to another. An

applicant looking for a small loan will be asked for information which is different from

another who is asking for a big loan. Furthermore, the data which may be used in a

credit model is always subject to changing legislation (Hand and Henley 1997).

Based on initial application forms filled by credit applicants some are rejected

based on some obvious characteristics. Further information is then collected on the
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remaining credit applicants using further forms. This process of collection of the

borrower’s information allows banks to avoid losing time on obvious non worthy

applicants as well as allowing quick decisions.

As any classification problem, choosing the number of appropriate features to be

included in the credit model is an important task. One might try to use as many

features as possible. However, the more the number of features grows the more

computation is required and model accuracy and scoring interpretation are reduced

(Liu and Schumann 2005; Howley et al. 2006). There are also other practical issues,

in fact with too many questions or a lengthy vetting procedure, applicants will deter

and will go elsewhere. Based on Hand and Henley (1997), standard statistical and

pattern recognition strategy is to explore a large number of features and to identify

an effective subsetof those features to be considered for building the credit model.

1.3 Basics of feature selection

There are two famous special methods of dimensionality reduction. The first one is

feature extraction where the input data is transformed into a reduced representation

set of features, so new attributes are generated from the initial ones. The second

category is feature selection. In this category a subset of existing features is selected

without a transformation. Generally, feature selection is preferred over feature ex-

traction since it keeps all information about the importance of each single feature

while in feature extraction obtained variables are usually not interpretable (Giudici

2003).

Conserving the information of each feature provides much simplicity and interpretabil-

ity to financial data processing. Hence, feature selection is more appropriate to our

study. Feature selection is an important framework in knowledge discovery and spe-

cially in financial applications, not only for the insight gained from determining pre-

dictive modeling features but also for the improved performance, understandability

and accuracy of the credit models.

The idea behind feature selection is to reduce the effect of tricky features in the
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dataset, where tricky and unneeded features include:

• irrelevant features are those that can never contribute to improve the predictive

accuracy of credit model, where the accuracy is how close a measured value

is to the actual or true value. However, the algorithm may mistakenly include

them in the model. Removing such features reduces the dimension of the search

space and speeds up the learning algorithm.

• redundant features are those that can replace others in a feature subset. They

basically bring similar information as other features. For example, a dataset

may include two features that provide similar information as date of birth and

age. Typically feature redundancy is defined in terms of feature correlation,

where two features are redundant to each other if they are correlated.

According to Rodriguez et al. (2010) a successful feature selection: a) reduces the

dimensionality of the feature space, b) speeds up and reduces the cost of a learning

algorithm and c) obtains the feature subset which is the most relevant to classification.

Feature selection algorithms are typically composed of the following four components:

search direction, search strategy, evaluation function and the stopping point. Figure

(1.2) gives a flowchart presenting the general process of feature selection based on

these four components.

1.3.1 Search direction

Choosing the starting point in the process of searching for the most important features

is the first issue to be considered when performing a feature selection on the original

features set. Once the starting point is defined, the search direction is determined

(Liu and Motoda 1998; Yun et al. 2007). The search for the most relevant feature

subset may start with an empty set and successively add the most relevant features.

In this case, the search direction is called forward direction. On the other hand, the

search may begin with the full set and successively removes less relevant features.

In this case, the direction is named backward. Other ways of starting points can be
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Figure 1.2: Key steps of feature selection process.

used, we may start with both ends and add and remove features at the same time i.e.

bidirectional. The search may also begins with a random subset of features in order

to avoid being trapped into local optima (Liu and Yu 2005).

1.3.2 Search strategy

Once the starting point and the search direction are decided, the search strategy

must be chosen. The search strategy is a fundamental part in the process of subset

generation. Typically, for a dataset of d features, 2d possible subsets are candidates

for further examinations (Yun et al. 2007). Even for a moderate d, the search space

may be too large for a complete search (Kwang 2002). Consequently, two strategies

have been explored in the literature as discussed by Liu and Yu (2005) and also by

Legrand and Nicoloyannis (2005): exhaustive and heuristic.

Exhaustive search

An exhaustive search performs a complete search to find all possible features’ subsets

and picks the optimal subset of features by examining all possible candidate subsets.

Since exhaustive search examines all possible subsets, it always guarantees to find the
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optimal result. However, as the number of features grows, exhaustive search becomes

rapidly impractical because the search space is in the order of O(2d).

Heuristic search

Naturally a search does not have to be exhaustive in order to guarantee good or

acceptable results (Legrand and Nicoloyannis 2005). Heuristic methods are a set of

realistic and practical approaches that are easier to put into practice. Still, such search

strategy does not always guarantee to produce an optimal solution, but nonetheless

a greedy heuristic may yield locally optimal solutions that approximate a global op-

timal solution. Many research works discussed heuristic search in CS. Wang et al.

(2012) proposed a novel approach to feature selection based on rough set (RSFS),and

scatter search. In RSFS, conditional entropy is regarded as the heuristic to search

for optimal solutions. Falangis and Glen (2010) proposed a variety of heuristic fea-

ture selection methods for CS problems with large numbers of observations. These

heuristic procedures, which are based on the mixed integer programming model for

maximizing classification accuracy, were applied to three CS datasets and proved to

be efficient. The two most popularly used categories of heuristic search strategies are

sequential search and random search.

• Sequential search

Sequential search includes: forward selection, backward elimination and bidi-

rectional search (Chan et al. 2010). These approaches consider local changes to

the feature subsets during the search for the appropriate feature subset, where

a local change is basically adding or removing a single feature from the subset.

These approaches are known for their efficiency in generating fast results as the

order of the search space is typically in the order of O(d2).

• Random search

Generally, random search starts with selecting a random features’ subset and

may proceed in two different ways. Either it follows a classical sequential search

and adds randomness into it, or it generates the next subset in a completely
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random manner (Liu and Yu 2005).

1.3.3 Evaluation function

Feature selection methods search for the best subset that optimally describes the

target variable. Once all candidate subsets are generated, each one is evaluated and

compared with the other subsets according to an evaluation criterion. As established

by Dash and Liu (2003), a subset is optimal always relative to the chosen evaluation

criteria, which means that the chosen best subset using one evaluation criterion may

not be the same using another one. Many criteria have been proposed in previous

works as discussed by Kumar and Kumar (2011). Dash and Liu (2003) grouped the

evaluation functions into five categories: distance, information, dependence, consis-

tency, and classifier error rate. Liu and Yu (2005) on the other hand, has divided

evaluation criteria into two classes based on their dependency on the classification

algorithms that will finally be applied on the selected feature subset. Considering

these groupings, we divide the evaluation functions as given below.

Independent criteria

Independent criteria, by definition, are independent of the used classification algo-

rithm and are generally used in filter methods. They evaluate the relevance of a

feature or feature subset by exploiting the intrinsic characteristics of the data with-

out involving any classification algorithm. In the following we discuss the most well

known independent criteria.

• Distance measures

As discussed by Dash and Liu (2003) and by Liu and Yu (2005) in a binary

context, distance measures, also known as separability, divergence, or discrim-

ination measure, study the difference between the two-class conditional prob-

abilities. In other words, a feature Xj is chosen over another feature Xj′ if it

induces a greater difference between the two-class conditional probabilities than

Xj′. In the case where the difference is zero then the two features are identical.
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Relief is one of the most famous features selection method based on distance

measures. This method uses the Euclidean distance to select a sample composed

of a random instance xi and their two nearest instances in x of the same class,

i.e. nearmiss(x), and opposite class i.e. nearhit(x). Then, a routine is used

to update the feature weight vector for every sample triplet and determines the

average feature weight vector relevance. Then, features with average weights

over a given threshold are selected. Algorithm (1.1) gives a more detailed pic-

ture of the process of Relief method, where w = (w1, . . . , wd) is a weight vector

associated to X and T is the number of iterations.

Algorithm 1.1 Relief algorithm

Require: x matrix of observations.
T number of iterations.

Ensure: selected features subset.
1: initiate the weight vector to zero: w = 0.
2: for cpt=1 . . . T do
3: pick randomly an instance xi from x
4: for j =1 . . . d do
5: wj = (xji − nearmiss(x)j)2 − (xji − nearhit(x)j)2

6: end for
7: end for
8: the chosen feature set is {Xj p wj > threshold}

• Information measures

The information theory approach has proved to be effective in solving many

problems as discussed by Kumar and Kumar (2011). One of these problems is

feature selection where information theory basics can be exploited as metrics or

as optimization criteria. These measures are typically used with filter feature

selection methods including mutual Information (MI). They provide a solid

theoretical framework for measuring the relation between the classes and a

feature or more than one feature (Bonev 2010).

Formally, the MI of two continuous random variables Xj and Xj′ is defined as

follows:
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MI(Xj, Xj′) =

∫ ∫
p(xj, xj′)log

p(xj, xj′)

p(xj)p(xj′)
dxjdxj′, (1.2)

where p(xj, xj′) is the joint probability density function and p(xj) and p(xj′)

are the marginal probability density functions. In the case of discrete random

variables, the double integral becomes a summation, where p(xj, xj′) is the joint

probability mass function, and p(xj) and p(xj′) are the marginal probability

mass functions. MI is an information metric used to measure the relevance of

features taking into account the amount of information shared by two features

(Kumar and Kumar 2011). Large values of MI indicate high correlation between

the two features and zero indicates that two features are uncorrelated. Many

authors proposed feature selection methods based on MI in different evaluation

functions such as Kumar and Kumar (2011) and Al-Ani and Deriche (2001).

• Dependency measures

As discussed by Dash and Liu (2003) and Yu and Liu (2003), dependency mea-

sures or correlation measures quantify the ability to predict the value of one

variable based on the value of the other. If the correlation between two fea-

tures is adopted as an evaluation function, the above definition becomes that a

feature is relevant if it is strongly associated with the class. In other words, if

the correlation of a feature Xj with the class variable is superior to the correla-

tion of feature Xj′ with the class variable, then feature Xj is considered more

predictive.

The Pearson’s correlation coefficient (PCC) for continuous features is a simple

measure but effective in a wide variety of feature selection methods (Rodriguez

et al. 2010). Formally PCC is defined by

PCC =
cov(Xj, Xj′)√
var(Xj)var(Xj′)

, (1.3)

where cov is the covariance and var is the variance. Another popular feature
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selection method is Pearson’s chi-squared test (χ2). This test is usually used

with nominal or categorical variables. The χ2 test can also be used with nu-

merical variables by converting them into nominal or categorical types. The

first step in performing the χ2 test for independence is to convert the raw data

into a contingency table. Then, the independence between each variable and

the target variable is measured using the contingency table. χ2 is defined by :

χ2 =
∑c

i=1
(Oi−Ei)

2

Ei
, (1.4)

where Oi is the observed frequency; Ei is the expected theoretical frequency,

asserted by the hypothesis of independency and c the number of cells in the

contingency table.

• Consistency measures

A consistency measure evaluates the distance of a feature subset from the con-

sistent class label. Consistency is established when a data set with the selected

features alone is consistent. That is, no two instances may have the same feature

values if they have a different class label (Arauzo-Azofra et al. 2008).

According to Arauzo-Azofra et al. (2008) having consistency in a dataset is

usually accompanied while looking for a small feature set. Because, as the

number of features increases the more the consistent hypothesis can be rejected.

In any case, the search for small feature sets is the common goal of feature

selection methods, so this is not a particularity of consistency methods. The

most basic of these measures is the one that simply guesses if the training data

set is consistent or not with the selected features. Its output is just a boolean

value.

Dependent criteria

Dependent critera are generally used with wrapper feature selection methods when

the performance of a specific scoring algorithm is used to determine which features are

selected. When using dependant criteria we generally obtain superior results as the

found features are well-matched to the predetermined mining algorithm. However, it
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also tends to be more computationally expensive and may not be suitable for other

scoring algorithms (Chrysostomou 2008).

In general, classification accuracy is widely used as the primary measure of de-

pendent criteria. Features are selected by the classification algorithm and later used

in predicting the class labels of unseen instances. Usually, accuracy is high but it

is computationally costly to estimate accuracy for every feature subset (Yu and Liu

2004).

1.3.4 Stopping criterion

The final step in the process of feature selection is to choose a stopping criterion for

the search of feature subsets. The stopping criteria depends on the level of depen-

dency of the used evaluation function. As discussed by Chrysostomou (2008), in case

independent criteria are used, a commonly used stopping criterion is the ordering of

the features according to some relevance score. When dealing with dependent eval-

uation function one might stop adding or removing features when there is no more

improvement in the accuracy of the current feature subset. Some frequently used

stopping criteria are:

• The search is completed when all feature subsets are evaluated.

• A suitable high-quality subset is selected when the smallest feature subset with

the highest discriminant power is found and as a result the search algorithm

stops the searching process.

• A specific bound is achieved where a bound can be a particular number of

features or number of iterations is reached.

• A subsequent addition, or deletion, of any feature does not produce a better

subset.
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1.4 Feature selection algorithms

1.4.1 Filter methods

A feature selection algorithm is considered a filter if it filters out all unwanted features

(Molina et al. 2002; Blum and Langley 1997). According to Forman (2008) a filter

technique is a pre-selection process which is independent of the applied classification

algorithm. The process of filter methods is illustrated in Algorithm (1.2) (Yu and Liu

2004).

Algorithm 1.2 Generalized filter feature selection algorithm

Require: X : all features.
F0 : a subset of features from which to start the search F0 ⊂ X.
γ : a stopping criterion.

Ensure: Fbest: selected features subset.
1: initialize: Fbest = F0.
2: γbest = eval(F0,X,M); evaluate F0 by an independent criteria M .
3: while γ == γbest do
4: F = generate(X); generate a subset for evaluation.
5: γ = eval(F,X,M); evaluate the current subset F by M .
6: if γ is better than γbest then
7: γbest = γ.
8: Fbest = F .
9: end if

10: end while
11: return Fbest.

Filter methods typically evaluate the importance of features by looking at the intrinsic

properties of the data (Saeys et al. 2007). Basically, in filter approach, a relevance

score is assigned to each feature in the dataset. Then, they are ordered according to

their relevance score. In general, features with high scores are then selected and low

scoring features are eliminated (Chrysostomou 2008). Once all features are ranked,

the selected features are introduced as inputs to the classifier. Figure (1.3) illustrates

the filter feature selection process.

Filters can be exceptionally effective since they easily scale down high dimen-

sional data. They are computationally fast and simple since the selection criterion
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Figure 1.3: The process of filter feature selection.

is completely independent of the classifier (Guyon and Elisseeff 2003). Several rank-

ing criteria for filter methods have been proposed in the literature. Examples of the

commonly used filter ranking criteria are summarized in Table (1.1).

Table 1.1: Taxonomy of filter feature selection methods.

Model
search

Advantages Disadvantages Examples

Univariate
Fast.
Scalable.
Independent of the classifier.

Ignores feature dependen-
cies.
Ignores interaction with the
classifier.

PCC
χ2

Entropy

Multivariate

Models feature dependen-
cies.
Better computational com-
plexity than wrapper meth-
ods.
Independent of the classi-
fier.

Slower than univariate tech-
niques.
Less scalable than univari-
ate techniques.
Ignores interaction with the
classifier.

Correlation-
based feature
selection(CFS)

1.4.2 Wrapper methods

Wrapper methods use specific classifiers and use resulting classification performance

to select features. While filter methods treat the problem of finding the best feature
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subset independently of the learning step, wrapper methods use the model accuracy

within the feature subset search. They use search methods to pick subsets of vari-

ables and evaluate their importance based on the estimated classification accuracy

(Rodriguez et al. 2010). Details of the wrapper process are described in Algorithm

(1.3) (Yu and Liu 2004).

Algorithm 1.3 Generalized wrapper feature selection algorithm

Require: X : all features.
F0 : a subset of features from which to start the search F0 ⊂ X.
γ : a stopping criterion.

Ensure: Fbest: selected features subset.
1: initialize: Fbest = F0.
2: γbest = eval(F0,X, A); evaluate F0 by a classification algorithm A.
3: while γ = γbest do
4: F = generate(X); generate a subset for evaluation.
5: γ = eval(F,X, A); evaluate the current subset F by A.
6: if γ is better than γbest then
7: γbest = γ.
8: Fbest = F .
9: end if

10: end while
11: return Fbest.

According to Kohavi and John (1997), a wrapper model incorporates the classification

algorithm into the feature selection process and considers it as a perfect ”black box”.

In other words it is not necessary to know the classification algorithm or how it works,

only its ability to test the solution on the validation set.

Wrappers use a search procedure in the space of possible features, and then gen-

erate and evaluate various subsets in order to find the best one. The evaluation of a

specific subset of features is obtained by training and testing a specific classification

model repetitively, rendering this approach tailored to a specific classification algo-

rithm. To search the space of all feature subsets, a search algorithm is then ’wrapped’

around the classification model. Figure (1.4) illustrates the process of wrapper feature

selection.
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Figure 1.4: The process of wrapper feature selection.

1.4.3 Embedded methods

In embedded feature selection methods the search for an optimal subset of features is

built into the classifier construction; i.e. feature selection occurs naturally as a part

of the learner. Typically, these methods use all features as input to generate a model.

Then, they evaluate the model to infer the relevance of the features. As a result, they

directly link features relevance to the learner used to model the relationship (Tuv

et al. 2009).

Just like wrappers, embedded methods are specific to a given learning algorithm. In

fact, the classifier has its own feature selection algorithm and both interact together.

So, implicitly, features’ dependencies are taken into account. Also embedded methods

are far less computationally intensive than wrapper methods.

As discussed earlier, the similarly to wrapper methods is linked to the classification

stage. This same link is much stronger when the feature selection of the embedded

methods is included into the classifier construction. Embedded methods offer the

same advantages as wrapper methods concerning the interaction between the feature

selection and the classification. However, since the embedded-based approaches are

algorithm-specific they are not adequate for our requirement.
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1.4.4 Hybrid methods

The hybrid model attempts to take advantage of other feature selection approaches by

using their different evaluation criteria in different search stages. In case the chosen

feature selection technique proves to be too slow to allow complex search schemes for

a large number of candidate features, it may be more practical to introduce another

fast but less accurate feature selection method to pre-filter some of unwanted features.

So, only more promising features are eventually presented to the primary slow feature

selection technique.

Many hybrid feature selection methods were proposed in the past few years to con-

struct accurate CS model. An interesting hybrid filter-wrapper approach is introduced

by Huang et al. (2007) where a genetic algorithm based approach is used to optimize

the parameters of SVM classifier and feature subset simultaneously, without reducing

the SVM classification accuracy. Cho et al. (2010) proposes a hybrid method for

effective bankruptcy prediction, based on the combination of variable selection using

decision trees and case-based reasoning using the Mahalanobis distance with variable

weight.

In general, hybrid algorithms focus on combining filter and wrapper algorithms

to achieve the best possible performance with similar accuracy of wrapper and time

complexity of filter algorithms.

1.4.5 Comparison of feature selection algorithms

Numerous feature selection techniques are available. In order to better understand

the inner instrument of each technique and the commonalities and differences among

them, we present a categorizing framework in Table (1.2) based on the previous

discussions.

Comparing feature selection methods is not an easy task, since it depends on nu-

merous factors. Feature selection methods could be compared according to different

purposes, for general purpose of irrelevancy removal, filters are good choices as they

are unbiased and fast. On the other hand, to improve the classification performance,
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wrappers should be preferred over filters since they are more appropriate to the classi-

fication tasks. Sometimes, hybrid feature selection methods are needed to serve more

complicated purposes.

In terms of the amount of time, a feature selection method that is considered to

be theoretically complex may take longer to select relevant features than a feature

selection method which is regarded as theoretically simple. The time concern is also

about whether the feature selection process is time critical or not.

When time is not an important issue, based-complete search methods are recom-

mended to achieve optimality, otherwise heuristic-based search methods should be

selected for fast results. Time constraints can also affect the choice of feature selec-

tion models as different models have different computational complexities. The filter

model is preferred in applications where applying a particular classifier is too costly.

Table 1.2: Summary and comparison of feature selection methods.

Filter Wrapper Hybrid
Evaluation
Criterion

distance, information,
dependency and consis-
tency

predictive accuracy independent criteria,
dependent criteria

Search feature weighting, subset
search

exhaustive, heuristic mixture

Characteristics unbiased and fast, ro-
bust against overfitting,
reasonable computation
cost, reasonable statisti-
cal scalability

achieve higher opti-
mality, interact with
the classifier, consider
dependencies

take advantage of
other feature selection
approaches

1.5 Datasets description and pre-processing

1.5.1 Datasets description

The adopted herein datasets used for evaluation are four real-world datasets: two

datasets from the UCI repository of machine learning databases: Australian and
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German credit datasets (http://archive.ics.uci.edu/ml/datasets.html), a dataset from

a Tunisian bank and the HMEQ dataset. Table (1.3) displays the characteristics of

these datasets.

Table 1.3: Summary of datasets used for evaluating the feature selection methods.

Names Australian German HMEQ Tunisian

Total instances 690 1000 5960 2970

Nominal features 6 13 2 11

Numeric features 8 7 10 11

Total features 14 20 12 22

Number of classes 2 2 2 2

Australian credit dataset:

Australian dataset presents an interesting mixture of attributes: continuous, nominal

with small numbers of values, and nominal with larger numbers of values, with few

missing values. Appendix (A) contains the complete list of variables used in this data

set. It is composed of 690 instances where 307 are creditworthy while 383 are not.

All attribute names and values have been changed to meaningless symbols for con-

fidentiality. This dataset was used in the European StatLog project, which involves

comparing the performances of machine learning, statistical and neural network al-

gorithms on data sets from real-world industrial areas including medicine, finance,

image analysis and engineering design.

German credit dataset:

The German credit dataset is often used by credit specialists for classification pur-

poses. This dataset covers a sample of 1000 credit consumers where 700 are creditwor-

thy and 300 are not. For each applicant 21 numeric input variables are available, .i.e.

7 metric, 13 categorical and a target attribute, with information pertaining to past

and current customers who borrowed from a German bank (http://www.stat.uni-

muenchen.de/service/datenarchiv/kredit/kredite.html).

Among the 20 input variables assumed to affect the target variable we mention:

duration of credits in months, behavior repayment of other loans, value of savings
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or stocks, stability in the employment and further running credits. Appendix (A)

contains the complete list of variables used in this data set.

HMEQ credit dataset:

The HMEQ dataset is composed of 5960 instances describing recent home equity

loans where 4771 instances are creditworthy and 1189 are not. The target is a binary

variable that indicates if an applicant eventually defaulted. For each applicant, 12

input variables were recorded where 10 are continuous features, 1 is binary and 1 is

nominal, more details are provided in Appendix (A). .

Tunisian credit dataset:

Tunisian dataset covers a sample of 2970 instances of credit consumers where 2523

instances are creditworthy while 446 are not. Each credit applicant is described by a

binary target variable and a set of 22 input variables where 11 features are numerical

and 11 are categorical (see Appendix (A)).

1.5.2 Data pre-processing

In this section, we describe the adopted data pre-processing steps. Each dataset is

cleaned from missing values, then it is discretized and split into training and testing

samples as shown in Figure (1.5).

Missing value replacement

Most financial datasets contain missing values that should be properly handled. Many

methods dealing with missing values are available. The simplest one is to remove all

instances with missing values. This method is suitable when missing data are not

important. Another simple way is to substitute missing values with the corresponding

mean or median values over all instances. In this context, we estimate missing values

with the average or mode of features depending on their nature, meaning either

numerical or categorical.
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Figure 1.5: Data pre-processing flowchart

Features discretization

For simplicity, each variable is discretized, knowing that discretization of continuous

features depends of the context. In this study, we are in the supervised learning

context. The discretization step should be performed prior to the learning process.

Several tools can be used for that, and we selected Weka 3.7.0 machine learning

package (Bouckaert et al. 2009) for its simplicity.

Splitting datasets

Datasets for the scoring task are usually extremely large. In order to reduce classi-

fication tools complexity and to increase scoring models accuracy sampling becomes

necessary as stated by Fernandez (2010). In order to obtain a calibrated model,

the credit database should be split. Sampled subsets are expected to be balanced

and cover the complete database. Subsequently, we split the datasets into a training

sample and a test sample, where the first deals with the new feature selection ap-

proach and diverse classification models and the second one checks the reliability of

the constructed models in the learning step.
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1.6 Performance metrics for feature selection

The performance of our proposed methods is evaluated using the standard informa-

tion retrieval performance measures: precision, recall and F-measure metrics. In a

classification context, the precision is calculated as the ratio of the number of credit

applicants correctly identified by the model as positives Y = 1, i.e. true positive

(TP ), to the total number of credit applicants. The total number of credit appli-

cants is the number of applicants correctly identified as positives plus the number of

incorrectly classified applicants, i.e. false positive (FP ).

The recall, also known as TP rate or sensitivity, measures how often a classification

model correctly finds the right class to a credit applicant. It is defined as the propor-

tion of TP against the total number of applicants that actually belong to the positive

class. The total number of potential correct applicants is the number of TP plus

the count of false negatives (FN) which are the applicants that were not labeled as

belonging to the positive class but should have been.

The precision rate of 1 for a class C means that every applicant affected to this class

does indeed belong to it, but this rate does not inform about the number of applicants

from this class that were not correctly classified. A recall rate of 1 means that every

applicant from class C is labeled as belonging to class C but does not inform about the

number of applicants that were incorrectly labeled as belonging to class C. In general,

there is an inverse relationship between precision and recall, where it is possible to

increase one at the cost of reducing the other. The F-measure combines recall and

precision into a global measure.

In general, the terms TP , TN , FP , and FN evaluate the results of the classifier. The

terms positive (P ) and negative (N) refer to the classifier’s prediction, and the terms

true (T ) and false (F ) refer to whether that prediction corresponds to the external

observation.
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The four outcomes can be formulated in confusion matrix, as follows:

Table 1.4: Confusion matrix

Predicted

Creditworthy (Y = 1) Not creditworthy (Y = 0) Total

Observed

(Y = 1) TP FP TP + FP

(Y = 0) FN TN FN + TN

Total TP + FN FP + TN n

Precision, recall and F-measure are then given by :

Precision =
|TP |

|TP |+ |FP |
. (1.5)

Recall =
|TP |

|TP |+ |FN |
. (1.6)

F -measure = 2 · Precision ·Recall
Precision+Recall

, (1.7)

The cited performance measures are obtained when the cut-off is 0.5. However, chang-

ing this threshold might modify previous results and allows to catch a greater number

of good or bad applicants. Graphical tools can also be used as an evaluation criterion

instead of a scalar criterion, such as the area under the receiver operating charac-

teristic (ROC) curve used to evaluate the effect of selected features on classification

models. ROC curve shows how errors change when the threshold varies. This curve

situates positive instances against negative ones to allow finding the middle ground

between specificity and sensitivity. An area of 1 represents a perfect test; an area

equal or below 0.5 represents a worthless test. So the combination of features that

gives the highest area under the ROC curve will be considered as the most suitable

for the classification task.

1.7 Conclusion

This chapter gives an overview of CS and feature selection methods. A brief state of

the art of the commonly used feature selection methods, namely filter, wrapper and
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hybrid feature selection methods, is given. Filter methods do not use classifiers but

instead they use independent criteria and the characteristics of the dataset to select

relevant features. Wrapper methods, on the other hand, are classifier dependant.

Moreover, hybrid methods present a mixture between filters and wrappers. In the

following chapters three feature selection methods will be proposed. Details about

the proposed methods and their related results are presented in Chapters 2, 3 and 4.
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A Filter Rank Aggregation Approach Based on Op-

timization, Genetic Algorithm and Similarity for
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2.1 Introduction

Filters are commonly used feature selection methods. This chapter discusses the

major issues of this approach and presents a new approach based on rank aggregation,

GA and similarity. As such, in Section (2.2) we give a brief reminder of the filter

framework and two major issues when dealing with filtering methods: the selection

trouble and the issue of disjoint ranking for similar features. Then, we present our

new approach in Section (2.3) and the experimental study in Section (2.4).

2.2 Filter framework

According to Yu and Liu (2003) filter methods can be grouped into two categories:

feature weighting methods and subset search methods. This categorization is based on

whether they evaluate the relevance of features separately or through feature subsets.

In what follows, we present the advantages and shortcomings of some well known

feature selection methods in each category.

2.2.1 Feature weighting methods

In feature weighting methods, weights are assigned to each feature independently and

features are ranked based on their relevance to the target variable. Relief is a famous

algorithm that studies features relevance (Kira and Rendell 1992). Algorithm (1.1) in

Chapter (1) presents the basic concepts of this method. Notice that the fundamental

idea of Relief is to estimate the relevance of features according to how well their values

separate the instances of the same and different classes that are near each other (Yu

and Liu 2003).

For a dataset with n instances and d features the complexity of relief is in order

of O(nd), which makes it very practical to data sets with large number of instances

and features, such as CS datasets. Although simple, Relief doesn’t remove redundant

features. If feature weights are superior to a particular threshold, these features will

be selected even though many of them are highly correlated to each other (Kira and
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Rendell 1992).

In general, feature weighting methods have similar shortcomings as Relief. They

are good in capturing the relevance of features to the target variable but fail to capture

redundancy among features.

2.2.2 Subset search methods

Subset search methods use a particular evaluation measure which captures the rele-

vance of each subset. In this way not only relevance is considered but also redundant

features are identified within the selected subset. In this context Hall (2000) used

a correlation measure to evaluate the relevance of the feature subsets. He based his

work on the hypothesis that a good feature subset contains highly correlated features

to the target variables, yet uncorrelated to each other. His proposed approach, named

CFS, also uses heuristic search to find a candidate subsets to be evaluated.

According to Arauzo-Azofra et al. (2008) correlation measures efficiently decrease

irrelevance and redundancy. Yu and Liu (2003) recommended two main approaches

to measure correlation, one is based on classical linear correlation between random

variables and the other is based on information theory.

Many correlation coefficients can be used under to first approach but the most

common are PCC and χ2 (see Section (1.3)). According to Yu and Liu (2003) PCC

is not able to capture correlations that are not linear. Another limitation is that the

calculation requires all features to have numerical values. On the other hand,χ2 is used

to investigate whether two distributions of categorical variables differ. To overcome

these shortcomings, the correlation measure based on the information theory could

be used.

The second approach based on information theory measures how much knowledge

two variables carry about each other. MI is a well known information theory measure

that captures nonlinear dependencies between variables ( for more details see Section

(1.3)).
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In general, Subset search methods need to evaluate all possible subsets. Conse-

quently, a search is performed to find the candidate subsets. Therefore, these methods

suffer from time complexity issues which make them not practical to deal with high

dimensional data.

Feature ranking makes use of a scoring function computed from the values (xji , yi)

using one of the criteria discussed above such as weighting, consistency and corre-

lation. It is assumed that a high score is indicative of a valuable variable and that

variables are sorted in decreasing order of the scoring function. Even when feature

ranking is not optimal, it could be preferable than any other feature subset selection

method because of its computational and statistical scalability. It is computationally

efficient since it requires only the computation of d scores and sorting them. It is sta-

tistically robust against overfitting because it introduces bias, however it may have

considerably less variance (Hastie et al. 2001).

2.2.3 Issue I: Selection trouble and rank aggregation

Given the variety of filter based methods, it is difficult to identify which of the filter

criteria would provide the best output for the experiments. The question is then how

to choose the best criterion for a specific feature selection task? Wu et al. (2009) call

this problem a selection trouble. There exists no universal solution for this problem

unless to evaluate all existing methods and then establish a general conclusion, which

is an impossible task. The best approach is to independently apply a mixture of the

available methods and evaluate the results.

Combining preference lists from those individual rankers into a single better ranking is

known as rank aggregation. Rank aggregation methods have emerged as an important

tool for combining information in CS. Ensemble feature selection methods, i.e. rank

aggregation, use an idea similar to ensemble learning for classification (Dietterich

2000). In a first step, a number of different feature selectors, i.e. rankers, are used

and then the output of these separate selectors is aggregated and returned as the final

ensemble result.
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Ensemble methods have been widely applied to bring together a set of classifiers

for building robust predictive models. It has been shown that these ensemble classi-

fiers are competitive with other individual classifiers and in some cases are superior.

Recently, there have been studies applying the ensemble concept to the process of

feature selection (Dittman et al. 2013). Rank aggregation could be used to improve

the robustness of the individual feature selection methods. Different rankers may

yield different ranking lists that can be considered as local optima in the space of fea-

ture subsets and ensemble feature selection might give a better approximation to the

optimal ranking of features. Also, the representational power of a particular feature

selector might constrain its search space such that optimal subsets cannot be reached.

Ensemble feature selection could help in alleviating this problem by aggregating the

outputs of several feature selectors (Saeys et al. 2008).

As discussed earlier, rank aggregation has many merits. However, with ensemble

feature selection the question is how to aggregate results of individual rankers. A

number of different rank aggregation methods have been proposed in the literature.

Some of them are easy to set up like the mean, median, highest rank or lowest rank

aggregation and some are more difficult (Dittman et al. 2013).

All rank aggregation methods assume that the ranked lists being combined assign

a value to each feature, from 1 to d, where the rank 1 is assigned to the most relevant

feature, the second best feature is 2, and so on until the least relevant feature is

assigned d. Simple rank aggregation method use straightforward way to find the

final aggregated list, in all cases, once each feature has been given a single value

based on the mean, median, highest, or lowest value, all features are ranked based

on these new values. For example, mean aggregation simply finds the mean value of

the feature’s rank across all the lists and uses this as that feature’s value. Likewise,

median finds the median rank value across all the lists being combined, using the

mean of the middle two values if there is an even number of lists. Highest rank and

lowest rank use related strategies: either the highest (best, smallest) or the lowest

(worst, largest) rank value across all the lists is assigned as the value for the feature
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in question. Figure (2.1) shows the general rank aggregation process to obtain a

consensus rank list from m individual filters.

Figure 2.1: General scheme of filter rank aggregation.

Simple ranking methods are easy to set up. However, in many cases it is possible for

two features to end up tied, even if this was not the case in any of the lists being

combined and even when these features do not have any tie of similarity (Dittman

et al. 2013). Recent works in the area of rank aggregation methods have devel-

oped unique and innovative approaches. These new methods can focus on different

aspects of the ranking process including comparing results to randomly generated

results. Kolde et al. (2012) proposed an approach that detects features that are

ranked consistently better than expected under null hypothesis of uncorrelated in-

puts and assigns a significance score for each feature. The underlying probabilistic

model makes the algorithm parameter free and robust to outliers, noise and errors.

Other research focused on giving more weight to top ranking features or combining

well known aggregation methods. In this work we use rank aggregation from another
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perspective. In fact we aim to find the best list which would be the closest as possible

to all individual ordered lists all together and this can be seen as an optimization

problem. More details will be given in Section (2.3).

2.2.4 Issue II: Incomplete ranking and disjoint ranking for similar fea-

tures

The rankings provided by different filters may be in many cases incomplete or even

disjoint. In fact incomplete rankings may come in two forms.

• In the first form, different filters or some of them may each provide rankings for

only the k best features and ignores the remaining features provided in the be-

ginning (Sculley 2007). Assume we have 7 features {X1, X2, X3, X4, X5, X6, X7},

where {X1, X3} are not the most relevant features. In this case one of the filter

may provide a ranking just over the set {X2, X4, X5, X6, X7} and ignores X1

and X3.

• In the second form, used filters may provide complete rankings over a limited

subset of available features due to incomplete knowledge (Sculley 2007). Having

the same example where we have 7 features {X1, X2, X3, X4, X5, X6, X7} and

only information about features {X3, X5, X6} is available. In this case one of

the filter may provide a ranking just over the set {X3, X5, X6} and ignore the

set {X1, X2, X4, X7}.

Incomplete rankings are common in many financial applications but still it is not

the only problem with rank aggregation. In fact the majority of rankings involve a

set of similar features, but despite the similarity between these features they are not

ranked similarly which additionally to the problem of incomplete rankings may lead

to noisy rankings.

Let us give an illustrative example. Assume we have 7 features {X1, X2, X3, X4, X5,

X6, X7}, where X2 and X5 are highly similar but not identical. We consider the two

following rank lists from two different filters:

list one is
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{X3, X2, X7, X5}

and list two is

{X2, X7, X3, X4, X1}.

If we have no preference to either one then standard methods of rank aggregation

may produce the rankings in the following way:

Aggregation 1: {X2, X3, X7, X5, X4, X1}.

Aggregation 2: {X3, X2, X7, X5, X4, X1}.

And if we want to take advantage of similarity in rank aggregation, we need a new

aggregation method. The latter should use the additional information provided by

a defined similarity measure. Therefore, a more acceptable ranking that agrees with

our point of view is:

{X3, X2, X5, X7, X4, X1}.

To avoid disjoint ranking for similar features, we present in the Section (2.3.3)

a simple approach that extends any standard aggregation method in order to take

similarity into account.

2.3 New approach for filter feature selection

In this section we propose a novel approach for filter feature selection. We consider

building a two-stage filter feature selection model. In the first step, an optimization

function and GA are used to solve the selection trouble and the rank aggregation

problem and to sort the features according to their relevance. In the second step, a

standard algorithm is proposed in order to solve the problem of disjoint rankings for

similar features and to eliminate redundant ones.
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2.3.1 Optimization problem

The aim of rank aggregation when dealing with feature selection is to find the best

list which would be the closest as possible to all individual ordered lists all together.

This can be seen as an optimization problem when we look at argmin(D, σ), where

argmin gives a list σ at which the distance D with a randomly selected ordered list

is minimized. In this optimization framework the objective function is given by :

f(σ) =
m∑
i=1

Wi ×D(σ, Li), (2.1)

where Wi denotes the weight associated with the lists Li, D is a distance function

measuring the distance between a pair of ordered lists, m is the number of lists and

Li is the ith ordered list of cardinality k. The best solution is then to look for σ∗,

which would minimize the total distance between σ∗ and Li, given by

σ∗ = argmin
m∑
i=1

Wi ×D(σ, Li). (2.2)

Measuring the distance between two ranking lists is classical and several well-studied

metrics are known (Carterette 2009; Kumar and Vassilvitskii 2010), including the

Kendall’s tau distance and the Spearman footrule distance. Before defining this

two distance measures and their corresponding weighted distances some necessary

notations are needed.

For each feature Xj ∈ Li, r(Xj), j = 1, . . . , d shows the ranking of this feature, where

r(Xj) = 1 is associated with the feature on top of Li, that is the most important

one and r(Xj) = d is associated with those feature which is at the bottom, or the

least important one with regard to the target concept. All other ranks correspond to

the features that would be in-between. Note that rankings are always positive, and

higher rank shows lower preference in the list.
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Spearman footrule distance

Spearman footrule distance between two given rankings lists L and σ is defined as the

sum overall the absolute differences between the ranks of all unique elements from

both ordered lists combined. Formally, the Spearman footrule distance between L

and σ is given by

Spearman(L, σ) =
∑

X∈(L∪σ)

|rL(X)− rσ(X)|. (2.3)

Spearman footrule distance is a very simple way to compare two ordered lists. The

smaller the value of this distance the more similar the lists are. When the two lists

to be compared have no elements in common, the metric is k(k + 1).

Kendall’s tau distance

Kendall’s tau distance between two ordered rank lists L and σ is given by the number

of pairwise adjacent transpositions needed to transform one list into another (Dinu

and Manea 2006). This distance can be seen as the number of pairwise disagreements

between the two rankings. Hence, the formal definition of the Kendall’s tau distance

is:

Kendall(L, σ) =
∑

Xj ,Xj′∈(L∪σ)

K, (2.4)

where

K =



0 if rL(Xj) < rL(Xj′), rσ(Xj) < rσ(Xj′)

or rL(Xj) > rL(Xj′), rσ(Xj) > rσ(Xj′)

1 if rL(Xj) > rL(Xj′), rσ(Xj) < rσ(Xj′)

or rL(Xj) < rL(Xj′), rσ(Xj) > rσ(Xj′)

p if rL(Xj) = rL(Xj′) = k + 1,

or rσ(Xj) = rσ(Xj′) = k + 1

(2.5)
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That is, if we have no knowledge of the relative position of Xj and Xj′ in one of

the lists we have several choices: impose no penalty (0), full penalty (1), or a partial

penalty p such that 0 < p < 1.

Weighted distance

In case, the only information available about the individual list is the rank order, the

Spearman footrule distance and the Kendall’s tau distance are adequate measures.

However, the presence of any additional information about the individual list may

improve the final aggregation. Typically with filter methods, weights are assigned to

each feature independently and then the features are ranked based on their relevance

to the target variable. It would be beneficial to integrate these weights w into our

aggregation scheme. Hence, the weight associated with each feature consists of taking

the average score across all the ranked feature lists. We find the average for each

feature by adding all the normalized scores associated to each lists, and dividing the

sum by the number of lists. According to Pihur et al. (2009) the weighted Spearman’s

footrule distance between the two lists L and σ is given by

w.Spearman(L, σ) =
∑

X∈(L∪σ)

|w(rL(X))− w(rσ(X))| × |rL(X)− rσ(X)|, (2.6)

were w(rL(X)) and w(rσ(X)) denote the weights associated with the feature X

with rank r in the lists L and σ. Analogously to the weighted Spearman’s footrule

distance, the weighted Kendall’s tau distance (Pihur et al. 2009) is given by:

w.Kendall(L, σ) =
∑

Xj ,Xj′∈(L∪σ)

|w(rL(Xj))− w(rσ(Xj′))|K. (2.7)

2.3.2 Solution to optimization problem using genetic algorithm

The introduced optimization problem in Section (2.3.1) is a typical integer program-

ming problem. As far as we know, there is no efficient solution to such kind of
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problem. One possible approach would be to perform complete search. However, it

is too time demanding to be useful in real applications, and more practical solutions

are needed.

The introduced method uses GA for rank aggregation. GAs were developed by

Holland (1992) to imitate the mechanism of genetic models of natural evolution and

selection. GAs are powerful tools for solving complex combinatorial problems, where

a combinatorial problem involves choosing the best subset of components from a pool

of possible components such that the mixture has some desired quality (Clegg et al.

2009). GAs are computational models of evolution. They work on the basis of a set

of candidate solutions. Each candidate solution is called a ”chromosome”, and the

whole set of solutions is called a ”population”. The algorithm allows movement from

one population of chromosomes to a new population in an iterative fashion. Each

iteration is called a ”generation”. In our case, GA proceeds in the following way:

initialization, selection, cross-over and mutation.

Initialization

Once a set of aggregation rank lists are generated by several filtering methods, it

is necessary to create an initial population of features to be used as starting point

for the genetic algorithm, where each feature in the population represents a possible

solution. This starting population is then obtained by randomly selecting a set of

ordered rank lists.

Despite the success of GA on a wide collection of problems, the choice of the

population size is still an issue. Gotshall and Rylander (2000) proved that the larger

the population size is the better chance of it containing the optimal solution. However,

increasing population size increases the number of generations. In order to have great

results, the population size should depend on the length of the ordered lists and on

the number of unique elements in these lists. From empirical studies, over a wide

range of problems, a population size between 30 and 100 is usually recommended

(Pihur et al. 2009).
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Selection

Once the initial population is fixed, we need to select new members for the next

generation. In fact, each element in the current population is evaluated on the basis

of its overall fitness given by Equation (2.1). Depending on which distance is used,

new members, i.e. rank lists, are produced by selecting high performing elements.

Cross-over

The selected members are then crossed-over with the cross-over probability. Crossover

randomly selects a point in two selected lists and exchanges the remaining segments

of these lists to create new ones. Therefore, crossover combines the features of two

lists to create two similar ranked lists.

Mutation

In case only the crossover operator is used to produce the new generation, one possible

problem that may arise is when all the ranked lists in the initial population have the

same value at a particular rank. Then, all future lists will have the same value at this

particular rank. To overcome this unwanted situation a mutation operator is used.

Mutation operates by randomly changing one or more elements of any list. It acts as

a population perturbation operator. Typically mutation does not occur frequently so

mutation is of the order of 0.001 (Pihur et al. 2009).

Figure (2.2) presents a flowchart summarizing the fundamental steps of the pro-

posed rank aggregation method using GAs.
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2.3.3 A rank aggregation based on similarity

In this section we solve the problem of disjoint ranking for similar features and elim-

inating redundant ones. First, we perform a simple algorithm that incorporates sim-

ilarity knowledge in the final ranking in order to handle disjoint ranking of similar

features. Then, redundant features are eliminated by comparing the relevance of

each pair of redundant features to the target class. Figure (2.3) gives a summary of

performing rank aggregation based on similarity.

Figure 2.3: Flowchart summarizing the rank aggregation approach based on similarity

Solution to disjoint ranking for similar features

First we perform a feature selection using three different feature selection methods

namely: Relief, χ2 and MI and three different rankings are obtained. Second an ag-

gregation is performed on the obtained three ranking lists using the proposed genetic

rank aggregation algorithm in Section (2.3.2) yielding a combined list InitialR.

In each iteration we study the similarity between the first feature in InitialR, i.e.

the feature with r(Xj) = 1 that we denote V ar, and the remaining features in this list

using a function denoted SIM. Before using the SIM function, the possible similarities

between features in X are summarized using the full MI matrix. Where each element

in this matrix represents the pairwise similarity between two features Xj and Xj′.
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This matrix is in general a (d× d) symmetric positive semi definite matrix and takes

on values in [0, . . . , 1] , with diagonal values equal to 0. A large value indicates a close

relationship between variables Xj and Xj′.

SIM function compares the similarity between the features using this matrix. If V ar

has 80% of similarity with any of the features in the list InitialR, the function SIM

return ’TRUE’ elsewhere it returns ’FALSE’.

In accordance with the function SIM result, two possible scenarios arise depending

on whether V ar has a strong link of similarity with the remaining features or not.

First scenario: if the function SIM returns ’FALSE’ then V ar doesn’t have any

strong connection with any other features in the list InitialR. In this case there is no

disagreement among rankings and V ar is removed from the list InitialR and added

to FinalR which is the final aggregation list that will be used for classification.

Lets take the previous illustrative example of Section (2.2.4) where we aggregate two

ranking lists {X3, X2, X7, X5} and {X2, X7, X3, X4, X1}. If the obtained aggregated

list is {X3, X2, X7, X5, X4, X1} then, the function SIM studies the similarity between

feature X3 and {X2, X7, X5, X4, X1} and returns false. Then, X3 will be added to

FinalR and {X2, X7, X5, X4, X1} is investigated in the next iteration. Figure (2.4)

illustrates the first scenario.

Figure 2.4: Illustrative example of the first scenario

Second scenario: If the SIM function returns the value ’ TRUE ’ then the feature

V ar has a strong link of similarity with one of the other features in InitialR. Then, we

check if these two features have divergent rankings in spite of their strong similarity.
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First we use the function PLUS-SIM, which returns the most similar feature to V ar in

the list InitialR. Then, we examine if the result of PLUS-SIM is equal to the feature

with the next ranking of V ar in InitialR. In case the feature with the next ranking

to the feature V ar is the most similar, then V ar and its neighbor are removed from

InitialR and added to FinalR. Else we use the functions DIST-POS and PERMUT

in order to move closer the similar features. More details are given in Algorithm (2.4)

with a detailed description of the different functions used in this approach.

Algorithm 2.4 Rank aggregation based on similarity

Require: InitialR: Initial rank aggregation.
Ensure: FinalR: Final rank list.

1: while InitialR == ∅ do
2: V ar = InitialR[1].
3: V arlist = SUBLIST (InitialR, 2).
4: if SIM(Var, V arlist)==FALSE then
5: FinalR= CONCAT (FinalR, Var).
6: InitialR =V arlist.
7: else
8: V arnext= V arlist[1].
9: if V arnext ==PLUS-SIM (Var, V arlist) then

10: FinalR= CONCAT (FinalR, Var).
11: FinalR= CONCAT (FinalR, V arnext).
12: REMOVE(V arnext, V arlist).
13: InitialR =V arlist.
14: else
15: while V arnext==PLUS-SIM (Var, V arlist) do
16: if DIST-POS(Var-next ,PLUS-SIM (Var, V arlist), V arlist) > 1 then
17: PERMUTE(Var-next, Var,InitialR).
18: else
19: PERMUTE(PLUS-SIM (Var, InitialR),Var-next,InitialR).
20: end if
21: end while
22: end if
23: end if
24: end while
25: Return FinalR.
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• SIM(E, L) return : false, true

Takes a parameter list L and a feature E and check if feature E has a similarity

with one of the elements of list L. If the similarity with one of the elements of

the list is superior to 80 %, the function returns true elsewhere false.

• CONCAT (L, E) return : list

Takes a parameter list L to be concatenated and appends the second argument

E into the end of list L.

• POS(E,L) return: number

Searches for feature E in List L, and returns its position in list L, or zero if

feature E was not found in L.

• PLUS-SIM(E, L) return : feature

Searches for a feature in list L with the biggest similarity to feature E.

• SUBLIST(L, P) return : list

Returns a list of the elements in list L, starting at the specified position P in

this list.

• REMOVE(E,L)

Removes element E given as argument from list L.

• DIST-POS(E1,E2,L) return : number

Counts the number of positions between two given elements E1 and E2 in list

L.

• PERMUT(E1,E2,L)

Swaps the position of two features E1 and E2 in list L.

Removing unwanted features

Once the selection trouble is solved and a consensus list of mutual features is obtained,

we come across the issue of choosing the appropriate number of features to retain. In
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fact a list of sorted features doesn’t provide us with the optimal features subset. In

general a predefined small number of features is retained from the consensus list in

order to build the final model. If the number of used features is relatively small or

big, then the final classification results may be degraded.

Despite the fact that most of the features that had a disjoint ranking in Section

(2.3.3) are relevant, the underlying concepts can be concisely captured using only a

few features, while keeping all of them has substantially detrimental effect on the

credit model accuracy. So while we solve the problem of disjoint ranking, we use

a marker to mark each pair of treated feature as similar items. A matrix MATS

is then created in order to stock each pair of similar features, where each row of

MATS contains a feature and their similar items. Then, we study each row of MATS

by looking into the computed MI in order to identify the feature that supplies the

most information about the target class. As a result the feature with the highest MI

is kept and other similar features are removed from the aggregated list. Let’s take

the illustrative example used in Section (2.2.4). We suppose that after dealing with

the problem of disjoint ranking we obtain list {X3, X2, X5, X7, X4, X1}, introduced

before, features X2 and X5 are highly similar an while looking into the results of MI

we notice that X5 has the highest MI, consequently X2 is removed from the list.

2.4 Experimental investigations

Our feature selection ensemble is composed by three different filter selection algo-

rithms namely: Relief , χ2 and MI ( see Section (2.2)). These algorithms are available

in Weka 3.7.0 machine learning package (Bouckaert et al. 2009).

The aggregation of these filters is first performed by our GA approach with Kendall

(GA-K ) and Spearman distances ( GA-S) and then compared to the mean, median,

highest rank or lowest rank aggregation (see Section (2.2.3) ). These aggregation

methods were tested using a Matlab implementation of the R package ”RobustRank-

Aggreg” written by Kolde et al. (2012), and compared to the results given by the

individual feature selection methods. We use in this chapter four different classifiers,
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namely DT, SVM, ANN and KNN. These four classifiers are available in Weka 3.7.0

machine learning package (Bouckaert et al. 2009).

The parameters setting for GA are given in Table (2.1). These parameters were

chosen based on the result of several preliminary runs of the proposed approach. A

10-fold cross validation is used to compare the classifier’s performance against others.

Table 2.1: Parameters of experimental environment for genetic algorithm.

Parameter Value
Size of population 100
Mutation rate 0.001
Crossover rate 0.7
Number of generation 10

2.4.1 Results and discussion

First, the three feature selection methods: Relief, χ2 and MI are applied to the

datasets and three rankings of features are obtained. Next, the obtained rankings

are aggregated using the available aggregation methods. Then, we pick a number of

top-ranked features to get a few feature subsets. Then, DT, SVM, ANN and KNN

classify the datasets using these feature subsets. Results are presented in Tables (2.3)-

(2.6). The best results are shown in bold.

Table 2.2: Summary of the best performance results archived by the set of feature
selection methods for the four datastes within the filter framework.

DT SVM ANN KNN
Relief
MI
χ2 ⊗
Mean ⊗⊗ ⊗ �⊗
Median ⊗
Highest rank ⊕ 	
Lowest rank ⊗ ⊗
GA-K 	⊗⊕� ⊕� 	⊕� 	� 	⊗⊕� 	⊕ 	⊕� 	⊕ 	⊕ 	� 	 	 	⊗⊕�⊗⊕�
GA-S 	⊗⊕�	 ⊕ � ⊗⊕� ⊕� ⊗⊕� 	⊗⊕�

	 Precision, ⊗ Recall, ⊕ F-measure, � ROC Area.
Color: - Australian, - German , - HEMQ, - Tunisian.
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From Table (2.2) we notice that for the Australian dataset, GA-K provides the

highest precision in comparison with other feature selection methods except the case

where DT is used as classifier, GA-S achieves the best precision. With the German

dataset GA-K achieves the highest precision with all classifiers. For the HMEQ

dataset GA-K achieves the highest precision with SVM and ANN classifiers while the

highest precision of the other two classifiers are achieved by GA-S. Finally for the

Tunisian dataset the highest precision rate is also achieved by GA-K aggregation for

the DT, SVM and ANN classifiers while the highest precision rate for KNN classifier

is achieved by highest rank aggregation.

We further investigate the recall results for the set of feature selection methods.

For the Australian dataset the best recalls are achieved by GA-S for the DT and KNN

while for the SVM and ANN classifiers the best rates are achieved by the lowest rank

aggregation. Looking for German dataset results in Table (2.4) we see that the highest

recall is achieved in three times by GA-K expect for ANN where the best recall is

given by GA-S. Table (2.5) shows that the highest recall for the HMEQ dataset is

obtained with GA-K for KNN and with the mean aggregation for the DT and SVM

and χ2 for ANN classifier. For the Tunisian dataset Table (2.6) shows that mean

aggregation achieves twice the highest recall with ANN and DT followed by GA-S for

the KNN classifier and median aggregation for SVM.

Table (2.3) shows that GA-S achieves the best F-measure three times except for

KNN where the highest F-measure for the Australian dataset is achieved with GA-K.

From Tables (2.4) and (2.5) we see that the highest recall is achieved by GA-K except

for ANN where the highest rank aggregation gives the best performance with ANN

and HMEQ dataset. Finally, Table (2.6) shows that GA-K achieves twice the highest

recall with SVM and DT and GA-S did the same with ANN and KNN.
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Table 2.3: Performance comparison of the new filter method and the other feature
selection methods for the Australian dataset.

Precision Recall F-Measure ROC Area
Decision Tree

Relief 0.786 0.917 0.846 0.655
MI 0.930 0.870 0.900 0.642
χ2 0.932 0.860 0.905 0.680
Mean 0.931 0.890 0.910 0.700
Median 0.931 0.888 0.909 0.713
Highest rank 0.920 0.943 0.931 0.689
Lowest rank 0.900 0.902 0.901 0.681
GA-K 0.946 0.923 0.934 0.727
GA-S 0.952 0.950 0.951 0.762

Support Vector Machine
Relief 0.795 0.898 0.843 0.702
MI 0.931 0.870 0.900 0.711
χ2 0.918 0.935 0.927 0.690
Mean 0.923 0.943 0.928 0.720
Median 0.921 0.945 0.932 0.721
Highest rank 0.933 0.940 0.936 0.707
Lowest rank 0.894 0.980 0.935 0.705
GA-K 0.945 0.921 0.933 0.898
GA-S 0.943 0.942 0.943 0.890

Artificial Neural Network
Relief 0.885 0.926 0.905 0.653
MI 0.929 0.873 0.902 0.700
χ2 0.926 0.924 0.926 0.683
Mean 0.927 0.934 0.931 0.752
Median 0.925 0.937 0.931 0.755
Highest rank 0.929 0.940 0.934 0.732
Lowest rank 0.896 0.975 0.933 0.726
GA-K 0.931 0.953 0.941 0.728
GA-S 0.929 0.883 0.905 0.742

K-Nearest Neighbor
Relief 0.784 0.881 0.829 0.801
MI 0.890 0.892 0.891 0.789
χ2 0.912 0.799 0.851 0.788
Mean 0.920 0.886 0.902 0.825
Median 0.926 0.906 0.915 0.859
Highest rank 0.940 0.932 0.936 0.832
Lowest rank 0.944 0.930 0.937 0.834
GA-K 0.950 0.920 0.934 0.860
GA-S 0.942 0.942 0.942 0.866

For ROC area results we notice from Tables (2.4) and (2.5) that GA-K achieves

the highest values except with German dataset and SVM where GA-S gives the best

ROC area and respectively with the HMEQ dataset and ANN the GA-S gives the
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Table 2.4: Performance comparison of the new filter method and the other feature
selection methods for the German dataset.

Precision Recall F-Measure ROC Area
Decision Tree

Relief 0.682 0.555 0.669 0.631
MI 0.516 0.534 0.525 0.621
χ2 0.737 0.477 0.579 0.600
Mean 0.750 0.542 0.612 0.682
Median 0.750 0.545 0.613 0.727
Highest rank 0.788 0.605 0.684 0.689
Lowest rank 0.700 0.642 0.669 0.760
GA-K 0.792 0.701 0.743 0.795
GA-S 0.756 0.697 0.725 0.789

Support Vector Machine
Relief 0.517 0.511 0.514 0.692
MI 0.603 0.534 0.566 0.701
χ2 0.705 0.489 0.577 0.622
Mean 0.766 0.552 0.627 0.780
Median 0.756 0.560 0.643 0.781
Highest rank 0.762 0.623 0.685 0.766
Lowest rank 0.708 0.602 0.650 0.802
GA-K 0.823 0.812 0.817 0.812
GA-S 0.812 0.799 0.805 0.809

Artificial Neural Network
Relief 0.556 0.511 0.533 0.605
MI 0.612 0.534 0.572 0.589
χ2 0.721 0.500 0.591 0.602
Mean 0.781 0.586 0.656 0.689
Median 0.778 0.591 0.671 0.677
Highest rank 0.770 0.600 0.674 0.678
Lowest rank 0.765 0.602 0.673 0.700
GA-K 0.821 0.706 0.759 0781
GA-S 0.819 0.708 0.759 0.786

K-Nearest Neighbor
Relief 0.703 0.688 0.695 0.702
MI 0.740 0.700 0.719 0.751
χ2 0.697 0.700 0.698 0.743
Mean 0.751 0.723 0.736 0.750
Median 0.749 0.730 0.739 0.800
Highest rank 0.720 0.763 0.740 0.791
Lowest rank 0.719 0.758 0.738 0.802
GA-K 0.820 0.811 0.815 0.813
GA-S 0.817 0.800 0.808 0.810

best performance. For the Australian dataset the highest results are achieved twice

with GA-S and once with the mean aggregation for ANN and with GA-K for SVM

classifier. Finally, for the Tunisian dataset Table (2.6) shows that GA-K achieves the
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Table 2.5: Performance comparison of the new filter method and the other feature
selection methods for the HMEQ dataset.

Precision Recall F-Measure ROC Area
Decision Tree

Relief 0.747 0.800 0.736 0.782
MI 0.814 0.831 0.801 0.791
χ2 0.818 0.832 0.798 0.760
Mean 0.821 0.981 0.887 0.786
Median 0.808 0.926 0.863 0.788
Highest rank 0.906 0.921 0.913 0.806
Lowest rank 0.842 0.922 0.880 0.805
GA-K 0.920 0.921 0.921 0.822
GA-S 0.923 0.912 0.917 0.815

Support Vector Machine
Relief 0.845 0.807 0.728 0.722
MI 0.822 0.828 0.784 0.755
χ2 0.822 0.828 0.784 0.690
Mean 0.830 0.987 0.902 0.702
Median 0.823 0.906 0.862 0.689
Highest rank 0.905 0.945 0.924 0.744
Lowest rank 0.900 0.891 0.895 0.742
GA-K 0.966 0.933 0.949 0.810
GA-S 0.942 0.940 0.941 0.812

Artificial Neural Network
Relief 0.663 0.715 0.688 0.689
MI 0.681 0.788 0.730 0.781
χ2 0.838 0.974 0.901 0.763
Mean 0.850 0.966 0.904 0.745
Median 0.848 0.971 0.905 0.723
Highest rank 0.897 0.842 0.980 0.788
Lowest rank 0.870 0.880 0.875 0.801
GA-K 0.902 0.972 0.935 0.825
GA-S 0.896 0.955 0.924 0.822

K-Nearest Neighbor
Relief 0.734 0.817 0.773 0.691
MI 0.805 0.820 0.812 0.799
χ2 0.688 0.801 0.740 0.760
Mean 0.822 0.822 0.822 0.801
Median 0.842 0.820 0.830 0.810
Highest rank 0.830 0.826 0.828 0.808
Lowest rank 0.828 0.821 0.824 0.806
GA-K 0.843 0.900 0.870 0.850
GA-S 0.850 0.867 0.858 0.823

best results with DT and SVM while GA-S achieves the highest results with ANN

and KNN.

The computed values or scores of recall, precision, and the F-measures are used to
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Table 2.6: Performance comparison of the new filter method and the other feature
selection methods for the Tunisian dataset.

Precision Recall F-Measure ROC Area
Decision Tree

Relief 0.876 0.888 0.882 0.681
MI 0.885 0.883 0.884 0.680
χ2 0.876 0.880 0.879 0.623
Mean 0.860 0.962 0.913 0.796
Median 0.871 0.899 0.884 0.791
Highest rank 0.901 0.907 0.904 0.793
Lowest rank 0.889 0.902 0.895 0.799
GA-K 0.922 0.912 0.917 0.813
GA-S 0.917 0.908 0.912 0.811

Support Vector Machine
Relief 0.845 0.807 0.728 0.682
MI 0.822 0.828 0.784 0.651
χ2 0.822 0.828 0.784 0.645
Mean 0.830 0.987 0.902 0.762
Median 0.889 0.975 0.930 0.755
Highest rank 0.922 0.907 0.914 0.800
Lowest rank 0.881 0.880 0.880 0.815
GA-K 0.967 0.952 0.959 0.831
GA-S 0.966 0.923 0.944 0.823

Artificial Neural Network
Relief 0.827 0.847 0.830 0.703
MI 0.822 0.852 0.826 0.700
χ2 0.833 0.850 0.832 0.623
Mean 0.875 0.964 0.917 0.802
Median 0.881 0.951 0.914 0.801
Highest rank 0.905 0.901 0.894 0.729
Lowest rank 0.878 0.888 0.887 0.725
GA-K 0.924 0.902 0.912 0.822
GA-S 0.916 0.943 0.929 0.826

K-Nearest Neighbor
Relief 0.788 0.800 0.794 0.810
MI 0.821 0.688 0.748 0.799
χ2 0.753 0.677 0.713 0.780
Mean 0.809 0.801 0.805 0.812
Median 0.811 0.799 0.805 0.821
Highest rank 0.950 0.688 0.700 0.798
Lowest rank 0.940 0.691 0.796 0.792
GA-K 0.889 0.888 0.888 0.900
GA-S 0.887 0.901 0.893 0.905

measure the performance of the feature selection methods. The differences between

any two features selection methods may be due to chance or there is a significant

difference between them. To rule out the possibility that the difference is due to
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chance and to confirm our conclusions, statistical hypothesis testing is used.

Analysis of variance (ANOVA) is a particular form of statistical hypothesis testing

mainly used in the analysis of experimental data to test the equality of three or

more population means. Here, we are interested in determining whether the mean

values of a given performance measure significantly differ accordingly with the used

feature selection method and classification method. A two-way ANOVA is performed

to test the difference between different features selection methods and classification

methods. The first factor represent the different feature selection methods and the

second represent the different classification methods. Then, ANOVA tests the null

hypotheses that the means of all groups of factor 1 are equal, that the means of all

groups of factor 2 are equal and the relationship between one factor and the dependent

variable , i.e. level of F-measure, changes for different levels of the other factor. Then,

H0 and alternative hypothesis H1 for factor 1 would be

H0 : µ1
Relief = µ1

MI = µ1
χ2 = µ1

Median = µ1
Mean = µ1

Highest = µ1
Lowest

= µ1
GA−S = µ1

GA−K Performances of selection methods are equal,

versus

H1 : At least one of the feature selection methods mean performance is different

from the others

H0 and H1 for factor 2 would be
H0 : µ2

DT = µ2
SVM = µ2

ANN = µ2
KNN Performances of classifiers are equal,

versus

H1 : At least one of the classifer mean performance is different from the others

Interaction between the two factors is given by the following hypotheses:
H0 : There is no interaction between the two factors,

versus

H1 : There is an interaction between the two factors

A significant F statistic suggests that we reject H0. We use the data in Table (2.7)

and ANOVA results are summarized in Table (2.8)
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Table 2.7: Summary of F-measures for all feature selection methods with the four
classification methods in filter framework.

Relief MI χ2 Mean Median Highest Lowest GA-K GA-S

DT 0.856 0.900 0.905 0.910 0.909 0.931 0.901 0.934 0.951

0.669 0.525 0.579 0.612 0.613 0.684 0.669 0.743 0.725

0.736 0.801 0.798 0.887 0.863 0.913 0.88 0.921 0.917

0.882 0.884 0.879 0.913 0.884 0.904 0.895 0.917 0.912

SVM 0.843 0.900 0.927 0.928 0.932 0.936 0.935 0.933 0.943

0.514 0.566 0.577 0.627 0.643 0.685 0.650 0.817 0.805

0.728 0.784 0.784 0.902 0.862 0.924 0.895 0.949 0.941

0.728 0.784 0.784 0.902 0.930 0.914 0.880 0.959 0.944

ANN 0.905 0.902 0.926 0.931 0.931 0.934 0.933 0.941 0.905

0.533 0.572 0.591 0.656 0.671 0.674 0.673 0.759 0.759

0.688 0.730 0.901 0.904 0.905 0.98 0.875 0.935 0.924
0.830 0.826 0.832 0.917 0.914 0.894 0.887 0.912 0.929

KNN 0.829 0.891 0.851 0.902 0.915 0.936 0.937 0.934 0.942

0.695 0.719 0.698 0.736 0.739 0.74 0.738 0.815 0.808

0.773 0.812 0.740 0.822 0.830 0.828 0.824 0.870 0.858

0.794 0.748 0.713 0.805 0.805 0.700 0.796 0.888 0.893

Table 2.8: Tests of between-subjects effects in filter framework.
Source Type III Sum of

Squares
DF Mean Square F Sig. (p-value)

Corrected Model 0.359a 35 0.010 0.766 0.815
Intercept 98.109 1 98.109 7337.855 0.000
Selection Method 0.304 8 0.038 2.840 0.007
Classifier 0.006 3 0.002 0.160 0.923
Selection Method * Classifier 0.048 24 0.002 0.151 1.000
Error 1.444 108 0.013
Total 99.912 144
Corrected Total 1.802 143

Dependant Variable : F-measure

The particular rows we are interested in are the ” Selection Method”, ” Classifier

” and ” Selection Method * Classifier ” rows, and these are highlighted above in red.

These rows inform us whether our independent variables (the ” Selection Method

” and ”Classifier” rows) and their interaction (the ” Selection Method * Classifier”

row) have a statistically significant effect on the dependent variable, ”F-measure”. It

is important to first look at the ” Selection Method * Classifier ” interaction as this

will determine how we can interpret our results.
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We notice that we don’t have a significant interaction between the two factors which

means that the effect on the outcome of any specific level of F-measure change for

one factor is the same for every fixed setting of the other factor.

We also report the results of ”Selection Method” and ”Classifier”, but again,

these needs to be interpreted in the context of the interaction result. We can see

from the above table that there was no statistically significant difference in mean

interest in F-measure between the different classifiers (p-value= 0.923), but there

are statistically significant differences between the different feature selection methods

(p-value =0.007).

ANOVA only tells us if there is any difference between the groups. If we want to

know where the differences are, then we need to do some additional analysis. Then

we use Tukey post hoc test in order to perform multiple comparisons for the different

feature selection methods and we obtain a multiple comparisons table, as shown in

Table (2.9).

From Table (2.9) we notice that there is some repetition of the results, but re-

gardless of which row we choose to read from, we are interested in the differences

between (1) GA-K and the individual feature selection methods, i.e. relief, MI and

χ2, (2) GA-S and the individual feature selection methods. From these results, we

can see that there is a statistically significant difference between the obtained results

from GA-K and GA-S and individual results (p-value < 0.05).
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Table 2.9: Multiple comparisons table for feature selection methods in filter frame-
work.

Selection
method
(I)

Selection
method
(J)

Mean dif-
ference
(I-J)

Sig. Selection
method
(I)

Selection
method
(J)

Mean dif-
ference
(I-J)

Sig.

χ2 GA-K -.108875* 0.009 Mean χ2 0.054313 0.187
GA-S -.104438* 0.012 GA-K -0.054562 0.185
Highest -0.06825 0.098 GA-S -0.050125 0.223
Lowest -0.055188 0.18 Highest -0.013937 0.734
Mean -0.054313 0.187 Lowest -0.000875 0.983
Median -0.053813 0.191 Median 0.0005 0.99
MI 0.008813 0.83 MI 0.063125 0.125
Relief 0.030125 0.463 Relief .084438* 0.041

GA-K χ2 0.108875* 0.009 Median χ2 0.053813 0.191
GA-S 0.004437 0.914 GA-K -0.055062 0.181
Highest 0.040625 0.323 GA-S -0.050625 0.218
Lowest 0.053688 0.192 Highest -0.014437 0.725
Mean 0.054562 0.185 Lowest -0.001375 0.973
Median 0.055062 0.181 Mean -0.0005 0.99
MI 0.117688* 0.005 MI 0.062625 0.128
Relief 0.139000* 0.001 Relief 0.083938* 0.042

GA-S χ2 0.104438* 0.012 MI χ2 -0.008813 0.83
GA-K -0.004437 0.914 GA-K -0.117688* 0.005
Highest 0.036188 0.378 GA-S -0.113250* 0.007
Lowest 0.04925 0.231 Highest -0.077063 0.062
Mean 0.050125 0.223 Lowest -0.064 0.12
Median 0.050625 0.218 Mean -0.063125 0.125
MI 0.113250* 0.007 Median -0.062625 0.128
Relief 0.134563* 0.001 Relief 0.021313 0.603

Highest χ2 0.06825 0.098 Relief χ2 -0.030125 0.463
GA-K -0.040625 0.323 GA-K -0.139000* 0.001
GA-S -0.036188 0.378 GA-S -0.134563* 0.001
Lowest 0.013062 0.75 Highest -0.098375* 0.018
Mean 0.013937 0.734 Lowest -0.085313* 0.039
Median 0.014437 0.725 Mean -0.084438* 0.041
MI 0.077063 0.062 Median -0.083938* 0.042
Relief 0.098375* 0.018 MI -0.021313 0.603

Lowest χ2 0.055188 0.18
GA-K -0.053688 0.192
GA-S -0.04925 0.231
Highest -0.013062 0.75
Mean 0.000875 0.983
Median 0.001375 0.973
MI 0.064 0.12
Relief 0.085313* 0.039
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2.5 Conclusion

In this chapter, we investigated the effect of the fusion of a set of ranking methods.

First, we conducted a preliminary study in which the issue of rank aggregation is

presented as an optimization problem solved using GA and distance measures. Second

we focused on solving the problem of disjoint ranking for similar features and choosing

the right number of features from the final ranked list, for that we relate the similarity

of the feature to their rankings. We evaluated the proposed approach on four credit

datasets. Results show that there is generally a beneficial effect of aggregating feature

rankings as compared to those produced by single methods. We also compared the

proposed approach with four well known aggregation methods. Results are either

superior or at least as adequate as those selected by the other aggregation methods.

The second method for selecting the most important features is to use wrapper feature

selection. Details about this method are presented in the next chapter.

60



Chapter 3

An Ensemble Wrapper Feature Selection Based on

an Improved Exhaustive Search for Credit Scoring
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3.1 Introduction

Wrappers feature selection usually selects a feature subset of the most relevant fea-

tures with respect to the classification performance given by a particular classifier.
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Although efficient, wrapper feature selection, as pointed out in the introduction, has

some limitations due to the fact that their result depends on the search strategy

and on using a single classifier in the evaluation process. Thus, we introduce a new

approach based on ensemble methods that deals with the major issues of wrapper

approach. As such, we give in Section (3.2) some details on wrapper framework and

we discuss subset generation, search strategies and the use of multiple classifiers as an

evaluation function. Then, we give the principal points of our new approach in Sec-

tion (3.3). In Section (3.4) we present the results of recall, precision and F-measure

obtained on four credit datasets.

3.2 Wrapper Framework

The main idea of wrapper feature selection is to remove unwanted features from the

data by using the predictive accuracy of a particular classifier. It has been showen that

wrappers generally outperform filters (Liu and Schumann 2005) in terms of accuracy

since they are tuned to the specific interactions between the classifier and the dataset.

However, wrapper methods have practical and theoretical limitations (Chrysostomou

2008). Wrappers typically lack generality since the resulting subset of features is

tied to the bias of the classifier used in the evaluation function. The optimal feature

subset will be specific to the classifier under consideration. Also, finding the optimal

feature subset has a high computational cost. This cost depends on the number of

times the classifier is trained on the evaluation process, on the number of subsets to

be investigated and on the size of these feature subsets. In fact the number of subsets

and their size depend on the used search strategy.

If a complete search is used the number of subsets will increase along with the time

and if an heuristic is used not all subsets will be investigated and we may not have

some interesting combination of features. In the following, we focus on two of the

discussed wrapper’s shortcomings: the bias of the classifier and subsets generation

process.

62



Chapter 3: Ensemble Wrapper Feature Selection

3.2.1 Issue I: Evaluation using a single classifier

Using a single classifier in the wrapper process, may favor one candidate subset over

the others. In fact the difference in biases and assumptions of each classifier may

affect the final result in term of accuracy and execution time (Chrysostomou et al.

2008). According to Chrysostomou (2008), when a classifier used for evaluation is

changed the set of selected features will change and as a result different levels of

accuracy are obtained, inducing a lack of generality in the produced model. The

level of complexity of the classifier is also a fundamental factor to be investigated. In

theory when a complex classifier is used, it may take much longer to choose the best

subset of features than a classifier considered to be simple. For example, when SVM

is used as an evaluation function in the process of finding the best features subset, it

may take more time to identify the most relevant features than using LR or KNN.

The number of classifiers used in the combination framework may also affect the

evaluation process. If a small number of classifiers is used for feature selection, then

it is likely that the level of agreement among them will be high. High agreement

among classifiers may subsequently result in more relevant features being selected

and differences in accuracy levels. However, if a high number of classifiers is used we

may end up getting fewer relevant features. Indeed the level of agreement between

classifiers will probably be low since more classifiers are required to agree on the

relevance of a feature.

Based on the important limitation of using a single classifier, we consider using

more than one classifier within wrapper feature selection framework to improve the

general accuracy. In fact we look for mutually approved sets of significant features.

Such sets will possibly give higher classification accuracies and reduce the biases of

individual classifiers.

3.2.2 Issue II: Subset generation and search strategies

The ideal feature selection approach is the exhaustive search of the full set of fea-

tures to find the optimal subset. However, as the number of features increases the
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exhaustive search becomes rapidly impractical even for a moderate number of fea-

tures (Chan et al. 2010), denoted by d. If we look at different ways in which features

subsets are generated among many variations, three basic schemes are available in the

literature namely forward selection, backward elimination and random scheme (Liu

and Yu 2005).

Forward selection and backward elimination are considered as heuristics. Gener-

ally, sequential generation can help in getting a valid subset within a reasonable time

but still it cannot find an optimal subset. This is due to the fact that the generation

scheme uses an heuristic to obtain an optimal subset by selecting sequentially the

best, as in the forward case, or removing the worst as in the backward case. Using

such kind of generator will without doubt speed up the selection process. However,

if the search falls in a local optima it cannot turn back. In fact the generator has no

way to get out of the local optima because what has been removed cannot be added

and what has been added cannot be removed. This is a big shortcoming of sequential

schemes.

To overcome this problem we may use the random generation scheme, to add

randomness to the fixed rule of sequential generation and avoid getting stuck at some

local optima. Although random generation scheme could improve sequential results

it still does not guarantee finding an optimal subset. This can be further elaborated

in terms of search strategies (Yun et al. 2007) .

Hence, in order to minimize the search space, we propose to reduce the number of

features by forward selection and backward elimination so that the exhaustive search

method can handle the generation process within a realistic time. In this way, the

selected feature set is much better in terms of accuracy than those from forward

selection and backward elimination and the feature subsets are obtained much faster

than the exhaustive method.
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3.3 New approach for wrapper feature selection

In this section we propose a novel approach for wrapper feature selection. We consider

building a three-stage wrapper feature selection model.

• At first, a based on similarity study with the prior knowledge primary dimen-

sionality reduction step is conducted on the original feature space. This step is

used to reduce the search space.

• Second, the subset generation step is performed using a mixture of heuristic

and exhaustive search methods.

• The final step is the evaluation of wrapper feature selection and the effect of

using multiple classifiers with different and similar nature.

3.3.1 Primary dimensionality reduction step: similarity study

The first step of our proposed approach is designed specifically to select less redundant

features without sacrificing quality. Redundancy is measured by a similarity measure

between a preselected set of features and the remaining features in the dataset. In this

step we enhance an existing set of preselected features by adding additional features

as a complement.

In CS we may already have a set of features preselected with prior information.

In fact, experts in banks have years of experience on some particular category of

credits and knowledge about which features are more important. This knowledge is

generally obtained by years of use of classical feature selection methods. Thus, a

possible improvement of the exhaustive search is to use the prior knowledge and to

eliminate redundant features before generating the candidate subsets. Since our goal

is to take advantage of any additional information about the feature, we may want to

select a set of features complementary to those preselected by bank experts. Hence,

we need to study the effect of using prior information on relevant feature complexity.

1. First, we split the features set in two sets. The first one regroups a set of features
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that were assumed to be more relevant according to some prior knowledge. The

second set contains the remaining ones.

2. Once the two sets are obtained we conduct a similarity study and a similarity

matrix is constructed. In this step the MI is chosen as a similarity measure

given its efficiency ( see Chapter 1, Section 1.3 for more information about MI).

3. Then, we investigate level of similarity of each feature from the remaining set

with the features of the first set. If the similarity is over 80%, the evaluated

feature is eliminated else it is retained for further examination.

The first part of Figure (3.2) shows a simplified flow chart of the dimensionality

reduction before the exhaustive search.

3.3.2 Subset generation step: speeding up exhaustive search by heuristics

Once the redundant feature elimination step is performed the search space is reduced.

However, even though the search space is reduced by the previous step the search

method still poses the problem of being computationally prohibitive. In fact an

exhaustive search method is an enumerative search method that works by considering

all possible features’ combinations. According to Chan et al. (2010) this method is

practical when the number of features is less than 10. Using more than 10 features

would be costly in terms of computational time. In this case, specific heuristics can

be used to reduce the set of candidate solutions to a manageable size. We think that

using the first step combined with an heuristic will reduce the search space to less

than 10 features, making the exhaustive search a realistic task. This, considering the

fact that all datasets in this research have less than 40 features.

In theory each search strategy has its particular effects on the selected feature

subset and on the performance of the induction algorithm. When the heuristic is

changed the result may differ in terms of the number of selected features, As such, we

extend the idea of ensemble method to search strategies. In the following we propose

to perform several heuristics in order to get diverse results. We use both sequential
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forward feature selection and backward feature elimination as a part of a combined

feature selection. Figure (3.1) illustrates the proposed combination process for an

example of 10 features.

In the first step, the forward selection and backward elimination methods are si-

multaneously applied to the reduced feature set resulting in two different intermediate

feature lists. Each list includes a set of complementary variables.

Figure 3.1: A flowchart combining heuristic and exhaustive search

In the second step, the two lists are merged into one single list of the most relevant

features while the non selected features are eliminated. Since some selected features

may appear in one of the intermediate feature lists and not in the other, these features

must be re-weighted in order to take into consideration their relevance degree. A

feature selected by both forward and backward selection is considered as more relevant

than another feature selected only once. Consequently, the resulting features are

then re-weighted according to their number of appearances in the intermediate lists.
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Actually , the weight is equal to 1 if it appears in the two intermediate feature subsets,

otherwise it is 0.5. In the third step, a complete search is used on the weighted

features.

3.3.3 Evaluation step: effects of using multiple classifiers

Many classification methods were proposed to deal with the credit worthiness problem

on the basis of information from past applicants. The most common statistical meth-

ods to evaluate applicants’ solvability are LR and DA (Paleologo et al. 2010). Unfor-

tunately, these two methods need some fundamental assumptions on data (Šušteršič

et al. 2009). In addition to traditional methods different machine learning and artifi-

cial intelligence methods have been used such as: DT, ANN, SVM and many others.

Although the majority of these methods are simple and do not need assumptions

on data, they need a good mechanism to search for optimal model parameters and

feature subsets.

Each of these individual methods produces a single discrimination rule and has

some qualities and restrictions which may influence the feature evaluation process. No

one can prove for sure the superiority of one classifier on another. Rather than to try

to optimize the accuracy of one classifier, it is better to integrate multiple classifiers.

This approach has been recognized to be successful, achieves better performance

and has a higher precision of predictability in the learning process (Hsieh and Hung

2010; Chen and Li 2010). Here, the same ensemble concept is adopted in the feature

evaluation process as part of the pre-processing course. Figure (3.2) shows how the

results of a set of classifiers are merged to form a new evaluation function.

Classifiers

Many statistical classifiers are based on many assumptions as normality distribution

and absence of multicollinearity. However, if the data are not normal the statistical

family is not appropriate.

The chosen algorithms in this study are representative of the most popular family
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Figure 3.2: A wrapper approach combing multiple classifiers for feature selection.

of classifier models that were selected to form committees of experts in order to test

various classifier combination schemes. Therefore, this section focuses only on the

general aspect of each family. A conceptual description of the chosen algorithms is

given in Table (3.1) more details are given in Appendix (B).

Among the most popular four classifier models were selected namely DT, SVM,

KNN, and ANN.
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Table 3.1: General properties of some classification algorithms.

Classification Algorithms

Properties DA LR DT SVM ANN KNN

Assumptions

numeric variables yes yes

normally distributed variables yes

equal covariance matrices yes

problem of interaction yes yes

problem of multicollinearity yes yes

normalization of variables yes yes

Output
Score yes yes yes yes yes

Class yes yes yes yes

Classifier arrangement approaches

In this section two different classifier arrangement approaches are used within the

wrapper evaluation process, namely the same-type approach and the mixed-type ap-

proach. The same-type approach combines classifiers from the same family and uses

them within the wrapper framework to select the relevant features. For example,

classifiers belonging to SVM family are combined together. The mixed-type approach

combines classifiers from different families.

Table 3.2: Summary of used classifiers within each family.

DT ANN KNN SVM

J48
RandomForest (RF)

MultilayerPerceptron (MP)
VotedPerceptron (VP)

K=1 (1NN)
K=5 (5NN)

Polynomial (SVMP)
Radial (SVMR)

The same-type combinations use classifiers from the four different families dis-

cussed before. More precisely, Two classifiers from DT family, two from ANN family,

one from KNN family is used with two different number of neighbors K= 1 and K=5

and one classifier is used from SVM family. The chosen SVM classifier is used with

two different kernels, namely the polynomial and radial basis function kernel. In this

way, features that are related to both linear aspects and non-linear aspects can be

identified. All considered classifiers are summarized in Table (3.2).

By using the second arrangement approach we investigate how classifiers from

different families work together and how their interaction affects features’ selection.
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Classifiers are combined using an exhaustive approach so that each classifier is used

with every other classifier from a different nature. This leads to the construction of a

total of 76 mixed-type classifier combinations, described in Tables (3.3)-(3.4) including

24 for 2-classifier mixed-type combinations and 52 for 3-mixed-type combinations. In

this way, both approaches help us obtain a complete picture of the effects of the

nature and number of classifiers on feature selection.

Table 3.3: Summary of all possible combination of two classifiers.

Possible combinations
(J48+ SVMP), (J48+ SVMR), (J48+ MP), (J48+ VP), (J48 +1NN),

(J48+5NN), (RF+ SVMP), (RF+ SVMR), (RF+ MP), (RF+ VP),

(RF +1NN), (RF+5NN),( SVMP + MP), (SVMP + VP), (SVMP +1NN),

(SVMP +5NN), (SVMR + MP), (SVMR + VP), (SVMR +1NN),

(SVMR +5NN), (MP +1NN), (MP +5NN), (VP +1NN), (VP +5NN).

Aggregation rules

Traditionally, the approach used to build a multi-classifiers system is to experimen-

tally compare the performance of several classifiers and select the best one. However,

many alternative approaches based on combining multiple classifiers have emerged

(Kuncheva et al. 2001). There are basically two classifier combination scenarios. In

the first, all classifiers use the same representation of the input example. In this case,

each classifier, for a given input example, produces an estimate of the same posteriori

class probability. In the second scenario, each classifier uses its only representation

of the input example. For multiple classifiers using distinct representations, many

existing schemes can be considered, where all the representations are used jointly to

make a decision. We can derive the commonly used classifier combination schemes

such as the product rule, average rule, minimum rule, maximum rule and majority

voting schemes.
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Table 3.4: Summary of all possible combination of three classifiers.

Possible combinations
(J48 +RF + SVMP), (J48 +RF+ SVMR), (J48 +RF + MP), (J48 +RF +VP),

(J48 +RF +1NN), (J48 +RF +5NN), (J48+ SVMP+ SVMR), (J48+ MP +
VP),

(J48 +1NN+5NN), (J48+ SVMP + MP),( J48+ SVMP + VP), (j48+SVMP
+1NN),

(J48+ SVMP +5NN), (J48+ SVMR + MP), (J48+ SVMR + VP), (J48+
SVMR +1NN),

(J48+ SVMR +5NN), (J48+ MP +1NN), (J48+ MP +5NN), (J48+ VP
+1NN),

(J48+ VP +5NN), (RF + SVMP+ SVMR), (RF + MP + VP), (RF
+1NN+5NN),

(RF + SVMP + MP), (RF + SVMP + VP), (RF+SVMP +1NN), (RF +
SVMP +5NN),

(RF + SVMR + MP), (RF + SVMR + VP), (RF+SVMR +1NN), (RF +
SVMR +5NN),

(RF + MP +1NN), (RF + MP +5NN), (RF + VP +1NN), (RF + VP +5NN),

(SVMP+SVMR + MP), (SVMP+SVMR +VP), (SVMP+SVMR +1NN),
(SVMP+SVMR +5NN),

(SVMP + MP + VP), (SVMP +1NN+5NN), (SVMP + MP +1NN), (SVMP
+ MP +5NN),

(SVMP + VP +1NN), (SVMP + VP +5NN), (SVMR + MP + VP), (SVMR
+1NN+5NN),

(SVMR + MP +1NN), (SVMR + MP +5NN), (SVMR + VP +1NN), (SVMR
+ VP +5NN).

The simplest and most common way for aggregation is to use a simple arithmetic

mean also known as the average. This operator is interesting because it gives an

aggregated value that is smaller than the greatest argument and bigger than the

smallest one. Then, the resulting aggregation is ”a middle value”. This property
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is known as the compensation property. The minimum and the maximum are also

basic aggregation operators. The minimum gives the smallest value of a set, while

the maximum gives the greatest one (Kittler 1998). Majority vote is also a common

classifier combination method, particularly used in classifier ensembles when the class

labels of the classifiers are crisp (Kuncheva et al. 2001). In general, majority voting is

a simple method that does not require any parameters to be trained or any additional

information for later results.

3.4 Experimental Investigations

The precision, recall, F-measure and ROC area of feature subsets selected from differ-

ent combinations are given in Tables (3.5)-(3.8) for the four datasets using a 10-fold

cross validation. The best results are shown in bold.

Two approaches for wrapper evaluation are presented, namely the same-type ap-

proach and the mixed-type approach. Results for the first approach are investigated

in Section (3.4.1) and those for the second in Section (3.4.2).

3.4.1 Results and discussion for the same-type approach

Analysis of features selected by DT family combination

Looking to the results produced by DT family in Tables (3.5)-(3.8), we notice that the

J48 classifier achieves in most cases the best individual results for the German, HMEQ

and the Tunisian datasets, expect for the Australian dataset where the individual

results produced by SVM were slightly better. The good performance of the wrapper

using DT classifiers is guided by the nature of this family which is well known for its

highly accurate performance on financial data (Piramuthu 2004).

A closer look at Tables (3.5)-(3.8) shows that results are much better within the

combination process. Actually, some DT algorithms adopt local search strategy while

others are global optimized algorithms. Then, combing a set of DT algorithms may

avoid some of their drawbacks and experimental results show that combination results

are more effective than individual ones.
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Table 3.5: Performance comparison of the new wrapper method and the other feature
selection methods for the Australian dataset.

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.867 0.855 0.855 0.862

RF 0.863 0.851 0.851 0.858

Average 0.782 0.925 0.848 0.863

Product 0.864 0.852 0.853 0.859

Maximum 0.930 0.794 0.856 0.859

Minimum 0.866 0.855 0.855 0.862

Majority Vote 0.782 0.922 0.846 0.865

Support Vector Machine

SVMP 0.921 0.794 0.853 0.855

SVMR 0.930 0.799 0.860 0.862

Average 0.787 0.925 0.850 0.864

Product 0.866 0.855 0.855 0.861

Maximum 0.859 0.848 0.848 0.856

Minimum 0.927 0.794 0.855 0.858

Majority Vote 0.781 0.915 0.848 0.857

Artificial Neural Network

MP 0.860 0.849 0.850 0.856

VP 0.859 0.848 0.848 0.855

Average 0.862 0.851 0.851 0.857

Product 0.783 0.919 0.861 0.860

Maximum 0.862 0.851 0.851 0.857

Minimum 0.862 0.851 0.851 0.857

Majority Vote 0.864 0.853 0.854 0.858

K-Nearest Neighbor

1NN 0.865 0.852 0.852 0.860

5NN 0.859 0.848 0.848 0.855

Average 0.812 0.890 0.849 0.877

Product 0.811 0.866 0.838 0.883

Maximum 0.820 0.880 0.849 0.875

Minimum 0.824 0.823 0.822 0.876

Majority Vote 0.853 0.851 0.851 0.882

As expected, combination schemes have approximately the same performance.

Although the product, minimum and the maximum rules, seem to have the best

precision rates while the average rule and the majority vote rule give the best recall

and ROC area for DT family.

DT classifiers are sometimes considered as embedded methods. These kind of
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methods essentially perform feature selection within the learning process, which

means that they are able to select relevant features on their own: using their own

search strategy and splitting mechanism. In other words DT classifiers select relevant

features at two different stages. In the first stage features are selected by individual

classifiers and in the second features are selected by the combination of DT classifiers.

In this way, only features that are selected at both stages will form the final feature

subset which is very likely to include features of high relevance.

Analysis of features selected by SVM family combination

We notice from Tables (3.5)-(3.8) some differences among the individual results of

polynomial and radial SVM. For the four datasets, we notice that the performance

with the radial SVM is slightly better. This result is due to the nature of the two ker-

nels. In general the polynomial kernel looks for linear characteristics within datasets

while the radial kernel identifies linear and non-linear aspects of the datasets.

Overall we notice that the same-type combinations with SVM improves the per-

formance, meaning that the selected features within the combination process are more

suitable for the CS task. Tables (3.5)-(3.8) show that the model performance changes

with the different combination rules. We notice that the four performance measures

increase with the combination. In fact, majority vote, minimum and average rule

combination give significantly higher ROC area and F-measure.

Analysis of features selected by KNN family combination

Tables (3.5)-(3.8) show that KNN classifiers give good results within the combination

framework. The high performance of the obtained combinations using the KNN family

is the result of its natural simplicity. In fact KNN is a non-parametric classification

method that does not assume any parametric distribution of the random variables.

Non-parametric models are very flexible making them usually good classifiers for many

situations (Li et al. 2011). The main advantage of KNN is that it can learn from a

small set of examples explaining the good performance with the Australian and the
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Table 3.6: Performance comparison of the new wrapper method and the other feature
selection methods for the German dataset.

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.735 0.750 0.723 0.635

RF 0.686 0.716 0.665 0.570

Average 0.740 0.930 0.824 0.583

Product 0.732 0.933 0.820 0.568

Maximum 0.741 0.930 0.825 0.585

Minimum 0.744 0.929 0.826 0.591

Majority Vote 0.740 0.934 0.826 0.635

Support Vector Machine

SVMP 0.490 0.700 0.576 0.500

SVMR 0.708 0.728 0.709 0.627

Average 0.695 0.722 0.678 0.583

Product 0.682 0.714 0.664 0.568

Maximum 0.697 0.723 0.680 0.585

Minimum 0.702 0.726 0.685 0.591

Majority Vote 0.699 0.724 0.679 0.584

Artificial Neural Network

MP 0.719 0.738 0.717 0.634

VP 0.703 0.726 0.701 0.614

Average 0.769 0.896 0.827 0.634

Product 0.769 0.894 0.825 0.645

Maximum 0.758 0.894 0.820 0.643

Minimum 0.717 0.737 0.712 0.625

Majority Vote 0.764 0.904 0.828 0.625

K-Nearest Neighbor

1NN 0.699 0.724 0.677 0.582

5NN 0.691 0.718 0.688 0.598

Average 0.745 0.917 0.822 0.592

Product 0.739 0.937 0.826 0.601

Maximum 0.749 0.899 0.817 0.597

Minimum 0.745 0.917 0.822 0.592

Majority Vote 0.742 0.914 0.819 0.587

German datasets. On the other hand, its major disadvantage is being computationally

intensive for large datasets since it uses all training data as the examples (Thomas

et al. 2002).

76



Chapter 3: Ensemble Wrapper Feature Selection

Table 3.7: Performance comparison of the new wrapper method and the other feature
selection methods for the HMEQ dataset.

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.859 0.864 0.844 0.795

RF 0.857 0.860 0.838 0.785

Average 0.867 0.982 0.921 0.793

Product 0.863 0.983 0.918 0.787

Maximum 0.914 0.899 0.906 0.809

Minimum 0.855 0.852 0.853 0.806

Majority Vote 0.868 0.979 0.920 0.797

Support Vector Machine

SVMP 0.633 0.796 0.705 0.555

SVMR 0.843 0.804 0.724 0.619

Average 0.827 0.977 0.896 0.701

Product 0.809 0.815 0.759 0.662

Maximum 0.816 0.822 0.774 0.683

Minimum 0.800 0.819 0.778 0.691

Majority Vote 0.824 0.987 0.898 0.682

Artificial Neural Network

MP 0.693 0.638 0.664 0.677

VP 0.81 0.827 0.789 0.607

Average 0.868 0.871 0.869 0.877

Product 0.835 0.977 0.902 0.602

Maximum 0.811 0.829 0.793 0.734

Minimum 0.838 0.974 0.901 0.732

Majority Vote 0.911 0.930 0.920 0.879

K-Nearest Neighbor

1NN 0.852 0.837 0.791 0.803

5NN 0.837 0.824 0.766 0.812

Average 0.821 0.998 0.901 0.891

Product 0.850 0.825 0.766 0.881

Maximum 0.889 0.997 0.940 0.889

Minimum 0.821 0.996 0.900 0.842

Majority Vote 0.832 0.996 0.907 0.844

Analysis of features selected by ANN family combination

From Tables (3.5)-(3.8) we notice that, as with the combination from other classifier

families, the final result has improved using ANN combinations. ANN classifiers are

excellent to extract information from a dataset. During the training process ANN can
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be used to map an input to desired output, classify data or learn patterns. Hence,

ANN can also be used to perform indirectly feature selection (Ledesma et al. 2008).

Table 3.8: Performance comparison of the new wrapper method and the other feature
selection methods for the Tunisian dataset.

Precision Recall F-Measure ROC Area

Decision Tree

J48 0.722 0.850 0.781 0.597

RF 0.797 0.846 0.801 0.695

Average 0.858 0.985 0.917 0.652

Product 0.859 0.985 0.918 0.655

Maximum 0.866 0.985 0.921 0.653

Minimum 0.861 0.986 0.919 0.644

Majority Vote 0.858 0.987 0.917 0.649

Support Vector Machine

SVMP 0.722 0.850 0.781 0.500

SVMR 0.797 0.837 0.805 0.566

Average 0.861 0.962 0.909 0.666

Product 0.710 0.842 0.770 0.500

Maximum 0.860 0.968 0.911 0.563

Minimum 0.798 0.839 0.803 0.661

Majority Vote 0.859 0.968 0.910 0.656

Artificial Neural Network

MP 0.802 0.843 0.800 0.577

VP 0.826 0.857 0.816 0.562

Average 0.856 0.979 0.913 0.677

Product 0.865 0.984 0.921 0.659

Maximum 0.867 0.975 0.918 0.668

Minimum 0.888 0.855 0.871 0.731

Majority Vote 0.866 0.981 0.920 0.657

K-Nearest Neighbor

1NN 0.785 0.843 0.794 0.680

5NN 0.792 0.844 0.800 0.685

Average 0.855 0.977 0.912 0.775

Product 0.852 0.993 0.917 0.756

Maximum 0.864 0.925 0.893 0.746

Minimum 0.863 0.932 0.896 0.704

Majority Vote 0.866 0.985 0.921 0.753

In this section we investigated the effect of classifiers nature on the final fea-

ture selection results. It is interesting to know if the observed results are only due

to classifiers nature or to their interactions with the aggregation methods. Hence
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we use a two-way ANOVA to analyze if the mean values of F-measure significantly

change along with the levels of the two independent variables classifier and aggre-

gation method. The first independent variable classifier presents the first factor in

ANOVA where DT, SVM, ANN and KNN are the levels of this variable. Aggregation

method denote the second factor in ANOVA where {Average, Product,Maximum,

Minimum,MajorityV ote} are the levels of this second factor. To test the interaction

we use the hypotheses presented below:

For the first factor, i.e. Classifier, H0 and H1 are given by:


H0 : µ1

DT = µ1
SVM = µ1

ANN = µ1
KNN Performances of classifiers are equal,

versus

H1 : At least one of the classifer mean performance is different from the others

H0 and H1 for factor 2, i.e. aggregation method, would be



H0 : µ2
Aver = µ2

Prod = µ2
Max = µ2

Min = µ2
MajV Performances of aggregation methods

are equal,

versus

H1 : At least one of the aggregation methods mean performance is different

from the others

Interaction between the two 2 factors:


H0 : There is no interaction between the two factors,

versus

H1 : There is an interaction between the two factors mean performance

To set up a two-way ANOVA we use the data in Table (3.9) and obtained results

are summarized in Table (3.10)

The obtained result of the two-way ANOVA in Table (3.10) show that we don’t

have a significant interaction between the two factors which means that the effect on

the outcome of any specific level of F-measure change for one factor is the same for

79



Chapter 3: Ensemble Wrapper Feature Selection

Table 3.9: Summary of F-measures for all aggregation methods with the four classi-
fication methods in wrapper framework.

Average Product Maximum Minimum Majority Vote
DT 0.848 0.853 0.856 0.855 0.846

0.824 0.820 0.825 0.826 0.826
0.921 0.918 0.906 0.853 0.920
0.917 0.918 0.921 0.919 0.917

SVM 0.850 0.855 0.848 0.855 0.848
0.678 0.664 0.680 0.685 0.679
0.896 0.759 0.774 0.778 0.898
0.909 0.770 0.911 0.803 0.910

ANN 0.851 0.861 0.851 0.851 0.854
0.827 0.825 0.820 0.712 0.828
0.869 0.902 0.793 0.901 0.920
0.913 0.921 0.918 0.871 0.920

KNN 0.849 0.838 0.849 0.822 0.851
0.822 0.826 0.817 0.822 0.819
0.901 0.766 0.940 0.900 0.907
0.912 0.917 0.893 0.896 0.921

Table 3.10: Tests of between-subjects effects in wrapper framework.
Source Type III Sum of

Squares
DF Mean Square F Sig. (p-value)

Corrected Model 0.090a 19 0.005 1.154 0.326
Intercept 57.826 1 57.826 14028.038 0.000
Aggregation Method 0.013 4 0.003 0.768 0.550
Classifier 0.063 3 0.021 5.081 0.003
Aggregation Method * Classifier 0.015 12 0.001 0.301 0.987
Error 0.247 60 0.004
Total 58.163 80
Corrected Total 0.338 79

Dependant Variable : F-measure

every fixed setting of the other factor. We notice from Table (3.10) that there is no

statistically significant difference in mean interest in F-measure between the different

aggregation methods (p-value= 0.550), but there is statistically significant difference

between different classifiers (p-value =0.003).

When ANOVA gives a significant result for one classification methods, this indi-

cates that at least one classifier results differs from the other classifiers. Yet, ANOVA

test does not indicate which classifier results influenced the reject of H0. In order to

analyze the pattern of difference between means, we conduct a pairwise comparison.

Results of pairwise comparisons for classifiers are given in Table (3.11).
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Table 3.11: Multiple comparisons table for classifier levels in wrapper framework.
Classifier (I) Classifier (J) Mean difference (I-J) Sig.
ANN DT -0.01405 0.900

KNN -0.003 0.999
SVM 0.05790* 0.030

DT ANN 0.01405 0.900
KNN 0.01105 0.948
SVM 0.07195* 0.004

KNN ANN 0.003 0.999
DT -0.01105 0.948
SVM 0.06090* 0.020

SVM ANN -.05790* 0.030
DT -0.07195* 0.004
KNN -0.06090* 0.020

From Table (3.11) we notice that there is a statistically significant difference be-

tween the obtained results from SVM and the others classifications.

3.4.2 Results and discussion for the mixed-type approach

Because of the large number of combinations, the mixed-type approach is examined

using only the Australian dataset and results are summarized in Tables (3.12) and

(3.13).

Table (3.12) presents results for 2-classifiers mixed combination while Table (3.13)

presents those for 3-classifiers mixed combination. We need to investigate the effect

of classifiers nature on feature selection and if the number of classifiers within the

combination framework also affects the feature selection. Tables (3.12) and (3.13)

give:

• The measured F-measure for the features generated by different combinations

• The mean number of evaluated subsets, i.e. the first number between the paren-

theses and the associated mean number of selected features, i.e. the second

number between the parentheses.

From Tables (3.12) and (3.13) we notice that the combination with few classifiers

selected the features that achieved the best F-measure with a smaller number of
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Table 3.12: Total number of evaluated subsets and selected features by 2 classifiers
mixed-type combinations and associated F-measure rates for the Australian Dataset.

Lowest F-measure lies
between 0.847 and 0.855

Intermediate F-measure lies
between 0.856 and 0.859

Highest F-measure lies
between 0.860 and 0.874

j48+1NN (79,3) J48+ SVMP(106,4) J48+ MP(116,7)

RF+SVMR(82,2) J48+ SVMR(106,4) RF+SVMP(79,3)

RF+MP(111,6) J48 + VP(120,7) RF+1NN(96,4)

RF+VP(104,5) j48+5NN(105,4) SVMP+VP(88,4)

RF+5NN(96,4) SVMP+MP(112,5) SVMP+1NN(79,3)

SVMP+5NN(116,6) SVMR+MP(112,7) MP+5NN(121,7)

SVMR+1NN(79,3) SVMR+VP(116,7) VP+5NN(117,7)

SVMR+5NN(127,9)

MP+1NN(107,6)

VP+1NN(127,6)

evaluated subsets. More specifically, the 2-classifiers’ combinations produce an F-

measure in the range [0.860, 0.874] with a number of evaluated subsets that do not

exceed 121 evaluations. On the other hand the 3-classifiers’ combination gives the

same rate but with a much higher number of evaluated subsets.

Table (3.12) shows that combining DT classifiers with ANN or KNN classifiers

generally yields the lowest F-measure ( RF+MP, RF+VP, RF+5NN, J48+1NN) and

this is due to the difference in nature between these three types of classifiers. Actually,

ANN classifiers identify relationships between features based on the available prior

knowledge about the actual features in the dataset. However, KNN classifiers select

the most relevant features with the closest distance to a set of specified features

called neighbors. For this family the resulting features depend of the number of

chosen neighbors. DT classifiers nature is very dissimilar to the nature of ANN and

KNN. In fact, they use a statistical measure to evaluate the relevance of features.

Table (3.13) shows that the majority of combinations with SVM classifiers selected

a set of features that achieved the best rates of F-measure, specially the case when

SVM classifiers are combined with KNN classifiers. The fact that these combinations

lead to high F-measure, despite the fact that they consider classifiers from different

families, could be due to the existence of particular similarities between these two

families. KNN classifiers use a distance metric to decide which are the most relevant
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Table 3.13: Total number of evaluated subsets and selected features by 3 classifiers
mixed-type combinations and associated F-measure rates for the Australian Dataset.

Lowest F-measure lies
between 0.847 and 0.855

Intermediate F-
measure lies between
0.856 and 0.859

Highest F-measure lies
between 0.860 and 0.874

J48+RF+MV(136,7) J48+RF+SVMP(82,2) J48+RF+1NN(79,3)

J48+RF+5NN(131,9) J48+RF+SVMR(75,2) J48+VP+1NN(139,7)

J48+1NN+5NN(114,7) J48+RF+MP(144,10) RF+MP+VP(111,6)

J48+SVMR+MP (146,7) J48+MP+VM(126,7) RF+SVMP+MP(132,6)

J48+SVMR+1NN(75,2) J48+SVMP+SVMR(75,2) RF+SVMP+VP(120,8)

J48+SVMR+5NN(141,10) J48+SVMP+MP(126,7) RF+SVMP+1NN (116,7)

J48+MP+5NN(122,7) J48+SVMP+VP(139,6) RF+SVMR+MP (126,9)

J48+VP+5NN(112,7) J48+SVMP+1NN(118,6) RF+SVMR+VP(135,7)

RF+1NN+5NN (79,3) J48+SVMP+5NN(139,10) SVMP+1NN+5NN(108,7)

RF+SVMP+5NN (94,5) J48+SVMR+VP(189,7) SVMP+MP+1NN(132,8)

RF+SVMR+1NN (88,3) J48+MP+1NN(165,10) SVMR+MP+5NN(132,10)

RF+SVMR+5NN (117,8) RF+SVMP+SVMR(82,2) SVMP+VP+1NN(118,10)

RF+MP+1NN(130,7) MP+SVMP+SVMR
(139,6)

SVMR+1NN+5NN(108,7)

RF+MP+5NN (133,10) VP+SVMP+SVMR
(120,5)

SVMR+MP+1NN
(132,9)

RF+VP+1NN(130,7) 1NN+SVMP+SVMR
(82,2)

SVMR+MP+5NN(149,9)

RF+VP+5NN(123,10) 5NN+SVMP+SVMR
(75,2)

SVMR+VP+5NN (149,9)

SVMP+MP+VP (109,5)

SVMP+VP+5NN
(153,11)

SVMR+MP+VP (109,5)

SVMR+VP+1NN(122,8)

features to the target variable. SVM classifiers use a distance to select the most

relevant features by measuring the distance between each feature in accordance with

the hyper-plane that separates the best class from the target concept.

3.5 Conclusion

In this chapter we developed an ensemble wrapper feature selection approach for a CS

application. The proposed approach is composed of three stages. In the first one we

performed a dimensionality reduction using bank experts’ knowledge. In the second

stage a heuristic is used to reduce the search space to less than 10 features, which easer
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the exhaustive search. In the final stage the generated subsets are evaluated using

a multi-classifiers process involving two arrangement approaches, namely the same-

type and mixed-type approach. From the three stages, we show that the use of prior

information on relevant features effectively induces a significant gain in complexity

with improved generalization. Also, we have shown that the number of classifiers

and their nature have an important effect on wrapper feature selection results. This

chapter and the previous one discussed two different concepts of feature selection

namely filter and wrapper methods, their combination will be investigated in the

next chapter.
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4.1 Introduction

Chapters (2) and (3) reviewed the two most important methods for feature selection,

respectively the filter and the wrapper feature selection methods with proposed modi-

fications for improvement. In general, we cannot show the superiority of one approach

over the other, because of the fact that there are strong mixed arguments in favor of
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both methods. This chapter explores a variety of filter and wrapper feature selection

methods to reduce non relevant features. These two types of selection methods are

complementary to each other. A fusion strategy is then proposed to sequentially com-

bine the ranking criteria of multiple filters and a wrapper method. Evaluations are

conducted on four credit datasets. This chapter is organized as follows. Section (4.2)

describes hybrid feature selection. Section (4.3) proposes a three-stage fusion com-

bining both strategies. Then, our proposed method is compared with some existing

selection methods in Section (4.4), and conclusions are drawn in Section (4.5).

4.2 Hybrid Framework

As discussed in Chapter 1 there are two main classes of feature selection methods:

the filter and the wrapper. Both approaches have their merits and shortcomings and

the superiority of one approach over the other is not settled. Rather than trying to

optimize just one approach, it is better to integrate both in one compacted feature

selection model. Several merging approaches can be used for feature selection (Wu

et al. 2009; Mak and Kung 2008): a fusion of several filters or wrappers, wrappers and

filters merged in a parallel way, or a sequential combination of filters and wrappers.

Filter and wrapper methods require various resources and lead to differed results.

Combining both methods seems a natural choice to benefit from their advantages and

avoid their shortcomings. Since both methods consider two different selection criteria,

and we have no knowledge about the number of relevant features, a combination of

both methods as a hybrid approach is proposed.

4.3 New Approach for hybrid feature selection

In order to improve the significance of selected features, we propose a three-stage

approach as a combination of filter and wrapper methods. In the first stage we use

a set of filter-based methods to classify candidate attributes based on their relevance

level into three main categories. We obtain the following feature relevance categories:

high, average and poor. Highly relevant features are kept as input to the second stage,
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average ones are kept as input to the third stage and the last category is eliminated.

In the second stage an efficient method dealing with both redundancy and relevance is

considered. At this stage we minimize the redundancy among most relevant features

while maximizing their relevance to the target class. To find the best combination

between relevance and redundancy we formulate this problem as an optimization of

a quadratic multi-objective function. Once the most relevant features are separated

from redundant ones we move to stage three. The latter takes as input the selected

features of Stage II and combines them with the average relevant features of Stage I.

Then, a wrapper approach is trained on the resulting features. Figure (4.4) presents

a flowchart of the different stages of the proposed approach.

4.3.1 Stage I: feature-based filtering

As discussed in Chapters 1 and 2, there are many ranking criteria for filters: MI,

T-statistics, PCC, Relief, entropy and many others. Unfortunately, choosing the best

one is a difficult task and depends on many factors such as the amount of available

data, the data distribution and types of descriptive features among others. Rather

than to optimize one single filter, we combine results of multiple filters in the pre-

selection process. Many methods can be adopted to find the best combination. In

this work, we fuse individual filters’ output, i.e. final ranking of each filter, while

assuming that the effect of each filter on the final decision is the same.

For the pre-filtering stage and for simplicity the number of used filters is fixed to

three. Each filter ranks features according to their particular criterion, resulting into

three different rankings. Then, the result of each filter is divided into three subsets

of identical size according to their level of relevance to the target variable. Figure

(4.1) shows the different relevance categories. Three groups of features are obtained

for each filter: the highly significant, the average ones and those with poor relevance.

Once the relevance levels are identified for each filter, and as a first step the most

relevant features are merged. They are produced by the three filters in one single

group yielding a subset with the most relevant features. At a second step, the three
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Figure 4.1: A view of feature relevance categories

groups of features with average relevance are grouped and redundant features, or

the ones which appear in the first resulting subset, are also eliminated. Since the

remaining features lack relevance and they are not adequate for our study they are

eliminated. Figure (4.2) illustrates Stage I for an example of 22 features from the

Tunisian dataset.

4.3.2 Stage II: reduction of redundant features using quadratic program-

ming

Filter algorithms frequently do not consider interaction between features. Moreover,

resulting ranking lists from Stage I may contain redundant information. Therefore,

one common improvement direction for filter algorithms is to consider dependencies

among variables, and an approach based on MI is proposed. This approach studies

the redundancy among features starting from the highly ranked features selected

in Stage I. The problem of feature redundancy is considered by statistical machine

learning methods as well as mathematical ones. Mathematical programming based

approaches have been proven to be successful in terms of classification accuracy for

a wide range of applications. The proposed mathematical method is a quadratic

programming formulation. Quadratic optimization process uses an objective function

with quadratic and linear terms. Here, the quadratic term denotes the similarity

among each pair of variables whereas the linear term captures the correlation between

each feature and the target variable.
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Figure 4.2: The proposed process of merging features selected by three filters in the
fusion method

Let’s assume that the classifier learning problem involves N training samples and

d variables. A quadratic programming problem minimizes a multivariate quadratic

function subject to linear constraints (Rodriguez et al. 2010) is given by:

Min f(w) =
1

2
wTQw − ZTw.

Subject to wi ≥ 0 for all i = 1, . . . , d

and
d∑
i=1

wi = 1,

(4.1)
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where Z is a d-dimensional row vector with non-negative entries describing the co-

efficients of the linear terms in the objective function measuring how each feature

is correlated with the target class (relevance), Q a (d × d) symmetric positive semi-

definite matrix describing the coefficients of the quadratic terms representing the

similarity among variables (redundancy) and the weights of variables are denoted by

an d-dimensional column vector w.

Bazaraa et al. (1993) and Rodriguez et al. (2010) showed that a feasible solution

exists for this kind of problem and that the constraint region is bounded. When the

objective function f(w) is strictly convex for all feasible points the problem has a

unique local minimum which is also the global minimum. The conditions for solving

quadratic programming, including the Lagrangian function and the Karush-Kuhn-

Tucker conditions are explained in details in Bazaraa et al. (1993).

Depending on the learning problem, the two conditions can have different relative

purposes in the objective function. Therefore, a scalar parameter α is introduced as

follows:

Min f(w) =
1

2
(1− α)wTQw − αZTw, (4.2)

where w, Q and Z are defined as before and α ∈ [0, 1], where if α = 1 only relevance

is considered. On the opposite, if α = 0 then only independence between features is

considered. That is features with higher weights are those which have lower similarity

coefficients with the remaining features. Every data set has its best choice of the scalar

α. However, a reasonable choice of α should balance the relation between relevance

and redundancy. Thus, a good estimation of α is needed. We know that the relevance

and redundancy terms in Equation (4.2) are balanced when (1−α)Q = αZ, where Q

is the estimate of the mean value of the matrix Q and Z is the estimate of the mean

value of vector Z. Hence, we propose a practical estimate of α as follows:

α̂ =
Q

Q+ Z
. (4.3)

After solving the quadratic programming optimization the features with higher

weights are considered to be better variables for subsequent classifier training. Figure
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(4.3) illustrates Stage II.

Figure 4.3: Redundancy analysis for highly ranked features

At this stage, given its efficiency MI is chosen as a similarity measure. Hence, the

quadratic term is qjj′ = MI(XJ , Xj′) and the linear one is zj = MI(XJ , Y ). Using

the quadratic approach based on MI provides a new ranking of the highly ranked

feature selected in Stage I. This new ranking takes into account simultaneously the

MI between all pairs of features and the relevance of each feature to the target one.

4.3.3 Stage III: feature-based wrapping

In Stages I and II we selected top-ranked features and removed redundant ones based

on MI and quadratic programming. Many studies such as those conducted by Peng

et al. (2005) showed that simply combining highly discriminant features often does

not give a better feature set that yields the best classification performance. The

reason behind this is that the feature set is not an inclusive representation of the

characteristics of the target feature. Because features are selected according to their

discriminative powers, they are not maximally representative of the original space

covered by the entire dataset. The feature set may represent one or several dominant
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characteristics of the target class, but these could still be small regions of the relevant

space covering the target class. Thus, the generalization ability of the feature set

could be limited.

Based on these facts, we propose to combine features selected in Stage II and

those having average relevance in Stage I. This combination aims to expand the

space covered by the feature set. The resulting feature set is the input to a wrapper

algorithm. In wrapper based methods, feature selection is powered by the learning

method, and features’ relevance is evaluated by the given accuracy of the classification

method. Generally, we obtain a set with a very small number of non-redundant

features giving a high accuracy, since the characteristics of the features match very

well with the characteristics of the learning method. Figure (4.4) illustrates Stage

III.

Figure 4.4: Flowchart of the proposed three-stage feature selection fusion
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4.4 Experimental investigations

In Stage I, we used three filters to rank features according to their level of significance.

Matlab used in this step provides a whole set of tools for selecting diversity and

discriminating features. We used the ”Rankfeatures” function as a simple way to rank

features using an independent evaluation criterion for binary classification. To assess

the significance of every feature in separating two labeled groups many criterions

could be used such as: χ2, Relief, MI, relative entropy, and others. For simplicity, the

three first criterions are selected for our task. Numbers of selected features in Stage

I are given in Table (4.1).

In Stage II, the redundancy is reduced using the quadratic optimization and MI as a

similarity measure. This stage is implemented in R software using the ”Quadprog”

package (Goldfarb and Idnani 1983), where results are obtained with α = 0.501 for

the Australian dataset, α = 0.511 for the German dataset, α = 0.509 for the HMEQ

and α = 0.514 for the Tunisian dataset. This means that the best value of α is

obtained when there is an equal tradeoff between relevance and redundancy. The

MI for all features is measured using the function ”Mutualinfo” in Matlab. Stage

III takes as output the features selected in Stage II and those classified as average

significance features. Then, a Bi-Directional wrapper is used.

Table 4.1: Number of remaining features after Stage I

High Average Poor Retained
Australian

7 3 4 10
German

7 9 4 16
HMEQ

5 5 2 10
Tunisian

10 9 2 19

The following filter and wrapper methods have been considered in the described

experiments for the comparisons:

• Maximal Relevance (MaxRel) feature selection selects those features that have
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highest relevance to the target class (Peng et al. 2005).

• minimal-Redundancy-Maximum-Relevance (mRMR) algorithm chooses a sub-

set of features with both minimum redundancy and maximum relevance . The

mRMR algorithm selects features greedily, minimizing their redundancy with

features chosen in previous steps and maximizing their relevance to the class

(Ding and Peng 2005).

• Relief, χ2 and MI are given in Chapter 1.

• Kulback-leibler is used as ranking criteria. Features with the maximum Kullback-

Leibler distance are selected as the most significant features.

• Forward, backward, bi-Directional wrapper details are given in Chapter 1.

4.4.1 Results and discussion

Results for the three credit datasets using the previously quoted feature selection

methods are summarized in Tables (4.3)-(4.5). Classification results represent the

performance of each feature selection method for four different classification methods:

DT, SVM, ANN and KNN, where the best results are shown in bold.

Performance of filters and wrappers

Tables (4.3)-(4.5) show the performances achieved by ANN, KNN, SVM and DT using

six filters and three wrappers. Both filters and wrappers perform well as feature

selectors for the scoring task. They may not always give the best set of features

for the classification algorithm but in most cases they do. There is obviously a

strong similarity in the feature sets selected by different approaches. A more detailed

picture of the achieved results shows that the precision of wrappers is better than

some of the studied filters. These results are confirmed by the AUC rate for the three

datasets, proving the superiority of wrappers in terms of precision. In some cases

using wrappers is advantageous since they are able to achieve the same performance

94



Chapter 4: Three-Stage Feature Selection

as filters with a more reduced subset. In other cases, filters do a better job with a

significant lower complexity than wrapper even by using limited information.

Performance of the New Approach

We notice from Tables (4.3)-(4.6) that in most cases the new approach achieves the

best rate of AUC. The higher is the value of AUC the better is the distinguishing

capacity of the classifier. This means that the chosen features set by the new approach

provides the best combination of features given that it improves the capability of a

credit model to correctly identify the behavior of an applicant to pay back a loan.

Table 4.2: Summary of the best performance results archived by the set of feature
selection methods for the four datasets within the hybrid framework.

DT SVM ANN KNN
MaxRel Features � ⊗
mRMR Features 	 	
χ2 �
Kullback-leibler 	 	
Relief
MI � ⊕ ⊕

Wrapper Bi-Directional
Wrapper Forward
Wrapper Backwards
Three-Stage Approach 	⊗⊕	⊗⊕ 	⊗

⊕� ⊗⊗⊕�
⊗�
	 ⊗ ⊕ 	 ⊗ ⊕�
	⊗⊕�

⊗⊕� 	�
⊗⊕� ⊗⊕�

	⊗⊕� 	⊗⊕�
	⊗⊕� 	⊗⊕�

	 Precision, ⊗ Recall, ⊕ F-measure, � ROC Area.
Color: - Australian, - German , - HEMQ, - Tunisian.

From Table (4.2) we see that for the ANN and KNN classifiers the three stage

approach always achieves the highest rate of area under the ROC curve. This was

not the case for SVM where the proposed approach achieves three times the highest

area under the ROC curve and for DT where the proposed approach achieves twice

the highest area under the ROC curve. We also notice from Table (4.2) that overall

our proposed approach achieves 15 times the best recall, 13 times the best ROC area

and 14 times the best F-measure and 11 times the highest precision.
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Consistent with the theoretical analysis for feature selection, the fusion approach

usually outperforms single wrappers or filters.

Table 4.3: Classification results for the three stage feature selection for the Australian
dataset.

Precision Recall F-Measure ROC Area
Decision Tree

MaxRel Features 0.603 0.672 0.636 0.812
mRMR Features 0.557 0.589 0.573 0.797
χ2 0.603 0.673 0.640 0.916
Kullback-leibler 0.721 0.661 0.690 0.819
Relief 0.586 0.560 0.546 0.799
MI 0.601 0.600 0.600 0.837
Wrapper Bi-Directional 0.739 0.771 0.750 0.798
Wrapper Forward 0.737 0.775 0.755 0.788
Wrapper Backwards 0.749 0.769 0.749 0.796
Three-Stage Approach 0.857 0.889 0.873 0.797

Support Vector Machine
MaxRel Features 0.839 0.871 0.854 0.792
mRMR Features 0.902 0.852 0.876 0.813
χ2 0.629 0.670 0.655 0.818
Kullback-leibler 0.931 0.861 0.894 0.820
Relief 0.795 0.898 0.843 0.803
MI 0.930 0.870 0.900 0.817
Wrapper Bi-Directional 0.912 0.845 0.876 0.807
Wrapper Forward 0.919 0.840 0.879 0.810
Wrapper Backwards 0.915 0.843 0.878 0.808
Three-Stage Approach 0.900 0.901 0.880 0.823

Artificial Neural Network
MaxRel Features 0.892 0.917 0.904 0.855
mRMR Features 0.931 0.880 0.905 0.847
χ2 0.790 0.720 0.700 0.950
Kullback-leibler 0.931 0.870 0.900 0.826
Relief 0.685 0.626 0.605 0.845
MI 0.729 0.673 0.702 0.844
Wrapper Bi-Directional 0.896 0.898 0.898 0.843
Wrapper Forward 0.899 0.892 0.897 0.845
Wrapper Backwards 0.900 0.889 0.898 0.842
Three-Stage Approach 0.895 0.944 0.919 0.856

K-Nearest Neighbor
MaxRel Features 0.782 0.843 0.815 0.757
mRMR Features 0.795 0.844 0.819 0.756
χ2 0.687 0.739 0.715 0.755
Kullback-leibler 0.831 0.770 0.800 0.724
Relief 0.674 0.726 0.701 0.750
MI 0.789 0.972 0.871 0.742
Wrapper Bi-Directional 0.893 0.924 0.903 0.754
Wrapper Forward 0.790 0.826 0.809 0.752
Wrapper Backwards 0.797 0.820 0.800 0.750
Three-Stage Approach 0.897 0.944 0.919 0.758
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Table 4.4: Classification results for the three stage feature selection for the German
dataset.

Precision Recall F-Measure ROC Area
Decision Tree

MaxRel Features 0.620 0.632 0.620 0.727
mRMR Features 0.496 0.509 0.502 0.562
χ2 0.594 0.532 0.561 0.681
Kullback-leibler 0.624 0.589 0.606 0.710
Relief 0.582 0.555 0.568 0.691
MI 0.616 0.634 0.625 0.725
Wrapper Bi-Directional 0.776 0.751 0.782 0.705
Wrapper Forward 0.773 0.789 0.780 0.700
Wrapper Backwards 0.770 0.787 0.786 0.703
Three-Stage Approach 0.878 0.890 0.882 0.723

Support Vector Machine
MaxRel Features 0.506 0.565 0.583 0.713
mRMR Features 0.527 0.498 0.512 0.693
χ2 0.649 0.543 0.591 0.718
Kullback-leibler 0.667 0.532 0.590 0.708
Relief 0.513 0.532 0.522 0.679
MI 0.606 0.566 0.585 0.710
Wrapper Bi-Directional 0.858 0.693 0.760 0.677
Wrapper Forward 0.853 0.695 0.759 0.673
Wrapper Backwards 0.856 0.690 0.758 0.679
Three-Stage Approach 0.956 0.805 0.859 0.677

Artificial Neural Network
MaxRel Features 0.720 0.634 0.670 0.767
mRMR Features 0.697 0.555 0.616 0.742
χ2 0.729 0.600 0.657 0.749
Kullback-leibler 0.736 0.577 0.645 0.757
Relief 0.656 0.611 0.633 0.749
MI 0.712 0.634 0.672 0.767
Wrapper Bi-Directional 0.681 0.589 0.631 0.727
Wrapper Forward 0.683 0.583 0.635 0.729
Wrapper Backwards 0.680 0.585 0.629 0.720
Three-Stage Approach 0.781 0.589 0.651 0.769

K-Nearest Neighbor
MaxRel Features 0.703 0.630 0.668 0.775
mRMR Features 0.684 0.611 0.645 0.754
χ2 0.718 0.634 0.673 0.750
Kullback-leibler 0.716 0.634 0.670 0.762
Relief 0.617 0.611 0.614 0.759
MI 0.703 0.634 0.666 0.775
Wrapper Bi-Directional 0.651 0.577 0.616 0.761
Wrapper Forward 0.653 0.552 0.612 0.760
Wrapper Backwards 0.650 0.570 0.618 0.756
Three-Stage Approach 0.663 0.677 0.619 0.776

To be more precise if we look into the results of Table (4.3) we notice that with the

Australian datasets the proposed approach achieves the highest recall with DT, SVM
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and ANN classifiers and the best F-measure with DT, ANN and KNN classifiers.

Table 4.5: Classification results for the three stage feature selection for the HMEQ
dataset.

Precision Recall F-Measure ROC Area
Decision Tree

MaxRel Features 0.808 0.558 0.660 0.725
mRMR Features 0.730 0.558 0.632 0.713
χ2 0.782 0.598 0.677 0.757
Kullback-leibler 0.732 0.552 0.629 0.703
Relief 0.590 0.542 0.565 0.753
MI 0.790 0.598 0.680 0.757
Wrapper Bi-Directional 0.750 0.570 0.647 0.762
Wrapper Forward 0.748 0.564 0.627 0.767
Wrapper Backwards 0.742 0.568 0.643 0.760
Three-Stage Approach 0.788 0.794 0.791 0.888

Support Vector Machine
MaxRel Features 0.806 0.607 0.692 0.723
mRMR Features 0.843 0.530 0.650 0.707
χ2 0.813 0.579 0.616 0.752
Kullback-leibler 0.848 0.540 0.659 0.710
Relief 0.563 0.593 0.577 0.715
MI 0.823 0.577 0.678 0.737
Wrapper Bi-Directional 0.730 0.573 0.642 0.745
Wrapper Forward 0.739 0.570 0.643 0.755
Wrapper Backwards 0.735 0.579 0.647 0.759
Three-Stage Approach 0.721 0.846 0.778 0.839

Artificial Neural Network
MaxRel Features 0.691 0.561 0.619 0.720
mRMR Features 0.740 0.556 0.634 0.710
χ2 0.681 0.588 0.631 0.751
Kullback-leibler 0.737 0.558 0.635 0.707
Relief 0.563 0.515 0.537 0.653
MI 0.681 0.588 0.631 0.751
Wrapper Bi-Directional 0.670 0.589 0.626 0.750
Wrapper Forward 0.676 0.588 0.628 0.753
Wrapper Backwards 0.674 0.600 0.636 0.751
Three-Stage Approach 0.614 0.722 0.663 0.792

K-Nearest Neighbor
MaxRel Features 0.688 0.564 0.619 0.730
mRMR Features 0.694 0.564 0.622 0.707
χ2 0.671 0.701 0.685 0.747
Kullback-leibler 0.698 0.563 0.623 0.710
Relief 0.538 0.515 0.529 0.655
MI 0.675 0.599 0.634 0.750
Wrapper Bi-Directional 0.675 0.585 0.626 0.752
Wrapper Forward 0.672 0.588 0.627 0.755
Wrapper Backwards 0.671 0.583 0.623 0.753
Three-Stage Approach 0.674 0.704 0.688 0.774
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Table 4.6: Classification results for the three stage feature selection for the Tunisian
dataset.

Precision Recall F-Measure ROC Area
Decision Tree

MaxRel Features 0.611 0.614 0.612 0.700
mRMR Features 0.620 0.623 0.628 0.701
χ2 0.610 0.615 0.613 0.702
Kullback-leibler 0.796 0.800 0.798 0.688
Relief 0.501 0.502 0.501 0.690
MI 0.590 0.620 0.604 0.679
Wrapper Bi-Directional 0.730 0.790 0.759 0.703
Wrapper Forward 0.706 0.722 0.713 0.702
Wrapper Backwards 0.689 0.736 0.702 0.678
Three-Stage Approach 0.862 0.960 0.908 0.716

Support Vector Machine
MaxRel Features 0.707 0.700 0.733 0.725
mRMR Features 0.805 0.787 0.795 0.700
χ2 0.650 0.742 0.693 0.670
Kullback-leibler 0.744 0.853 0.794 0.673
Relief 0,522 0.650 0.581 0.670
MI 0,604 0,647 0,608 0.708
Wrapper Bi-Directional 0.711 0.750 0.710 0.706
Wrapper Forward 0.706 0.722 0.713 0.710
Wrapper Backwards 0.774 0.846 0.786 0.680
Three-Stage Approach 0.852 0.990 0.916 0.752

Artificial Neural Network
MaxRel Features 0.812 0.826 0.818 0.712
mRMR Features 0.820 0.830 0.825 0.715
χ2 0.775 0.790 0.782 0.650
Kullback-leibler 0.805 0.805 0.805 0.699
Relief 0.788 0.870 0.827 0.702
MI 0.816 0.820 0.818 0.687
Wrapper Bi-Directional 0.889 0.856 0.872 0.713
Wrapper Forward 0.809 0.850 0.806 0.690
Wrapper Backwards 0.815 0.852 0.811 0.703
Three-Stage Approach 0.864 0.973 0.915 0.730

K-Nearest Neighbor
MaxRel Features 0.818 0.850 0.827 0.706
mRMR Features 0.795 0.846 0.807 0.710
χ2 0.766 0.789 0.777 0.623
Kullback-leibler 0.754 0.800 0.776 0.641
Relief 0.700 0.802 0.747 0.690
MI 0.722 0.850 0.781 0.650
Wrapper Bi-Directional 0.818 0.854 0.813 0.700
Wrapper Forward 0.789 0.840 0.800 0.686
Wrapper Backwards 0.800 0.848 0.802 0.680
Three-Stage Approach 0.859 0.981 0.916 0.723

Table (4.4) shows that for German dataset the new approach achieves the highest

recall with DT, SVM and KNN classifiers, the best precision with DT, SVM and
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ANN and the highest F-measure with DT and SVM and produces the best AUC for

ANN and KNN witch means that the selected features by this approach allow finding

the best middle ground between specificity and sensitivity.

We notice from Tables (4.5)-(4.6) that the new approach achieves the best pre-

cision, recall, F-measure and ROC area with DT and SVM classifiers with both the

HMEQ and Tunisian datasets. Table (4.5) shows that for the HMEQ dataset the new

approach achieves the best recall and F-measure and AUC with all datasets.

A two-way ANOVA is performed on the F-measure results in order to test the

difference between the features selection methods and classification methods. The

first factor is represented through the different feature selection methods, where

{Relief,MI,MaxRel,mRMR,χ2, Kullback,Bi−Directional, Forward ,Backward,

ThreeStage} present the levels of the first factor. The second factor is represented

by the different classification methods including {DT, SVM,ANN,KNN}. Several

hypotheses are jointly tested in a two-way ANOVA. H0 and alternative hypothesis

H1 for the first factor presenting all feature selection methods would be

H0 : µ1
Relief = µ1

MI = µ1
MaxRel = µ1

mRMR = µ1
χ2 = µ1

Kullback = µ1
Directional = µ1

Forward

= µ1
Backward = µ1

ThreeStage Performances of selection methods are equal,

versus

H1 : At least one of the feature selection methods mean performance is different

from the others

For the second factor, i.e. Classifier, H0 and H1 are given by:
H0 : µ2

DT = µ2
SVM = µ2

ANN = µ2
KNN Performances of classifiers are equal,

versus

H1 : At least one of the classifer mean performance is different from the others

Interaction between the two factors:
H0 : There is no interaction between the two factors,

versus

H1 : There is an interaction between the two factors
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To set up a two-way ANOVA we use the data in Table (4.7), the obtained results

are summarized in Table (4.8)

Table 4.7: Summary of F-measures for all feature selection methods with the four
classification methods in hybrid framework.

χ2 Relief MI MaxRel mRMR
DT 0.640 0.546 0.600 0.636 0.573

0.561 0.568 0.626 0.620 0.502
0.677 0.565 0.680 0.660 0.632
0.613 0.501 0.604 0.612 0.628
Kullback Directional Forward Backward Three Stage
0.690 0.750 0.755 0.749 0.873
0.606 0.782 0.780 0.786 0.882
0.629 0.647 0.627 0.643 0.791
0.698 0.759 0.713 0.702 0.908
χ2 Relief MI MaxRel mRMR

SVM 0.655 0.843 0.900 0.854 0.876
0.591 0.522 0.585 0.583 0.512
0.616 0.577 0.678 0.692 0.650
0.693 0.581 0.608 0.733 0.795
Kullback Directional Forward Backward Three Stage
0.894 0.876 0.879 0.878 0.880
0.590 0.760 0.759 0.758 0.859
0.659 0.642 0.643 0.647 0.778
0.794 0.710 0.713 0.786 0.916
χ2 Relief MI MaxRel mRMR

ANN 0.700 0.605 0.702 0.904 0.905
0.657 0.633 0.672 0.670 0.616
0.631 0.537 0.631 0.619 0.634
0.782 0.827 0.818 0.818 0.825
Kullback Directional Forward Backward Three Stage
0.900 0.898 0.897 0.898 0.919
0.645 0.631 0.635 0.629 0.651
0.635 0.626 0.628 0.636 0.663
0.805 0.872 0.806 0.811 0.915
χ2 Relief MI MaxRel mRMR

KNN 0.715 0.701 0.871 0.815 0.819
0.673 0.614 0.666 0.668 0.645
0.685 0.529 0.634 0.619 0.622
0.777 0.747 0.781 0.827 0.807
Kullback Directional Forward Backward Three Stage
0.800 0.903 0.809 0.800 0.919
0.670 0.616 0.612 0.618 0.619
0.623 0.626 0.627 0.623 0.688
0.776 0.813 0.800 0.802 0.916

The items of primary interest in Table (4.8) are the effects listed under the

”Source” column and the values under the ”Sig.” column. As in the previous hy-

pothesis tests, if the p-value is less than 0.05, as set by the experimenter, then that
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Table 4.8: Tests of between-subjects effects in hybrid framework.
Source Type III Sum of

Squares
DF Mean Square F Sig. (p-value)

Corrected Model 0.646 39 0.017 1.518 0.045
Intercept 81.140 1 81.140 7432.361 0.000
Selection Method 0.418 9 0.046 4.253 8.37151E-05
Classifier 0.095 3 0.032 2.913 0.037
Selection Method * Classifier 0.133 27 0.005 0.451 0.991
Error 1.310 120 0.011
Total 83.096 160
Corrected Total 1.956 159

Dependant Variable : F-measure

effect is significant. From Table (4.8) we notice that we don’t have a statistically

significant interaction between the factor selection method and the factor classifier,

but there are statistically significant differences between classifier levels and selection

method levels where p-value is less than 0.05 for both factors. A more detailed picture

is given in Tables (4.9) and (4.10).

Table 4.9: Multiple comparisons table for different classifiers in hybrid framework.
Classifier (I) Classifier (J) Mean difference (I-J) Sig.
ANN DT 0.06180* 0.045

KNN 0.01028 0.971
SVM 0.00803 0.986

DT ANN -0.06180* 0.045
KNN -0.05153 0.128
SVM -0.05378 0.103

KNN ANN -0.01028 0.971
DT 0.05153 0.128
SVM -0.00225 1.000

SVM ANN -0.00803 0.986
DT 0.05378 0.103
KNN 0.00225 1.000

Table (4.9) shows that there is a significant difference between the results produced

by DT and ANN classifiers where the computed p-value is 0.045.

we notice from Table (4.10) that there is a statistically significant difference be-

tween the obtained results from (1) the three stage approach and MI where the

p-value = 0.017, (2) the three stage approach and mRMR where the p-value = 0.015,

(3) the three stage approach and χ2 where the p-value = 0.002 and (4) the three stage

approach and relief where the p-value < 0.05.
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Table 4.10: Multiple comparisons table for feature selection methods in hybrid frame-
work.

Selection
method
(I)

Selection
method
(J)

Mean dif-
ference (I-
J)

Sig. Selection
method
(I)

Selection
method
(J)

Mean dif-
ference (I-
J)

Sig.

Backward Directional -0.00906 1 MaxRel Backward -0.02725 0.999
χ2 0.06875 0.695 Directional -0.03631 0.993
Forward 0.00519 1 χ2 0.0415 0.981
Kullback 0.022 1 Forward -0.02206 1
MaxRel 0.02725 0.999 Kullback -0.00525 1
MI 0.04438 0.971 MI 0.01713 1
mRMR 0.04531 0.967 mRMR 0.01806 1
Relief 0.11687 0.059 Relief 0.08962 0.32
Three stage -0.08819 0.343 Three stage -0.11544 0.066

Directional Backward 0.00906 1 MI Backward -0.04438 0.971
χ2 0.07781 0.527 Directional -0.05344 0.91
Forward 0.01425 1 χ2 0.02438 1
Kullback 0.03106 0.998 Forward -0.03919 0.987
MaxRel 0.03631 0.993 Kullback -0.02237 1
MI 0.05344 0.91 MaxRel -0.01713 1
mRMR 0.05437 0.9 mRMR 0.00094 1
Relief .12594* 0.029 Relief 0.0725 0.627
Three stage -0.07913 0.502 Three stage -.13256* 0.017

χ2 Backward -0.06875 0.695 mRMR Backward -0.04531 0.967
Directional -0.07781 0.527 Directional -0.05437 0.9
Forward -0.06356 0.782 χ2 0.02344 1
kullback -0.04675 0.959 Forward -0.04012 0.985
MaxRel -0.0415 0.981 Kullback -0.02331 1
MI -0.02438 1 MaxRel -0.01806 1
mRMR -0.02344 1 MI -0.00094 1
Relief 0.04812 0.951 Relief 0.07156 0.644
Three stage -.15694* 0.002 Three stage -0.13350* 0.015

Forward Backward -0.00519 1 Relief Backward -0.11687 0.059
Directional -0.01425 1 Directional -0.12594* 0.029
χ2 0.06356 0.782 χ2 -0.04812 0.951
Kullback 0.01681 1 Forward -0.11169 0.086
MaxRel 0.02206 1 Kullback -0.09487 0.244
MI 0.03919 0.987 MaxRel -0.08962 0.32
mRMR 0.04012 0.985 MI -0.0725 0.627
Relief 0.11169 0.086 mRMR -0.07156 0.644
Three stage -0.09338 0.265 Three stage -.20506* 0

Kullback backward -0.022 1 Three stage Backward 0.08819 0.343
Directional -0.03106 0.998 Directional 0.07913 0.502
χ2 0.04675 0.959 χ2 0.15694* 0.002
Forward -0.01681 1 Forward 0.09338 0.265
MaxRel 0.00525 1 Kullback 0.11019 0.095
MI 0.02237 1 MaxRel 0.11544 0.066
mRMR 0.02331 1 MI 0.13256* 0.017
Relief 0.09487 0.244 mRMR 0.13350* 0.015
Three stage -0.11019 0.095 Relief 0.20506* 0

103



Chapter 4: Three-Stage Feature Selection

4.5 Conclusion

Feature selection is an important task in CS. We propose in this chapter fusing in a

first stage a set of filters methods as a pre-selection step. The first stage is followed

by a filter selection based on a quadratic optimization and a similarity study. Finally,

the fusion is refined by a wrapper selection. Results show that the fusion performance

is either superior to or at least as good as either filter or wrapper methods.
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Credit-risk evaluation involves processing huge volumes of data. Consequently it

requires powerful data mining tools. Several methods developed in machine learning

have been used for financial credit-risk evaluation and especially for CS. However,

the majority of these tools are affected by the curse of dimensionality and irrelevant

features. These facts often degrade the performance of predictive models both in

speed and in predictive accuracy. Hence, the use of optimal feature subset becomes

essential.

In this thesis, we review the framework of feature selection and disuss the basic

concepts of different feature selection models: filter, wrapper and hybrid. Some

research questions related to each one of these three categories are examined.

In Chapter 2 we investigate filter feature selection. We present a brief reminder

of the filter framework and two major issues when dealing with filtering methods,

respectively the selection trouble and the issue of disjoint ranking for similar features.

Then, a new approach is introduced with experimental investigations in Chapter 2

based on three steps: in the first we present the feature selection problem as an

optimization problem with the aim of finding the best list, which would be the closest

possible to all individual ordered lists. Then, in the next step we presented a solution

to the optimization problem. The solution consists on using GAs. In the final step we

used similarity in order to resolve the problem of disjoint ranking for similar features.

The results for this chapter were evaluated on four credit datasets. We compare

the new approach with some well known aggregation methods and some individual

filtering methods. Results show that ensemble methods improve precision, recall and
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F-measure, especially when the similarity is considered.

The proposed approach in Chapter 3 is an ensemble method based on wrapper

feature selection which is a complete search and a multiple classifiers system. We

first focus on the search strategy and the choice of the starting point and we propose

reducing the search space to a manageable size based on similarity study with prior

knowledge. Then, a hybrid search strategy mixing heuristic and complete search is

performed.

The last part of Chapter 3 is dedicated to the evaluation process. In this step two

different classifier arrangement approaches are used within the wrapper evaluation

process, namely the same-type approach and the mixed-type approach. By using

the second arrangement approach we need to investigate how classifiers from differ-

ent families work together and how their interaction influences the feature selection.

Then, by using both approaches we obtained a complete picture of the influences of

the nature of classifiers on feature selection. Results show that the use of prior infor-

mation and heuristics in the complete search induces a significant gain in complexity

with improved generalization. Furthermore, we show that the number of classifiers

and their nature have an important effect on wrapper feature selection.

The final contribution of this thesis is in Chapter 4, where a three-stage feature

selection fusion using quadratic programming is proposed. In the first stage we used

a set of filter-based methods to classify candidate attributes based on their relevance

level into three main categories, to get the following feature relevance categories:

high, average and poor. Highly relevant features are kept as input to the second

stage, average ones are used as input to the third stage and the last category is

eliminated.

In the second stage an efficient method dealing with both redundancy and relevance

is considered. In this stage we minimize the redundancy among the most relevant

features while maximizing their relevance to the target class. To find the best com-

bination between relevance and redundancy we formulate this problem as an opti-

mization of a quadratic multi-objective function. Once the most relevant features are
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separated from the redundant ones we move to stage three. The latter took as input

the selected features of stage two and combine them with the average relevant fea-

tures of the first stage, then a wrapper approach is trained on the resulting features.

Results show that the fusion performance is either superior to or at least as good as

either filter or wrapper methods.

The used datasets were relatively small in size, i.e., less than 100 features. In

fact, the considered datasets in the evaluation have a maximum of 23 features (i.e.

Tunisian dataset). It would be of interest to test our three proposed methods on large

datasets to provide more insight into their performance.
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Appendix A

Feature categories and datasets description

A.1 Feature categories

In general, a feature can describe either a qualitative or quantitative characteristic of

a credit applicant. Examples of qualitative characteristics are gender, occupation and

marital status. Examples of quantitative characteristics are age, amount of a loan.

Qualitative and quantitative features can each be divided into two main categories,

as depicted in Figure (A.1).

Figure A.1: Features categories.

A.1.1 Qualitative features

Qualitative features are also called categorical, describe a quality of the credit appli-

cant. Categorical features can be either nominal or ordinal. A nominal feature is a

categorical feature that has two or more categories (levels), with no intrinsic ordering

to the categories. Purpose of credit is an example of nominal features with four cate-

gories {new car, household appliances, education, business } and there is no intrinsic
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ordering to the categories.

An ordinal feature is a categorical feature where the categories are ordered or hi-

erarchical i.e. we have a rank for each category (1st, 2nd, 3rd, . . . ). For example,

the feature educational level is an ordinal feature with three categories {elementary

school, high school, college}. These categories can be easily ordered.

A.1.2 Quantitative features

Quantitative features describe some quantity about the credit applicant and are often

measured or counted. These features can be either continuous or discrete. A contin-

uous variable is one that could take any value in an interval. A discrete feature is

one that can only take specific numeric values but those numeric values have a clear

quantitative interpretation.

Because qualitative data always have a limited number of alternative values, such

variables are also described as discrete. All numeric qualitative features are discrete,

while some quantitative features are discrete and some are continuous. For statistical

analysis, qualitative features can be converted into discrete numeric data by simply

counting the different values that appear.

A.2 datasets description

This section reports some benchmark data sets that are used to evaluate the per-

formance of different feature selection methods. While the Australian and German

datasets are downloaded from the UCI Machine Learning Repository, The HMEQ

dataset is available at SAS software and the Tunisian dataset is the result of collected

information from a Tunisian bank.

A.2.1 Australian dataset

As discussed earlier in Chapter 1 The Australian dataset is composed of 690 instances

where 307 ones are creditworthy while 383 are not.There are 6 numerical and 8 cate-

gorical features and all feature names and values have been changed to meaningless

symbols for confidentiality. The labels have been changed for the convenience of the

118



Appendix A

statistical algorithms. For example, attribute 4 originally has 3 labels p,g,gg and

theses have been changed to labels 1,2,3.

Variable Description Type Description of modalities

A1 No description is available Categorical This feature has 2 modalities {0, 1},
where no description is available about

the significance of each modality

A2 No description is available Continuous No modalites

A3 No description is available Continuous No modalites

A4 No description is available Categorical This feature has 2 modalities {1, 2, 3},
where no description is available about

the significance of each modality

A5 No description is available Categorical This feature has 14 modalities

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
where no description is available about

the significance of each modality.

A6 No description is available Categorical This feature has 9 modalities

{1, 2, 3, 4, 5, 6, 7, 8, 9}, where no de-

scription is available about the

significance of each modality

A7 No description is available Continuous No modalites

A8 No description is available Categorical This feature has 2 modalities {0, 1},
where no description is available about

the significance of each modality

A9 No description is available Categorical This feature has 2 modalities {0, 1},
where no description is available about

the significance of each modality

A10 No description is available Continuous No modalites

A11 No description is available Categorical This feature has 2 modalities {0, 1},
where no description is available about

the significance of each modality

A12 No description is available Categorical This feature has 3 modalities {1, 2, 3},
where no description is available about

the significance of each modality

A13 No description is available Continuous No modalites

A14 No description is available Continuous No modalites

A15 Creditability Categorical 1: good applicant

2: bad applicant
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A.2.2 German dataset

The German dataset covers a sample of 1000 credit consumers where 700 instances

are creditworthy and 300 are not. For each applicant 21 numeric input variables are

available. More details are given in the table below.

Variable Description Type Description of modalities

Alter Age Continuous No modalites

Beruf Occupation Categorical 1: unemployed / unskilled with no per-

manent residence

2: unskilled with permanent residence

3: skilled worker / skilled employee /

minor civil servant

4: executive / self-employed / higher

civil servant

Beszeit Has been employed by cur-

rent employer for

Categorical 1: unemployed

2: ≤ 1 year

3 : 1 ≤ .. < 4 years

4 : 4 ≤ .. < 7 years

5 :≥ 7 years

Beurge Further debtors / Guaran-

tors

Categorical 1: none

2: Co-Applicant

3: Guarantor

Bishkred Number of previous credits

at this bank (including the

running one)

Categorical 1: zero

2: one or two

3: three or four

4: five or more

Famges Marital Status / Sex Categorical 1: male: divorced / living apart

2: female: divorced / living apart /

married

3: male: single /married /widowed

4: female: single

Gastarb Foreign worker Categorical 1: yes

2: no

Hoehe Amount of credit in

”Deutsche Mark”

Continuous No modalites

Kredit Creditability Binary 0: not credit-worthy

1: credit-worthy
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Laufkount Balance of current account Categorical 1: no running account

2: no balance or debit

3: 0 ≤ .. < 200 DM

4 : 200 DM / checking account for at

least 1 year

Laufzeit Duration in months Categorical No modalites

Moral Payment of previous cred-

its

Categorical 0: hesitant payment of previous credits

1: problematic running account / there

are further credits running but at other

banks

2: no previous credits / paid back all

previous credits

3: no problems with current credits at

this bank

4: paid back previous credits at this

bank

Pers Number of persons entitled

to maintenance

Categorical 1: 0 to 2

2: 3 or more

Rate Installment in % of avail-

able income

Categorical 1: ≥ 35

2: 25 ≤ ... < 35

3: 20 ≤ ... < 25

4 : < 20

Telef Telephone Categorical 1: yes

2: no

Sparkont Value of savings or stocks Categorical 1:not available / no savings

2: < 100 DM

3: 100 ≤ ... < 500 DM

4: 500 ≤ ... < 1000 DM

5 : ≥ 1000 DM

Verm Most valuable available as-

sets

Categorical 1: not available / no assets

2: Car / Other

3: Savings contract with a building so-

ciety / Life insurance

4: Ownership of house or land

Verw Purpose of credit Categorical 1: new car

2: used car

3: items of furniture
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4: radio / television

5: household appliances

6: repair

7: education

8: vacation

9: retraining

10: business

Weitkred Further running credits Categorical 1: at other banks

2: at department store or mail order

house

3: no further running credits

Wohn Type of apartment Categorical 1: free apartment

2: rented flat

3: free apartment

Wohnzeit Living in current house-

hold for

Categorical 1:< 1 year

2: 1 ≤ ... < 4 years

3: 4 ≤ ... < 7 years

4 : ≥ 7 years

A.2.3 HEMQ dataset

The HMEQ dataset is composed of 5960 instances where 4771 instances are credit-

worthy and 1189 are not. For each applicant, 12 input variables are available, more

descriptions are given below.

Variable Description Type Description of modalities

BAD Creditability Binary 1: applicant defaulted on loan or seri-

ously delinquent

0: applicant paid loan

CLAGE Age of oldest credit line in

months

Continuous No modalites

CLNO Number of credit lines Continuous No modalites

DEBTINC Debt-to-income ratio Continuous No modalites

DELINQ Number of delinquent

credit lines

Continuous No modalites

DEROG Number of major deroga-

tory reports

Continuous No modalites
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JOB Occupational categories Categorical This feature has 6 modalities

{1, 2, 3, 4, 5, 6}, where no descrip-

tion is available about the significance

of each modality

LOAN Amount of the loan request Continuous No modalites

MORTDUE Amount due on existing

mortgage

Continuous No modalites

NINQ Number of recent credit in-

quiries

Continuous No modalites

REASON reason for credit Categorical DebtCon=debt consolidation

HomeImp=home improvement

VALUE Value of current property Continuous No modalites

YOJ Years at present job Continuous No modalites

A.2.4 Tunisian dataset

Tunisian dataset covers a sample of 2970 instances of credit consumers where 2523

instances are creditworthy while 446 are not. Each credit applicant is described by

22 input variables as described below.

Variable Description Type Description of modalities

ZONE GEO Geographic zone Categorical 1: North

2: South

3: Center

GEN Gender of the credit appli-

cant

Categorical 1:female

2:mal

MKT Non description is avail-

able

Categorical 1:PAR

2:PRF

NOUV SM Profession of the applicant Categorical 1: Liberal

2 : Lawyer and likened

3: Private employee

4 : Students / others

5: Doctor and likened

6: Retreat

7: Government employee

AGE Age Continuous No modalites
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EPARGNE saving account Categorical 1: Saving account

0: No saving

TOTENG Amount of other credits Continuous No modalites

DUR Duration in months Continuous No modalites

CMR No description is available Continuous No modalites

CMR2 No description is available Continuous No modalites

AUTOR No description is available Continuous No modalites

MNTDEBLOC No description is available Continuous No modalites

ENCOUR Amount of further running

credits

Continuous No modalites

MULTIBANC Multiple running account

in other banks

Categorical 1: Yes

2: No

DOMICIL No description is available Categorical 1 :Transfer of delegation

2: Pension account

3: No domiciliation

4: Directly paid wages

Safir The applicant has a safir

account

Categorical 1: Normal account

2: Safir

STAT FAM Marital Status Categorical 1: Single

2: Divorced

3: Married

4: Widower or Widow

SAL MEN Net monthly salary Continuous No modalites

REV MEN Net monthly income Continuous No modalites

NBR Number of dependants un-

der the age of 18

Continuous No modalites

RVS No description is available Continuous No modalites
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Classification methods

This appendix presents classification algorithms which are used to evaluate the can-

didate subsets in the wrapper framework. Understanding the foundations of these

algorithms can be helpful for the comprehension of this work.

B.1 Artificial Neural Network

ANN were originally developed in machine learning field and become an important

data mining method. A neural network is composed of a set of elementary computa-

tional units, called neurons, connected together through weighted connections. Every

neuron, also called a node, represents an autonomous computational unit and receives

as inputs the description of an observation xi, (x1i , ..., x
d
i ) called signal. Each signal

is attached with an importance weight after that the neuron elaborates the input

signals, their importance weights and the threshold value through something called

a combination function. The combination function produces a value called potential.

An activation function transforms the potential into an output signal. The activation

function is defined as follows:

f(xi) =
d∑
j=1

βjx
j
i + β0 = βTxi, (B.1)

where βj, j = 1, ..., d is the weight associated for each signal. The final output yi of

the neurone is decided according to f(xi) sign.
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yi =

{
0 if βTxi ≤ 0

1 Otherwise
(B.2)

ANNs are found to be a powerful solution. Their performance is dependent on

initial condition, network topologies and training algorithms. This may be one reason

why the results of ANN vary for credit scoring.

B.2 Support Vector Machines

Among the new methods for credit scoring, SVM is one of most promising methods.

The use of SVM in financial application has been previously examined by several

works (Schebesch and Stecking 2005; Huang et al. 2007; Bellotti and Crook 2009).

SVM was first proposed by Vapnik (1995) and recently becomes one of the most ap-

plied methods in data mining. There are many reasons for choosing SVM (Burges

1998), it requires less prior assumptions about the input data and can perform a non-

linear mapping from an original input space into a high dimensional feature space,

in which it constructs a linear discriminant function to replace the nonlinear func-

tion in the original low-dimension input space. A simple description of the SVM

algorithm is provided as follows. Given a training set {xi, yi}ni=1 with input vector

xi = [x1i , x
2
i , . . . , x

d
i ]
T and target variable yi ∈ {+1,−1}, the original formulation of

SVM algorithm satisfies the following conditions:

{
βT .φ(xi) + b ≥ +1 if yi = +1

βT .φ(xi) + b ≤ −1 if yi = −1
(B.3)

which is equivalent to

yi(β
T .φ(xi) + b)− 1 ≥ 0, i = 1, ..., n, (B.4)
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where β represents the weight vector and b the bias. φ(xi) is a nonlinear mapping

function. From equation (B.4) we come down to the construction of two parallel

bounding hyperplanes at opposite sides of a separating hyperplane βT .φ(xi) + b = 0

in the feature space with the margin width between both hyperplanes equal to
2

||w||2
.

the classifier then takes the decision function form sgin(βT .φ(xi) + b).

B.3 Decision Trees

According to Thomas et al. (2002) the idea of DT is to split the set of applications

into different sets and then identify each of these sets as good or bad depending on

what the majority in that set is. The idea was developed for general classification

problems by Breiman et al. (1984) and was used for the first time by Frydman et al.

(1985).

This method is very simple and can be described according to this scheme (Giudici

2003): A DT consists of nodes and edges, the root node defines the first split of the

credit applicants sample. Each internal node splits the instance sample into two

subsets. Each node contains individuals of a single class. The operation is repeated

until the division in sub-populations is no more possible.

B.4 K-nearest-Neighbor

The main idea of KNN is to choose a distance measure on the space of application data

in order to measure how distant any two applicants are (Thomas et al. 2002). Then,

using a learning sample of past applicants presented by the couples (xi, yi), a new

applicant xi′ is classified as good or bad depending on the proportions of goods and

bads among the k nearest applicants from the learning sample. The two parameters

needed to run this approach are the distance metric and how many applicants k

constitute the set of nearest neighbors. A commonly used distance metric with KNN

is the Euclidean distance given by :

d(xi, xi′) =

√√√√ d∑
j=1

(xji − x
j
i′)

2 (B.5)

127



Appendix B

This method is usually used for heterogeneous data with missing data. Although

simple, the choice of the number of neighbors k is still a difficult task. This number

is either fixed beforehand or chosen by crossed validation (Merbouha and Mkhadri

2006).
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