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Directeurs de thèse : Salem Benferhat, Professeur, Université d’Artois, France
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Abstract

This thesis focuses on the modeling of causality under the belief function framework. We
have first analyzed and revised the theoretical foundations of existing associational belief
models. Then, we have proposed a graphical structure that serves as a basis for the causal
belief network. In this latter, uncertainty at the nodes is given in terms of conditional mass
distributions. Since intervention is a crucial concept for an efficient causal analysis, we have
introduced a counterpart of the do operator as a tool to represent interventions on causal
belief networks. The proposed model allows computing the simultaneous effect of observa-
tions and interventions. It is assumed that considering an intervention as an action that
always succeeds to force its target variable to have a precise value, by making it completely
independent of its original causes, is a condition rarely achieved in real-world applications.
Therefore, we have examined the treatment of interventions whose occurrence is imperfect
and/or have imperfect consequences. In the last part of the thesis, we have proposed a model
for causality ascription to interpret influential relationships between different attributes of
the system namely causality, facilitation or justification in the presence observational and
interventional data. Since decision makers are not only interested in ascribing causes, this
model allows to define different strengths of a cause.

Résumé

La présente thèse s’intéresse à modéliser la causalité dans le cadre de la théorie des fonctions de
croyance. Dans un premier temps, nous avons analysé et révisé les fondements théoriques des
différents modèles associationnels crédibilistes existants. Nous avons proposé une structure
graphique qui sert de base pour le réseau causal crédibiliste. Dans ce dernier, l’incertitude au
niveau des nœuds est donnée en termes de distributions de masses conditionnelles. Comme la
notion d’intervention est d’une importance capitale pour une analyse causale efficiente, nous
avons introduit la contrepartie de l’opérateur “do” pour la représentation des interventions
dans les réseaux causaux crédibilistes. Le modèle proposé permet ainsi de calculer l’effet
simultané des observations et des interventions. Il est admis que considérer l’intervention
comme une action qui réussit toujours à mettre sa cible à une valeur précise en la rendant
complètement indépendante de ses causes originales est une condition rarement réalisée dans
les applications réelles. De ce fait, nous avons examiné le traitement des interventions dont
l’occurrence et/ou les conséquences sont imparfaites. Dans la dernière partie de la thèse,
nous avons proposé un modèle d’attribution de causalité permettant d’interpreter les rela-
tions d’influence qui existent entre les différents attributs du système à savoir la causalité,
la facilitation ou encore la justification en présence de données observationnelles et interven-
tionnelles. Motivé par le fait que les preneurs de décision ne sont pas uniquement intéressés
par l’attribution de la causalité, ce modèle permet de définir différentes forces d’une cause.
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General Introduction

Causality plays an important role in many fields, from physics to medicine to artificial intel-
ligence. Indeed, causal knowledge simplifies decision-making. In fact, it enables to anticipate
the dynamics of events when the system is evolving and thus choose the right actions to
achieve the goals.

Though at first glance, it seems obvious what causation is, there are difficulties to define
which event truly causes another. This makes difficult the comprehension and modeling of
causality. Actually, it can be seen as a regular association (Hume, 2006), a counterfactual
dependence (Lewis, 2004) or a probability raising (Eells, 1991).

A general agreement says that causal links should be well distinguished from statistical
relations. Indeed, correlations are symmetric relationships where the occurrence of two events
is observed at the same time but an external action on one of them by forcing it to take place
will not affect the other event. However, a paradigmatic assertion in causal relations is that
the manipulation of a genuine cause will result in the variation of an effect.

Motivation

Researchers in the Artificial Intelligence (AI) field were interested in the problems arising from
the modeling of causality (e.g. (Shafer, 1996; Pearl, 2000; Halpern & Pearl, 2005)) motivated
by the fact that it is important to provide the systems of inference or decision-making with
explanation capacity for an operator or human user.

Graphical models are efficient and simple ways for representing and reasoning under un-
certainty since they compactly represent dependance relations. Indeed, Bayesian networks
(Pearl, 1988) are popular within the AI community. In these directed acyclic graphs, edges
represent conditional relationships. However, the direction of the edges is induced by the
order in which variables are considered without necessarily reflecting causal links. Besides,
since they are based on observational data, several networks are equivalent according to the
Markov property (i.e., they encode the same joint distribution). Only one of them models
cause/effect relationships: the causal Bayesian network.

Hence, causal Bayesian networks are an extension of classical Bayesian networks where
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2 General Introduction

links between variables follow the causal process allowing a more informative analysis. In fact,
through these networks it is possible to model causal knowledge which is usually uncertain.
It is also possible to predict not only the spontaneous behavior of the system but also the
effect of interventions. While conditioning is used to compute the effect of observations, the
do operator (Pearl, 2000) is used to compute the impact of external action.

Nevertheless, probabilistic graphical models are effective when a very complete statistical
knowledge description of the modeled system is available. In fact, a probability distribution,
as good as it is, does not distinguish between equiprobability and ignorance situations. Be-
sides, probability theory cannot handle situations where experts are unable to provide the
whole numerical values. Thus, a reasoning based on Bayesian networks may be misleading
is some situations. In fact, possibilistic networks (Fonck, 1994; Ben Amor et al., 2003) are
adequate in cases requiring pure qualitative and ordinal handling and belief networks (Ben
Yaghlane et al., 2003; Xu & Smets, 1994) are ideal tools in situations of ignorance and in-
complete knowledge.

In this thesis, we choose to work with the belief function theory since it represents an ap-
propriate framework for experts to express their beliefs in a flexible way. Indeed, the theory of
belief functions is now well established as a general framework for reasoning with uncertainty,
and has well understood connections to other frameworks such as probability, possibility and
imprecise probability theories.

Belief function networks with conditional dependencies were first introduced with Shenoy
(1993) in valuation based systems (VBS), called valuation networks. Xu et al. (1994) have
presented an alternative framework to the general VBS, called evidential network with condi-
tional belief functions (ENC). In this network, relations between the variables in the network
are defined per edge. To overcome this limitation, Ben Yaghlane et al. (2003) have proposed
the Directed EVidential Network with conditional belief function (DEVN) where they allow
to define conditionals either for one parent node of for all parents. These networks have the
same structure as a Bayesien network. However, the manner in which conditional beliefs are
defined is different from that one in which conditional probabilities are traditionally defined
in Bayesien networks: each edge in the graph represents a conditional relation between the
two nodes it connects. Recently, Simon et al. (2008) proposed another model called Eviden-
tial Network (EN) where conditional dependencies are defined given all the parents. There is
no distinction between this network and a Bayesian network in terms of representation and
propagation of beliefs.

The aim of this thesis is to model causality under the belief function framework. In fact,
despite the representation power of this theory and the importance of causality, no works have
been presented in this area. Causal networks provide information about the dynamics of the
system under study. However, the definition of a causal network is based on the definition
of its corresponding associational networks according to the uncertainty theory. Thus, before
modeling causality, we have to analyze the panoply of existing associational belief networks
to know which one could be appropriate to serve as a basis to our causal network under the
belief function theory.
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Contributions

This thesis contains four important and new contributions regarding : foundations of as-
sociational belief networks, definition of causal belief networks, modeling different forms of
non-standard interventions that may have imperfect consequences and causality ascription.

1. Associational belief networks: we first analyze the theoretic foundations of belief net-
works. We show that contrary to expectations, even though the belief function theory is
a generalization of probability theory, the belief network fails to collapse into a Bayesian
one. This is due to the fact that in these networks, conditional distributions can be
defined per edge. Indeed, belief networks can be defined either per edge or for all parent
nodes. Then, to add more flexibility we propose a new belief network where conditional
distributions are defined for one or more parent nodes. To compute the global joint
distribution, local distributions should be aggregated. Accordingly, we clarify the com-
putation of the global joint distribution by explaining why, how and when extensions
should be made. Finally, we propose new definitions of these extensions (for the vacu-
ous and the ballooning concepts). These new rules departs from existing ones. In fact,
instead of being based on a least committed transfer of masses, they are based on a
uniform one. Doing such a way is more appropriate to reflect the initial knowledge.

2. Definition of causal belief networks: the belief function theory is adequate to formalize
imperfect causal knowledge that agents usually possess especially cases of ignorance.
Accordingly, we need a graphical structure to simply represent and reason from such
causal knowledge. Based on our associational belief network, we introduce causal belief
network where arcs are interpreted as causal links. On this network, we can compute
the effects of observations and also those of external actions. For that we propose a
counterpart the “do” operator under the belief function framework.

We explain that after an intervention, the state of the target variable concerned by
the manipulation is therefore totally dependent of this external action and independent
of its original causes. Accordingly, we study two different equivalent approaches to
deal with interventions: graph mutilation and graph augmentation. The first way is
to interpret an intervention by cutting off the edges linking it to its parents. The rest
of the network remains unchanged. The resulting graph is a mutilated causal belief
network. Another alternative is to add a new fictive variable, the “DO” variable, as a
parent node of the variable concerned by an intervention. The resulting graph is called
an augmented causal belief network. Then, we show that even if the computation of
the belief joint distribution is very different from the one used in probability theory the
graph augmentation and graph mutilation are equivalent methods and lead to the same
joint distribution.

3. Modeling different forms of non-standard interventions: we point out that considering
the intervention as a certain action which always succeeds to put its target at a precise
value by making it completely independent of its original causes is a condition that is
rarely achieved in real world applications. Indeed, we show that an intervention can be
uncertain or imprecise in the sense that it may imperfectly occur. Then, we explain that
even if it takes place with a degree of belief, it can have imperfect consequences which
means that it may not succeed to put its target into one specific value. Furthermore,
an intervention can interact with the original causes of the target variable. All these
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different types of interventions should be well modeled. In fact, the methods proposed
for certain and precise interventions will lead to erroneous decisions if they were applied
in these cases. To tackle this problem, we provide methods to deal with these non-
standard interventions. We argue that our methods are very naturally encoded with
causal belief networks.

4. Causality ascription: causal discovery is a challenging task and ascribing the causes of
an abnormal event occurring in the normal course of things is a very useful task in many
applications (e.g., intrusion detection problems, medical applications). We first present
a belief causality ascription model that allows an agent to discriminate between potential
causes of an abnormal event based on his imperfect background knowledge. This latter,
can be represented by a causal belief network and a sequence of reported events. To
achieve this goal, we provide definitions of the concepts of acceptance, rejection and
ignorance. Then, we explain that by defining more levels of these notions, we will be
able to ascribe the strength of the causal connection. Besides, we explain how facility
and justification will be distinguished from causality.

Unlike the qualitative method based on nonmonotonic consequence relations, our method
is appropriate to handle n-ary variables. Moreover, we show that attenuation and con-
firmation totally make sense which is not the case for the existing qualitative model.
In fact, if an event is held as accepted, then after the observation of a second event, it
only may remain accepted or becomes rejected and cannot be attenuated or confirmed.

Finally, to avoid detecting spurious correlations, we propose to use not only observa-
tional data but also interventional data.

Organization

Our thesis is organized in six chapters distributed into two parts. Note that illustrative ex-
amples are presented in the different chapters.

Part I: Theoretical aspects composed of two chapters as follows:

• Chapter 1 gives the necessary background regarding the basic concepts of belief function
theory. A brief overview of some graphical models where the knowledge is formalized
with belief functions is provided at the end of this chapter.

• Chapter 2 explains the basic ideas of causal knowledge that are used throughout our
work. Then, a more attention is given to causality ascription methods and to exist-
ing causal networks. It also examines an important concept in causality namely the
treatment of interventions.

Part II: Modeling causality under the belief function framework composed of four chapters
as follows:

• Chapter 3 in its first part investigates the case of belief networks in which beliefs are
Bayesian. The second part is dedicated to the analysis and clarification of existing belief
function networks. Then, we define a graphical structure called belief network with
conditional beliefs where uncertainty is given in terms of conditional a priori masses.
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The computation of the joint distribution is based on new definitions of some belief
function concepts useful to handle belief networks.

• Chapter 4 presents our causal model called causal belief network where uncertainty
at nodes is represented with conditional a priori mass distributions. The proposed
model allows to truly identify causal links through the notion of interventions. This
network is based on the graphical structure defined in Chapter 3, where the arrows
are interpreted as causal links. The treatment of interventions in both mutilated and
augmented graphs is detailed and the equivalence between these methods is verified.
Furthermore, we emphasize that interventions are imperfect in real-world applications.
We explain how to compute their effects at the end of this chapter.

• Chapter 5 proposes a model that an intelligent agent will use to ascribe causality from
a sequence of observations or interventions occurring in his environment under the
belief function framework. To model such changes, we use the concepts of acceptance
and rejection instead of changes in uncertainty distributions. We introduce definitions
of acceptance and rejection allowing the categorization of causes according to their
strength.

• Chapter 6 presents all necessary elements which are needed to describe the proposed
models. Thus, we first develop methods to implement our proposed causal belief network
and to simulate the effect of an intervention using the belief graph mutilation and
augmentation approaches. Then, we show the usefulness of the belief causality ascription
model to ascribe the causes of an abnormal event.

Finally, a general conclusion gives a summary of the results achieved in this thesis and
presents possible future developments.

Two appendices complete this thesis. They provide proofs of propositions given respec-
tively in Chapter 4 and Chapter 5.
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Chapter 1
Belief Function Theory

1.1 Introduction

Reasoning under uncertainty either quantitative or qualitative reasoning is required in most
real world applications. Uncertain reasoning is dominated by probabilistic tools. This is
somewhat surprising, since many situations involving imperfection (uncertainty, imprecision,
incompleteness or vagueness) cannot be represented in an appropriate way within the classical
probability framework. Accordingly, a modeler must be open to all the available tools, using
the right one for the right problem. In this thesis we are interested in the belief function
theory. It was developed to deal with imprecise and uncertain information. It is ideal in
situations of ignorance and incomplete knowledge.

The belief function theory, known also as the theory of evidence (Barnett, 1981), (Guan
& Bell, 1991) or Dempster-Shafer theory (Gordon & Shortliffe, 1984) is a general framework
for reasoning with uncertainty. It shows its efficiency in many real-world applications (e.g.,
multi-sensor fusion (Kim & Swain, 1995; Appriou, 1999), pattern recognition (Tupin et al.,
1999; Denœux & Zouhal, 2001), classification (Elouedi et al., 2001; Trabelsi et al., 2011),
image processing (Bloch, 1996; Lefevre et al., 2000), system analysis (Simon et al., 2008),
threat assessment (Benavoli et al., 2009) as well as environmental monitoring (Ben Abdallah
et al., 2012)).

Originally introduced by Arthur Dempster (1967) as a special case of upper and lower
probabilities, this theory is considered as a generalization of the Bayesian inference when
there is not an a priori on the parameters (Dempster, 1968).

Glenn Shafer (1976) offered a re-interpretation of Dempster’s work and coined this for-
malism the term “belief functions”. He attached likelihood to events. He presented the belief
function theory as a general framework to represent uncertainty.

The term belief function theory is used in the literature according to two family of models,
namely:

• Models based on probability theory: The Dempster-Shafer model
(Dempster, 1967), the lower probability model (Walley, 1991), the theory of hints

9
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(Kohlas & Monney, 1995).

• Non-probabilistic model: The transferable belief model (TBM) (Smets, 1988a, 1993a,
1988b) represents quantified beliefs built without requiring any underlying hidden prob-
ability measures (Smets, 1995b). It extends the model proposed by Shafer. It is based on
a subjective interpretation under which beliefs can be entertained outside any decision
context. Accordingly, two levels are distinguished:

– a credal level (“credo” meaning I believe), in which beliefs are quantified by belief
functions (those introduced by Shafer (1976)) (static part). The reasoning process
on these beliefs and their revision according to the disposal of a new piece of
information is also made at this level (dynamic part).

– a pignistic level (“pignus” means a bet) at which decisions are made.

Relations between belief functions held at the credal level and probabilities held at the
pignistic level are given in (Smets, 1990b).

In this thesis, we deal with the interpretation of the belief function theory as explained by
the TBM. This chapter is organized as follows: we start, in Section 1.2, by describing different
belief functions that are used to represent knowledge under the belief function framework.
Then, in Section 1.3 several basic operations are detailed like combination, conditioning or
discounting. Section 1.4 is dedicated to multi-variable operations and Section 1.5 explains
how to decide using the pignistic transformation. In Section 1.6, we explain how graphical
structures can simply and compactly describe a given system.

1.2 Belief function theory: representation

Let us denote by Θ the finite non empty set including n elementary events (hypotheses)
representing the solutions of a given problem. These events are assumed to be exhaustive and
mutually exclusive. The set Θ, called the frame of discernment, is defined as:

Θ = {θ1, θ2, . . . , θn}

We handle events on the powerset of Θ, denoted by 2Θ. This set contains singleton
hypotheses of Θ, all possible disjunctions of these hypotheses as well as the empty set. In
the following, we will denote by θ a singleton hypothesis and by A a proposition or an event
designating either a hypothesis or a disjunction of hypotheses.

2Θ = {A,A ⊆ Θ} = {∅, {θ1}, . . . , {θn}, {θ1, θ2}, . . . ,Θ}

Example 1.1. A murder has been committed. There are three suspects Θ = {Mary, John,
Peter}. The corresponding powerset of Θ is composed as follows:

2Θ = {∅, {Mary}, {John}, {Peter}, {Mary, John}, {Mary, Peter}, {Peter, John}, {Mary,
Peter, John}}.
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1.2.1 Basic belief assignment

Within the belief function theory (Shafer, 1976), beliefs are expressed on propositions belong-
ing to the powerset of Θ.

The basic belief assignment (bba), denoted by mΘ, is a mapping from 2Θ to [0,1] such that
any proposition is associated with a real number belonging to [0,1] where the sum overall
subsets is equal to 1. When there is no ambiguity, mΘ will be shortened m.

∑
A⊆Θ

m(A) = 1 (1.1)

The value m(A) is a basic belief mass (bbm) assigned to A. It is defined as (Cooke &
Smets, 2001):

• the mass that is exactly committed to the event A of Θ, and due to a lack of information,
cannot be allocated to any strict subset of A. Hence, it does not support any B ⊂ A,

• a mass that could freely be given to any subsets of A if we were given new information.

Note that a bbm associated with a proposition A ⊆ Θ, A = ∪B∈ΘB does not give any
information about the belief on Bs (i.e., subsets composing A). In fact, unlike probability
theory where:

P (A) =
∑
∪B∈Θ

P (B)

The additivity property is not satisfied (Klir & Wierman, 1998):

m(A) 6=
∑
∪B∈Θ

m(B) (1.2)

The subsets of Θ such that m(A)> 0 are called focal elements. The union of all focal
elements is called its core. Shafer (1976) initially does not consider the empty set as a focal
element (i.e., the impossible proposition). The mass function satisfying this constraint is
called normalized :

m(∅) = 0

In the TBM, Smets removes this constraint and allows unnormalized belief functions. In
fact, he considers that the frame of discernment may be not exhaustive and accordingly m(∅)
quantifies the agent’s belief that the true answer is not in Θ carrying the idea that the chosen
model might not fit reality with enough precision.

The normalization process is defined as follows:

m(A) =

{
0 if A = ∅
K ·m(A) otherwise

(1.3)

where K−1 = 1 - m(∅). It is called the normalization factor.

Since the belief function theory models several types of imperfection, special bbas were
defined. In particular, we have:
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• Certain bba: the case where there is exactly one focal element that is a singleton.

m(θ) = 1 for one particular element of Θ

• Bayesian bba: the case where all focal elements are singletons, the particular case of
probabilities.

if m(A) > 0 then |A| = 1, where |A| stands for the cardinal of A.

• Consonant bba: the case where all focal elements are nested. It is the special case of
possibility theory (Dubois et al., 2001).

• Vacuous bba: the case where the normalized bba models the state of the total ignorance.
Θ is the unique focal element, defined such that (Shafer, 1976):

m(Θ) = 1

• Categorical bba: the case where the bba has a unique focal element A:

m(A) = 1, A ⊆ Θ

• Simple support function (ssf ) bba: the case where the evidence only supports a subset
A of Θ, i.e., focal elements are {A, Θ}.

• Non-dogmatic bba: the case where the frame of discernment (Θ) is a focal element:

m(Θ) > 0

Example 1.2. (continued)
Assume that Θ = {Mary, John, Peter}. Witnesses may express their beliefs about the

murderer in a flexible way by supporting one or more than one proposition as shown in
Table 1.1:

Table 1.1: Example of bbas expressed on the frame of discernment Θ

certain categorical Bayesian consonant vacuous ssf any
∅ 0 0 0 0 0 0 0.1

{Mary} 0 0 0.2 0.4 0 0 0.05

{John} 0 0 0.7 0 0 0 0.14

{Peter} 1 0 0.1 0 0 0 0.2

{Mary,John} 0 0 0 0.5 0 0 0.3

{Mary,Peter} 0 0 0 0 0 0.7 0.11

{John,Peter} 0 1 0 0 0 0 0.01

Θ 0 0 0 0.1 1 0.3 0.09

1.2.2 Belief function

The belief of an agent that the actual world lies in A can be represented by the belief function,
bel: 2Θ → [0,1], defined as the sum masses of the belief committed exactly to A (i.e., m(A))
and to every proper subsets of A. It represents the total belief that one commits to A without
being also committed to A.
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It is considered as a justified specific support, since the bbm assigned to the empty set
supporting A and at the same time A is not taken into consideration for the computation of
bel(A) neither for the computation of bel(A).

bel(A) =
∑
∅6=B⊆A

m(B) and bel(∅) = 0 (1.4)

The basic belief assignment can be recovered from the belief function as follows:

m(A) =
∑
B⊂A

(−1)|A−B|bel(B) (1.5)

Another function, related to bel is doubt: 2Θ → [0,1], it represents the extent to which one
disbelieves a proposition (or believes its complement). It is defined as:

doubt(A) = bel(A) (1.6)

The belief function can be characterized without reference to the mass function. Shafer
(1976) notes that a belief function should satisfy the following rules:

bel(∅) = 0

bel(Θ) = 1

bel(A1 ∪ . . . ∪An) ≥
∑

∅6=I⊂{1,...,n}

(−1)|I|+1bel( ∩
i∈I
Ai),

∀n > 0,∀A1 ∪ . . . ∪An ⊆ Θ

(1.7)

1.2.3 Plausibility function

The plausibility function pl, the dual measure of bel, represents the extend to which one fails
to doubt the proposition A. It quantifies the maximum amount of belief that could be given
to a subset A. It represents the potential specific support since the bbm included in pl(A)
could be transferred to non empty subsets of A if some new information could justify such a
transfer.
pl: 2Θ → [0,1] is defined as the sum of masses compatible with A (i.e., do not contradict A).

pl(A) = bel(Θ)− bel(A) = 1−m(∅)− doubt(A) (1.8)

pl(A) =
∑

B∩A6=∅

m(B) (1.9)

The basic belief assignment can be recovered from the plausibility function as follows:

m(A) =
∑
B⊆A

(−1)|A−B+1|pl(B) (1.10)

1.2.4 Commonality function

The value m(A) is the part of belief exactly committed to A ⊆ Θ. In the light of a new piece
of information, it may be transferred to any subset of A. The commonality function q: 2Θ →
[0,1], measures the total mass that can move freely to every point of a proposition A (Shafer,
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Plausibility function over-additivity

pl(A) + pl(A) ≥ 1 (1.16)

Monotonicity

If two events A and B are such that A ⊆ B, then:

bel(A) ≤ bel(B)
pl(A) ≤ pl(B)

(1.17)

This relation reflects the fact that if A occurs less often than B (because B contemplates
more occurrences), then the belief (resp. plausibility) of A must be less than the belief (resp.
plausibility) of B.

1.3 Belief function theory: basic operations

Reasoning about knowledge can be seen as an operation involving the mass transfer from one
subset of Θ to another.

1.3.1 Conjunctive rule of combination

The conjunctive rule of combination is used to combine two reliable and distinct sources of
information. The sources are assumed to provide pieces of evidence m1 and m2 that may
be combined to give one resulting mass m1 ∩©m2. It is defined as the orthogonal sum of two
bbas m1 and m2, whose focal elements are all the possible intersections between pairs of focal
elements of m1 and m2 respectively.

m1 ∩©m2(A) =


∑

B∩C=A

m1(B) ·m2(C) if A 6= ∅, ∀B,C ⊆ Θ

0 otherwise
(1.18)

The mass allocated to the empty set may be seen as the degree of conflict between the two
sources.

Note that the use of commonality functions simplifies the computation of this rule since
it is reduced to a simple product as follows:

q1 ∩©q2(A) = q1(A) · q2(A). (1.19)

This rule of combination has the following properties:

• Associative: (m1 ∩©m2) ∩©m3 = m1 ∩©(m2 ∩©m3)

• Commutative: m1 ∩©m2 = m2 ∩©m1

• Non-idempotent: m1 ∩©m1 6= m1

• Having the vacuous bba as a neutral element: m1 ∩©m0 = m1, m0 denotes here a vacuous
bba.
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If the normalization is performed, then the conjunctive rule of combination is reduced to
the Dempster rule of combination denoted by ⊕ and defined as:

m1 ⊕m2(A) =


m1 ∩©m2(A)

1−m1 ∩©m2(∅)
if A 6= ∅, ∀A ⊆ Θ

0 otherwise

(1.20)

Thanks to the associative and commutative properties, several sources of information are
combined by applying repeatedly the chosen rule as shown in Figure 1.2.

Source 1:
m1

Source 2:
m2

Source 3:
m3

Source n:
mn

m12

m1 m2

m12 m3

m123

m123…n-1

m1..n-1 mn

m1…n

Figure 1.2: Combining n sources

1.3.2 Disjunctive rule of combination

The disjunctive rule of combination, denoted ∪©, is used to combine two bbas m1 and m2

when at least one piece of evidence holds. It is defined as:

m1 ∪©m2(A) =
∑

B∪C=A

m1(B) ·m2(C),∀B,C⊆ Θ (1.21)

As the conjunctive rule of combination, this rule is commutative, associative and non-idempotent.
Its neutral element is the bba which assigns the total mass of belief to the empty set, i.e.,
m(∅) = 1.

1.3.3 Decombination

The decombination operator (Smets, 1995a) (also called the removal operator (Shenoy, 1994))
is denoted by 6∩© (and 	 for its normalized form). It allows to remove a non-dogmatic bba m2

from a combined mass m1 ∩©m2 in order to find m1. Formally,

(m1 ∩©m2) 6∩©m2 = m1

The commonality function is an interesting and useful tool, simplifying the computations
for the decombination operation by reducing it to a pointwise division. The decombination
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operator can therefore be simply computed with the commonality function as follows:

q1 6∩©q2(A) =
q1(A)

q2(A)
(1.22)

1.3.4 Dempster’s rule of conditioning

Smets (1990a) qualified Dempster’s rule of conditioning as one of the natural ingredients and
the center of the transferable belief model.

Let us suppose that an agent allocates a mass to a proposition A. Conditioning allows to
change the knowledge the agent had after the information that an event B ⊆ Θ is true. All
non vacuous propositions implying B will be transferred to the part of A compatible with the
evidence namely, A∩B.

In the case, where A∩B = ∅, several methods exist for transferring the remaining evidence
(Smets, n.d.). m(A|B) denotes the degree of belief of A in the context where B holds with
A,B ⊆ Θ. The Dempster rule of conditioning is computed by:

m(A|B) =

K ·
∑
C⊆B

m(A ∪ C) if A ⊆ B,A 6= ∅

0 if A * B
(1.23)

where K−1 = 1−m(∅ | B).
Since m, bel, pl are in one-to-one correspondence, we get:

bel(A|B) =
bel(A ∪B)− bel(B)

1− bel(B)
(1.24)

pl(A|B) =
pl(A ∩B)

pl(B)
(1.25)

1.3.5 Relationship between Dempster’s rule of combination and Demp-
ster’s rule of conditioning

The conjunctive rule of combination rule has a simple expression using the unnormalized
Dempster’s rule of conditioning (Dubois & Prade, 1986), (Smets, 1993c):

f1 ⊕ f2(A) =
∑
B⊆Θ

f1(A|B) ·m2(A), where f ∈ [m, bel, pl, q] (1.26)

Thus, when f = m we have:

m1 ⊕m2(A) =
∑
B⊆Θ

m1(A|B) ·m2(A) (1.27)

The conditioning rule can be defined as a special case of the rule of combination where
one source is certain (note that it may be imprecise). However, the underlying intuitions are
completely different. One is concerned with belief updating, while the other is concerned with
belief combination. In fact, through conditioning the masses originally assigned to A will be
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updated following the disposal of a new more precise information saying that the proposition
B is certain (more precisely a categorical bba focused on B), i.e., m(B) = 1.

m(A|B) =


∑

B∩C=A

m(C)

pl(B)
if A ⊆ B,A 6= ∅

0 otherwise

(1.28)

1.3.6 Discounting

A basic belief assignment can be weakened before the combination to take into account the
reliability of an expert by the discounting method defined as:

mα(A) =

{
(1− α) ·m(A), ∀A ⊂ Θ

α+ (1− α) ·m(A), if A = Θ
(1.29)

The discounting operation is controlled by a discount rate α taking values between 0 and
1. If α = 0, the source is fully reliable and the belief function is unchanged; if α = 1, the
belief function is transformed into the vacuous belief function, meaning that the information
provided by the expert is completely discarded.

1.4 Belief function theory: multi-variable operations

We have presented the basic concepts of the belief function theory. These mechanisms are
based on the assumption that bbas are defined on the same frame of discernment. However,
this constraint limits the practical applications. Let us consider in what follows, a first frame
Θ and a second frame Ω.

We will present multi-variable operations on these frames, namely the vacuous extension
and its inverse operation: marginalization, as well as the deconditioning operation called the
ballooning extension. These operations are based on the principle of minimal commitment.

1.4.1 Principle of minimal commitment

Like the maximum entropy principle and the principle of minimum specificity (Dubois &
Prade, 198), this principle (Hsia, 1991; Smets, 1993b) reflects a form of conservatism in the
allocation of beliefs. It indicates that, given two belief functions compatible with a set of
constraints, the most appropriate supported belief is the least committed one (i.e., the least
informative one). It formalizes the idea: one should never give more support than justified to
any subset of Θ.

The commitment of a belief function can be defined according to two approaches:

• A quantitative approach using some measures of uncertainty, e.g., non-specificity mea-
sure (Dubois & Prade, 198) defined as:

N(A) =
∑
∅6=A⊆Θ

m(A) · log2(A) (1.30)
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• An ordinal approach called also the principle of maximal plausibility (Dubois & Prade,
198; Smets, 2000). A plausibility function pl2 is less committed than pl1, if there is a
strict inequality such that:

pl1 < pl2 (1.31)

Accordingly, the least committed belief function is the vacuous belief function, i.e.,
m(Θ) = 1.

1.4.2 Cylindrical extension and projection

Cylindrical extension

The cylindrical extension allows to extend a set defined in low-dimensional domain into a
higher-dimensional domain. Consider a subset A ⊆ Θ, the cylindrical extension of A to Θ×Ω
is denoted A↑ΘΩ. It is obtained as:

A↑ΘΩ = A× Ω (1.32)

Example 1.3. Let us consider Θ = {θ1,θ2}. We want to define θ1 into the two-dimensional
space Θ× Ω where Ω= {ω1,ω2}. Its cylindrical extension is computed as:

θ↑ΘΩ
1 = {(θ1,ω1),(θ1,ω2)}

Projection

Projection is the opposite operation of cylindrical extension. It allows to reduce a set defined
in a multi-dimensional domain to a set defined in a lower-dimensional domain. Let C be a
subset of Θ × Ω. Projecting C on Ω, denoted C↓Ω, means dropping extra coordinates. It is
obtained by:

C↓Ω = {ω, ω ∈ Ω, C ∩ ω↑ΩΘ 6= ∅} (1.33)

Example 1.4. Let us consider the set {(θ1, ω1), (θ2, ω1)} defined on Θ × Ω. The projection
of this set into Ω is equal to: {(θ1, ω1), (θ2, ω1)}↓Ω = ω1.

1.4.3 Vacuous extension and marginalization

Vacuous extension

This operation is useful, when the referential is changed by adding new variables. Thus, a
marginal mass function mΘ defined on Θ will be expressed in the frame Θ×Ω as follows.

mΘ↑ΘΩ(C) =

{
mΘ(A) if C = A× Ω
0 otherwise

, A ⊆ Θ, C ⊆ Θ× Ω. (1.34)

It corresponds to make a cylindrical extension of A to Θ × Ω. It is the least committed bba
defined on Θ× Ω.
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Example 1.5. Given the following bba defined on Θ = {Mary, John, Peter} as:
mΘ({Mary})=0.5, mΘ({John})=0.2, mΘ({Θ})=0.3.

Let us denote by Ω the height of the murder where Ω = {Tall, Short}.
The bba defined on Θ will be defined in a finer frame Θ×Ω using the vacuous extension.

It is done by taking into consideration all the values of Ω for a given value of Θ as follows:

mΘ↑ΘΩ({(Mary, Tall),(Mary, Short)})=0.5,

mΘ↑ΘΩ({(John, Tall),(John, Short)})=0.2,

mΘ↑ΘΩ(Θ× Ω)=0.3.

Marginalization

Given a mass distribution defined on the product space Θ× Ω, marginalization corresponds
to mapping over a subset of the product space by dropping the extra coordinates. The new
belief defined on Θ, mΘΩ↓Θ, is obtained by:

mΘ(A) =
∑

C⊆Θ×Ω,C↓Θ=A

mΘΩ(C), A ⊆ Θ (1.35)

It corresponds to projecting C on Θ.

Example 1.6. Let us consider the bba defined on Θ×Ω:

mΘΩ({(Mary, Tall),(Mary, Short)})=0.5,

mΘΩ({(John, Tall),(John, Short)})=0.2,

mΘΩ({(Mary, Tall)})=0.3.

Marginalizing mΘΩ on the coarser frame Θ, mΘΩ↓Θ will lead to the following distribution:
mΘΩ↓Θ({Mary})=0.5+0.3=0.8, mΘΩ↓Θ({John})=0.2.

Note that the vacuous extension of the marginalized bba does not allow to find the initial
distribution.

1.4.4 Ballooning extension

This operation is useful if an agent after conditioning realizes that the evidence he has con-
sidered as true was not and accordingly he would reconstruct the initial distribution. It can
also be useful if beliefs are defined on a limited set and other alternatives were discovered
afterwards. The agent should redistribute his beliefs to take them into account.

Let mΘ(A|ω) be defined on Θ for ω ∈ Ω. To get rid of conditioning, we have to compute
its ballooning extension (or conditional embedding (Shafer, 1982)). It is the least committed
(the least informative) bba defined on Θ× Ω.

Conditional masses are transferred to C, the largest subset of Θ × Ω whose intersection
with the vacuous extension of ω followed by a projection on Θ gives A: (C ∩ ω↑ΘΩ)↓Θ = A.
Thus, C = (A× {ω} ∪Θ× ω) where ω stands for the complement of ω according to Ω.

Accordingly, the ballooning extension is defined as:

m
Θ (ΘΩ
ω (C) =

{
mΘ(A|ω) if C = (A× {ω} ∪Θ× ω)
0 otherwise

(1.36)
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Example 1.7. Consider a conditional bba defined on Θ={Mary, John, Peter} in context
of Ω = {Tall, Short}. Its definition on Θ × Ω is obtained by the application of the bal-
looning extension. Let us assume that the witness has declared that the murderer is Tall.
The confidence that the murderer is Peter is defined with mΘ(Peter|Tall)=0.7. Its corre-
sponding basic belief mass on Θ× Ω is obtained by taking into consideration {(Peter, Tall)}
and all the instances of Θ for the complement of Tall (here Short). Thus, the mass ini-
tially allocated to Peter, given that {Tall} is a certain event, will be entirely transferred to
{(Peter,Tall),(Mary,Short),(Peter,Short), (John,Short)}.
Hence, mΘ (ΘΩ({(Peter,Tall),(Mary,Short),(Peter,Short), (John,Short)}) = 0.7.

1.5 Pignistic transformation

Reasoning process is used to know which hypothesis is true for a given problem. So the
system, after having analyzed all the available data, should give us the best action to choose.
In probability theory, we choose the hypothesis with the highest probability.

Within the TBM, when a decision must be made beliefs held at the credal level induce at
a final stage a probability measure. This pignistic measure denoted by BetP (Smets, 1988b)
is used to make decisions. It is computed as follows:

BetP (A) =
∑
B⊆Θ

|A ∩B|
|B|

m(B)

(1−m(∅))
, for all A ∈ Θ (1.37)

Note that m(B) should be a normalized bba.

Example 1.8. Let us consider that at the credal level we have the following bba:
m({Mary, John}) = 0.2;
m({Peter, John}) = 0.5;
m(Θ) = 0.3.
In order to make a decision, we have to compute the pignistic probability BetP , we get:
BetP ({Mary}) = 0,2;
BetP ({John}) = 0,45;
BetP ({Peter}) = 0,35;
It is more probable that the murderer is John.

1.6 Graphical representation of knowledge

Graphical models (e.g., probabilistic Bayesian networks (Darwiche, 2009; Jensen & Nielsen,
2007; Pearl, 1988), possibilistic networks (Ben Amor et al., 2003; Benferhat & Smaoui, 2007a),
credal networks (Cozman, 2000), valuation networks (Shenoy, 1989), belief function networks
(Ben Yaghlane & Mellouli, 2008; Xu & Smets, 1996)) are compact representations of uncer-
tainty distributions. Their success is due to their simplicity and their capacity of handling
independence relationships. In this section, we briefly recall these networks.

1.6.1 Notations and definitions

Let V = {A1, A2, . . . , An} be a finite set of variables.
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Each variable Ai is associated with a finite set namely its frame of discernment ΘAi rep-
resenting all its possible instances.

A graph G= (V,E) is said to be a directed graph if V is a set of nodes denoting the domain
variables and E is a subset from the cartesian product V ×V corresponding to set of directed
edges encoding the dependencies among variables.

Some elements of graph theory that have been used in this thesis are recalled here:

• a node Ai is the parent of Aj and the node Aj is the child of Ai, if there is an arc
from Ai pointing towards Aj . PA(Ai) denotes the parents of Ai and an instance from
the set of parents of Ai (i.e., PA(Ai)) is denoted by Pa(Ai). It is defined as an element
of the cartesian product of the parents of Ai: Pa(Ai) = ×ΘAj∈PA(Ai).

• a root is a node with no parents, e.g., Ai is a root node if PA(Ai) = ∅.

• a path is a sequence of nodes from one node to another using the arcs, a path from Ai
to Aj is denoted Ai 7→ Aj .

• a cycle is a path where the first and the last node are confused into one node, i.e.,
Ai = Aj .

• a loop is an undirected cycle.

• a graph is said to be connected if it exists a path between each pair of nodes.

• a DAG is a Directed Acyclic Graph. When the DAG does not contain loops, it is
called singly connected. If it contains loops, it is a multiply connected DAG.

• an hypergraph is a generalization of a graph. An edge can connect any number of
nodes.

1.6.2 Brief refresher on Bayesian networks

Probability theory

In probability theory, the static component consists of the assessment of a probability density
p on the elements of the frame of discernment Θ such that p: Θ→[0,1]:∑

A∈Θ

p(A) = 1 (1.38)

Degrees of belief on subsets of Θ are quantified by a probability distribution P such that:

− ∀θ ∈ Θ, P ({θ}) = p(θ),
− ∀A,B ⊆ Θ with A ∩B = ∅, P (A ∪B) = P (A) + P (B)
− P (A) =

∑
θ∈A p(θ)

(1.39)

The only dynamic component is the conditioning rule. If B ⊆ Θ is true and P (B) 6= 0, P is
updated into the conditional probability distribution P (.|B) such that:

P (A|B) =
P (A ∩B)

P (B)
(1.40)
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Bayesian networks

A Bayesian network is an associational network. It is defined in two levels:

• A graphical level: a directed acyclic graph (DAG) G representing the (in)dependence
relations in the studied system.

• A numerical level: a quantitative information by associating for each node (i.e., a ran-
dom variable) a conditional probability that quantifies the effects of its parents on
it. The a priori distribution is defined for each node Ai in the context of its parents
(PA(Ai)) as follows:

– if Ai is a root node, then the a priori probability of Ai should satisfy:∑
ai

P (ai) = 1, where ai ∈ ΘAi

– if PA(Ai) 6= ∅, then the conditional probability over Ai is defined as:∑
ai

P (ai | Pa(Ai)) = 1, where Pa(Ai) ∈ ×ΘAj ,Aj∈PA(Ai)

Computation of the global joint distribution

A Bayesian network satisfies the Markov assumption that agrees with the independencies
represented by the network structure. It involves that each variable is conditionally inde-
pendent from its non-descendants given its parents. Accordingly, the global joint probability
distribution over the set V = {A1, . . . , An} is unique and can be expressed as a product of
the initial conditional probabilities using Bayes rule. The probabilistic chain rule is defined
as follows:

p(A1, . . . , An) =
n∏
i=1

P (Ai | Pa(Ai)) (1.41)

A posteriori distributions can be recovered from the global joint distribution by marginaliza-
tion.

Example 1.9. Let us consider the Bayesian network represented in Figure 1.3. A1 and A2

are root nodes, an a priori probability is specified for them. For the other node, a conditional
probability distribution is given, namely P (A3 | A1, A2) and P (A4 | A3).

Figure 1.3: A Bayesian network
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The global joint distribution is computed for these local distributions using the chain rule
(Equation 1.41) as follows:

p(A1, A2, A3, A4) = P (A1) · P (A2) · P (A3 | A1, A2) · P (A4 | A3)

1.6.3 Brief refresher on possibilistic networks

Possibility theory

The possibility theory was introduced by Zadeh (1978) and developed by Dubois and Prade
(1982, 1988, 1998).

A possibility distribution π is a mapping from the set of interpretations Θ to the unit
interval [0,1]. To this scale, two interpretations can be attributed, a quantitative one when
values have a real sense and a qualitative one when values reflect only an order between the
different states of the world.

It represents a state of knowledge about a set of possible interpretations distinguishing
what is plausible from what is less plausible. The value π(θ) expresses a degree of coherence
of the interpretation θ with respect to available knowledge encoded by π. By convention, π(θ)
= 0 means that the interpretation θ is impossible, and π(θ) = 1 means that nothing prevents
θ from being the real world.

When π(θ1) > π(θ2), θ1 is a preferred candidate to θ2 for being the real state of the world.
π is thus a convenient encoding of a preference relation that can embody concepts such as
plausibility or consistency.

Given a possibility distribution π, we can define a mapping grading the possibility measure
of an event A ⊆ Θ as follows:

Π(A) = max
θ∈A

π(θ). (1.42)

The dual measure of Π is the necessity measure defined as:

N(A) = 1−Π(A) (1.43)

Conditioning is consists in modifying the initial knowledge, encoded by a possibility dis-
tribution π, by the arrival of a new piece of information A ⊆ Θ. We assume that A is not
empty and that Π(A) > 0. There are two main definitions of possibilistic conditioning.

The definition proposed for the qualitative setting is called min-based conditioning and is
defined by:

π(θ|A) =


1 if θ ∈ A,Π(A) = Π(θ),

π(A) if θ ∈ A,Π(A) > Π(θ),

0 if θ 6∈ A
(1.44)

The definition proposed for the quantitative setting is called product-based conditioning
and is defined by:

π(θ|A) =


π(θ)

Π(A)
if θ ∈ A

0 otherwise

(1.45)
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The two definitions satisfy the equation of the form:

π(θ) = π(θ|A) �Π(A), (1.46)

It is similar to Bayesian conditioning, � is either min or product. The rule based on the
product is much closer to genuine Bayesian conditioning than the qualitative conditioning
defined from the minimum which is purely based on the comparison of levels; product-based
conditioning requires more of the structure of the unit interval.

Possibilistic networks

A possibilistic network is defined in two levels:

• A graphical level: a Directed Acyclic Graph (DAG) G representing the (in)dependence
relations in the studied system.

• A numerical level: a quantification of different links of the DAG by conditional possi-
bilities of each node Ai in the context of its parents PA(Ai). Conditional distributions
should respect the following constraints:

– if PA(Ai) = ∅, then the a priori possibility distribution relative to Ai should
satisfy:

maxaiπ(ai) = 1, ai ∈ ΘAi

– if PA(Ai) 6= ∅, then the conditional possibility distribution relative to Ai in the
context of its parents should satisfy:

maxaiπ(ai|Pa(Ai)) = 1, ai ∈ ΘAi , Pa(Ai) ∈ ×ΘAj ,Aj∈PA(Ai)

Computation of the global joint distribution

Since in conditioning, there is a product-based (resp. min-based) conditioning for the quanti-
tative (resp. qualitative) setting, possibilistic networks can also be divided into quantitative
vs. qualitative networks. Accordingly, the computation of the global joint distribution differs
according of the kind of the possibilistic network.

Quantitative possibilistic networks On a quantitative possibilistic network, we can com-
pute the joint possibility distribution on the set of variables V = A1, A2, . . . , An using the
following equation:

π(A1, A2, . . . , An) =
n∑
i=1

π(Ai|Pa(Ai)) (1.47)

Qualitative possibilistic networks When only the ordering induced from the possibility
degrees is important and not the values themselves, qualitative possibilistic networks are used
to describe the system.

Their corresponding joint possibility distribution are computed as follows:

π(A1, A2, . . . , An) =
n

min
i=1

π(Ai|Pa(Ai)) (1.48)



26 Chapter 1 : Belief Function Theory

1.6.4 Brief refresher on credal networks

The extension of Bayesian networks to deal with imprecision in probability is achieved by
means of the notion of credal sets which are closed convex sets of probability mass functions.
A credal set for a random variable Ai is denoted by K(Ai). The network where each condi-
tional probability function is replaced by a conditional credal set is called a credal network.

Credal Networks (Cozman, 2000) are imprecise probabilistic models as advocated by Wal-
ley (Walley, 1991). They provide a representation for imprecise probabilistic knowledge
through direct acyclic graphs (DAGs). They are also used to evaluate the robustness of
Bayesian networks (Cozman, 1997).

Accordingly, a credal network may be viewed as a Bayesian network where some (or all)
parameters are not precisely known, but instead constrained by convex constraints.

Example 1.10. Let us consider the network in Figure 1.3. For instance, constraints may be:

• P (a1) ∈ [0.1, 0.3]

• P (a3|a1, a2) = 0.5

• P (a4|a3) + P (a4|a3) ≤ 0.75

In a credal network every node is associated with a variable, and every variable is asso-
ciated with a collection of local credal sets denoted by K(Ai | pa(Ai)), where pa(X) denotes
the parents of variable Ai in the graph. Thus, a node stores the credal sets such that:

{K(Ai | pa(Ai) = π1), . . . ,K(X | pa(Ai) = πm)}, (1.49)

where {π1, . . . , πm} are the instances of pa(Ai). A root node has only one credal set associated
with it.

Computation of the global global joint distribution

In the literature, the most adopted concept for credal networks is that every variable is
strongly independent of its non-descendants given its parents. In this case, a credal network
can be viewed as a collection of Bayesian networks that share the same graph, the global
distribution is defined in a similar way to Bayesian networks:

p(X ) =
n∏
i=1

P (Ai | pa(Ai)),X = {A1, . . . , An} (1.50)

1.6.5 Valuation networks

Valuation based-system

A valuation-based system (VBS) is a formal mathematical system for representation of knowl-
edge and reasoning with it (Shafer, 1992; Shenoy, 1993, 1994). It is an abstract framework
that allows to uniformly represent probability theory, belief-function theory as well as possibil-
ity theory. It has some similarities to influence diagrams. However, unlike influence diagrams
which emphasize conditional independence among random variables, valuation-based systems
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emphasize factorizations of joint probability distributions. Also, whereas influence diagram
representation allows only conditional probabilities, valuation-based system representation
allows all probabilities.

The representation of knowledge is made with entities called variables and valuations. A
valuation is an object that encodes knowledge about variables in a subset. It can be combined,
marginalized, and removed over the set of all valuation denoted V as follows:

• A combination is a mapping ⊕ :V×V→V, such that x is a valuation on ΘX and y is a
valuation on ΘY , then x⊕ y is a valuation of ΘX ∪ΘY .

• A marginalization is a mapping ↓ (ΘX \ {ΘA}) :VΘX
→ VΘX\{ΘA}, such that if x are

valuations ΘX , then x↓(ΘX\{ΘA}) is a valuation for (ΘX \ {ΘA})

• removal is a mapping 	 :V×V→V, It can be regarded as an inverse of combination
(Shenoy, 1994) such that if x is a valuation on ΘX and y is a valuation on ΘY , then
x	 y is a valuation of ΘX ∪ΘY

The valuation based system is able to represent several uncertain frameworks by translating
valuations and operations to their special interpretation in the corresponding theory.

Within belief function theory, a valuation defined on ΘX corresponds to the basic belief
assignment assigned to subsets of ΘX . Dempster’s rule of combination, the marginalization
operation and the decombination operation in belief function theory corresponds to respec-
tively the combination operation, the marginalization operation and the removal operation
on VBS.

Valuation networks with belief functions

A graphical representation of a VBS is called a valuation network. When uncertain knowledge
is formalized with belief functions, the valuation network is called an evidential network. It
consists of an hypergraph as shown in Figure 1.4 that can be defined in two components
(Shenoy, 2000):

• Graphical component:

– Variables:
- decision nodes: depicted with rectangles.
- chance nodes: depicted with circles.

– Valuations:
- indicator nodes: depicted with double-triangles. They represented qualitative
constraints on the joint frames of the variables.
- utility nodes: depicted with diamonds. They represent factors of the joint utility.
- probability nodes: depicted with triangles. They represent multiplicative factors of
the family of joint probability distributions of the chance variables in the problem.

– Links
- edges: undirected links connecting variables to potentials and utility functions.
- arcs: directed links between variables. They define the information constraints.

• Numerical component: representing our knowledge by valuations. Valuations are
interpreted as belief functions and are linked to the variables in their domain.
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The global joint distribution is computed using Equation 1.51 as follows:

m = m1 ⊕m2 ⊕m3 ⊕m4

Joint beliefs vs conditional beliefs

Let V = {A1, A2, . . . , An} be a set of variables. Associated with Ai, there is a frame ΘAi

which is the set of all its possible values. Let X and Y be two disjoint subset of V . Their
frames, ΘX and ΘY , are the product spaces of the frames of the variables they include.

A conditional belief function for Y given X is represented by belY (. | x) where x ∈ ΘX ,
which means that we know the belief about Y given that we only know that the actual value
of X is in x. Joint belief functions on X and Y are defined on the space ΘX ×ΘY .

Expressing beliefs in terms of conditional distributions is more natural and easy for the
users to provide and to understand. In fact, given two disjoint subsets X,Y ⊆ V , to represent
conditional belief functions for Y given X by a joint form, one needs 2ΘX×ΘY elements in the
worst case, while to represent them by conditional form one only needs 2ΘX+ΘY elements in
the worst case.

Example 1.12. Given two variables A1 and A2 where ΘA1 = {a11, a12} and ΘA2 = {a21, a22}.
Let us consider the assertion: “if A1 = a11 then A2 = a22 with a bbm of 0.8”.

This relation is represented on the belief joint space Θ = ΘA ×ΘB

= {(a11, a21), (a11, a22), (a12, a21), (a12, a22)} as:
- m({(a11, a22), (a11, a21), (a12, a21)}) = 0.8
- m(Θ) = 0.2.

With conditional distributions, it is simply defined as:
- m(a22 | a11) = 0.8
- m(ΘA2 | a11) = 0.2
- m(ΘA2 | a12) = 1
- m(ΘA2 | ΘA1) = 1

Even though not all belief functions on ΘX ×ΘY admit an equivalent representation by a
set of conditional belief functions, it is assumed that the experts’ knowledge is encoded in the
conditional form and that the joint beliefs they would provide are those based on the known
conditional form.

1.6.6 Directed belief networks with conditional beliefs

There exist several associational belief networks. We can categorize them according to the
way conditional distributions are defined: those where conditional distributions are defined
for all parents as for Bayesian networks and those where conditionals are defined per single
parent (per edge). Note that, under the belief function theory it is possible to avoid choos-
ing the appropriate a priori since there is no distinction between the De re and the Dicto
relations (Smets, 1992) whereas in probabilistic models doing such a way leads to the Lewis
trivialization (Lewis, 1976).

In this subsection, we present a brief recalling of belief networks. A detailed analysis is
carried and exposed in Chapter 3.
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Conditional distribution for all parents

Definition Represented as a Bayesian network, a belief function network (Simon et al.,
2008) is represented with a directed acyclic graph (DAG), denoted by G called Evidential
Network (EN). It combines the belief function theory with a DAG.

An Evidential network is defined on two levels:

• Qualitative level: represented by a DAG, G = (V,E) where edges encode the dependen-
cies among variables. Each variable Ai is associated with a finite set namely its frame
of discernment ΘAi representing all its possible instances. An instance from the set of
parents of Ai (i.e., PA(Ai)) is denoted by Pa(Ai).

• Quantitative level: represented by the set of bbas associated to each node in the graph.

– For each root node Ai (i.e., node without parent nodes) having a frame of discern-
ment ΘAi , an a priori mass distribution mAi is defined on the powerset 2ΘAi .

– For other nodes, a conditional bba mAi(.|Pa(Ai)) is specified for each value of Ai
knowing the value of all the parents Pa(Ai). It means that a conditional belief
mass table represents the relation between the basic belief masses expressed on the
frame of discernment of the child node and the basic belief masses defined on the
frame of discernment of the variables in the parent nodes.

The evidential network is proposed in context of reliability modeling where the domain as-
sociated with variables is defined as {Up, Down}. Its corresponding power set is {∅, {Up},
{Down}, {Up, Down}}.

Computation of the global joint distribution In Evidential Networks, the computation
of inference is made with the total probability theorem or the Bayes theorem extended to belief
masses. Therefore, the joint belief chain rule is computed by multiplying all conditional beliefs
as follows:

mV =

n∏
i=1

mAi(. | Pa(Ai)) (1.52)

Propagation in ENs is based on the Bayesian model. In fact, exact algorithms used for
inference in Bayesian networks, e.g,. the junction tree (Jensen et al., 1990), are directly used.

Conditional distribution per single parent

Definition Even though graphically represented as Bayesian networks, Evidential Networks
with Conditional beliefs (ENC) (Smets, 1993b; Xu & Smets, 1996) and their generalization
Directed EVidential Networks (DEVN) (Ben Yaghlane & Mellouli, 2008) define conditional
beliefs in a different way from that one traditionally used in Bayesian networks and Evidential
networks. These networks can be defined on two levels as follows:

• Qualitative level: represented by a directed acyclic graph (DAG), G = (V,E). Each
variable Ai is associated with a finite set namely its frame of discernment ΘAi repre-
senting all its possible instances. If there is an edge from variable Ai to variable Aj , Ai
is called a parent of Aj . Parents of Ai are denoted by PA(Ai) and a single parent is
denoted by PAj(Ai)
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• Quantitative level: represented by the set of beliefs (Bel) associated to each edge in the
graph. An edge represents a conditional relation between the two nodes it connects.

The number of conditional relations in the DEVN and ENC depends on the number of edges
whereas in ENs it depends on the number of child nodes (Laâmari et al., 2010) which simplify
knowledge acquisition. Figure 1.6 shows a network with individual causes.

A1 A2

A3

Figure 1.6: The directed evidential network

Notice that the knowledge about the relations between two nodes in the belief function
network can be issued from different sources (local conditional beliefs). The knowledge is
then aggregated by computing the global belief from all local conditional beliefs.

Computation of the global joint distribution The definition of the joint distribution
under a belief function framework is different from the construction made in Bayesian net-
works. In fact, it is obtained by combining the joint distribution of each node. In (Ben
Yaghlane et al., 2003), the authors present the following belief chain rule respecting the
independence principle (Ben Yaghlane et al., 2002b, 2002a):

belA1,...,An = ∩©
i=1,...,n

( ∩©
ω∈PA(Ai)

belAi(.|ω) ( Ai×PA(Ai)) (1.53)

1.7 Conclusion

In this chapter, we presented the basic concepts of the belief function theory to represent
and reason about different kinds of imperfect knowledge. We saw that belief function graph-
ical models can be either undirected (Valuation Networks) or directed graphs (Evidential
Networks with Conditional beliefs, Directed EVidential Networks, Evidential Networks). We
explained that directed graphs are more appropriate for representing conditional belief func-
tions. In fact, it is easier to collect and to express beliefs in terms of conditionals instead of
joint belief functions.

The belief function theory will be used as a tool to formalize the imperfect causal knowl-
edge which may be represented with a causal belief network. For this reason, we will focus
on the notion of causality in the next chapter.
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Chapter 2
Causality modeling

2.1 Introduction

Causality is an important concept involved in a wide range of applications such as genetics,
physics, psychology as well as social science. The notion of causality was introduced since
more than 200 years and has long been recognized as an important research axis. It plays a
crucial role in the expression of our perception of our environment. In fact, it enables to an-
ticipate the dynamics of events when the system is evolving and thus choose the right actions
to achieve the goals. Accordingly, discovering causal relations is a task of crucial importance.

The idea of causality is undefinable if a general and precise definition is sought (not re-
strained to particular cases) (Zadeh, 2001). In fact, it can be seen as a regular association
(Hume, 2006), a counterfactual dependence (Lewis, 2004) or a probability raising (Eells,
1991). The concept of causality is connected to other ideas like those of explanation or re-
sponsibility what makes difficult its comprehension and its modeling.

In the Artificial Intelligence field, rather recently researchers were interested in the prob-
lems arising from the modeling of causality (e.g., Shafer (1996), Pearl (1998, 2000) and
Halpern and Pearl (2005)). In fact, it is important to provide the systems of inference or
decision-making with explanations capacity for an operator or human user (Dubois & Prade,
2003).

Identifying causal relations differs from diagnosing. Indeed, standard diagnosis problems
consist of making inspections to find the history of the faults that explain the observations
and therefore provide an explanation for what components failed and when they did (Otero
& Otero, 2000). Ascribing causes (Benferhat et al., 2008; Bonnefon et al., 2008) is a different
problem: it consists of identifying what elements in a set of observed or intervened events in
a sequence are causally related, on the basis of some background knowledge about the normal
course of things. Causality is therefore considered as a nonmonotonic relation.

To achieve this goal, one may use observational data that provide some information about
the statistical relations among events. However, we should be aware since associations do
not necessarily follow a causal process. To tackle this problem, we use interventional data

33
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(Pearl, 2000). An intervention is an external action that perturbs the spontaneous behavior
of the system by forcing a variable to take a specific value. Through these experimenta-
tions, the effects of all direct (and undirected) causes related to the variable of interest will
be ignored. Therefore, given two dependent variables A1 and A2, if an action on an event
A1 has no impact on an event A2, then A1 cannot be the cause of event A2, but if a manip-
ulation on the event A1 leads to a change in A2, then we can conclude that A1 is a cause of A2.

In the context of observations any representation of the background knowledge is suitable
whereas in the context of interventions the graphical structure is needed. In fact, graphical
models allows to delimit the mechanisms affected by such disturbances. Interventions will
be represented on this causal structure by the mean of the “do” operator. This tool was
originally introduced by (Goldszmidt & Pearl, 1992) for the ordinal conditional functions of
Spohn (1988) and proposed after that in (Pearl, 2000) for causal Bayesian networks.

In this chapter, we first remind some definitions of causality in Section 2.2. The distinction
between interventions and observations is detailed in Section 2.3. In Section 2.4 functional
causal models are introduced. Section 2.5 is consecrated to another artificial intelligence based
model of causality namely event trees. Section 2.6 is dedicated to a stochastic ascription and
modeling of causality. Nonmonotonic approaches for ascribing causal relations are presented
in Section 2.7.

2.2 Definitions

2.2.1 Causation vs association

Causation and association are different ideas even though they are related. In fact, statistical
association by itself does not prove causation (Scheines, 2008). However, causal relation can
produce automatically statistical correlation. Two events are highly associated if we observe
one of them, we are in good position to say that the other one is observed. An exterior
intervention on one of them will not change the other one.

The fundamental property of association is symmetry. In other words, if learning that the
occurrence of a first event A1 changes your certainty about another event A2, then learning
about A2 is also informative about A1 (i.e., A1 associated to A2 entails that A2 is also as-
sociated to A1). However, causation is an asymmetric relation (i.e., A1 caused A2 does not
imply that A2 caused A1).

However, it does not mean that symmetric cases of causation are prohibited. It only
means they are not necessary (e.g., losing sleep can cause anxiety, and anxiety can also cause
a loss of sleep).

Example 2.1. Let us denote by S, the fact of smoking and by A the fact of drinking alcohol.
The correlation coefficient between S and A is almost certainly quite positive. Moreover, it is
a symmetric relation. Does this prove that smoking causes drinking alcohol? Obviously, no.

Now, consider the case of lung cancer denoted by C. Let us investigate the relation between
C and S. These two events are correlated and their association involves causation. It is an
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asymmetric relation. In fact, smoking causes lung cancer but lung cancer does not cause
smoking.

2.2.2 Genuine vs spurious causes

A genuine cause should be well distinguished from a spurious cause (Halpern & Pearl, 2005).
We call genuine a factor correlated with an effect (or is associated with it) and is judged to
be causal a genuine cause and a factor that is correlated with an effect (or is associated with
it) but is judged to be noncausal a spurious cause (Suppes, 1970).

Spurious causes may be classified into two categories. The regularity between some spuri-
ous causes and the effect can be plausibly explained by an alternative cause. Other spurious
causes are not clearly explained by any alternative cause, but might be correlated with the
effect purely by chance.

Example 2.2. Consider that students in a psychology class who had long hair got higher
scores on the midterm than those who had short hair, there would be a correlation between
hair length and test scores. Not many people, however, would believe that there was a causal
link and that, for example, students who wished to improve their grades should let their hair
grow. The real cause might be gender: that is, women (who usually have longer hair) did
better on the test. Or that might be a spurious relationship too. The real cause might be
class rank: Seniors did better on the test than sophomores and juniors, and, in this class, the
women (who also had longer hair) were mostly seniors, whereas the men (with shorter hair)
were mostly sophomores and juniors (Vogt, 2005).

2.2.3 Counterfactuals

Counterfactual reasoning is about what would have happened if events other than the ones
currently observed had happened. A counterfactual (contrary-to-fact) is a conditional state-
ment. It carries the suggestion that the antecedent of such a conditional is false.

Hume (2006) and recently Pearl and Hopkins (2007), consider that a causal relation of
the form event A caused event B, can be explained in terms of conditionals of the form “If A
had not occurred, B would not have occurred”.

The meaning and truth of counterfactuals is based on the assumption of the existence of
possible worlds (interpretations) and a similarity metric over possible worlds as understood in
modal logic. Hence, the meaning of “if A had not happened, then B would not have happened
either”, is for each possible world W1 in which A did not happen and B did happen, there is
at least one world W2 in which A did not happen and B did not happen that is closer to the
actual world than W1.

Example 2.3. Let us consider this claim: “If he had hurried, then he would have caught
the bus”. The implication is that he has actually not hurried and did not caught the bus. It
supposes that among the possible worlds where he had hurried, it exists at least one world
where he would have caught the bus. This world will be the most realistic one: closer than the
one where he had hurried and has not caught the bus.



36 Chapter 2 : Causality modeling

2.3 Observations vs Interventions

2.3.1 Observation

Observing (seeing or the act of watching) is a detailed examination of something when the
experimental conditions are static. It can provide some information about the statistical re-
lations amongst events. When we have passively observed an event, we can reason backwards
diagnostically to infer the causes of this event, or we can reason forward and predict future
effects (e.g., observing someone smoking).

Formally, observations are modeled by setting the event variables to the values that have
been observed. Based on the chain rule, the probabilities of other events conditional on the
observed variable can be computed, i.e., giving the spontaneous behavior of a variable (Ben
Yaghlane et al., 2002a; Vejnarová, 2012). The structure of the causal model is crucial for
these computations.

2.3.2 Intervention

Intervening (Pearl, 2000; Spirtes et al., 2001; Woodward, 2003) (doing or the act of manipu-
lating) is the effect of an external action to the system that forces a variable to have a specific
value (e.g., forcing someone to take smoking nicotine patch). It means that the natural be-
havior of an object is voluntary changed.

Interventions allow the identification of elements in a sequence of events that are related
in a causal way. In fact, a paradigmatic assertion in causal relations is that the exterior
manipulation of a genuine cause will result in the variation of the effect. Interventions are
therefore used for causal discovery to arbitrate between causal structures that fit the correla-
tions equally well (see Figure 2.1).

A1 A2

A3

A1 A2

A3

A1 A2

A3

A1 A2

A3

A1 A2

A3

A1 A2

A3

seeing

doing

Figure 2.1: Seeing vs doing

Interventions enable to anticipate the dynamics of events when the system is evolving.
Accordingly, to compute the effect of interventions, the application of Bayes rule is not ap-
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propriate. Tools to compute the effect of interventions, i.e., giving that an action is performed,
are therefore needed.

2.4 Functional causal models

Functional causal models express causal relationships in form of deterministic equations and
probabilities introduced through unobserved error terms. It consists of a set of equations
representing mechanisms of the form of:

Ai = f(Pai,Ui) (2.1)

The equality has a deterministic meaning. The notation Pai stands for the markovian
parents of a variable Ai that are the set of variables judged to be immediate causes of Ai. The
variable Ai is further called dependent variable of Pai. Ui represents errors or disturbances
due to omitted factors. A set of equalities in the form of Equation 2.1 is called Structural
Equation Model (SEM).

SEM is considered as a mathematical tool for drawing causal conclusions from a combi-
nation of observational data and theoretical assumptions (Wright, 1921; Duncan, 1975).

Halpern and Pearl (2005) propose a framework which distinguished a priori endogenous
variables (whose values are governed by structural equations, corresponding for example to
physical laws) and exogenous variables (determined by factors external to the model). The
definition of causality in this context is closely linked to the idea of counterfactuals. Thus,
the fact A, which is a subset of endogenous variables, took specific values, is the real cause
of an event A2, if:

• A1 and A2 are true in the real world;

• this subset is minimum;

• another assignment of values to this subset of variables would make A2 false;

• the values of other endogenous variables not directly involved in the production of A2

being fixed in a certain way;

• if A1 alone is sufficient to cause A2 in this context.

Directed graphs, called causal diagrams, are used with SEM to better represent causal
relationships (e.g. (Verma & Pearl, 1990)). Hence, an arc in the DAG pointing from PAi
to Ai corresponds to a functional relationship. Each set of child-parent (called family) is a
mechanism (an equation) that can be treated separately.

The weakness of this representation, is its lack of selective power since only endogenous
variables can be causes or be caused. Besides, incomplete or insufficient information may
render the construction of structural equation impossible.

Example 2.4. Let us consider two variables A1, A2 and A3 and the following system:

A1 = (A2 ∨ ¬A3) ∧ U1
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A1 has A2 and A3 as causes. U1 represents disturbances. It can be represented with a graph
as depicted in Figure 2.2.

A2 A3

A1

Figure 2.2: A causal diagram

2.5 Event trees

An event tree is a set of objects (situations) partially ordered by time. This approach (Shafer,
1996) is based on causal logic. Events are represented on a tree where each node represents a
situation encoding an uncertain measure and each node corresponds to a possible choice that
may be uncertain.

It allows the representation of the temporal sequence between events interconnected not
only by the precedence relations but also relations of specificity and implication. Five basic
relations are possible between two events A1 and A2. An event A1 can:

• be a specialization of A2 or overlaps A2 (if A1 happens, A2 also happens at the same
time);

• require for its realization A2 (if A1 happens, A2 has already happened);

• announce A2 or foretell A2 (if A1 happens, A2 happens after);

• possibly be followed by A2 or forbear A2(if A1 happens, it is possible that A1 comes
after);

• exclude A2 or diverge from A2 (if A1 arrives, A2 not happen).

Example 2.5. Let us consider these networks presented in Figure 2.3. The relation between
A1 and A4 is a relation of precedence in both networks. However, it is only in Figure 2.3 (b)
where A1 foretells A4. In fact, A1 foretells A4 if any path down the tree that passes through
A1 must later passes through A4.
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A1

A2A3

A4

A1

A3

A4(a) (b)

Figure 2.3: Event trees

2.6 Stochastic modeling of causality

Probabilistic causality definitions are given when uncertain information are explicitly de-
scribed by means of probability distributions. Initially, it is viewed as simple probability
changes. Indeed, the idea behind probabilistic causation is that causes change the probabili-
ties of their effects. Using conditional probability, an event A is seen as a cause of an event
B if the probability degree of B raises in the light of the new information A (Good, 1961a,
1961b).

Formally, A is a cause of B if the probability that B occurs given that A occurs, is higher
than the unconditional probability that B occurs:

P (B|A) > P (B) (2.2)

For that, one should simply perform a regression on B on its own past, to recover the
variance of the residuals and then compare it with the results obtained from the regression
of B on its own past and the past of A.The higher the difference between the two variances
is, the stronger the events will be causally related (Granger, 1980).

Probabilistic causation is alternatively defined as A causes B if the occurrence of A raises
the probability of B (Eells, 1991). Thus, the probability that B occurs, given that A occurs,
is higher than the probability that B occurs, given that A does not occur. Formally,

P (B | A) > P (B | A) (2.3)

However, these definitions are symmetric which is not a desirable property in causality
ascription. Indeed, one cannot say if A is a cause of B or B is a cause of A since:

P (B | A) > P (B | A), if and only if P (A | B) > P (A | B) (2.4)

Causality should be an asymmetric relation in the sense that if A causes B then B will not also
cause A. To satisfy this property, other definitions of causality have been proposed (Mellor,
1995; Suppes, 1970). They implicitly integrate the notion of time in the characterization of
causal relation. They stipulate that causes precede their effects in time.

Moreover, initial definitions of causality (i.e., Equation 2.2 and Equation 2.3) have trou-
ble with spurious correlations (Suppes, 1970), i.e, A and B are correlated events and may be
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effects of a common cause C. In this case, it may be that P (B | A) > P (B | A) even though
A does not cause B.

To overcome these limitations, the concept of screening-off was introduced to describe the
following situation:

If P (B | A&C) = P (B | A), then A is said to screen C off from B (2.5)

Accordingly, probabilistic causality is defined as (Suppes, 1970):

Definition 2.1. An event A′t occurring at time t′ causes an event Bt occurring at time t
where t′ is later than t if:

1. P (Bt′ | At) > P (Bt′ | At)

2. There is no further event Ct′′, occurring at a time t′′ earlier than or simultaneously with
t, that screens Bt′ off from At.

Note that ascribing causes according to Definition 2.1, do not take into consideration the
strength of the causal relation (Salmon, 1980).

2.6.1 Causal networks

Graphical models are important tools proposed for an efficient representation and analysis of
uncertain information commonly used by an increasing number of researchers. The success of
graphical representations is due to their capacity of representing and handling independence
relationships. They allow a local representation and reasoning easily supported by human
mind. Causal networks allow to model cause-effect relations.

Indeed, causal Bayesian networks provide formal semantics to the notion of interventions,
which plays an important role for eliciting causal relations between variables. In fact, several
researchers have emphasized the importance of causal learning from interventions over learn-
ing from simply observing data to arbitrate between causal structures that fit the correlations
equally well and have shown how passive observations are used to guide interventions toward
maximally informative targets (e.g., (Glymour, 2001; Steyvers et al., 2003; Meganck et al.,
2006)).

Definition

A causal Bayesian network (Pearl, 2000) is a probabilistic model where edges represent causal
relationships. However, a probability distribution, can be represented by several equivalent
Bayesian networks if they describe exactly the same conditional independence relation and
induce the same joint distributions due to Markov equivalence. Only one of these networks
follows the causal process, the so-called causal network.

Accordingly, causal networks provide a convenient framework for causal modeling and
reasoning as they have a stricter interpretation of the meaning of edges. A causal Bayesian
network, as shown in Figure 2.5, consists of:

• A graphical component: It is a directed acyclic graph (DAG) encoding a set of indepen-
dence relations, where nodes represent variables and arcs describe cause-effect relations.
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The causal process follows the direction of the edges. Thus, an event is a cause of its
child node and an effect of its parent node. The set of parents of Ai is denoted by
Pa(Ai).

• A numerical component: It is a quantitative information by associating for each node
(i.e., a random variable) a conditional probability distribution that quantifies the effects
of its parents on it. The a priori distribution is defined for each node Ai in the context
of its parents (PA(Ai)) as follows:

– if Ai is a root node, then the a priori probability distribution of Ai should satisfy:∑
ai

P (ai) = 1, where ai ∈ ΘAi

– if PA(Ai) 6= ∅, then the conditional probability over Ai is defined as:∑
ai

P (ai | Pa(Ai)) = 1, where Pa(Ai) ∈ ×ΘAj ,Aj∈PA(Ai)

Example 2.6. Let us consider the networks presented in Figure 2.4. They concern a descrip-
tion of knowledge regarding the link between smoking and having yellow teeth (associational
networks). These networks are equivalent in terms of independence relations. Nodes are
described as follows:

• S describes the fact of smoking, ΘS = {s1, s2} where s1 is yes and s2 is no.

• T represents having yellow teeth, ΘT = {t1, t2} where t1 is yellow and t2 is otherwise.

From these networks, only one follows the causal process (see Figure 2.5).

Figure 2.4: Associational equivalent net-
works Figure 2.5: A causa Bayesian network

Properties of a causal Bayesian network

A causal Bayesian network has the following properties (Pearl, 2000; Spirtes et al., 2001):

• Causal Markov assumption: a node is independent of its distant causes given its direct
causes. Bayes rule is therefore still valid on the causal network.

• Causal sufficiency assumption: there exist no common hidden variables in the domain
that are parent of one or more observed variables of the domain.
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• Causal faithfulness assumption: a distribution is faithful to the graphical structure G if
and only if exactly the independence facts true in the distribution are entailed by the
graphical structure G.

The “do” operator to represent interventions

External actions on the system disturb the relationships between variables and thus should
have a different impact on the other events. The application of conditioning is appropriate
when an event occurs spontaneously (observation). It will lead to erroneous results if it is
used to compute the effects of external actions: forcing the event to happen (intervention).

The “do” operator was introduced by Goldszmidt and Pearl (1992) for the ordinal condi-
tional functions of Spohn (1988). Pearl (2000) introduced this tool in the Bayesian networks
framework to compute the effect of interventions.

The action do(ai) in a causal model corresponds to a minimal perturbation of the existing
system that forces the variable Ai to take the value ai.

The idea behind the “do” operator, is to remove from the decomposition of the joint
distribution the element that corresponds to the variable concerned by the intervention and
replace each occurrence of this variable with its value. Therefore, the effect of an intervention
do(ai) on the joint distribution is computed as follows:

P (a1, . . . , an|do(ai)) =
P (a1, . . . , an)

P (ai|Pa(Ai))
= P (a1, . . . , an|ai, Pa(Ai)) · P (Pa(Ai))

Hence, on a causal Bayesian network, we can model the effects of not only observations
but also those of interventions.

Example 2.7. Let us consider the causal Bayesian network shown in Figure 2.5. Let us
compare between the effect of seeing that someone has yellow teeth (i.e., the variable T takes
spontaneously the value t1) and the effect upon acting on the variable T , by painting one’s
teeth yellow (forcing T to take the specific value t1).

• The effect of observing T with the value t1 is computed with:
P (s1, t1|see(t1))
= P (s1, t1|t1)

=
P (s1, t1)

P (t1)
=

0.36

0.48
= 0.75

• The effect of acting on T forcing it to take the value t1 is computed with:
P (s1, t1|do(t1))

=
P (s1, t1)

P (t1|Pa(t1))
=
P (s1, t1)

P (t1|s1)
= P (s1) = 0.4

You notice that intervening on the variable T affects differently the system.

Graphical representation of interventions

To handle interventions, changes on the structure of the causal Bayesian network are made.
Two methods were developed namely, the mutilation and the augmentation of the causal
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graph. These approaches have been proved to be equivalent under the probabilistic framework
(Pearl, 2000).

Graph mutilation Since an intervention on a variable should not change our beliefs on
its direct causes (parents), all the edges pointing to the node concerned by the action will
be deleted, no changes affect the causes of the target variable. The altered graph is called a
mutilated graph denoted by Gmut.

It is considered as a surgery (a mutilation) by which all the other causes than the one of
the intervention will be excluded.

Let G = (V,E) be a causal network on which we make an intervention on a variable Ai ∈ V
by forcing it to take the value ai (do(ai)). We define mutilation on two steps:

1. Arcs pointing to Ai in G will be deleted. The obtained mutilated graph is denoted Gmut.
Its associated distribution is denoted PGmut . This intervention affects the computation
of the joint distribution PG by transforming it into PG(.|do(ai)). In the mutilated graph,
it corresponds to observing Ai = ai, i.e., applying the definition of conditioning.

PGmut(.|ai) = PG(.|do(ai)) (2.6)

2. An action do(ai) imposes a value ai on a variable Ai. Accordingly, the corresponding
distribution of Ai becomes:

P (ak) =

{
1 if ak = ai
0 otherwise

(2.7)

Example 2.8. Let us continue with the causal network presented in Figure 2.5. By painting
one’s teeth yellow (forcing T to take the specific value t1), the state of T will be independent
from the fact of smoking (S). Therefore, the link relating S to T will be deleted. This is
represented by the graph in Figure 2.6.

Figure 2.6: Graph mutilation upon the intervention do(t1)

Graph augmentation Another interpretation of interventions on a causal network, is to
add a fictive parent node called “DO” to the variable Ai on which an intervention is per-
formed. The added node is considered as an extra node in the system. The set of the parents
of Ai becomes PA′ = PA ∪ DO. The altered structure is called in augmented graph and
denoted by Gaug.



44 Chapter 2 : Causality modeling

The DO node is taking value in do(x), x ∈ {ΘAi ∪ {nothing}}. do(nothing) means
that there are no actions on the variable Ai, it represents the state of the system when no
interventions are made. do(ai) means that the variable Ai is forced to take the value ai.
Hence, the graph augmentation method allows to represent the effect of observations and
interventions.

The new distribution of the node DO is defined as:

P (ak|Pa(Ai), do(x)) =

{ 1 if x = ai
0 if x 6= ai
P (ak|Pa(Ai)) if x = nothing

(2.8)

It remains to specify what is the distribution assigned to the added node (i.e., DO). Two
cases are considered:

• If there is no intervention then the distribution of the DO node is defined by:

P (do(x)) =

{
1 if x = nothing
0 otherwise

(2.9)

• If there is an intervention that pushes the variable Ai to take the value ai, then the
distribution relative to DO is defined by:

P (do(x)) =

{
1 if x = ai
0 otherwise

(2.10)

Example 2.9. Let us continue with the causal network presented in Figure 2.5. By painting
one’s teeth yellow, we are forcing the variable T to take the specific value t1. The set of parents
of T becomes S ∪ DO where the node DO is set to the value do(t1). This is represented by
the graph in Figure 2.7.

Figure 2.7: Graph augmentation upon the intervention do(t1)

Semi Markovian Causal Models

Causal Bayesian networks (Pearl, 2000) are used to represent and reason with probabilistic
causal knowledge. As we have seen the concept of intervention is very important in these
graphical models for causal analysis.
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To ascribe causality by integrating latent variables, causal Bayesian networks were ex-
tended to Semi Markovian Causal Models (Tian & Pearl, 2002). In this latest, causal reason-
ing is based on observed as well as unobserved variables.

Let us denote by V = {V1, . . . , Vn} the set of observed variables and by U = {U1, . . . , Un}
the set of unobserved variables. If no U variable is a descendant of any V variable, then the
corresponding model is called a Semi Markovian model.

In a Semi Markovian model, the observed probability distribution, P (v), becomes a mix-
ture of products:

P (v) =
∑
u

∏
i

P (vi|pai, ui) · P (u)

where PAi and U i stand for the sets of the observed and unobserved parents of Vi, and the
summation ranges over all the U variables.

Causal possibilistic network

Aside from causal Bayesian networks, causal possibilistic networks (Benferhat, 2010; Ben-
ferhat & Smaoui, 2011) were developed for cases where the causal knowledge is expressed
under the possibilistic framework. They are especially appropriate tools to fit pure qualita-
tive knowledge when only the ordinal handling is important.

A causal possibilistic network has the same structure as an associational possibilistic net-
work whether defined on the qualitative or the quantitative setting (see subsection 1.6.3).
However, as for causal Bayesian networks arcs between variables are not only representing
dependencies but also direct causal relations.

To compute the effect of an intervention, the counterpart of the “do” operator to the
possibilistic framework has been defined (Benferhat & Smaoui, 2007a). Besides, it was shown
that the graph mutilation and the graph augmentation methods are equivalent approaches to
graphically represent interventions under the possibilistic framework.

2.7 Causality as a nonmonotonic relation

2.7.1 Non monotonic relation

The relation of nonmonotonic inference to causality has already been emphasized by re-
searchers dealing with reasoning about actions and the frame problem (e.g., (Giunchiglia et
al., 2004)).

It is an alternative to the model based on structural equations (Halpern & Pearl, 2005),
which may be impossible to construct in situations of poor information. This was motivated
by the insufficiency of material implication for representing a causal link between a cause and
an effect.

Nonmonotonic reasoning handles rules that may have exceptions and deal with incomplete
information. Thus, conclusions are revised as further information becomes available.
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2.7.2 Nonmonotonic consequence approach

The nonmonotonic consequence relation, “In context ej , ei is generally true” is denoted ej |∼ei,
where ej and ei are respectively instances of the variables Ej and Ei. It can be viewed as a
constraint stating that ej∧ei is strictly more plausible than ej∧¬ei.

The nonmonotonic consequence relation |∼, satisfies the requirements of System P (P
stands for preferential) (Kraus et al., 1990), which is considered as a common kernel of
several nonmonotonic formalisms, that consist in:

• Right Weakening: E |∼ F and F |= G imply E |∼ G;

• Left AND: E|∼F and E|∼ G imply E|∼F∧ G;

• Right OR: E|∼G and F|∼ G imply E∨ F|∼ G;

• Cautious monotony: E|∼F and E|∼G imply E∧ F|∼G;

• Cut: E|∼F and E∧F|∼G imply E|∼G.

In some cases, a strong version of Cautious Monotony is considered, namely the property
of Rational Monotony (Lehmann & Magidor, 1992). It is defined as:

• Rational Monotony: E6 |∼F and E|∼G imply E∧ F|∼ G

Nonmonotonic relations have also been represented in different uncertainty frameworks.
In fact, some models are based on probability theory (Adams, 1975), possibility theory
(Benferhat et al., 1992) as well as the theory of belief functions (Benferhat et al., 2000;
Smets & Hsia, 1991).

In (Bonnefon et al., 2006, 2008), a framework for ascribing causality from a background
knowledge using a nonmonotonic relation (satisfying System P ) has been proposed. The
inference engine based on System P is very cautious. This approach, unlike the one using
structural equations (Halpern & Pearl, 2005) is based on qualitative information, which may
be incomplete and tolerate exceptions. The aim of this approach is to predict causal relations
that an agent may assign using available information and by distinguishing normal events
from abnormal.

Let us denote by C a given context and by A and B two events. If an agent believes that
“ in context C, B is generally true”, then the relation C|∼B holds. Ignorance, namely “ in
context C, B is ignored” is formalized with C 6 |∼B and C 6 |∼ ¬B.

Note that beliefs are only temporarily accepted since they can be questioned after a new
piece of information become available. Thus, the ascription of causality, facilitation as well
as the identification of justification links takes into account the dynamic of beliefs.

Causality ascription

Given the assertion “In context C, B is known to be exceptional” (C|∼ ¬B). If after that the
event A takes place, B becomes generally true (C ∧ A|∼B), then in context C, A is perceived
to be the cause of B.
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Definition 2.2. A is a cause of B in context C, A⇒caB , if C|∼ ¬ B and C ∧ A|∼B.

Example 2.10. Assume that in a given context C, having yellow teeth T is an exceptional
event: C|∼ ¬T . If the event S (smoking) occurs, then T becomes a normal event, C ∧S|∼ T .
In this case, smoking is seen to be the cause of having yellow teeth, i.e., C : S⇒caT .

Facilitation ascription

Facilitation requires less beliefs from the agent that causality. Assume that in a given context
C, the occurrence of the event B is known to be exceptional (and observed to be false, (C|∼
¬ B)). If the event A is reported along with B which becomes ignored ((C∧ A|∼ ¬ B) and
(C∧ A|∼ B)), we say that in context C, A is perceived to have facilitated the occurrence of
B since the occurrence of A makes the occurrence of B (i.e., B is true) unsurprising (but not
expected) to the agent.

Definition 2.3. A is a facilitation of B in context C, A⇒faB , if C|∼ ¬ B and C∧ A6 |∼ ¬
B and C∧ A6 |∼ B.

Example 2.11. In context C, one has generally no Cervical intraepithelial neoplasia (CIN),
C|∼ ¬CIN . This is no longer true when smoking (S) (C ∧S 6 |∼ ¬CIN), even though it does
not systematically or almost systematically generate CIN (C ∧ S 6 |∼ CIN). Suppose now
that a person got CIN , this person is a smoker. Smoking will be judged as having facilitated
CIN , i.e., C : S⇒faCIN .

Justification ascription

Justification is related to the notion of explanation following Spohn. If in context C, the state
of B is ignored (C 6 |∼ B) and (C 6 |∼ ¬ B) and after the occurrence of the event A it becomes
true (C ∧ A|∼B), A gives reason to expect or to justify the occurrence of B.

Definition 2.4. A is a justification of B in context C, A⇒juB, if C 6 |∼ B and C 6 |∼ ¬ B and
C ∧ A|∼B.

Example 2.12. Giving up smoking is an ignored event. Formally, we have C 6 |∼ ¬S and
C 6 |∼ S. If after knowing that the smoker took nicotine patches (P ), the event giving up
smoking becomes true (C ∧ P |∼¬S). Taking nicotine patches will be seen as justifying stopping
smoking, i.e., C : P⇒ju¬S.

2.7.3 Trajectory-based preference relations

This approach starts with the idea of counterfactual causes. It involves two computation
concerning the evolution of the world as follows:

• Extrapolation (Dupin de Saint-Cyr & Lang, 2002): it consists in computing the most
normal evolutions of the world (called trajectories). It is a process of completing initial
beliefs from observations by assuming minimal abnormalities in the evolution of the
world with respect to generic knowledge.

• Update (Katsuno & Mendelzon, 1991): it aims at identifying a minimal change with
respect to the initial scenario. The update operator proposed in (Dupin de Saint-Cyr,
2008) is based on a distance between trajectories that take into account the time point
of the change and normality.
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To discriminate between potential counterfactual causes, we will choose among the normal
ones, the most abnormal ones in context.

Example 2.13. The event Smokingt that took place at time t caused Lung cancert+N that
occurred at time t+N in a given scenario if:

• Smokingt and Lung cancert+N took place in this scenario.

• if Smokingt had not taken place in this scenario, then Lung cancert+N would not have
taken place (counterfactuality).

For that we have to:

• compute if Smokingt and Lung cancert+N take place in scenario (extrapolation)

• compute what would have happened if Smokingt had not taken (updating by ¬Smokingt)

2.7.4 Norm-based approach

This approach (Kayser & Mokhtari, 1998; Khelfallah & Mokhtari, 2001; Kayser & Nouioua,
2005) is based on norms to define causality where norms are rules that apply by default and
the knowledge necessary to causal ascription is expressed in a reified first-order logic aug-
mented with default rules.

In this causal approach when the event is considered normal, its cause is the norm itself.
However, if it is abnormal, its cause is traced back to the violation of a norm.

For that looking for the cause of an abnormal event E occurring at time t basically amounts
to finding an agent who should, according to some norm, adopt behavior b at a time t′ < t,
and actually adopted another behavior b′, such that E appears as a normal consequence of
b′.

It also requires that, at t′, the agent had the possibility to have the normal behavior b;
otherwise, b′ is only a derived anomaly and the search must be pursued to find a primary
anomaly, occurring earlier than t′ and explaining the impossibility of the agent to have the
behavior b at t′. In the case where this search fails, non agentive abnormal circumstance that
could explain E should be identified.

The fact that property P holds for agent A at time t is written: holds(P,A, t). Two modal-
ities are introduced to express norm violations: should(P,A, t) and able(P,A, t) standing for:
at time t, A should (resp. has the ability to) achieve P .

However, the generalization of this approach to domains where norms are only what is
normal norms should be organized in a hierarchy. Besides, the most violated norm should
be perceived as the cause of an abnormal event. The issue is that verifying this hypothesis
requires to gather a reasonably complete set of norms for the domain, which is a hard task
(Benferhat et al., 2008).

Example 2.14. This example is extracted from (Benferhat et al., 2008)). Let us consider
these literals:
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• Wet → should(reduced speed,A, t)

• holds(Acc,A,t) → should(avoid obs, A,t− 1)

• should(avoid obs,A,t)→ ¬ able(ch lane,A,t) ∧ should(stop,A,t)

Expressed in this language, the cause of an abnormal event (the primary anomaly P ano)
obtains as:

- should(F,A,t) ∧ able(F,A,t)→ ¬ holds(F,A,t+ 1) ∧ P ano(F,A,t+ 1)
It means that if at t an agent A should do F and was able to do F , while at t+ 1, F failed

to be done, this failure is the cause looked for.

2.8 Conclusion

In this chapter, we gave an overview of the different definitions of causality. Under uncer-
tainty, we presented a brief review of the approaches. We explained how to ascribe causality
under a probabilistic framework. Besides, we clarified the relationship between associational
networks and causal networks under the probabilistic and possibilistic framework. Indeed,
these latter allow to handle interventions via the “do” operator. Besides, we explained that
the nonmonotonic approaches allows a consistent and efficient ascription of causality.

In order to introduce the causal belief network that will be used to formalize the imperfect
causal knowledge, we will first in the next chapter analyze and revise the theoretical foun-
dations of existing belief networks with conditional beliefs and propose a new associational
graphical model under the belief function framework.
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Part II

Modeling causality under the belief
function framework
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Chapter 3
A new associational belief network

3.1 Introduction

The belief function theory is a powerful tool to handle imperfect knowledge. The represen-
tation and reasoning from a belief function knowledge is simply done on graphical models.
Through direct acyclic graphs (DAGs), it is possible to compactly encode a collection of
(in)dependence statements and to predict the effect of observations on the joint distribution.
As for Bayesian networks, the structure of these associational networks will serve as a basis
to model causality.

Existing associational belief networks (known also as evidential networks) are confusing.
This is due to the misleading sense of the term evidential networks. In fact, this word is origi-
nally coined for valuation networks and is nowadays used for both directed acyclic graphs and
valuation networks. Indeed, no consensus exists about a unique definition and representation
of belief networks as DAGs.

As mentioned in Chapter 1, belief networks can be categorized into two main groups as
follows: those where conditional dependencies can be defined by a unique conditional distri-
bution for each child node given all its parents like for Bayesian networks (Simon et al., 2008)
and those where conditional distributions relating a node to each of its parents are specified
(Ben Yaghlane & Mellouli, 2008; Xu & Smets, 1996). In this latter, conditional distributions
can be aggregated into one distribution representing the relation between a node and all its
parents.

To compute the global joint distribution, beliefs defined for each node in the context of its
parents should be aggregated. The conjunctive rule of combination in its basic form (as well
as Dempster’s rule of combination for normalized beliefs) is used to fusion non-conditional
beliefs defined on the same frame of discernment. Accordingly, to use these rules the bal-
looning extension is first applied to get rid of conditioning then deconditionalized beliefs are
vacuously extended. However, using these rules will not truly reflect the initial knowledge.

In the first part of the this chapter, we propose an analysis of existing belief networks
modeled with DAGs. Besides, since we have emphasized that the belief function theory is a
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generalization of probability theory when focal elements are singletons, we look in this chap-
ter if a belief network collapses into a Bayesian network in the case of Bayesian bbas. In the
second part, we present a graphical model based on new ways to get rid of conditioning and
to extend beliefs to a product space.

The rest of this chapter is organized as follows: in Section 3.2, we analyze the theoretical
foundations of existing belief networks. Section 3.3 investigates the relationship between belief
networks and Bayesian networks. Section 3.4 presents our belief network where beliefs are
expressed in terms of conditional mass distributions.

3.2 Analysis of existing belief networks

This section reviews existing associational networks with conditional beliefs where knowledge
is formalized with the belief function theory. We will investigate the used operators and check
if they lead to a loss of information. Then, we will compare between the different used chain
rules and examine if they lead to the same global joint distribution. Examples will be given
to illustrate the weaknesses of these models.

3.2.1 Belief networks: conditionals for all parents

Evidential networks (EN)

The recent so-called Evidential Network (EN) (Simon et al., 2008) is a belief network that
is similar to a Bayesian network. It combines the belief function theory with a directed
acyclic graph (DAG). The idea is to encode a mass as a probability on a powerset of domains
associated with each variable. More precisely, an evidential network is defined on two levels:

• Qualitative level: represented by a DAG, G = (V,E) where V is the set of variables, V
and E is the set of edges encoding the dependencies among variables. A given variable
Ai is called a parent of variable Aj if there is an arc from Ai to Aj . The set of parents
of Ai is denoted by PA(Ai). A subset from PA(Ai) is denoted by Pa(Ai).

• Quantitative level: represented by the set of bbas associated to each node in the graph.

– For each root node Ai (i.e., node without parent nodes) having a frame of discern-
ment ΘAi , an a priori mass distribution mAi is defined on the powerset 2ΘAi .

– For other nodes, a conditional bba mAi(.|Pa(Ai)) is specified for each value of Ai
knowing the value of all the parents Pa(Ai). It means that a conditional belief
mass table represents the relation between the basic belief masses expressed on the
frame of discernment of the child node and the basic belief masses defined on the
frame of discernment of the variables in the parent nodes.

This kind of network (Simon et al., 2008) is proposed in context of reliability modeling
where the domain associated with variables is defined as {Up, Down}.

The proposed network can be seen as a standard Bayesian network where each node can
take one of these three values {Up}, {Down}, {Up, Down}. The possibility to allocate a
quantity to the proposal {Up, Down} softens Bayesian networks.
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Table 3.1: Global joint distribution in EN : mSC

{(s1, c1)} 0.08

{(s1, c2)} 0.01

{s1} ×ΘC 0.01

{(s2, c1)} 0.07

{(s2, c2)} 0.49

{s2} ×ΘC 0.14

ΘS × {c1} 0

ΘS × {c2} 0

ΘS ×ΘC 0.2

According to this chain rule (Equation 3.1), conditioning is similar to the one defined for
probability theory where for a1 ⊆ ΘA1 and a2 ⊆ ΘA2 we have:

mA1(a1|a2) =
mA1,A2(a1 ∩ a2)

mA2(a2)
(3.2)

However, as proved in (Vejnarová, 2012), it is not possible to consider such conditioning
with basic assignments. It is caused by a simple fact that the mass function m, in contrary
to bel and pl is not monotonous with respect to set inclusion.

Counter-example 3.1. Let us consider the frame ΘA1 = {a11, a12, a13} where basic belief
masses are defined as mA1(a11) = 0.7, mA1(ΘA1) =0.3.

To compute mA1(a11|ΘA1) using Equation 3.2 will give:
mA1(a11)

mA1(ΘA1)
=

0.7

0.3
= 2.33. However, a bbm cannot exceed one.

For inference, the evidential network (EN) uses the junction tree algorithm and the to-
tal probability theorem. Clearly, there is no difference between this network and Bayesian
networks in terms of representation and also propagation of beliefs. However, as proved in
(Laâmari et al., 2010), the use of the junction tree (JT) algorithm is computationally less
efficient than the use of tools specific to the belief function theory (e.g., the modified binary
joint tree (MBJT) (Ben Yaghlane & Mellouli, 2008)). Indeed, using probabilistic tools may
present inconveniences. In fact, the used inference algorithm satisfies the additive axiom in-
herent to Bayesian network algorithm which does not exist in the general framework of the
belief function. As a consequence, this network cannot serve as a basis for the causal belief
network.

3.2.2 Belief networks: conditionals per single parent

Unlike Bayesian networks, conditional distributions are defined per edge in these belief func-
tion networks. Two representations with conditional belief distributions exist and will be
analyzed here namely the Evidential Networks with Conditional beliefs (ENC) and the Di-
rected EVidential Networks (DEVN).

Evidential networks with conditional beliefs (ENC)

The so-called Evidential Networks with Conditional beliefs (Smets, 1993b; Xu & Smets, 1996)
have binary relations between nodes of the graphical model. Besides, in these networks
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This associational network is not adequate to serve as a basis to model causality. In fact,
despite its storage power, it lacks from flexibility to model knowledge. Besides, it leads to
a loss of information since a priori beliefs about parent nodes will be lost after the fusion
process.

Directed evidential networks (DEVN)

To tackle the issue of binary relations encountered with ENCs, Directed EVidential Networks
(DEVN) (Ben Yaghlane & Mellouli, 2008) were proposed. In these latter, relations have been
generalized to many nodes. Accordingly, no need to merge parent nodes in one single node if
beliefs are expressed given all parents. Besides, in DEVN s conditional belief distributions can
be defined either per single parent or for all parents. Obviously, they offer more flexibility. It
is defined in two levels:

• Qualitative level: a directed acyclic graph (DAG) in which the nodes represent variables,
and directed arcs describe the conditional dependence relations embedded in the model.

• Quantitative level: dependence relations are expressed by conditional belief functions
(bel) for each node in the context of either one parent node or for all parents.

Global joint distribution computation

The definition of the global joint belief distribution is different from the one used for Bayesian
networks and Evidential networks (EN). In fact, all local knowledge are aggregated using
the conjunctive rule of combination (or Dempster’s rule of combination).

The chain rule is computed either for ENC or DEVN with belief function distributions
(bel) as follows:

belA1,...,An = ∩©
i=1,...,n

∩©
ω∈Pa(Ai)

belAi(.|ω) (Ai×Pa(Ai) (3.3)

Unfortunately, this formula is not clear. Indeed, the following points present some issues:

• the ballooning extension was defined for basic assignments (Shafer, 1982) (and for plau-
sibility functions (Foucher et al., 2006)) and it is not clear how it will be applied directly
on belief functions unless beliefs will to be transformed to mass functions using möbius
transformation.

• since DEVN allows to define conditional belief distributions per edge or for all parents,
it is not clear within the following rule, if ω is an instance from a single parent or it
represents a node from the set of the parents of a node Ai.

• it is not clear if the index i concerns the number of parents or the cardinality of the
variable of interest Ai.

• it is not obvious how we can apply the conjunctive rule of combination on beliefs defined
on disjoint frames.

Please note that experts usually express their beliefs with mass distributions. Thus, we
propose to clarify the proposed chain rule when beliefs are defined with basic assignments
(Boukhris, Elouedi, & Benferhat, 2011a).
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To compute the global joint belief distribution, the ballooning extensions for the decondi-
tionalization process are first computed for local conditional distributions. All deconditional-
ized beliefs are vacuously extended and then aggregated. To better explain this process, we
will use these following notations:

• PA(Ai): the set of the parents of Ai;

• Pa(Ai): a subset from PA(Ai);

• PAj(Ai): a single parent of Ai;

• Paj(Ai): a subset from PAj(Ai).

In the general case, i.e., where beliefs are given per single parent, the computation of the
global joint distribution is done in three steps:

1. For a conditional variable Ai:

1.1 For each subset of a single parent denoted by Paj(Ai), compute the ballooning
extension of mAi(.|Paj(Ai)) for the deconditionalization process:

mAi(.|Paj(Ai)) (Ai×PAj(Ai)

1.2 Combine the deconditionalized beliefs using the conjunctive rule of combination.

∩©
Paj(Ai)

mAi(.|Paj(Ai)) (Ai×PAj(Ai)

2. Extend each node (root node and child node) to the universe of all the variables in the
network by applying the vacuous extension.

( ∩©
Paj(Ai)

mAi(.|Paj(Ai)) (Ai×PAj(Ai))↑A1×...×An

3. Combine local joint distributions using the conjunctive rule of combination and thus
get the following chain rule:

mA1,...,An = ∩©
i=1,...,n

( ∩©
Paj(Ai)

mAi(.|Paj(Ai)) (Ai×PAj(Ai))↑A1×...×An (3.4)

As you may notice, this belief chain rule is different from the one based on the product
operator that is proposed for evidential networks (Simon et al., 2008).

Example 3.3. Let us continue with the belief network presented in Figure 3.1. Its corre-
sponding global joint distribution is computed using the three steps exposed above. Namely,

1. Ballooning extension of each conditional mass:

• Deconditionalization for each instance of the parents:
To get rid from conditioning, we have to compute the ballooning extension (Equa-
tion 1.36) of each instance of the parents (mC(.|s1) and mC(.|s2)).
For example, the bbm mC(c1|s1) will be transferred to {(c1, s1)} ∪ {ΘC × s1}, i.e.,
to {(s1, c1), (s2, c1), (s2, c2)}. Results are presented in Table 3.2.
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Table 3.2: Ballooning extensions of mC(.|si)

mC(.|s1) (SC
{(s1,c1),(s2,c1),(s2,c2)} 0.8
{(s1,c2),(s2,c1),(s2,c2)} 0.1
ΘS ×ΘC 0.1

mC(.|s2) (SC
{(s2,c1),(s1,c1),(s1,c2)} 0.1
{(s2,c2),(s1,c1),(s1,c2)} 0.7
ΘS ×ΘC 0.2

• Aggregate deconditionalized beliefs using the conjunctive rule of combination:

The deconditionalized bbms are defined on the same frame of discernment namely
ΘS × ΘC . Their combination using the conjunctive rule of combination gives the
local joint distribution at the node C.

To combine for instance mC(c1|s1) with mC(c1|s2), we have to identify the inter-
section of the subsets given by their respective ballooning extension:

{(s1,c1),(s2,c1),(s2,c2)} ∩{(s2,c1),(s1,c1),(s1,c2)}
= {(s1,c1),(s2,c1)}.
Their product-intersection is computed afterwards as follows:

m
C (SC
s1 ({(s1,c1),(s2,c1),(s2,c2)})· mC (SC

s2 ({(s2,c1),(s1,c1),(s1,c2)})
= mSC({(s1,c1),(s2,c1)})
= 0.8·0.1 = 0.08.

Results are shown in Table 3.3.

Table 3.3: Local joint distribution at the node C

m
C (SC
s2

m
C (SC
s1 {(s1,c1),(s2,c1),

(s2,c2)} = 0.8
{(s1,c2), (s2,c1),
(s2,c2)}=0.1

ΘS ×ΘC =0.1

{(s2,c1),(s1,c1),
(s1,c2)} =0.1

{(s1,c1),(s2,c1)}
= 0.08

{(s1,c2), (s2,c1)}
= 0.01

{(s1,c1),(s2,c1),
(s1,c2)} = 0.01

{(s2,c2),(s1,c1),
(s1,c2)} =0.7

{(s1,c1),(s2,c2)}
= 0.56

{(s1,c2), (s2,c2)}
= 0.07

{(s1,c1),(s2,c2),
(s1,c2)} = 0.07

ΘS ×ΘC =0.2
{(s1,c1), (s2,c2),
(s2,c1)} = 0.16

{(s1,c2), (s2,c2),
(s2,c1)} =0.02

ΘS ×ΘC = 0.02

2. Vacuous extension to a joint space:

To make the combination of all local joint distributions and find their possible intersec-
tions, variables will be extended to the product space of all the variables. In this example,
masses defined on ΘS should be vacuously extended to ΘS×ΘC as shown in Table 3.4.

Table 3.4: Vacuous extension: mS↑SC

{s1}×ΘC 0.1

{s2}×ΘC 0.7

ΘS ×ΘC 0.2
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3. Combination of all local joint distributions:

The aggregation of the vacuous extension of subsets of ΘS (Table 3.4) with the decon-
ditionalized bbas of node C (Table 3.3) determines the global joint distribution of the
network. The intersection of subsets specifies elements of the global joint distribution
(see Table 3.5). The induced global joint bba is obtained by making the sum of bbms
relative to each focal element found in Table 3.5. Results are summarized in Table 3.6.

Table 3.5: Elements of the global joint distribution in DEVN

mC (SC
mS↑SC {(s1, c1),

(s1, c2)}=0.1
{(s2, c1},
{s2, c2}}=0.7

ΘS ×ΘC=0.2

{(s1, c1), (s2, c1)}=0.08 {(s1, c1)} =0.008 {(s2, c1)} =0.056
{(s1, c1) ,(s2, c1)}
=0.016

{(s1, c2), (s2, c1)}=0.01 {(s1, c2)} =0.001 {(s2, c1)} =0.007
{(s1, c2), (s2, c1)}
=0.002

{(s1, c1), (s2, c1),
(s1, c2)} =0.01

{s1} ×ΘC =0.001 {(s2, c1)} =0.007
{(s1, c1), (s2, c1),
(s1, c2)} =0.002

{(s1, c1), (s2, c2)}=0.56 {(s1, c1)} =0.056 {(s2, c2)} =0.392 {(s1, c1), (s2, c2)}=0.112

{(s1, c2), (s2, c2)}=0.07 {(s1, c2)} =0.007 {(s2, c2)} =0.049 {(s1, c2), (s2, c2)}=0.014

{(s1, c1), (s2, c2),
(s1, c2)}=0.07

{s1} ×ΘC =0.007 {(s2, c2)} =0.049
{(s1, c1), (s2, c2),
(s1, c2)}=0.014

{(s1, c1), (s2, c2),
(s2, c1)}=0.16

{(s1, c1)} =0.016 {s2} ×ΘC =0.112
{(s1, c1), (s2, c2),
(s2, c1)}=0.032

{(s1, c2), (s2, c2),
(s2, c1)}=0.02

{(s1, c2)} =0.002 {s2} ×ΘC =0.014
{(s1, c2), (s2, c2),
(s2, c1)}=0.004

ΘS ×ΘC=0.02 {s1} ×ΘC =0.002 {s2} ×ΘC=0.014 ΘS ×ΘC =0.004

Table 3.6: Global joint distribution in DEVN : mSC

{(s1, c1)} 0.08

{(s1, c2)} 0.01

{s1} ×ΘC 0.01

{(s2, c1)} 0.07

{(s2, c2)} 0.49

{s2} ×ΘC 0.14

{(s1, c1),(s2, c1)} 0.016

{(s1, c2),(s2, c1)} 0.002

{(s1, c1),(s2, c1),(s1, c2)} 0.002

{(s1, c1),(s2, c2)} 0.112

{(s1, c2),(s2, c2)} 0.014

{(s1, c1),(s2, c2),(s1, c2)} 0.014

{(s1, c1),(s2, c2),(s2, c1)} 0.032

{(s1, c2),(s2, c2),(s2, c1)} 0.004

ΘS ×ΘC 0.004
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To compute the bba on the merged node A4, beliefs of A1 and A2 should be aggregated
using Equation 3.5. Since A1 and A2 are independent, elements of their cartesian product
define the elements of A4. Accordingly, to compute the a priori distribution mA1×A2 (i.e.,
mA4), a pointwise product operation is made:

mA1×A2({(a1i, a2j)}) = mA1({a1i}) ·mA2({a2j})

The mass distribution mA4 is defined on ΘA4 = {a41, a42, a43, a44} where {a41}= {(a11, a21)},
{a42}= {(a11, a22)}, {a43}= {(a12, a21)}, {a44}= {(a12, a22)} as shown in Table 3.7:

Table 3.7: A priori bba after merging parents: mA4

{a41} 0.28

{a42} 0.42

{a43} 0.12

{a44} 0.18

The conditional distribution of the variable A3 represented in Figure 3.4 is transformed to
a conditional distribution in context of A4 as shown in Table 3.8:

Table 3.8: Conditional bba after merging parents: mA3(.|a4i)

{a41} {a42} {a43} {a44}
{a31} 0.7 0.4 0.2 0.9

{a32} 0.3 0.6 0.8 0.1

Table 3.9 presents the global joint distribution after following the three steps presented in
Subsection 3.2.2 leading to Equation 3.4.

These results are the same as those found by applying the product operator when consid-
ering this network as a Bayesian network. Note that when consonant bbas are defined, we
found also the same results as those of a quantitative possibilistic network.

Table 3.9: Global joint distribution in ENC: mA3,A4

{(a31, a41)} 0.196

{(a31, a42)} 0.168

{(a31, a43)} 0.024

{(a31, a44)} 0.162

{(a32, a41)} 0.084

{(a32, a42)} 0.252

{(a32, a43)} 0.096

{(a32, a44)} 0.018

Though the way to define conditional distributions is different from Bayesian networks,
we have found the same results as those found on Bayesian networks. Defining conditionals
per edge allows to reduce the storage memory space. However, the initial knowledge cannot
be reconstructed after the fusion process.
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On the other hand, a Bayesian network is equivalent to an ENC if for each child node,
its parents are merged into one node. The a priori belief in this new node is the combination
of the a priori of each parent node.

Accordingly, ENCs cannot be seen as true extensions of Bayesian networks. A counterex-
ample is provided with their generalized form namely DEVN s.

3.3.3 Directed evidential networks with conditional beliefs: DEVN

As mentioned before, DEVN (Ben Yaghlane & Mellouli, 2008) allows to specify conditional
beliefs for each edge in the network. However, by defining each conditional separately, we
allow that the initial belief of the child node is not unique.

In fact, it depends on the chosen path which is not the case for Bayesian networks. For
these reasons, we provide a counterexample where we show that DEVN s cannot be regarded
as a true extension of Bayesian networks.

Counter-example 3.2. Let us consider the network depicted in Figure 3.5 where basic as-
signments are provided per single parent.

A1 A2

A3

Figure 3.5: DEVN with Bayesian bba

This belief network is a DAG where all focal elements are singletons. However, there is
no probability distribution that satisfies this graph when there is a mass distribution that does.

Results for the joint mass distribution on ΘA1×ΘA3, ΘA2×ΘA3 are shown in Table 3.10.

Table 3.10: Local joint mass distributions

mA1A3({(a11, a31)}) 0.04

mA1A3({(a11, a32)}) 0.16

mA1A3({(a12, a31)}) 0.24

mA1A3({(a12, a32)}) 0.56

mA2A3({(a21, a31)}) 0.36

mA2A3({(a21, a32)}) 0.54

mA2A3({(a22, a31)}) 0.1

mA2A3({(a22, a32)}) 0

After a projection on ΘA3, we notice that the distributions of mA3 are different:
- mA1A3↓A3 ({a31}) = 0.28 and mA1A3↓A3 ({a32}) = 0.72 if the path A1, A3 is followed.
- mA2A3↓A3 ({a31}) = 0.46 and mA2A3↓A3 ({a32}) = 0.54 if we choose to follow A2, A3.

With belief function networks where conditionals are defined per single parent, it is possi-
ble to find several distributions for a given node according to the path followed in the network.
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Thus, it does not guarantee the uniqueness of the solution.

Besides, since the fusion process is performed, we cannot reconstruct the local distribution
from the global joint distribution. For these reasons, belief function network with individual
parents and where focal elements are singletons cannot be considered as a generalization of
Bayesian networks. However, note that when a Bayesian network admits a solution, it is the
case also for ENCs and DEVN s.

A DEVN can be represented as a Bayesian network where conditional distributions spec-
ified per each edge are aggregated into a single conditional value. Nevertheless, this network
remains nonequivalent to a Bayesian network.

3.4 A new belief network (BNC)

We have shown in the last section that the DEVN representation is a more efficient storage
environment than the EN . Besides, it is more flexible than ENC since conditional distribu-
tions may be defined given all the parents without a need to have binary relations between
nodes (i.e., merge parent nodes into one single parent).

In this section, we propose a new associational belief network. Close to DEVN, this net-
work is called belief network with conditional beliefs denoted by BNC. It will serve as a basis
for modeling causality. In this network beliefs are expressed in terms of basic assignments.
The representation we propose is more flexible than DEVN since the conditional distributions
can be defined in the context of one parent or for more than one node without necessarily
have to define them for all the parents.
Remember that the computation of the joint distribution in the DEVN is based on the bal-
looning extension and the vacuous extension. We will show that these concepts unfairly
share knowledge between subsets. Accordingly, our network will be based on new definitions
(Boukhris, Benferhat, & Elouedi, 2011b) of these notions.

3.4.1 Definition of the belief network with conditional beliefs

A belief network with conditional beliefs (BNC ) is a graphical model denoted G. It is defined
on two levels:

• Qualitative level: represented by a directed acyclic graph G=(V,E) where V is a set of
nodes denoting the domain variables and E is the set of directed edges encoding the
dependencies among variables. Each variable Ai is associated with a finite set namely
its frame of discernment ΘAi representing all its possible instances, i.e., {aij,j=1,...,|ΘAi

|}.
A variable Aj is called a parent of a variable Ai if there is an edge pointing from Aj
towards Ai. The set of all parents of Ai is denoted by U(Ai). A subset from U(Ai) is de-
noted by PA(Ai) representing some parent nodes of Ai where a single parent is denoted
by PAj(Ai). An instance from U(Ai), PA(Ai) or PAj(Ai) is denoted respectively by
u(Ai), Pa(Ai) and Paj(Ai).
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Example 3.5. Let us consider the network of Figure 3.6.

A
1 A

3
A
2

A
4

Figure 3.6: A belief network: BNC

– The set of all parents of A4 are denoted by U(A4) = {A1, A2, A3}.

– A single parent of A4 is denoted by PAj(A4) (i.e., PA1(A4) = A1, PA2(A4) =
A2, PA3(A4) = A3).

– A subset from U(A4) is denoted by PA(A4) (e.g., {A1, A2}, {A3}, {A1, A2, A3})
representing some or all parent nodes of A4.

• Quantitative level: represented by the set of bbas associated to each node in the graph.
In this network, we work under the closed world assumption. Thus, the mass allocated
to the empty set is equal to zero.

– For each root node Ai (i.e., PA(Ai) = ∅) having a frame of discernment ΘAi , a
normalized a priori mAi is defined on the powerset of 2ΘAi , such that:∑

subik⊆ΘAi

mAi(subik) = 1, k = 2, . . . , |2ΘAi |

Besides, it is possible to model the total ignorance of the a priori by defining a
vacuous bba on Ai (i.e., setting m(ΘAi) = 1).

– For the rest of the nodes, conditional distributions can be defined for each subset
of each variable Ai in the context of its parents (either one or more than one parent
node): mAi(.|Pa(Ai)) such that:∑

subik⊆ΘAi

mAi(subik|Pa(Ai)) = 1

3.4.2 Ballooning extension: from analysis to revision

Ballooning extension: why?

The term ballooning extension (Ristic & Smets, 2005; Ben Yaghlane & Mellouli, 2008) is used
when for a given variable some new instances are added or discovered after that beliefs were
already expressed by the experts. It is also used to get rid from conditioning as shown in
Chapter 1. Therefore, the agent should redistribute his beliefs.
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Ballooning extension: how?

Let us consider the case of beliefs defined on a frame of discernment ΘX : mX . From this
bba, we would like to build a bba on a larger frame ΘX′ ⊇ ΘX . This issue is of the domain
of the ballooning extension: to compute mX (X

′
. It amounts to transfer masses to the larger

frame ΘX′ . Such transfer can be done by three ways (Boukhris, Elouedi, & Benferhat, 2011a).

In the following, let us consider C a subset of ΘX and A a subset of ΘX′ . Let us denote
by ΘX : ΘX′-ΘX .

• Conservative transfer: Intuitively one may consider that the bbm mX (X
′
(A) should

be equal to the initial bbm defined on ΘX . However, if this solution is retained the,
masses defined on 2ΘX will be supposed to be always equal to zero since

∑
mX(C) is

already equal to one. Accordingly, this solution cannot be chosen. In fact, masses are
not suitably transferred on the subsets. It assumed that the arrival of the new piece of
information has no impact on the initial distribution.

mX (X
′
(A) =

{
mX(C) if A = C

0 otherwise
(3.6)

• Least committed ballooning extension: It is the solution proposed in (Smets,
1978). The new bba is built on the largest subset of ΘX′ that its intersection with ΘX

is ΘX . Accordingly, original focal elements will no longer be considered as such. It is
defined as:

mX (X
′
(A) =

{
mX(C) if A = C ∪ΘX

0 otherwise.
(3.7)

Here also, masses are not suitably transferred on the subsets. In fact, the bba of the
initial distribution is set to zero as we no longer believe it.

• Uniform ballooning extension: We propose a new definition denoted by ⇑. It allows
the uniform transfer of masses. As for the least committed solution, the new bba is built
on a subset of ΘX′ whose intersection with ΘX is ΘX . Since we are not only interested
in the largest subset of ΘX′ , several subsets satisfy this condition. Hence, the mass
originally allocated to C will be reallocated many times to these different subsets. By
this way, the sum of mX (X

′
(A) will also exceed 1. To tackle this problem, we propose to

share uniformly the original bbm between all its supersets that contain the alternatives
that were not taken into consideration. Formally:

mX⇑X′(A) =
mX(C)

|2ΘX |
, C ⊆ A (3.8)

The last solution that we propose is a good compromise between the two first alternatives.
It allows to uniformly distribute initial beliefs. Accordingly, a non empty mass is attributed
to the initial distribution and at the same time the new instances are taken into account.

Example 3.6. A murder has been committed. There are two suspects Θperson = {Bob (b),
Sylvia (s)}. Witnesses may express their beliefs about the murderer by declaring if they thought
he is guilty or innocent (Θstate = {Guilty (g), Innocent (i)}).
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Their beliefs will be formalized on ΘX=Θperson×Θstate.

Let us consider a subset C defined on ΘX such that C= {(b,g), (s,g)}.
A witness defines his beliefs as follows:

mX(C)=0.7, mX({(b,g)}) = 0.1, mX({(s,i)}) = 0.2.

If after that beliefs were defined on ΘX , we discover that there is another suspect John (j)
(i.e., {(j,g), (j,i)}). Beliefs defined on ΘX should be reallocated to take into account this new
information.

Let ΘX′ be a larger frame defined as ΘX′= ΘX
⋃
{(j,g), (j,i)}.

We denote by ΘX elements of ΘX′-ΘX (i.e. {(j,g), (j,i)}).

Let A and B two subsets of ΘX′ composed of C and subsets of ΘX such that A = {(b,g),
(s,g), (j,i)} and B = {(b,g), (s,g), (j,g)}), then the possible reallocations are:

• conservative transfer:

mX′(A) = mX′(B) = 0;

mX′(C)=0.7; mX′({(b,g)}) = 0.1; mX′({(s,i)}) = 0.2.

• least committed transfer:

mX′(A) = mX′(B) = mX′(C) = mX′({(b,g)}) = mX′({(s,i)}) = 0;

mX′(C ∪ΘX) = 0.7; mX′({(b,g)} ∪ΘX) = 0.1; mX′({(s,i)} ∪ΘX) =0.2.

• Uniform transfer: the bbm allocated to C will be transferred from C to A and also from
C to B. Thus, if mX′(B) = mX(C) and mX′(A) = mX(C) then

∑
A⊆ΘX′

mX′(A)>1.

Our proposed solution is to divide the bbm of C equally between all subsets of ΘX .
Hence:

mX′(A) = mX′(B) = mX′(C) = mX′(C ∪ΘX) = 0.7/4 = 0.175.

Uniform deconditioning on the product space

As an alternative to the conditional embedding (Dubois & Denœux, 2010; Smets, 1978), we
propose a new definition for the deconditioning process that is based on a uniform transfer
of basic assignments. Thus, not only least committed subsets will be considered as focal
elements. This operation will be useful to transform a conditional bba in the BNC to a non-
conditional one. The deconditioning operator will be denoted by ⇑.

Let mΘ(. | ω) be defined on Θ for ω ∈ Ω and we want to get rid of conditioning. The idea
is to divide the original mass defined on a given subset of Θ equally between all its supersets
that contain the new discovered alternatives. Disposing of a conditioned bba, mΘ(A | ω),
these alternatives are those in ω. Accordingly, the transfer of masses is computed as follows
(Boukhris, Benferhat, & Elouedi, 2011b):

mΘ⇑ΘΩ
ω (C) =

{
mΘ(A|ω)

2|Θ|·|ω|
if C = (A× {ω} ∪B × ω), B ⊆ Θ

0 otherwise.
(3.9)
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Example 3.7. Let us take the same example presented in Chapter 1 for the definition of the
state-of-the-art ballooning extension concept (Example 1.7). Initially, we have a conditional
bba defined on Θ={Mary, John, Peter} in context of Ω = {Tall, Short}.

Let us assume that the witness has declared that the murderer is Tall. The confidence that
the murderer is Peter is defined with mΘ(Peter|Tall)=0.7. To get rid of conditioning and
define this bbm on Θ×Ω, we have to uniformly transfer the bbm allocated to {(Peter, Tall)}
to all subsets of Θ× Ω whose intersection with {(Peter, Tall)} is not empty. Accordingly,
mΘ⇑ΘΩ({(Peter,Tall)}) = 0.7/8 = 0.0875
mΘ⇑ΘΩ({(Peter,Tall),(Mary,Short)}) = 0.0875.
mΘ⇑ΘΩ({(Peter,Tall),(Peter,Short)}) = 0.0875.
mΘ⇑ΘΩ({(Peter,Tall),(John,Short)}) = 0.0875.
mΘ⇑ΘΩ({(Peter,Tall),(Mary,Short),(Peter,Short)}) = 0.0875.
mΘ⇑ΘΩ({(Peter,Tall),(Mary,Short),(John,Short)}) = 0.0875.
mΘ⇑ΘΩ({(Peter,Tall),(Peter,Short), (John,Short)}) = 0.0875.
mΘ⇑ΘΩ({(Peter,Tall),(Mary,Short),(Peter,Short), (John,Short)}) = 0.0875.

3.4.3 Vacuous extension: from analysis to revision

Vacuous extension: why?

The vacuous extension is used when the referential is changed, i.e., new variables are added.
This notion is useful within belief function networks since it allows to define local distributions
on the same frame of discernment in order to combine them afterwards. This operation will
be useful to define a local bba in the BNC to a joint frame.

Vacuous extension: how?

In Chapter 1, we have seen that the mass allocated to subsets of the original variables will be
transferred in a least committed way to all instances of the new variable. We propose a new
definition where beliefs are uniformly shared between all subsets of the new variables. The
operator will be denoted by �. Note that this does not affect the definition of the cylindrical
extension presented in Chapter 1 (see Equation 1.32).

Thus, a marginal mass function mΘ defined on Θ will be normalized and expressed on the
frame Θ×Ω as follows:

mΘ�ΘΩ(C) =

{ mΘ(A)

|2Ω| − 1
if C↓Θ = A

0 otherwise

, A ⊆ Θ, C ⊆ Θ× Ω. (3.10)

Example 3.8. Let us take the same example presented in Chapter 1 for the definition of the
state-of-the-art vacuous extension concept (Example 1.5). Consider a bba defined on Θ =
{Mary, John, Peter} as: mΘ({Mary})=0.5, mΘ({John})=0.2, mΘ({Θ})=0.3.

The height of the murder is defined on Ω = {Tall, Short}.
The bba defined on Θ will be defined in a finer frame Ω × Θ using the uniform vacuous

extension. For instance the bbm mΘ({Mary})=0.5 will be extended as follows:
mΘ�ΘΩ({(Mary, Tall)})= 0.5/3,
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mΘ�ΘΩ({(Mary, Short)})= 0.5/3,
mΘ�ΘΩ({(Mary, Tall),(Mary, Short)})= 0.5/3.

3.4.4 Global joint distribution computation on BNC

The global joint distribution of the BNC is based on the uniform deconditioning and the
uniform vacuous extension. Indeed, each local distribution should be first extended to a joint
frame. Thus, each conditional distribution will be uniformly deconditionalized (denoted by
⇑) and non-conditionalized distribution will be uniformly vacuously extended to a joint frame
(denoted by �). To compute the global joint distribution on the BNC, these three steps
should be followed:

1. Getting rid from conditioning for each conditional variable Ai:

1.1 For each instance of the parents of Ai denoted by Pa(Ai) (defined for one or more
than one parent node), compute the uniform deconditioning of mAi(.|Pa(Ai)):

mAi(.|Pa(Ai))
⇑AiPA(Ai)

1.2 Combine the deconditionalized bbas using Dempster’s rule of combination.

⊕
Pa(Ai)

mAi(.|Pa(Ai))
⇑AiPA(Ai)

2. Extend each node (root node and child node) to the universe of all variables in the
network by applying the uniform vacuous extension.

( ⊕
Pa(Ai)

mAi(.|Pa(Ai))
⇑Ai×PA(Ai))�Ai=1,...,n

3. Combine local joint distributions using Dempster’s rule of combination.

mA1,...,An = ⊕
i=1,...,n

( ⊕
Pa(Ai)

mAi(.|Pa(Ai))
⇑AiPA(Ai))�Ai=1,...,n (3.11)

Example 3.9. Let us consider the belief network with conditional beliefs depicted in Figure 3.7
where A and C are binary variables such that ΘA={a1,a2} and ΘC={c1,c2}. To compute the
joint distribution, we propose to use the uniform deconditioning and vacuous extension. For
that, we have to:

Figure 3.7: BNC with Bayesian bba
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1. Uniformly vacuously extend the bba mA (see Table 3.11)

Table 3.11: Uniform vacuous extension: mA�AC

mA�AC(a1)
{(a1, c1)}=0.2/3
{(a1, c2)}=0.2/3
{a1 ×ΘC}=0.2/3

mA�AC(a2)
{(a2, c1)} =0.8/3
{(a2, c2)}=0.2/3
{a2 ×ΘC}=0.2/3

2. Get rid from conditioning using the uniform deconditioning: mC(.|a)⇑AC (see Table 3.12)

Table 3.12: Uniform deconditioning: mC(.|a)⇑AC

mC⇑AC
a1 mC⇑AC

a2

{(a1, c1)} 0.05 {(a2, c1)} 0.075

{(a1, c1), (a2, c1)} 0.05 {(a2, c1), (a1, c1)} 0.075

{(a1, c1), (a2, c2)} 0.05 {(a2, c1), (a1, c2)} 0.075

{(a1, c1), (a2, c1), (a2, c2)} 0.05 {(a2, c1), (a1, c1), (a1, c2)} 0.075

{(a1, c2)} 0.2 {(a2, c2)} 0.175

{(a1, c2), (a2, c1)} 0.2 {(a2, c2), (a1, c1)} 0.175

{(a1, c2), (a2, c2)} 0.2 {(a2, c2), (a1, c2)} 0.175

{(a1, c2), (a2, c1), (c1, a2)} 0.2 {(a2, c2), (a1, c1), (a1, c2)} 0.175

3. Combine local deconditionalized distribution of the variable C (see Table 3.13).
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4. Aggregate normalized mA�AC with normalized mC⇑AC to get the joint mass distribution
on ΘA × ΘC (see Table 3.14). Note that normalized results found on the BNC when
bbas are Bayesian are the same as those found on Bayesian networks (see Table 3.15).

Table 3.15: Normalized global joint distribution with uniform transfers

mAC

{(a1, c1)} 0.04

{(a1, c2)} 0.16

{(a2, c1)} 0.24

{(a2, c2)} 0.56

3.5 Conclusion

Belief networks are compact and flexible graphical representations. In this chapter, we have
analyzed existing belief directed acyclic graphs. First, we have shown that the chain rule in Ev-
idential networks (EN) is made by factorizing masses and have explained that mass functions
are not not monotonous with respect to set inclusion. Then, we have shown that Evidential
Networks with Conditional beliefs (ENC) and Directed EVidential Networks (DEVN) are
not true extensions of Bayesian networks. Besides, they are based on the least committed
vacuous and ballooning extensions.

We have proposed a new associational belief network (BNC) where conditional distribu-
tions are defined in terms of basic assignments defined for one or more than one parent node.
Accordingly, it will have the advantage to simplify knowledge acquisition. It is based on fair
transfers of masses namely the uniform vacuous extension and the uniform deconditioning.
This network will serve as a base to the proposed causal belief network that will be introduced
in the following chapter.
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Chapter 4
Causal belief network with conditional
beliefs

4.1 Introduction

Our proposed belief network called BNC presented in Chapter 3 allows the prediction of
changes occurring on the system after some observations. Those observations happen by
themselves without any manipulation on the system.

While an observation is a new information about the value of a variable in a static world,
an intervention, (Halpern & Pearl, 2005; Pearl, 2000), is the effect of an external action that
forces a variable to have a specific value in a dynamic world. This distinction is somewhat
similar to the one between belief revision (Gänderfors, 1992) and update (Katsuno & Mendel-
zon, 1991) used for modeling belief change. However, in belief update there is no distinction
between external and internal actions.

Since external actions affect the system differently, the reasoning process requires different
modeling tools. It is important to note that despite their importance, no models handling
interventions are provided under the belief function framework.

In this chapter, we present a causal model under the belief function framework namely
causal belief network with conditional beliefs (CBNC). It is an alternative to causal Bayesian
network representation. The advantage of this network comparing to the Bayesian one, is
that it allows the description of uncertain effects including situations of total ignorance after
making an intervention.

Besides, we propose a counterpart of the “do” operator to the belief function framework.
It will be useful to distinguish between observations and interventions. Graphically, external
actions are handled through making changes on the structure of the graph. From reasoning
point of view, after acting on a variable we assume that its initial causes are no more respon-
sible of its state. Accordingly, arcs linking the variable of interest to its parents should be
deleted. The resulting graph is a mutilated causal belief network. Another alternative is to
add a new fictive variable DO as a parent node of the variable concerned by an intervention.

75
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This added variable will totally control its status. The resulting graph is called an augmented
causal belief network. Even if the computation of the belief joint distribution is different
from the one used in probability theory, we show that the graph augmentation and graph
mutilation are equivalent methods and lead to the same joint distribution.

However, in real world applications, assuming that an intervention is always perfect is not
usually true. In fact, acting on a variable and setting it into one specific value is not always
possible to achieve or ethic to do. Therefore, handling non-standard interventions is required.
Despite its need in real world applications, only recent few works in the probabilistic setting
addressed this issue (e.g., (Eberhardt & Scheines, 2007; Korb et al., 2004; Teng, 2012; Wood-
ward, 2003)). In these works, interventions are considered as external actions represented
with dummy variables that change the local probability distribution of the target variable.
In our modeling, we consider the case of imperfect interventions that may have imperfect
consequences.

The chapter is organized as follows: In Section 4.2, we propose a definition of causation
and explain the difference between observations and interventions under a belief function
framework. Then, in Section 4.3 we define causal belief networks that rely on belief function
networks introduced in Chapter 3 and detail the changes on the graphs toward handling simple
interventions. Section 4.4 deals with imperfect interventions while Section 4.5 presents the
idea of interventions that may be imperfect and have imperfect consequences. Proofs of
propositions provided in this chapter are presented in Appendix A.

4.2 Belief causation: observations vs interventions

Unlike deterministic approaches where causes are necessary to the occurrence of their effects,
a belief causal link defines a higher belief of effects when a cause takes place and accordingly
if a cause does not arise then the belief of the effect will decrease. External actions on the
system disturb the relationships between variables and thus should have a different impact on
the other events. The application of Dempster’s rule of conditioning is appropriate when an
event occurs spontaneously (observation) and will lead to erroneous results when something
forces the event to happen (intervention).

In the following, we present the difference between standard interventions and observations
under the belief function framework.

4.2.1 Observation

Observation is seeing. It can provide some information about the statistical relations amongst
events. When we have passively observed an event, we can reason backwards diagnostically
to infer the causes of this event, or we can reason forward and predict future effects.

Example 4.1. Suppose that you are in West Palm Beach and have gone to a cafe and you
have ordered a cup of coffee. Given your beliefs about how coffee is prepared in this area.
Your initial beliefs are:

m1(sugar = {no}) > m1(sugar = {yes, no}) > m1(sugar = {yes}).
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This reflects the fact that you are more confident that there is no sugar in coffee, and even
if you have some doubts {(yes, no)}, you think that it is less likely that the coffee already
contains sugar.

After you have tasted the coffee, you notice that it is sweet. Therefore, you need to revise
your beliefs based on this observation. It may be:

0.9 = m2(sugar = {yes}) > m2(sugar = {yes, no}) > m2(sugar = {no}) = 0.

In fact, even if you have noted that the coffee is sweet and you are pretty sure that they
have changed their way to prepare the coffee by adding some sugar inside it, you still have
some doubts. In fact, you think that it may be the effect of having ate ten minutes ago a pork
sausage that was very salty, that let you found the coffee sweet.

4.2.2 Intervention

A standard intervention is an external action to the system that forces a target variable to
have a specific value. It allows the identification of elements in a sequence of events that are
related in a causal way.

Example 4.2. Assume that before tasting the coffee, your friend has added all the quantity
of the sugar in the container into your cup of coffee. It is obvious that this action has an
impact on the sweetness of the coffee. It forces it to take the value “sweet”. Note that this
intervention does not affect your initial beliefs regarding the initial preparation of the coffee.

m′1(sugar = {no}) = m1(sugar = {no}) >
m′1(sugar = {yes, no}) = m1(sugar = {yes, no}) >
m′1(sugar = {yes}) = m1(sugar = {yes})

Like for probability and possibility theories, interventions should be distinguished from
observations under the belief function framework. Observations concern static worlds while
interventions concern dynamic worlds. The difference between observations and interventions
is somewhat similar to the difference between belief revision (Gänderfors, 1992) and updat-
ing (Katsuno & Mendelzon, 1991). Indeed, belief revision is the process by which an agent
changes his beliefs about a static world in the light of new information where belief update is
the process by which an agent keeps his beliefs up to date with an evolving world. However, in
updating there is no distinction between internal and external actions which is not the case for
interventions. In fact, an intervention is by definition an external manipulation to the system.

A mentioned in Chapter 2, manipulations on the system disturb the relationships be-
tween variables, they should have a different impact on the other events than observations.
In fact, it consists in ignoring the effects of all the causes related to the variable of interest.
Therefore, while the effect of an observation is computed by the conditional belief m(.|aij),
the effect of an external manipulation needs a different computational tool, namely, the “do”
operator. This latter was originally introduced in (Goldszmidt & Pearl, 1992) for the ordinal
conditional functions of Spohn (1988) and proposed after that in (Pearl, 2000) under a prob-
abilistic framework. Thus, an intervention on a variable Ai that forces it to take the specific
value aij is denoted by do(aij). In (Boukhris, Elouedi, & Benferhat, 2011b), we propose a
counterpart of this operator since it is important to have a belief function framework allowing
to model interventions and infer causal belief reasoning.
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The following section defines causal belief networks and details how to deal with interven-
tions. Hence, we explain how to compute the effect of these external actions, i.e., m(.|do(aij)).

4.3 Causal belief networks

A belief network represents an efficient way to model dependencies between variables and to
predict the effect of observations on the joint distribution of the variables. Causal reasoning
can be intuitively and formally described with graphs (Benferhat & Smaoui, 2007b; Pearl,
2000). On these networks, it is possible to predict the effects of both observations and external
actions on the system. Proofs of propositions given in this chapter can be found in Appendix
A.

4.3.1 Definition

A causal belief network with conditional beliefs (CBNC) (Boukhris, Elouedi, & Benferhat,
2011b) is based on the belief network (BNC) presented in Chapter 3.

Several BNC s are Markov equivalent in the sense that they model the same global joint
distribution. At most, one of them follows the causal process which is the causal belief
network. The latter consists of:

• A graphical component: It is a DAG, where nodes represent variables and arcs describe
cause-effect relations. Directed edges encode causal relationships among variables. Par-
ents of a given variable are seen as its immediate cause, and accordingly the equivalence
hypothesis of belief function networks is not valid any more. The set of parents of Ai is
denoted by PA(Ai).

• A numerical component: It is the set of normalized bbas associated to each node in the
graph.

– For each root node Ai (i.e., PA(Ai) = ∅) having a frame of discernment ΘAi , a
normalized a priori mAi is defined on the powerset of 2ΘAi , such that:∑

subik⊆ΘAi

mAi(subik) = 1, k = 2, . . . , |2ΘAi |

– For the rest of the nodes, conditional distributions can be defined for each subset
of each variable Ai in the context of its parents (either one or more than one parent
node): mAi(.|Pa(Ai)) such that:∑

subik⊆ΘAi

mAi(subik|Pa(Ai)) = 1

An external action (interventional data) will affect the system differently and consequently
will lead to different results than those found with observational data. These effects should
be adequately predicted.

As seen in Chapter 2 that under a probabilistic or possibilistic framework, handling inter-
ventions and computing their effects on the system can be done by making two different but
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equivalent changes on the structure of the causal network: the so-called graph augmentation
and graph mutilation methods.

In the following subsections, we will investigate these changes on the causal belief graph
and will show that even if the belief joint distribution is not defined as for probability distri-
bution, these methods are equivalent and lead to the same joint distribution under the belief
function framework.

4.3.2 Intervention by graph mutilation

An intervention puts its target variable into exactly one specific value. Therefore, this action
makes the direct causes (parents) of the variable concerned by the intervention not more
responsible of its state. However, beliefs on these direct causes should not be modified.

Thus, all the edges directed to the target node will be deleted. No changes affect other
nodes. Pearl (2000) considers it as a surgery (a mutilation) by which all the other causes
than the one of the intervention will be excluded.

Definition 4.1. Let G be a causal belief network on which we make an intervention on a
variable Ai ∈ V , where V is the set of all the nodes and v is a subset from the cartesian
product of variables in V . Intervening on Ai means that we force it to take the specific value
aij (do(aij)). We define mutilation on two steps:

1. Arcs pointing to Ai in G will be deleted. The obtained mutilated graph is denoted Gmut.
Its associated belief distribution is denoted mGmut. The intervention do(aij), affects the
computation of the joint distribution mG by transforming it into mG(.|do(aij)). On the
mutilated graph, it corresponds to observing aij. Thus, it simply consists of conditioning
the mutilated graph by the value aij

mV
G (.|do(aij)) = mV

Gmut
(.|aij) (4.1)

2. An action do(aij) imposes the value aij on the variable Ai. Accordingly, the correspond-
ing bba of Ai becomes certain as follows:

mAi(subik) =

{
1 if subik = {aij}
0 otherwise

(4.2)

As stated in the following proposition, to perform a causal inference we could simply make
a conditioning on the mutilated graph by the target value of the variable concerned by the
intervention, namely aij .

Proposition 4.1. Let G be a causal belief network and mV
G be the joint mass distribution

related to G. The effect of an intervention do(aij) on the mass distribution is given by:

mV
G (v|do(aij)) =

{ ∑
v′∩a↑Vij =v

m
V \Ai

G (v′)�V if v↓Ai = {aij}
0 otherwise

(4.3)

where v is a subset from the cartesian product of the variables in V .
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Example 4.3. (continued)

If your friend adds sugar into your cup of coffee then it will affect its sweetness. It
is considered as an external intervention on the variable C that forces it to take the value
“sweet” (i.e., c = {c1}). Graphically, this action will lead to the disconnection of C from its
original cause, here the initial use of sugar S. Initial beliefs regarding the initial use of sugar
remain unchanged, i.e., mS.

Figure 4.1 illustrates the new graph, the mutilated one where the parents of the manipulated
variable become independent from it.

Note that the effects of observations on the graph of Figure 3.1 or on its non-causal Markov
equivalent networks are the same. However, results will be different after intervening on some
variables. Indeed, observing the value c1 on the Markov equivalent networks will lead to the
same results whereas manipulating the variable C will give different mutilated graphs and
consequently different results.

Figure 4.1: Mutilated causal belief graph

Observing the value c1 on the mutilated graph Gmut, represents the effect of the intervention
do(c1) on the initial graph G. It is computed by conditioning the joint mass distribution mSC

Gmut

by c1. In fact, upon intervening on C, the event c1 becomes certain. mC(c), for each c ⊆ ΘC ,
is computed by the application of Equation 4.2.

mC
Gmut

(c) =

{
1 if c = {c1}
0 otherwise

As S and C become independent after the intervention, their combination can be computed
by making the pointwise product of their masses. Let us denote by s any subset of ΘS and by
c any subset of ΘC . Then, mSC(s× c) is computed as:
- mS(s) ·mC(c) = mS(s), if (s× c)↓C = {c1}.
- 0, otherwise.

Focal elements of mSC are presented in Table 4.1.

Table 4.1: Focal elements of mSC
Gmut

{(s1, c1)} 0.1

{(s2, c1)} 0.7

{(s1, c1),(s2, c1)} 0.2

In the case where the initial bba of the target variable is non-dogmatic, the effect of
the intervention can be also computed using the initial distribution. This is done by the
application of the decombination operator to remove the conditional mass allocated to the
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target variable.

Proposition 4.2. Let G be a belief causal network in which a variable Ai is forced it to take
the value aij, do(aij). In the case where the initial bba of the target variable is non-dogmatic,
the effect of this intervention on the joint mass distribution mV

G is given as follows:

mV
G (v|do(aij)) =

{ ∑
F∩a↑Vij =v

mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V if v↓Ai = {aij}

0 otherwise

(4.4)

where F represent focal elements of (mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V ) and v any

subset of the cartesian product of variables in V .

Corollary 4.1. Let G be a belief causal network whose joint mass distribution is mV
G . In the

case where the initial bba of the target variable is non-dogmatic, the effect of an intervention
do(aij) on a variable Ai of this graph forcing it to take the value aij can be also computed as
follows:

mV
G (v|do(aij)) =

{ ∑
F∩{(aij ,Pa(Ai))}↑V =v

mV
G (.|aij , Pa(Ai))⊕mPA(Ai)

G (Pa(Ai))
↑V if v↓Ai = {aij}

0 otherwise

(4.5)

where F is a focal element of mV
G (.|aij , Pa(Ai))⊕mPA(Ai)

G (Pa(Ai))
↑V and v is a subset from

the cartesian product of variables in V .

4.3.3 Intervention by graph augmentation

Another possible interpretation of interventions on a causal belief network is to add a fictive
node called “DO” as a parent of the target variable Ai (Pearl, 2000). Accordingly, the set
of the parents of Ai is transformed from U(Ai) to U(Ai) ∪DO. The augmented graph with
the fictive nodes is denoted Gaug. In this section, we will show that this representation is
equivalent to the graph mutilation method to compute the effect of interventions.

The DO node is considered as an extra node in the system. It is taking value in do(x),
x ∈ {ΘAi ∪ {nothing}}.

do(nothing) means that there are no actions on the variable Ai, it represents the state of
the system when no interventions are made. do(aij) means that the variable Ai is forced to
take the specific value aij .

The main advantage of handling intervention by graph augmentation, is that it allows to
represent the effect of interventions and also observations which is not the case with graph
mutilation method. In fact, by mutilating the graph it is not more possible to compute the
effect of observations.

Let us first consider the changes on the bba of the target variable Ai. For each subik ⊆ ΘAi ,
the part of belief mAi

Gaug(subik|Pa(Ai), do(x)) is computed as follows:

mAi
Gaug(subik|Pa(Ai), do(x)) =

{ 1 if x = subik = {aij}
0 if x 6= {aij}
mAi
G (aij |Paj(Ai)) if x = {nothing}

(4.6)
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Regarding the bba assigned to the added fictive node (i.e., DO), two cases are considered:

• No interventions are performed. It allows to model the effect of observations as on the
initial causal graph. mDO

Gaug(do(x)) is defined by:

mDO
Gaug(do(x)) =

{
1 if x = {nothing}
0 otherwise

(4.7)

The graph augmentation method allows to compute the effect of observations. As stated
in the following proposition, it consists of conditioning the augmented graph by the value
do(nothing).

Proposition 4.3. Let Gaug be an augmented causal belief graph where the DO node is
set to the value nothing.
Its corresponding bba mV

Gaug(.|do(nothing)) encodes the same joint distribution as the
original causal belief graph.

mV ′
Gaug(.|do(nothing)) = mV

G (4.8)

where V ′ = V ∪DO.

• If there is an intervention forcing the variable Ai to take the value aij , then the
mDO
Gaug(do(x)) is defined by:

mDO
Gaug(do(x)) =

{
1 if x = {aij}
0 otherwise

(4.9)

The graph augmentation method allows also to compute the effect of interventions
by conditioning the augmented graph by the value do(aij). In this situation, belief
graph mutilation and belief graph augmentation are equivalent methods for handling
interventions.

Proposition 4.4. Let G be a causal belief network and Gmut and Gaug its corresponding
mutilated and augmented graphs after acting on the variable Ai by forcing it to take
the value aij. Then as for probability and possibility theories, computing the effects
of interventions using the mutilation of the graph or its augmentation gives the same
results.

mV
G (.|do(aij))

= mV
Gmut

(.|aij)
= mV ′

Gaug(.|do(aij))
(4.10)

We note that even though there is a difference in the construction of the global joint
distribution between the initial, the mutilated and the augmented graph, the result remains
the same. Given an initial causal belief network, acting on a given variable Ai by forcing
it to take a specific value aij amounts to observing the value aij in its mutilated graph or
observing the value do(aij) on the fictive node DO in its associated augmented network.
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Example 4.4. (continued)
Acting on the variable C forcing it to take the value ‘sweet’ i.e., do(c1) is graphically

represented by the augmented causal belief network shown in Figure 4.2. Aside from the
direct cause S of the manipulated variable C, a new fictive node DO is added to the set of
the parents of C where its frame of discernment is denoted by ΘDO. A new distribution
mGaug(s × c × {do(x)}) has to be taken into consideration. It is defined on ΘS×ΘC×ΘDO.
The new conditional bba on C given its new set of parents is shown in Table 4.2.

Figure 4.2: Augmented causal belief graph

Table 4.2: Conditional distribution mC(.|s, do(x))

{(s1,
do(nothing))}

{(s1,
do(c1))}

{(s1,
do(c2))}

{(s2,
do(nothing))}

{(s2,
do(c1))}

{(s2,
do(c2))}

{c1} 0.8 1 0 0.1 1 0

{c2} 0.1 0 1 0.7 0 1

ΘC 0.1 0 0 0.2 0 0

In Table 4.3, we show the effect of an intervention do(x) = do(c1) on the distribution
of the node DO (using Equation 4.9). The global joint distribution presented in Table 4.4
is given by the combination of the vacuous extension of mS and mDO with the ballooning
extension of each mC(.|s, do(x)).

Table 4.3: Local distribution mDO

do(nothing) 0

do(c1) 1

do(c2) 0

Table 4.4: Focal elements of mC×S×DO

{(c1, s1, do(c1))} 0.1

{(c1, s2, do(c1))} 0.7

{(c1, s1, do(c1)),(c1, s2, do(c1))} 0.2

Note that the conditioning of the distribution presented in Table 4.4 by do(c1) leads to the
same results as those found in Table 4.1 resulting from a conditioning on the mutilated graph
mGmut(.|c1)).
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4.4 Dealing with imperfect interventions

Motivated by the fact that in real world applications forcing a variable to take one certain
specific value is not generally feasible. We propose to handle non-standard interventions in
our modeling.

4.4.1 Related works under a probabilistic framework

Despite their need in real world applications, only few works in the probabilistic setting
addressed the issue of non-standard interventions (e.g., (Eberhardt & Scheines, 2007; Korb
et al., 2004; Teng, 2012; Woodward, 2003)). They are considered as external actions that
change the local probability distribution of the target variable. They are defined as:

• exogenous variables i.e., uncaused, with states reflecting whether the intervention is
active or not.

• direct causes of target variables.

Let us consider that Ai is the manipulated variable. When the intervention is active (i.e., on),
it is categorized as:

• independent (hard, structural, surgical): leads to an achieved distribution which is a
function only for the new distribution aimed for the intervention. i.e., a new distribution
P ∗ is defined where P (Ai|Pa(Ai), on) is changed to P ∗(Ai).

• dependent (soft, parametric, conditional): leads to an achieved distribution which is a
function from both the target distribution and the variable’s causes (parents), i.e., a new
distribution P ∗ is defined where P (Ai|Pa(Ai), on) is transformed to P ∗(Ai|Pa(Ai)).

It also varies by being either:

• deterministic: leaves the target variable into one state.

• stochastic: leaves the target variable with a new distribution with positive probability
over two or more states.

Example 4.5. (Independent stochastic intervention)

Let us continue with the network of Figure 3.2. Suppose that your friend puts something
into the cup of coffee. It is considered an external intervention on the variable C. Accordingly,
the DO node in this case in set to the value “on”. Graphically, this action will lead to the
disconnection of C from its original cause. However, a stochastic distribution will be assigned
to the node C. Indeed, the two states of the variable C (i.e., c1 and c2) will have positive
probabilities. Table 4.5 represents the new probability distribution P ∗ of the target variable.

Table 4.5: Probability distribution of node C after an independent stochastic intervention

ci P ∗(ci)

c1 0.7

c2 0.3
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Standard or ideal interventions are deterministic independent external actions. In the follow-
ing subsections, we propose methods to handle non-standard interventions under the belief
function framework. We will use these following qualifiers:

• standard interventions: external actions that succeed to force a variable to take a specific
fixed and known value. A certain bba is specified for the target variable.

• imperfect interventions: experiments whose occurrence is imperfect (either imprecise
or uncertain). In other words, imperfection concerns the DO node. These kinds of
interventions have never been addressed before. In fact, in the probabilistic works the
exogenous variable took a certain value.

• interventions with imperfect consequences: manipulations that may fail to put their
targets into exactly one state. Therefore, like for probabilistic works (stochastic inter-
ventions) a new bba expressing the uncertainty is specified for the target variable. This
bba can be defined from the interaction between the effect of the intervention and the
initial causes of the target variable.

Accordingly, we will go further in the analysis of non-standard interventions. In fact, will
explain how to define the new distribution of the DO node (i.e., the exogenous variable) as
well as the one of the target variable. Note that imperfect interventions may or not have
imperfect consequences.

4.4.2 Imprecise interventions

With standard interventions, the experimenter is assumed to completely control his manipu-
lation. In fact, he succeeds to put the target variable into exactly one specific known value.
Here, we consider another type of non-ideal interventions, namely those that act on one tar-
get variable and totally control its state as it is the case for standard interventions but the
experimenter is not certain regarding the target values of his action. Note that this type of
interventions cannot be handled under the probabilistic framework.

We choose to take advantage of the belief function theory to model such manipulations
having not only certain but also imprecise target values. Motivational factors in this choice
are:

• this task is not trivial within the probabilistic framework and this problem has never
been addressed before.

• we only have a partial specification. In fact, we do not know precisely the effects of the
imprecise intervention.

• the belief function framework provides a natural framework to represent such cases of
ignorance. Indeed, it allows to express beliefs in terms of subsets instead of singletons.
Imprecision is naturally represented within the belief function formalism with a categor-
ical bba for the variable concerned by the intervention focused on a subset of its frame
of discernment.

Remember that the “do” operator is used to distinguish interventions from observations.
Upon an intervention, the original causes of the manipulated variable are no more responsible
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of its state and all the other causes than the one of the intervention will be excluded. The
experimenter puts the target variable Ai into exactly one specific state aij ∈ ΘAi . Accord-
ingly, the bba of the target variable becomes a certain bba.

In the following, we will expose how to deal with interventions on belief causal networks
when the target value is imprecise, i.e., do(subik), subik ⊆ ΘAi and detail the changes accord-
ing to standard interventions. We will show that graph mutilation and graph augmentation
are adequate methods to model imprecise interventions and they lead to the same results.

Graph mutilation for imprecise interventions

The manipulated variable becomes uniquely determined by the external action, the interven-
tion removes the influences of any other causes. Hence, the bba of the node Ai concerned by
an intervention is no more as a conditional bba given its initial causes.

Imprecisely intervening means that the experimenter have some doubts concerning the
target values of his manipulation. To model this kind of situations, a bbm of one is allocated
to the subset composed by possible values of the target variable.

Let us denote by subik the subset containing possible values that may take the variable
Ai concerned by the intervention (i.e. subik ⊆ ΘAi). One alternative to compute the effect of
this intervention is to mutilate the graph. It corresponds to alter the structure of the initial
network as follows.

1. cut-off the arcs pointing to the target variable.

2. changes of the initial conditional bba to a categorical bba focused on subik where:

mAi(subij) =

{
1 if subij = subik
0 otherwise

(4.11)

Proposition 4.5. The global joint distribution obtained after intervening on the initial graph
G by forcing a variable Ai to take the imprecise value subik leads to the same results obtained
after observing subik on the mutilated graph Gmut:

mV
Gmut

(.|subik) = mV
G (.|do(subik)) (4.12)

Graph augmentation for imprecise interventions

For graph augmentation method, a new node DO is added as a new parent of the node Ai
on which an external action has been made. This method allows to compute the effect of
not only interventions but also observations. In fact, the DO node is taking value in do(x),
x ⊆ {ΘAi ∪ {nothing}}. do(nothing) means that there are no actions on the variable Ai, it
represents the state of the system when no interventions are made. do(subik)) means that the
variable Ai is forced to take the imprecise value subik.

When no interventions are made, the DO node is set to the value nothing and the bbas of
the other variables remain unchanged. Experimentally, the agent will be passive. Indeed, he
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observes the natural behavior of the system. Formally, the bba of the DO node is defined by:

mDO
Gaug(do(x)) =

{
1 if x = {nothing}
0 otherwise

(4.13)

When an intervention is performed, the bba of the node DO is defined as a categorical bba
where:

mDO
Gaug(do(x)) =

{
1 if x = subik, subik ⊆ ΘAi

0 otherwise
(4.14)

For the bba of the target node Ai, namely mAi
Gaug(.|Pa(Ai), do(x)), it becomes either a

categorical bba when an intervention is performed or remains the same as on the initial graph
in the case of no manipulations. It is defined as follows:

mAi
Gaug(subik|Pa(Ai), do(x)) =

{ 1 if x = subik = subij
0 if x 6= subik
mAi
G (subij |Pa(Ai)) if x = {nothing}

(4.15)

Proposition 4.6. Let G a belief causal network and let Gmut and Gaug its corresponding
mutilated and augmented graphs. Dealing with imprecise interventions using the mutilation
of the graph or its augmentation gives the same results.

mV
G (.|do(subik))

= mV
G mut(.|subik)

= mV ′
G aug

(.|do(subik))
(4.16)

Proposition 4.7. Standard interventions are a particular case of imprecise interventions
when the the subset representing the possible target values is composed of one element, i.e.
subij = {aij}.

mDO(do(x)) =

{
1 if x = subik = {aij}, subik ⊆ ΘAi

0 otherwise
(4.17)

Proposition 4.8. Interventions with ignored target values are a particular case of imprecise
interventions: the subset representing the possible target values corresponds to the frame of
discernment, i.e. subij = ΘAi.

mDO(do(x)) =

{
1 if x = subik, subik = ΘAi

0 otherwise
(4.18)

Example 4.6. (continued)
Your friend sees on the table a container with some white powder. Without tasting it,

he adds a large amount of this powder into your cup because he knows that you like sweet
coffee. Later, he realizes it might be saccharin. In fact, many cafes offer saccharin instead
of sugar because of the increasing number of diabetics and persons wishing to lose weight.
However, even if saccharin has a sweetening power, it has a bitter unpleasant aftertaste at
high concentrations. As he adds a large amount of this white powder, the coffee may become
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bitter if it is saccharin.

Consequently, interventions are clearly external actions (of the system) that force vari-
ables to take some specific values. Here, it forces the coffee to take the value {sweet ,bitter}
(i.e., {c1, c2}) reflecting the ignorance of the friend about the target values of his manipulation.

However, this intervention does not affect the initial beliefs regarding the initial use of
sugar during the preparation of the coffee.

m′′1(sugar = {no}) = m1(sugar = {no}) >
m′′1(sugar = {yes, no}) = m1(sugar = {yes, no}) >
m′′1(sugar = {yes}) = m1(sugar = {yes})

The external action of the friend can be described graphically in belief causal networks
in two equivalent ways. The first way consists in the deletion of links from S (representing
the initial use of sugar) pointing into C (representing the taste of the coffee). Therefore, the
target variable becomes independent from its initial causes. The obtained network is called a
mutilated belief network for imprecise interventions.

The intervention imposes on the variable concerned by the intervention, C, the value
{c1, c2}. It reflects the ignorance about the taste of the coffee after acting on it (i.e., it may
be sweet or bitter). Consequently, the conditional bba on C defined for c ⊆ ΘC becomes a
vacuous bba:

mC(c) =

{
1 if c = ΘC

0 otherwise

The second equivalent way to graphically representing interventions consists in adding a new
variable denoted DO as a new parent of the target variable C. The obtained network is called
an augmented belief network for imprecise interventions. Unlike mutilated graphs, it is pos-
sible to compute on this network the effect of interventions and also observations. In fact,
when the DO node is instantiated with the value nothing it allows to compute the effect of
observational data.

The DO node will have more possible states compared to standard interventions (i.e.,
those reflecting imprecision about the target values, namely, subsets of ΘC instead of only
those belonging to the domain of C).

In the coffee example, the action of the friend is denoted by do({c1, c2}) (or do(ΘC)). It
has the following impact on the local distribution of the DO node.

∀x ⊆ ΘC , mDO(do(x)) =

{
1 if x = ΘC

0 otherwise

The bba of the target variable is defined as follows:

mC(c|Pa(C), do(x)) =

{ 1 if x = c = ΘC

0 if x 6= ΘC

mC(c|Pa(C)) if x = {nothing}
Consequently after the action of the friend, the conditional distribution of the target vari-

able becomes a vacuous bba, mC(ΘC |Pa(C), do(ΘC)) = 1.
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Note that acting on the variable C by forcing it to take the value ΘC in an initial belief
causal network is equivalent to observing the value ΘC in its associated mutilated graph or
observing the value do(ΘC) on the node DO in its corresponding augmented belief network.

4.4.3 Uncertain interventions

An intervention having the variable Ai as target may be uncertain. It means that it may
uncertainly occur by forcing Ai to take a specific unknown value aij(aij ∈ ΘAi) or does not
take place. To represent such cases, we will add to the belief network the DO node. On the
augmented graph, in a “natural” way a conditional bba in the context of the fictive node DO
will be specified.

Interventions with an unknown specific value

In the following, we focus on the case when the interventions uncertainly happen. To compute
the distribution of the target variable, we will detail four steps that should be considered.

1- Deciding about the nature of the external action

Unlike standard interventions where we are sure about the nature of the intervention, a
normalized bba mI expressing the beliefs about the genuine nature of the external action is
defined on a frame of discernment ΘI = {θ1, . . . , θn}. Since an intervention is an intended
action targeting a specific value of the variable concerned by the manipulation, deciding about
the actual nature of the intervention will allow us to know which states will be affected by
a change. The decision operation is made using the pignistic transformation. Hence, each
induced BetP(θi) takes into account all focal elements of mI intersecting with θi.

Example 4.7. (continued)

Suppose that the beliefs about the nature of the substance in the container are flexibly ex-
pressed within the belief function formalism. They are defined on ΘI={sugar, salt, heroine}
such that mI({sugar})=0.2, mI({salt})=0.7, mI({heroine})=0.01 and mI({sugar,salt})=
0.09. The corresponding probabilistic knowledge of this bba is computed with the pignistic
probability measure as follows: BetP ({sugar})= 0.2+0.09*0.5=0.245, BetP ({heroine}) =
0.01, BetP ({salt})=0.7+0.09*0.5=0.745.

2- Defining the possible states of the intervention

The frame ΘI is different from the frame of the target variable ΘAi . However, instances of ΘI

may affect the state of the target variable Ai by forcing it to take the value aij . Thus in the
case of uncertain interventions, a matching between each θi and a state from ΘAi is defined
as match(θi) = aij . If θi has no impact on Ai, then we will say that match(θi) = nothing.
Note that more than one element of ΘI may affect the same state aij .

Example 4.8. (continued)

Let us continue with the last example where the target variable C has a frame of dis-
cernment ΘC={c1=sweet, c2=bitter} and the intervention has a ΘI={sugar, salt, heroine}.
Table 4.6 presents the results of the matching between elements θi with instances of C.
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Table 4.6: Matching function: match(θi)

θi match(θi)

sugar c1

salt nothing

heroine c2

Recall that the DO node represents the intervention. It has the same instances than its
target to which the value nothing is added. do(aij) means that the intervention attempts to
set the target variable Ai into the state aij . This is achieved by performing the action θi.
Therefore, executing θi amounts to do(aij).

Accordingly, beliefs about the state of the variable DO reflecting the occurrence of the
intervention will be defined from the knowledge about the decided nature of the intervention
computed in the last step through BetPs. Since this latter reflects a probabilistic knowledge
(i.e. computed for singletons), the bba of the DO node will be Bayesian and defined as:

mDO(do(x)) =

{ ∑
θi,match(θi)=aij

BetP (θi) if x = {aij}∑
θi,match(θi)=nothing

BetP (θi) if x = {nothing} (4.19)

Example 4.9. (continued)

According to the added substance, the coffee will be either sweet, bitter or remain as it
was prepared. Therefore, forcing it to be at a specific state is not given for sure by adding
the white powder. Hence, beliefs expressed about the actual occurrence of the intervention
are computed using the BetP of each ingredient. In fact, the BetP takes into account all
the focal elements that intersect with the substance of interest. The bba of the node DO is
defined as: m({do(c1)}) = BetP(sugar) = 0.245, m({do(c2)}) = BetP(heroine) = 0.01 and
m({do(nothing)}) = BetP(salt) = 0.745.

2- Defining conditionals given the DO node

When occurring, an intervention do(aij) succeeds to force the variable Ai to take a certain
value aij . Therefore, a conditional bba given an intervention is a certain bba focused on aij
defined as:

mAi(subik|do(aij)) =

{
1 if subik = aij

0 otherwise
(4.20)

One can consider that mAi(.|do(aij)) is provided by a source of information and this latest
expects that it will be a certain bba. Since the occurrence of the intervention is uncertain,
the bba defined by applying Equation 4.20 is not appropriate. Accordingly, this source is
seen as not fully reliable. In fact, even if the intervention succeeds to put its target into one
specific value, its occurrence remains uncertain. A Bayesian bba expressing the actual values
concerning the occurrence of the intervention has been computed with BetP as explained in
the last step. It will be used to evaluate the reliability of the source.

When considering the case of an intervention forcing the variable Ai to take the value aij ,
the occurrence of the intervention in the form of other states does not matter. What it was
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predicted by the source is an intervention certainly occurring at the state aij , m
DO(do(aij)) =

1, whereas the actual belief about the occurrence of the intervention succeeding to put the
variable Ai into the state aij is defined as m(do(aij)) = α ∈ [0, 1]. Since the degree of
confidence in the reliability of a source can depend on the true value of the variable of
interest, the difference between what is was predicted and the actual value is considered as
its discounting factor defined as 1− α.

As a consequence, the conditional distribution given the DO node is discounted by taking
into account the reliability of each source, namely αdo(aij). This information, will transform
the conditional given the DO node from a certain bba into a weaker, less informative one.
Hence, the new conditional bba of the target variable given the DO node becomes:

m
Ai,αdo(aij)(subik|do(aij)) =

{
1− α if subik = {aij}
α if subik = ΘAi

(4.21)

Proposition 4.9. Standard interventions are a particular case of uncertain interventions
when the source is fully reliable, i.e., α = 0.

m
Ai,αdo(aij)=0

(subik|do(aij)) =

{
1 if subik = {aij}
0 otherwise

(4.22)

Example 4.10. (continued)

Graphically, an extra node DO representing the intervention on the variable C is added
as its new parent. The values of this node are computed in the example. Each conditional
distribution for the target variable C given an instance of the DO node is seen as provided by
a distinct source of information. These sources affirm that performing an intervention will
lead to a known change in the state of the manipulated variable. The conditional distributions
as presented by the sources are presented in Table 4.7.

Table 4.7: Certain bba: mC(.|do(x))

{do(c1)} {do(c2)} {do(nothing)}
{c1} 1 0 0

{c2} 0 1 0

ΘC 0 0 1

Since the intervention achievement is uncertain, conditional local distributions presented
in Table 4.7 are not appropriate. In fact, even when the intervention occurs with a degree of
belief and succeeds to put its target into one specific value, one should take into consideration
the cases where it fails to take place. Therefore, certain conditional local distributions will be
discounted according to the reliability of each source. The degree of confidence in the reliability
of a source is computed according the true value of the variable of interest, i.e. the DO bba.
Hence, discount rates are denoted by 1 − αdo(x). They are defined as 1- αdo(c1) = 0.245, 1-
αdo(c2) = 0.01 and 1- αdo(nothing) = 0.745.
The new discounted conditional bba given the DO node is presented in Table 4.8.
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Table 4.8: Discounted bba: mC,αdo(x)(.|do(x))

{do(c1)} {do(c2)} {do(nothing)}
{c1} 1*0.245=0.245 0*0.01=0 0*0.745=0

{c2} 0*0.245=0 1*0.01=0.01 0*0.745=0

ΘC 0*0.245+0.755 =0.755 0*0.01+0.99=0.99 1*0.745+0.255=1

4- Defining conditionals given an uncertain intervention

The impact of the uncertain intervention on the target variable will not only depend from the
intervention but also from the initial causes of the variable. The Dempster rule of combination
is used to aggregate the conditional distribution given the initial causes with the discounted
conditional given the DO parent. We use mAi(aj |Pa(Ai)) to represent the conditional mass
function induced on the space ΘAi given Pa(Ai) ⊆ ΘPA(Ai), and mAi,αdo(x)(ak|do(x)) to repre-
sent the discounted conditional mass function induced on the space ΘAi given the intervention
do(x). The resulting bba of the target variable mAi(ai|Pa(Ai), do(x)) is computed as follows:

mAi(ai|Pa(Ai), do(x)) =
∑

aj∩ak=ai

mAi(aj |Pa(Ai)) ·mAi,αdo(x)(ak|do(x)) (4.23)

Example 4.11. (continued)

The mass distributions given the initial causes and the DO node will be aggregated to
give the conditional bba mC(.|si, do(x)). This latter represents the effect of an uncertain
intervention on the variable C. For instance, mC(.|s1, do(c1)) is obtained by computing
mC(.|s1)⊕mC,αdo(c1)(.|do(c1)). Results are presented in Table 4.9.

Unlike the case of standard interventions, mC(c1|s1, do(c1)) 6= 1. However, the action of
the friend has raised the beliefs about the sweetness of the coffee. A small increase from 0.8
to 0.845 is explained by the fact that it is more likely that the used ingredient is salt. In the
same way, mC(c2|s2, do(c1)) has decreased from 0.7 to 0.638.

Table 4.9: Conditional bba: mC(.|si, do(c1))

{(s1, do(c1))} {(s2, do(c1))}
{c1} 0.8450 0.180

{c2} 0.0775 0.638

ΘC 0.0775 0.182

Interventions not occurring

The approach proposed for interventions uncertainly happening is also valid in the case when
no interventions are performed. It amounts to compute the effect of observations on the sys-
tem. This is represented by setting the variable DO with certainty to the value do(nothing).

The situation of non-intervention encompasses:

• not acting on the target variable and observing the spontaneous behavior of the system,

• failing to act on the target variable and therefore the intervention will not occur.
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Formally, in this case:

∀θi,match(θi) = {nothing} (4.24)

From Equations 4.19 and 4.24, the bba of the DO node is defined by:

mDO(do(x)) =

{
1 if x = {nothing}
0 otherwise

(4.25)

In this case, the state of the target variable will not depend on the intervention (i.e., from
the DO node). The conditional bba given the DO node is not informative. It is represented
with the vacuous bba defined as:

mAi(subik|do(nothing)) =

{
1 if subik = ΘAi

0 otherwise
(4.26)

The “Non-intervention” occurs certainly. Therefore, the source is fully reliable and the dis-
counting factor is equal to zero. Hence, our approach well handles the particular case of
standard interventions.

Proposition 4.10. The beliefs provided about the non-occurrence of an intervention are
accepted without any modification. They are defined like standard interventions.

mAi,αdo(nothing)(.|do(nothing)) = mAi(.|do(nothing)) (4.27)

The conditional bbas defined in the context of the DO node and of the initial causes are
computed by combining each conditional defined per single parent as follows:

mAi(.|Pa(Ai), do(nothing)) = mAi(.|do(nothing))⊕mAi(.|Pa(Ai))
= mAi(.|Pa(Ai))

(4.28)

Proposition 4.11. An augmented belief function causal graph where the DO node is set to
the value nothing encodes the same joint distribution than the initial causal belief network.

mV ′
Gaug(.|do(nothing)) = mV

G (4.29)

where V ′ = V ∪DO.

4.5 Handling interventions with imperfect consequences

In the last section, we have dealt with interventions occurring in an imperfect way. When
happening, even with a belief m({do(aij)}), they succeed to put the target variable into
exactly one specific state which is not often feasible. Therefore, our proposed approach in
this section is to handle interventions with imperfect consequences, i.e., occurring and failing
to put their target into a specific value (Boukhris, Elouedi, & Benferhat, 2012b). Graphically,
they are represented on augmented belief networks.
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4.5.1 Standard interventions with imperfect consequences

We propose to specify a new bba on the target variable representing the consequences of the
intervention. Let us denote by FAi , the set of the focal elements representing the uncertain
consequences of the intervention where a bbm βj is allocated to each focal element. The con-
ditional bba of the target variable given a standard intervention on the variable Ai attempting
to force it to take the value aij is defined as follows:

mAi(subik|do(aij)) =

{
βj if subik ∈ FAi , βj ∈]0, 1];
0 otherwise.

(4.30)

Example 4.12. (continued)
Let us continue with the example of saccharine. Even if the substance is a kind of sugar,

adding it will obviously affect the sweetness of the coffee but without certainty. The conditional
bba mC(.|do(c1)) reflecting the impact of this action is presented in Table 4.10.

Table 4.10: Local bba upon a standard intervention: mC(.|do(c1))

{do(c1)}
{c1} 0.8

{c2} 0.05

ΘC 0.15

4.5.2 Imperfect interventions with imperfect consequences

As argued in the last section, when handling uncertain interventions succeeding to set their
target into a specific value aij , the conditional bbas given instances of the DO node will be
discounted according to the actual occurrence of the intervention (see Equation 4.21). Here
we consider the case of interventions can take several possible states. Therefore, the resulting
bba is defined as a mixture of Equation 4.21 and 4.30 as follows:

mAi(subik|do(aij)) =

{
(1− α) · βj if subik ∈ FAi

α+ (1− α) · βj if subik = ΘAi .
(4.31)

Proposition 4.12. Uncertain interventions with a certain consequence are a particular case
of uncertain ones with uncertain consequences when the parameter βj is set to one.

mAi(subik|do(aij)) =

{
1− α if subik = {aij}
α if subik = ΘAi .

Example 4.13. (continued)
As stated in the first example, since you are in a restaurant it is more likely that what your

friend has putted into your coffee is salt. We are focusing in the occurrence of the intervention
as attempting to set its target into the value sweet, which means that the powder is sugar.
However as mentioned in the last example, some kinds of sugar (e.g., lactose, saccharine)
are either not very soluble or may have a bitter or metallic unpleasant aftertaste. Adding
them may have uncertain consequences. Since the bbm that the added substance is sugar is
represented with m({do(c1)})= 0.245. To represent this case of uncertain intervention with
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uncertain consequences, the conditional bba given the DO node presented in Table 4.10 will
be discounted. The resulting bba is presented in Table 4.11:

Table 4.11: Local bba upon an uncertain intervention: mC,αdo(c1)(.|do(c1))

{do(c1)}
{c1} 0.8·0.245 = 0.2

{c2} 0.05·0.245 = 0.01

ΘC 0.15·0.245+0.755 = 0.79

As for uncertain interventions with certain consequences, the conditional distribution
given the DO parent will be combined with the discounted conditional distribution given the
initial causes using Dempster’s rule of combination to obtain the actual distribution of the
target variable upon acting on it.

4.6 Conclusion

This chapter provided a graphical model to deal with interventions under a normalized belief
framework, namely the causal belief network (CBNC). This network provides an appropriate
model to represent imperfect causal knowledge in particular ignorance situations. We have
first presented an approach to define belief causation and represent the effect of interventions.
We have shown that in order to correctly represent causal relations and reason in a causal
way, the structure of the network has to be modified and the conditioning on observation
should be distinguished from a conditioning on an external action. A generalization of the
“do” operator under the belief function framework was therefore proposed, mutilated and
augmented belief graphs were shown to be equivalent methods even if the joint distribution
is not defined as for probability distribution. We have also proposed a new representation of
external actions, namely, imperfect interventions that may have imperfect consequences. We
have shown that they have a natural encoding under the belief function framework.

In the next chapter we will see how an agent may use this belief function causal network
to ascribe causality between a sequence of reported events.
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Chapter 5
Causality ascription

5.1 Introduction

Understanding what happens in a sequence of time-stamped reported events is important in
several applications (e.g., surveillance problems, the modeling of how people may perceive
the information with which they are faced). This task involves the identification of relevant
patterns involving abnormal events, and requires the use of background knowledge (Chassy
et al., 2011).

The notion of causality plays a central role in such problems. The intelligent artifact can
ascribe as causal the link between reported events in a sequence and therefore can predict
what event is likely to take place. Hence the need to have models of causality ascriptions. As
explained in Chapter 2, the task of ascribing causality is not the one of diagnosis. Besides,
it is different from prediction problems (Benferhat et al., 2008). It consists in inferring an
unknown causal relation from two known events and some background non-causal knowledge.

A prerequisite for a relevant definition of causality ascription is a language for describing
the agent’s background knowledge. This knowledge should tolerate exceptional situations
(Bonnefon et al., 2008). It seems clear that the ascription of causality depends on the choice
of this language.

The non-monotonic approach, introduced in Chapter 2, responds to this condition. It
allows to identify causal relationships among observed events. However, it is appropriate only
for qualitative knowledge and as a drawback of this approach, the representation of events
is restrained to binary variables. An intelligent artifact should also be able to reason from
uncertain quantitative information and a set of observations or interventions occurring in his
environment in order to ascribe causality.

In this chapter, we are interested in ascribing causality when the agent’s background
knowledge is expressed with the belief function formalism. This latter is well known for its
expressive power and consequently, it is appropriate to deal with the poor knowledge of the
world that agents usually possess. It well represents cases of partial and total ignorance and
overcomes the limitation of qualitative models (Bonnefon et al., 2006).

97
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In the context of observations, any representation of mass assignments is suitable. In
the context of interventions, having a graphical structure or the use of structural equations
(Halpern & Pearl, 2005) are needed. Since incomplete or insufficient information may let the
construction of structural equation impossible, we will use the causal belief network presented
in Chapter 4 to describe the background knowledge of the agent in the presence of interven-
tional data.

We propose a model that an intelligent agent will use to ascribe causality from a se-
quence of observations or interventions occurring in his environment under the belief function
framework. In fact, he will look for the causes of an exceptional event that have changed
the normal course of things to an abnormal situation. To model such changes, we use the
concepts of acceptance and rejection instead of changes in uncertainty distributions. Several
levels of acceptance and rejection are introduced. Different alternative definitions of causality
ascription, based on the specification of the strength of the cause, can be provided according
to the different levels of acceptance and rejection.

This chapter is consecrated to the ascription of causality under the belief function frame-
work. Since our work is based on the concepts of acceptance and rejection, we introduce
their definition in Section 5.2. Section 5.3 details the causality ascription model in presence
of observations and Section 5.4 shows how to ascribe causality in presence of interventions.
Facilitation and justification are two concepts very related to causality. Thus, events related
in a causal way should be well distinguished from those when facilitation or justification are
involved. We explain how to identify them in presence of observations in Section 5.5 and in
presence of interventions in Section 5.6. Proofs of this chapter are given in Appendix B.

5.2 The role of acceptance, rejection in causality ascription

5.2.1 (Ab)normality and ascribing causality

The notion of abnormality as discussed by philosophers of law (Hart & Honoré, 1985) and
experimentally checked by psychologist (Hilton & Slugoski, 1986), is privileged when provid-
ing causal explanations. This concept is central in our causality ascription model.

Notice that we are not looking for actual causes. As explained in the following, we want
to predict unknown causal relations that an agent will ascribe based on three components
namely the knowledge he holds, a set of events reported to him and an abnormal event :

• his non-causal background knowledge about the natural course of the world expressed
here in the belief function formalism which is a general and appropriate framework to
model the world imperfection. Remember that masses take numerical values in [0,1].

• a set of observations or interventions occurring in his environment denoted by {f1, . . . , fn}
such that fi ⊆ Θ where Θ is the cartesian product of all n-ary variable domains;

• an event that contradicts its judgment about the normal course of things: an abnormal
event ei ⊆ Θ. This event is involved in the causal process. In fact, it is an effect for
which the agent is looking for its possible causes.
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Let ΘE = {e1, e2, . . . , en} be the set of events defined as a partition of Θ such that events
ei ∈ ΘE are exhaustive and mutually exclusive:{

Exhaustibility : e1 ∪ e2 ∪ . . . ∪ en = Θ,
Exclusivity : ∀i, j ei ∩ ej = ∅.

The complement of ei w.r.t. ΘE , denoted by ei is defined as:

ei =
⋃

ej ,ej 6=ei

ej .

A very particular case concerns atomic events of the form Ai = {aij}. In this case
ΘE = {[ai1], . . . , [ain]} where [aij ] is a set of all elements θ ∈ Θ such that θ↓Ai = {aij}.

Thus, ascribing causality under the belief function theory consists in determining among
temporally sequenced events fi the ones that, in a given context, causes the occurrence of the
abnormal event ei. When there is no ambiguity, all events including abnormal ones will be
denoted by ei.

In our model, we propose to use the concepts of acceptance, rejection and ignorance to
assert that events are bounded by a causal relation (Boukhris, Benferhat, & Elouedi, 2011a)
such that an event is considered as:

• normal if it is an accepted event;

• abnormal if it is a rejected event.

Example 5.1. Assume that your friend has a sore throat which is exceptional for him. Ac-
tually in the normal course of things, it is a rejected event. You want to ascribe the causes of
this ill. It was reported to you that the day before he had taken a cold shower, had gone out
afterwards and that he had talked too long too loud. They are the potential causes of suffering
from a sore throat and we need to discriminate between them.

An event may have different possible states namely accepted, rejected or ignored in a given
context. The following subsections provide detailed explanations of these concepts. Indeed,
we propose more different levels of acceptance and rejection (Boukhris, Elouedi, & Benferhat,
2012a). These notions are used to describe the state of potential causes as well as the rejected
effect ei.

5.2.2 Acceptance

An event is considered as accepted if it is likely enough to be considered as it holds. We
propose to distinguish between three levels of acceptance under the belief function framework
based on the plausibility of the event ei and its relation with the plausibility of other events
constituting its complement. An event ei can be either very strongly, strongly or weakly
accepted in a given context.

Very strong acceptance

In a given context, an event ei is very strongly accepted if the confidence in this event is
strictly greater than the confidence in its complement:

pl(ei) > pl(ei)
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5.2.3 Ignorance

When an agent has the same confidence in any event ei, then the validity of ei is ignored. Its
occurrence, is therefore as plausible as the occurrence of any other alternative. Formally, ei
is ignored if:

∀ei ∈ ΘE , pl(ei) = pl(ei)

5.2.4 Rejection

By symmetry to acceptance, different levels of rejection can be defined:

Very strong rejection

An event ei is very strongly rejected if the plausibility of this event is strictly less than the
plausibility of its complement:

pl(ei) < pl(ei)

Strong rejection

An event ei is strongly rejected if:

• pl(ei) = Argminej∈ΘE
(pl(ej));

• ∀ek 6= ei ∈ ΘE , pl(ek) 6= Argminej∈ΘE
(pl(ej))

Weak rejection

An event ei is defined as weakly rejected if:

• pl(ei) = Argminej∈ΘE
(pl(ej));

• ∃ek 6= ei ∈ ΘE , pl(ek) 6= Argminej∈ΘE
(pl(ej))

In the following, we provide a characterization of different concepts of acceptance and rejection
introduced above:

Definition 5.1. An event ei ∈ ΘE is perceived as:

• very strongly accepted if pl(ei)>pl(ei)

• strongly accepted if:

- pl(ei) = Argmaxej∈ΘE
(pl(ej));

- ∀ek 6= ei ∈ ΘE, where pl(ek) 6= Argmaxej∈ΘE
(pl(ej))

• weakly accepted if:

- pl(ei) = Argmaxej∈ΘE
(pl(ej));

- ∃ek 6= ei ∈ ΘE, pl(ek) 6= Argmaxej∈ΘE
(pl(ej))

• very strongly rejected if pl(ei)<pl(ei)
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• strongly rejected if:

- pl(ei) = Argminej∈ΘE
(pl(ej));

- ∀ek 6= ei ∈ ΘE, pl(ek) 6= Argmaxej∈ΘE
(pl(ej))

• weakly rejected if:

- pl(ei) = Argminej∈ΘE
(pl(ej));

- ∃ek 6= ei ∈ ΘE, pl(ek) 6= Argminej∈ΘE
(pl(ej))

As stated in the following proposition, if we restrict our definitions to the special case
of binary partitions, i.e., ΘE = {ei, ei}, all definitions of acceptance (resp. rejection) are
equivalent.

Proposition 5.1. If ΘE = {ei, ei} then:

• ei is weakly accepted iff ei is strongly accepted iff ei is very strongly accepted iff pl(ei)>pl(ei).

• ei is weakly rejected iff ei is strongly rejected iff ei is very strongly rejected iff pl(ei)<pl(ei).

5.2.5 Conditional acceptance and conditional rejection

Concepts of acceptance, rejection can be extended in order to take into account a given
context. The context of an event is the set of the circumstances and conditions surrounding
it. Therefore, it is a set of events occurring in the normal course of things. The context, will
be denoted by c. In this subsection, we introduce different forms of conditional acceptance
and rejection.

Conditional acceptance

Conditional very strong acceptance After the occurrence of the event c, ei becomes
very strongly accepted if:

pl(ei|c) > pl(ei|c)

Conditional strong acceptance After the occurrence of the event c, ei becomes strongly
accepted if:

• pl(ei|c) = Argmaxek∈ΘE
(pl(ek|c));

• ∀ej 6= ei ∈ ΘE , pl(ej |c)6= Argmaxek∈ΘE
(pl(ek|c))

Conditional weak acceptance After the occurrence of the event fj , ei becomes weakly
accepted if:

• pl(ei|c)= Argmaxek∈ΘE
(pl(ek|c));

• ∃ej 6= ei ∈ ΘE , pl(ej |c) 6= Argmaxek∈ΘE
(pl(ek|c))
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Conditional rejection

Conditional very strong rejection After the occurrence of the event c, ei becomes very
strongly rejected if:

pl(ei|c) < pl(ei|c)

Conditional strong rejection After the occurrence of the event c, ei becomes strongly
rejected if:

• pl(ei|c) = Argminek∈ΘE
(pl(ek|c));

• ∀ej 6= ei ∈ ΘE , pl(ej |c)6= Argminek∈ΘE
(pl(ek|c))

Conditional weak rejection After the occurrence of the event c, ei becomes weakly re-
jected if:

• pl(ei|c)= Argminek∈ΘE
(pl(ek|c));

• ∃ej 6= ei ∈ ΘE , pl(ej |c)6= Argminek∈ΘE
(pl(ek|c))

5.3 Ascribing causality from a belief background knowledge

In this section, we propose a model to ascribe causality between events when the background
knowledge is uncertain and expressed under the belief function framework.

5.3.1 Definition

Causes are necessary to the occurrence of their effects, a causal link defines a higher belief of
effects when a cause takes place. Thus, if a cause does not arise then the plausibility of the
occurrence of the effect will decrease. Note that a delay is required for the cause to make its
effect happening. Hence at a given context, if the cause appears at time t, then its effects
occur later at time t+ n.

In order to ascribe the causes of the abnormal event ei, the agent has to select events
that promote its acceptance. The event ei is rejected in the normal course of things in a
given context c at time t. Events from a sequence of observations or interventions are the
potential causes of ei. Indeed, if the event ei becomes accepted in the same context c after the
occurrence of ej at time t+ n, then ej is seen as a cause of ei. Causal inference (propagating
beliefs in the CBNC), allows to compute the plausibility of ei in context c at time t, namely
plt(ei|c) and the plausibility of ei in context c after the occurrence of ej at time t+n, namely
plt+n(ei|ej , c). Note that the difference between the level of rejection of the event ei in the
normal course of things and its acceptance after the occurrence of ej determines the strength
of the causal link.

5.3.2 Ascribing causes in presence of observational data

As mentioned above, the strength of the causal relation depends on the difference between
the level of rejection of the effect which is an abnormal event denoted by ei and its acceptance
after the occurrence of the causes ej . For instance as depicted in Figure 5.2, the difference
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Table 5.2: Ascribing very strong causes

State of the effect State of the effect Strength of the link
at time t at time t+n

very strongly accepted very strong causevery strongly rejected
strongly accepted strong cause
weakly accepted weak cause

strongly rejected
very strongly accepted strong cause
strongly accepted weak cause
weakly accepted very weak cause

weakly rejected
very strongly accepted weak cause
strongly accepted very weak cause
weakly accepted slight cause

-1- from a very strongly abnormal effect Two events are perceived as very strongly
causally related, if the agent at time t, starts believing that one of them is very strongly
rejected and at time t + n, after observing the other one, he changes his beliefs and very
strongly accepts it.

Proposition 5.2. If an event ei is very strongly rejected in a given context and after observing
an event ej it becomes very strongly accepted, then ej is said to be a very strong cause of ei,
namely

plt(ei|c) < plt(ei|c); (5.1)

plt+n(ei|ej , c) > plt+n(ei|ej , c) (5.2)

Example 5.3. Assume that an agent has in his disposal some information expressed with
the belief function formalism: “generally, airlines do not delay their flights”. Flights delay is
represented with ΘF={yes (y), no (n)} where plt({y}) =0.3, plt({n}) =0.8 and plt(ΘF ) =1.
We notice that plt({y}) is an abnormal event that is very strongly rejected since plt({y})
=0.3<plt({n}) =0.8.
From the observation: “The eruption of the Eyjafjöll volcano creates high quantity of ash
clouds. Afterwards, all European countries delayed their flights”, the agent should be able
to identify if it exists a causal relation between ash clouds and flights delay. The quantity
of ash clouds after the eruption of a volcano is represented with ΘA={high (h)> 4mg/m3,
2mg/m3≤medium (m)≤4mg/m3, low (l)< 2mg/m3}.
In context of high ash clouds, flights delay becomes very strongly accepted plt+n({y}|{h}) =0.9
> plt+n({n}|{h}) =0.2. Hence, the high quantity of ash clouds can be seen as a very strong
cause of flights delay.

Ascribing strong causes

Strong causes are identified in two cases according to the degree of abnormality of the effect.
In fact, as shown in Table 5.3 very strong causes can be identified from very strongly abnormal
events or from strongly abnormal ones.
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Table 5.3: Ascribing strong causes

State of the effect State of the effect Strength of the link
at time t at time t+n

very strongly accepted very strong causevery strongly rejected
strongly accepted strong cause

weakly accepted weak cause

very strongly accepted strong causestrongly rejected
strongly accepted weak cause
weakly accepted very weak cause

weakly rejected
very strongly accepted weak cause
strongly accepted very weak cause
weakly accepted slight cause

-1- from a very strongly abnormal effect Two events are perceived as strongly causally
related, if the agent at time t, starts believing that one of them is very strongly rejected and
at time t+ n, after observing the other one, he changes his beliefs and strongly accepts it.

Proposition 5.3. If an event ei is very strongly rejected in a given context and after observing
an event ej it becomes strongly accepted, then ej is said to be a strong cause of ei, namely

plt(ei|c) < plt(ei|c); (5.3)

∃e 6= ei,

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c) (5.4)

-2- from a strongly abnormal effect Two events are perceived as strongly causally
related, if the agent at time t, starts believing that one of them is strongly rejected and at
time t+ n, after observing the other one, he changes his beliefs and very strongly accepts it.

Proposition 5.4. If an event ei is strongly rejected in a given context and after observing an
event ej it becomes very strongly accepted, then ej is said to be a strong cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.5)

plt+n(ei|ej , c) > plt+n(ei|ej , c) (5.6)

Ascribing weak causes

Weak causes are identified in three cases according to the abnormality of the effect as shown
in Table 5.4.
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Table 5.4: Ascribing weak causes

State of the effect State of the effect Strength of the link
at time t at time t+n

very strongly accepted very strong causevery strongly rejected
strongly accepted strong cause
weakly accepted weak cause

very strongly accepted strong causestrongly rejected
strongly accepted weak cause

weakly accepted very weak cause

very strongly accepted weak causeweakly rejected
strongly accepted very weak cause
weakly accepted slight cause

-1- from a very strongly abnormal effect Two events are perceived as weakly causally
related, if the agent at time t, starts believing that one of them is very strongly rejected and
at time t+ 1, after observing the other one, he changes his beliefs and weakly accepts it.

Proposition 5.5. If an event ei is very strongly rejected in a given context and after observing
an event ej it becomes weakly accepted, then ej is said to be a weak cause of ei, namely

plt(ei|c) < plt(ei|c) (5.7)

∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.8)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

-2- from a strongly abnormal effect Two events are perceived as weakly causally re-
lated, if the agent at time t, starts believing that one of them is strongly rejected and at time
t+ 1, after observing the other one, he changes his beliefs and strongly accepts it.

Proposition 5.6. If an event ei is strongly rejected in a given context and after observing
an event ej it becomes strongly accepted, then ej is said to be a weak cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.9)

∃e 6= ei, pl
t+n(e|ej , c) < plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.10)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

-3- from a weakly abnormal effect Two events are perceived as weakly causally related,
if the agent at time t, starts believing that one of them is weakly rejected and at time t+ 1,
after observing the other one, he changes his beliefs and very strongly accepts it.

Proposition 5.7. If an event ei is weakly rejected in a given context and after observing an
event ej it becomes very strongly accepted, then ej is said to be a weak cause of ei namely,

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.11)

plt+n(ei|ej , c) > plt+n(ei|ej , c) (5.12)
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Ascribing very weak causes

As shown in Table 5.5, very weak causes are identified in two cases according to the abnor-
mality of the effect.

Table 5.5: Ascribing very weak causes

State of the effect State of the effect Strength of the link
at time t at time t+n

very strongly rejected
very strongly accepted very strong cause
strongly accepted strong cause
weakly accepted weak cause

very strongly accepted strong causestrongly rejected
strongly accepted weak cause
weakly accepted very weak cause

very strongly accepted weak causeweakly rejected
strongly accepted very weak cause

weakly accepted slight cause

-1- from a strongly abnormal effect Two events are perceived as weakly causally re-
lated, if the agent at time t, starts believing that one of them is strongly rejected and at time
t+ n, after observing the other one, he changes his beliefs and weakly accepts it.

Proposition 5.8. If an event ei is strongly rejected in a given context and after observing
an event ej it becomes weakly accepted, then ej is said to be a very weak cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.13)

∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.14)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

-2- from a weakly abnormal effect Two events are perceived as weakly causally related,
if the agent at time t, starts believing that one of them is weakly rejected and at time t+ n,
after observing the other one, he changes his beliefs and strongly accepts it.

Proposition 5.9. If an event ei is weakly rejected in a given context and after observing an
event ej it becomes strongly accepted, then ej is said to be a very weak cause of ei, namely

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.15)

∃e 6= ei, pl
t+n(e|ej , c) < plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.16)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))
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Ascribing slight causes

Slight causes are derived from only weakly abnormal events as depicted in Table 5.6.

Table 5.6: Ascribing slight causes

State of the effect State of the effect Strength of the link
at time t at time t+n

very strongly rejected
very strongly accepted very strong cause
strongly accepted strong cause
weakly accepted weak cause

strongly rejected
very strongly accepted strong cause
strongly accepted weak cause
weakly accepted very weak cause

very strongly accepted weak causeweakly rejected
strongly accepted very weak cause
weakly accepted slight cause

-1- from a weakly abnormal effect Two events are perceived as weakly causally related,
if the agent at time t, starts believing that one of them is weakly rejected and at time t+ n,
after observing the other one, he changes his beliefs and weakly accepts it.

Proposition 5.10. If an event ei is weakly rejected in a given context and after observing
an event ej it becomes weakly accepted, then ej is said to be a slight cause of ei, namely

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.17)

∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.18)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

5.3.3 Ascribing causes in presence of interventional data

Observational data provide some information about the statistical relations among events.
It means that spurious correlation can be identified as events causally connected. In fact,
two events may be wrongly inferred as causally related, due to either the coincidence of their
occurrence or the presence of a common cause which is a hidden event.

Example 5.4. An agent learns that someone took up drugs, that he has dilated pupils. He
notices that this person’s heart rate has increased. The agent believes that generally, it is
abnormal to be a drug-consumer, to have dilated pupils, and to have an accelerated heart rate.
If we consider an abnormal event as a very strongly rejected one we have:
- plt({Drugs})> plt({Drugs});
- plt({Dilated})> plt({Dilated});
- plt({Accelerated})>plt({Accelerated}).

From the observation: “a person who has dilated pupils, has also an accelerated heart
rate”, the agent will conclude that when pupils are dilated, it very strongly causes an increase
in heart rate which is not actually the case.
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- plt+n(Accelerated|Dilated)> plt+n(Accelerated|Dilated).
Tropicamide shortly acts on the dilation of the pupil. When it is applied as eyes drops, it
forces the eyes to be dilated (do(Dilated)). After using this substance, the agent notes that
his action has no effect on the speed of the heartbeat. Accordingly, he concludes that there is
not a causal relation between these two events.

On the other hand, the agent believes that it is normal for a drug-consumer to have dilated
pupils and to have an accelerated heart rate:
- plt+n(Dilated|Drugs) > plt+n(Dilated|Drugs);
- plt+n(Accelerated|Drugs) > plt+n(Accelerated|Drugs).
After forcing someone to take drugs (do(Drugs)), he observes that his pupils are dilated and
the speed of his heartbeat is altered. Therefore, he concludes that the hidden event, namely
taking drugs, is their common cause.

Accordingly, ascribing the cause of an event will be much better and easier and if it is based
on data collected via active interventions (Boukhris, Benferhat, & Elouedi, 2012a) rather than
passive observations. In the context of observations any representation of the background
knowledge is suitable whereas in the context of interventions the graphical structure is needed.
Interventions will be represented on this causal structure by the mean of the “do” operator.
As for observational data, causes are defined given their strength (Boukhris, Benferhat, &
Elouedi, 2012b).

Ascribing very strong causes

-1- from a very strongly abnormal effect Two events are perceived as very strongly
causally related, if the agent at time t, starts believing that one of them is very strongly
rejected and at time t+n, after acting the other one, he changes his beliefs and very strongly
accepts it.

Proposition 5.11. If an event ei is very strongly rejected in a given context and after acting
on an event ej it becomes very strongly accepted, then ej is said to be a very strong cause of
ei, namely

plt(ei|c) < plt(ei|c); (5.19)

plt+n(ei|do(ej), c) > plt+n(ei|do(ej), c) (5.20)

Ascribing strong causes

Strong causes are identified in two cases according to the degree of abnormality of the effect.

-1- from a very strongly abnormal effect Two events are perceived as strongly causally
related, if the agent at time t, starts believing that one of them is very strongly rejected and
at time t+ n, after acting the other one, he changes his beliefs and strongly accepts it.

Proposition 5.12. If an event ei is very strongly rejected in a given context and after acting
an event ej it becomes strongly accepted, then ej is said to be a strong cause of ei, namely

plt(ei|c) < plt(ei|c); (5.21)
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∃e 6= ei, pl
t+n(e|do(ej), c) < plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.22)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

-2- from a strongly abnormal effect Two events are perceived as strongly causally
related, if the agent at time t, starts believing that one of them is strongly rejected and at
time t+ n, after acting the other one, he changes his beliefs and very strongly accepts it.

Proposition 5.13. If an event ei is strongly rejected in a given context and after acting an
event ej it becomes very strongly accepted, then ej is said to be a strong cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.23)

plt+n(ei|do(ej), c) > plt+n(ei|do(ej), c) (5.24)

Ascribing weak causes

Weak causes are identified in three cases according to the abnormality of the effect.

-1- from a very strongly abnormal effect Two events are perceived as weakly causally
related, if the agent at time t, starts believing that one of them is very strongly rejected and
at time t+ 1, after acting the other one, he changes his beliefs and weakly accepts it.

Proposition 5.14. If an event ei is very strongly rejected in a given context and after acting
an event ej it becomes weakly accepted, then ej is said to be a weak cause of ei, namely

plt(ei|c) < plt(ei|c) (5.25)

∃e 6= ei, pl
t+n(e|do(ej), c) ≤ plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.26)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

-2- from a strongly abnormal effect Two events are perceived as weakly causally re-
lated, if the agent at time t, starts believing that one of them is strongly rejected and at time
t+ 1, after acting the other one, he changes his beliefs and strongly accepts it.

Proposition 5.15. If an event ei is strongly rejected in a given context and after acting an
event ej it becomes strongly accepted, then ej is said to be a weak cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.27)

∃e 6= ei, pl
t+n(e|do(ej), c) < plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.28)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

-3- from a weakly abnormal effect Two events are perceived as weakly causally related,
if the agent at time t, starts believing that one of them is weakly rejected and at time t+ 1,
after acting the other one, he changes his beliefs and very strongly accepts it.

Proposition 5.16. If an event ei is weakly rejected in a given context and after acting an
event ej it becomes very strongly accepted, then ej is said to be a weak cause of ei namely,

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.29)

plt+n(ei|do(ej), c) > plt+n(ei|do(ej), c) (5.30)
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Ascribing very weak causes

Very weak causes are identified in two cases according to the abnormality of the effect.

-1- from a strongly abnormal effect Two events are perceived as weakly causally re-
lated, if the agent at time t, starts believing that one of them is strongly rejected and at time
t+ n, after acting the other one, he changes his beliefs and weakly accepts it.

Proposition 5.17. If an event ei is strongly rejected in a given context and after acting an
event ej it becomes weakly accepted, then ej is said to be a very weak cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.31)

∃e 6= ei, pl
t+n(e|do(ej), c) ≤ plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.32)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

-2- from a weakly abnormal effect Two events are perceived as weakly causally related,
if the agent at time t, starts believing that one of them is weakly rejected and at time t+ n,
after acting the other one, he changes his beliefs and strongly accepts it.

Proposition 5.18. If an event ei is weakly rejected in a given context and after acting an
event ej it becomes strongly accepted, then ej is said to be a very weak cause of ei, namely
∃e 6= ei,

plt(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.33)

∃e 6= ei, pl
t+n(e|do(ej), c) < plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.34)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

Ascribing slight causes

Two events are perceived as weakly causally related, if the agent at time t, starts believing
that one of them is weakly rejected and at time t+ n, after acting the other one, he changes
his beliefs and weakly accepts it.

Proposition 5.19. If an event ei is weakly rejected in a given context and after acting an
event ej it becomes weakly accepted, then ej is said to be a slight cause of ei, namely

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.35)

∃e 6= ei, pl
t+n(e|do(ej), c) ≤ plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.36)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))



Section 5.4 – Attenuation and confirmation 113

5.4 Attenuation and confirmation

Within the qualitative models (Bonnefon et al., 2006), if an event is held as accepted, then
after the observation of a second event, it only may remain accepted or becomes rejected.
Thus, attenuation and confirmation do not make sense. In qualitative possibilistic framework
(Benferhat & Smaoui, 2008), the authors have shown that no distinction is made between
weak independence and the case of confirmation and that the concept of attenuation cannot
also be defined within that model. In the quantitative belief function framework acceptance,
rejection can be confirmed or attenuated upon the occurrence of a new event.

5.4.1 Confirmation

Definition 5.2. An event ej is said to confirm another event ei if the plausibility of observing
ei after observing ej is greater than the plausibility of observing ei alone.

Proposition 5.20. An event ej is said to confirm another event ei if:

plt(ei) · plt+n(ej) < plt+n(ei, ej) (5.37)

5.4.2 Attenuation

Definition 5.3. ej is said to attenuate ei if the plausibility of observing ei after observing ej
is smaller than the plausibility of observing ei alone.

Proposition 5.21. An event ej is said to attenuate another event ei if:

plt+n(ei, ej) < plt(ei) · plt+n(ej) (5.38)

Example 5.5. Suppose that an agent initial knowledge about the weather is:
plt({cold}) = 0.8, plt({hot}) = 0.1 and plt({cold, hot}) = 1. If later, he observes many people
eating ice creams, I={yes}, then his beliefs according to this new information are updated:
plt+n({(cold, yes)}) =0.4 < plt+n({cold}) =0.8. He identifies eating ice creams as attenuating
his belief about the cold weather.

5.5 Facilitation and justification in presence of observations

5.5.1 Facilitation

An agent deals with facilitation when he is cautious in his causal interpretation of the sequence
of events. In fact, as for ascribing causality, to ascribe facilitation the agent starts not believing
in the occurrence of an event and by observing another event, he changes his beliefs afterwards.
However, this change consists not to believe in the event neither in its complement instead
of accepting it as it is the case for causality. According the level of rejection of the event in
the normal course of things, we got different levels of facilitations namely very strong, strong
and weak. Table 5.7 shows these different strengths.
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Table 5.7: Ascribing facilitations

State of the effect State of the effect Strength of the link
at time t at time t+n

very strongly rejected ignored very strong facilitation

strongly rejected ignored strong facilitation

weakly rejected ignored weak facilitation

Very strong facilitation

Proposition 5.22. If an event ei is very strongly rejected in a given context and after ob-
serving an event ej it becomes ignored then ej is said to very strongly facilitate the occurrence
of ei. Namely,

plt(ei|c) < plt(ei|c). (5.39)

plt+n(ei|ej , c) = plt+n(ei|ej , c) (5.40)

Example 5.6. Let us continue with the Example 5.3 where flights delay is represented with
ΘF={yes (y), no (n)}. The agent has at his disposal some background information such as
plt({y}) =0.3 < plt({n}) =0.8 (a very strongly rejected event).

Let us denote by ΘS = {s, s}) the frame of discernment concerning airline strikes. After
it was reported to him that some airlines strikes, the agent revises his beliefs and the event
flights delay becomes ignored (i.e., plt+n(y|s) = plt+n(n|s)).

Accordingly, he will perceive the airline strikes, {s}, as very strongly facilitating the oc-
currence of flights delay,{y}. In fact, flights delay is unsurprising, but not expected to the
agent.

Strong facilitation

Proposition 5.23. If an event ei is strongly rejected in a given context and after observing an
event ej it becomes ignored then ej is said to strongly facilitate the occurrence of ei. Namely,

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.41)

plt+n(ei|ej , c) = plt+n(ei|ej , c) (5.42)

Weak facilitation

Proposition 5.24. If an event ei is weakly rejected in a given context and after observing an
event ej it becomes ignored then ej is said to weakly facilitate the occurrence of ei. Namely,

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c) (5.43)

plt+n(ei|ej , c) = plt+n(ei|ej , c) (5.44)
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5.5.2 Justification

If an agent judges that the occurrence of an event gave reason to expect the occurrence of
another event, we deal with justification. The first event caused the agent to start believing
the second one. The agent should not be surprised of having it reported afterwards.

Justification is related to the notion of explanation. If the occurrence of an event ei is
ignored and after observing the occurrence of a second event ej , it becomes expected, we deal
then with justification. Accordingly, we obtain several levels of justification according to the
levels of acceptance of the event. Table 5.8 shows these different strengths of justification.

Table 5.8: Ascribing justifications

State of the effect State of the effect Strength of the link
at time t at time t+n

ignored very strongly accepted very strong justifciation

ignored strongly accepted strong justification

ignored weakly accepted weak justification

Very strong justification

Proposition 5.25. If an event ei is ignored in a given context and after observing an event
ej it becomes very strongly accepted then ej is said to very strongly justify the occurrence of
ei. Namely,

plt(ei|c) = plt(ei|c) (5.45)

plt+n(ei|ej , c) > plt+n(ei|ej , c) (5.46)

Example 5.7. Let ΘW={cold, hot, warm}. Assume that an agent ignores if the weather
is cold plt({cold})= plt({warm, hot}) =0.5. After observing the event: “many persons are
wearing coats”, i.e., {coat}, the agent very strongly accepts that the weather is cold, i.e.,
{cold}. plt+n({(cold,coat)})=0.8 > plt+n({(hot,coat),(warm,coat)}) =0.1. In this case, he
concludes that wearing coats very strongly justifies the cold weather.

Strong justification

Proposition 5.26. If an event ei is ignored in a given context and after observing an event
ej it becomes strongly accepted then ej is said to strongly justify the occurrence of ei. Namely,

plt(ei|c) = plt(ei|c) (5.47)

∃e 6= ei, pl
t+n(e|ej , c) < plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.48)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

Weak justification

Proposition 5.27. If an event ei is ignored in a given context and after observing an event
ej it becomes weakly accepted then ej is said to weakly justify the occurrence of ei. Namely,

plt(ei|c) = plt(ei|c) (5.49)
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∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c) (5.50)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

5.6 Facilitation and justification in presence of interventions

In this section, we propose to ascribe facility and justification in presence of interventions.
While with observational data any representation the background knowledge with mass func-
tions is suitable, here it should be based on causal networks. Note that the details of the
computation of the effect of an intervention on a belief function causal network was presented
in Chapter 4.

5.6.1 Facilitation

Very strong facilitation

Proposition 5.28. If an event ei is very strongly rejected in a given context and after acting
an event ej it becomes ignored then ej is said to very strongly facilitate the occurrence of ei.
Namely,

plt(ei|c) < plt(ei|c). (5.51)

plt+n(ei|do(ej), c) = plt+n(ei|do(ej), c) (5.52)

Strong facilitation

Proposition 5.29. If an event ei is strongly rejected in a given context and after acting an
event ej it becomes ignored then ej is said to strongly facilitate the occurrence of ei. Namely,

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c) (5.53)

plt+n(ei|do(ej), c) = plt+n(ei|do(ej), c) (5.54)

Weak facilitation

Proposition 5.30. If an event ei is weakly rejected in a given context and after acting an
event ej it becomes ignored then ej is said to weakly facilitate the occurrence of ei. Namely,

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c) (5.55)

plt+n(ei|do(ej), c) = plt+n(ei|do(ej), c) (5.56)

5.6.2 Justification

Very strong justification

Proposition 5.31. If an event ei is ignored in a given context and after acting an event ej
it becomes very strongly accepted then ej is said to very strongly justify the occurrence of ei.
Namely,

plt(ei|c) = plt(ei|c) (5.57)

plt+n(ei|do(ej), c) > plt+n(ei|do(ej), c) (5.58)
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Strong justification

Proposition 5.32. If an event ei is ignored in a given context and after acting an event ej
it becomes strongly accepted then ej is said to strongly justify the occurrence of ei. Namely,

plt(ei|c) = plt(ei|c) (5.59)

∃e 6= ei, pl
t+n(e|do(ej), c) < plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.60)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

Weak justification

Proposition 5.33. If an event ei is ignored in a given context and after acting an event ej
it becomes weakly accepted then ej is said to weakly justify the occurrence of ei. Namely,

plt(ei|c) = plt(ei|c) (5.61)

∃e 6= ei, pl
t+n(e|do(ej), c) ≤ plt+n(ei|do(ej), c) ≤ plt+n(ei|do(ej), c) (5.62)

where plt+n(ei|do(ej), c) = Argmax(plt+n(ek|do(ej), c))

5.7 Conclusion

In this chapter, we have presented a model to ascribe causality between events. This model
is a quantitative counterpart of the one presented in (Bonnefon et al., 2008) that is based on
nonmonotonic consequence relations. In our model, we ascribe causality in presence of obser-
vations and also in presence of interventions. In fact, the use of the do operator avoids cases
of spurious correlations. Besides, facility and justification were distinguished from causality
in both cases of observational and interventional data. Attenuation and confirmation fully
make sense under the belief function framework.

In the next chapter, we will implement our proposed causal belief function network and
simulate the effect of an intervention using the belief graph mutilation and augmentation
approaches. Methods regarding the belief causality ascription model will be developed. We
will illustrate how we can ascribe the causes of an abnormal event from a sequence of reported
events.
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Chapter 6
Implementation and illustration

6.1 Introduction

In this chapter, we present the implementation of the causal belief network that we have pro-
posed in this thesis. To this end, we develop programs in MATLAB V7.10.0 implementing our
proposed methods to handle interventions in the causal belief network (CBNC) presented in
Chapter 4. Experimentations show the effect of an intervention on the system by simulating
the graph mutilation and the graph augmentation approaches.

Indeed, using the definitions proposed in Chapter 5, we illustrate the feasibility of our
belief causality ascription model. Different results carried out from these simulations will be
presented in order to show the usefulness of our proposed model. This chapter is organized
into two parts as follows: Section 6.2 deals with the implementation of the causal belief
network and experimentally demonstrates that upon an intervention the graph mutilation
and graph augmentation approaches give the same results. Section 6.3 provides scenarios
that are used to illustrate links between events. These latter are used to ascribe the possible
causes of an abnormal event. In fact, an agent will be able to discriminate between potential
causes. We report results of the different scenarios and provide an analysis of these results.

6.2 Causal belief networks

In this section, we present the causal belief network with conditional beliefs (CBNC) as a tool
implemented in Matlab allowing the computation of the simultaneous effect of observations
and interventions.

Note that this causal network is based on the definition of the associational network that
we have proposed in Chapter 3 namely the (BNC ). In the (CBNC), arcs follow the causal
process. Besides, conditionals bbas are defined either per edge or for more than one parent
nodes and the computation of the global joint distribution is based on the uniform ballooning
and vacuous extensions concepts.

119
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6.2.1 Graph creation

To create the BNC or CBNC, one should make:

1. a qualitative specification: it consists of defining the structure of the network. In this
step, one should specify:

• the number of nodes (see Figure 6.1).

Figure 6.1: Definition of the number of nodes

• their labels and their cardinality (see Figure 6.2):

Figure 6.2: Definition of the labels and cardinality of the nodes

• the set of their parents: when it is the CBNC that we want to define, this step
corresponds to define the direct causes of a given node since arcs do not only
represent dependence relations but also follow the causal process (see Figure 6.3):

Figure 6.3: Definition of the causal links between nodes
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2. a quantitative specification: once the structure of the causal network of Example 3.1
is defined, one should define local a priori mass distributions. Thus, a conditional
distribution of each node in the context of either one or more parent nodes (see Figure 6.4
and Figure 6.5) have to be specified.

Figure 6.4: A priori local distribution mS

Figure 6.5: Conditional local distribution mC(.|si)

6.2.2 Intervening

In order to model causal reasoning and compute the effect of interventions, we have imple-
mented the graph augmentation and graph mutilation methods.

Graph mutilation

For the graph mutilation method, the intervention completely controls the state of the target
variable. Accordingly, we have to cut off the links relating the variable concerned by the
intervention to its initial causes. Besides, the intervention should not change the beliefs on
the direct causes (parents). For that we have to:

• choose the node concerned by the intervention (here the node C),

• delete the edges relating this node to its initial causes,
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• change the local mass distribution of the target variable (a certain bba focused on the
target value here C).

Figure 6.6: Causal belief graph mutilation

Unlike probability and possibility theories, the global joint distribution of networks formalized
under the belief function theory are defined on the powerset of the cartesian product of the
variables in the network. Note that the computations are based on the uniform ballooning
and uniform vacuous extensions that we have defined in Chapter 3.

The global joint distribution of the mutilated graph is presented in Figure 6.7

Figure 6.7: mGmut distribution

Graph augmentation

In this approach, we add a fictive parent node called DO to the variable on which an inter-
vention is performed. The added node is considered as an extra node in the system. This
approach allows the computation of the simultaneous effect of observations and interventions.
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Figure 6.8: Causal belief graph augmentation

The global joint distribution of the augmented graph upon intervening on node C by
forcing it to take the value C is given in Figure 6.9.

Figure 6.9: mGaug distribution

From Figure 6.7 and Figure 6.9, we have shown that these different methods to handle
interventions are equivalent and have led to the same global belief joint distribution.

6.3 Ascribing causality

6.3.1 Experimental context

With the belief causality ascription model presented in Chapter 5, we propose a method to
ascribe causality from:

1. the background knowledge of the agent formalized under the belief function framework;

2. a sequence of reported events (representing potential causes);

3. an abnormal event (the effect) for which we are looking potential causes. Note that
causality ascription does not aim to find the actual causes of an event.

Remember that the belief function theory is adequate to handle imperfect causal knowledge
and allows to flexibly allocate beliefs to subsets. Besides, the belief causality ascription model
allows to handle n-ary variables. Moreover, our method is useful to reason given observations
(data directly collected by seeing) and interventions (external manipulations).
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For simulation, we have used three scenarios inspired from existing ones (Dickerson &
Dickerson, 2000; Halpern & Pearl, 2005; Dubois et al., 2009) but we have modified them to
highlight the representation power of our belief model.

• Scenario 1 will present the case where a potential cause is a disjunction of hypotheses;

• Scenario 2 will consider the case of an effect that is a subset of the cartesian product of
two variables;

• Scenario 3 will illustrate the usefulness of our model in real world applications through
an example in computer security area.

In each scenario, the background knowledge of the agent will be formalized with a causal
belief network. With this representation, an agent can simply assess the plausibility that
an event occurs in a given context. Variables in the network are either directly observed or
manipulated. In each scenario we are trying to answer the question is the reported event A
a cause of an abnormal event B?

6.3.2 Creating bbas

The belief causality ascription model is built from the agent’s background knowledge that
is represented with a belief network with conditional beliefs that we have implemented in
Section 2. In this network, a priori distributions are uncertain. Uncertainty is represented
by bbas defined on the set of each variable’s instances in the context of its parents. Since the
scope of this thesis is modeling and not propagation, we are not able to make inference and
compute a posteriori distributions.

Nevertheless, to ascribe the causes of an abnormal event, an agent should have the a pos-
teriori conditional plausibility distribution of the occurrence of the effect in the context of an
observed event belonging to the sequence of reported facts. Since we do not have tools to infer
such distributions, in the following, we will assume that propagation was made and conse-
quently we have the conditional distribution of the abnormal event given each potential cause.
This conditional bba is created artificially. So, the question is how will we construct these bbas?

Although the effect is an abnormal event, it has taken place after a set of reported events.
Accordingly, its occurrence should be plausible. A non-zero plausibility came either from the
fact that the effect is a focal element, i.e. has a non-zero bbm or one or more subsets that do
not contradict with the effect are focal elements, i.e., having a non-zero bbm.

Example 6.1. Let us consider the bbas and their corresponding plausibility distribution de-
fined on Θ = {θ1, θ2, θ3} presented in Table 6.1. Assume that the abnormal event is {θ1}.
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Table 6.1: Example of bbas with their corresponding pl

m1 pl1 m2 pl2 m3 pl3
{θ1} 0 0 0.7 0.8 0 0.7

{θ2} 0.2 0.3 0.1 0.3 0.2 0.9

{θ1, θ2} 0 0.2 0.1 1 0.4 0.9

{θ3} 0.7 0.8 0 0.1 0.1 0.4

{θ1, θ3} 0 0.7 0 0.9 0 0.7

{θ2, θ3} 0.1 1 0.1 0.3 0 1

{Θ} 0 1 0 1 0.3 1

- In the first bba, m1, the bbm allocated to {θ1} and to all its superset is equal to zero.
We notice that in this case the occurrence of {θ1} is not plausible.

- In the second bba, m2, {θ1} is a focal element. Hence it is plausible.

- In the third bba, m3, {θ1} is not a focal element. However, some of its supersets namely
{θ1, θ2} and Θ are focal elements. In this case, the occurrence of {θ1} is plausible.

Consequently, the bbm allocated to the abnormal effect or to a subset not contradicting
the effect in context of the observed event should be equal to x where x takes value in ]0,1].
The value x is generated randomly. In the next subsection, we will explain in details how to
generate bbas according to different experimental strategies.

6.3.3 Experimental strategy

To check the feasibility of our belief causality ascription model, we will perform several tests
and investigate if an observed event from the sequence or reported facts is ascribed as a cause
of the effect. Each presented scenario will be used to highlight the advantages of our model.
For each scenario, we have made the following tests and finally decide if reported events are
ascribed as causes.

Test 1: what if the conditional bbm assigned to the effect is non-zero?

In this case, we have generated a conditional bba that will be transformed to a conditional
plausibility distribution with the Möbius transformation. We make 90 simulations, where
each time the bba is defined as follows:

1. the bbm of the abnormal event is x, x ∈ ]0, 1]. We consider several degrees of uncer-
tainty such that:

• the first 30 simulations: 0 < x ≤ 0.25

• the second 30 simulations: 0.25 < x ≤ 0.5

• the third 30 simulations: 0.5 < x ≤ 1

2. bbms of the other subsets are randomly assessed such that the overall sum assigned to
these subsets is equal to (1− x).

For each simulation, we will investigate if the observed event is ascribed as a very strong,
strong or weak cause of the abnormal event or not.
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Test 2: what if conditional bbms assigned to subsets not contradicting the effect
are non-zero?

In this test, we assume that the occurrence of the consequence in context of an observed event
is not a focal element. However, one or more subsets that do not contradict with the effect
are focal elements, i.e., having a non-zero bbm.

We make 90 simulations, where each time the conditional bba concerning the abnormal
event is defined as follows:

1. the bbm of the abnormal event is 0;

2. the bbm of a subset not contradicting the abnormal event (generated randomly) is x,
x ∈]0, 1]. We consider several degrees of uncertainty such that:

• the first 30 simulations: 0 < x ≤ 0.25

• the second 30 simulations: 0.25 < x ≤ 0.5

• the third 30 simulations: 0.5 < x ≤ 1

3. bbms of the other subsets are randomly assessed such that the overall sum assigned to
these subsets is equal to (1− x).

After computing the corresponding plausibility of these bbas, we apply our belief model to
identify whether the observed event is ascribed as a very strong, strong or weak cause of the
abnormal event or not.

Test 3: what if bbas of all simulations were aggregated?

After running the 90 simulations of test 1 and test 2, an agent can decide about the strength of
the cause. For that, the most common way is to compute the percentage of different strengths
and choose the highest one.

On the other hand, one can consider that having different distributions is somewhat sim-
ilar to having several experts such that each expert has provided his own beliefs. The belief
function theory offers a tool to aggregate beliefs, namely Dempster’s rule of combination.

After aggregating the different distributions, the agent will have to ascribe causality at a
final stage. In fact, it is only on the combined distribution that the agent will ascribe causality.
Hence through this test, we can compare the results obtained from computing the different
rate of each potential strength with those found after merging beliefs using Dempster’s rule
of combination.

6.3.4 Scenario 1

Let us consider the following sequence of observations: “Anne was asleep under an apple tree.
Many children were playing beside her. A child fell on his back. Many apples were ripe. An
apple fell on her. She woke up”.

Let us suppose that the background knowledge of an agent is given by means of a belief
network. As mentioned in Chapter 3, conditional distributions can be defined given any
number of parent nodes. As depicted in Figure 6.10, variables in the network are:
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• W (for waking up)
ΘW={w1: waking up, w2: wake up and go back to sleep, w3: asleep};

• S (for sleeping under an apple tree)
ΘS={s1: yes, s2: no});

• R (for an apple being ripe)
ΘR={r1: yes, r2: no};

• F (for an apple falling)
ΘF={f1: yes, f2 :no};

• C (for children making noise when playing)
ΘC={c1: lot, c2: little, c3: no}.

• CF (for a child fell on his back)
ΘCF={cf1: yes, cf1: no}.

S

RC

S

FCF

W

Figure 6.10: Network of scenario 1

Abnormal event and potential causes of scenario 1

In this scenario, waking up (w1) is an abnormal situation (i.e., a very strongly rejected event)
in context of sleeping under an apple tree. We want to ascribe the causes that make Anne
wakes up. Potential causes are:

• ca1: an apple being ripe and falls on her, i.e., {(r1, f1)};

• ca2: children making noise when playing, i.e., {c1, c2};

• ca3: a child falls on his back, i.e., {cf1}.

Notice that the first potential cause ca1 is an event composed of two variables: being ripe R
and fall F .
The second potential cause ca2 is a case specific to the belief function theory. In fact, the
evidence is reported on a disjunction of hypotheses. Here it concerns the subset children
making noise {c1, c2} of the variable C.
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Test 1: conditional bbm assigned to the effect is non-zero

In this test, we want to know if the fact that the apple is ripe and falls on Anne (ca1) is the
cause of her awakening (w1) in context of sleeping under an apple tree (s1). For that we have
assigned a conditional bbm equal to x to w1. The value of x has been varied according to
three levels as explained in the experimental strategy subsection, namely under 0.25, between
0.25 and 0.5 and greater than 0.5. Figure 6.11 depicts the results obtained after making the
90 simulations.

Figure 6.11: Scenario 1, test 1: Is ca1 a cause of w1 ?

Table 6.2 summarizes results presented in Figure 6.11. Actually, ca1 is more often ascribed
as a very strong cause.

Table 6.2: Scenario 1, test 1: state of ca1 per level of uncertainty

m(w1|s1, ca1) state of the ca1 number of times %

]0,0.25]
very strong 0 0

strong 11 37
weak 0 0

non-cause 19 63

]0.25,0.5]
very strong 22 73

strong 8 27
weak 0 0

non-cause 0 0

]0.5,1]
very strong 30 100

strong 0 0
weak 0 0

non-cause 0 0

Generally as shown in Table 6.3, if Anne wakes up then we are in a good position to say
that the fact that the apple was ripe and fell on her is a very strong cause of her awakening.
In fact, in 58% of the cases ca1 is ascribed as a very strong cause of w1.

Table 6.3: Scenario 1, test 1: state of ca1

very strong strong weak non-cause

number of times 52 19 0 19

% 58 21 0 21

From Table 6.2 and Table 6.3, we notice that the highest the confidence in the occurrence
of the consequence namely w1 in context of ca1 is, the strongest ca1 will be ascribed as a
cause of w1. In particular, we find that when m(w1|s1, ca1) is:
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- greater than 0.5 then in 100% of the cases ca1 is ascribed as a very strong cause of w1

in context of sleeping under the apple tree.

- between 0.25 and 0.5 then ca1 is either ascribed as a very strong cause (73% of the
cases) or a strong cause (27% of the cases).

- less than 0.25 then ca1 is either ascribed as a strong cause (37% of the cases) or as a
non cause of w1 (63% of the cases).

Note that weak causes have not been identified here. Indeed, a cause will be identified as a
weak cause in a less frequent cases, i.e., if the plausibility of pl(w1|s1, ca1) is either equal to
pl(w2|s1, ca1) or pl(w3|s1, ca1).

Test 2: conditional bbms assigned to subsets not contradicting the effect are non-
zero

A question that we thought important to investigate under the belief function theory is: “Af-
ter the propagation, does a bbm of 0 assigned to the singleton w1 in the context of ca1 suggests
that ca1 is not a cause of w1”?

Actually unlike probability theory, the plausibility of w1 in a given context is not only
computed from the bbm of w1 in that context. In fact, all bbms assigned to subsets that do
not contradict w1 will be used to compute the plausibility of w1. In this test, we consider
subsets that do not contradict with w1 (i.e., {w1, w2}, {w1, w3} and {w1, w2, w3}) as focal
elements. As explaining in the following, we can consider two different situations.

Case of total ignorance: focal elements are {w1, w2, w3} It is the case when a bbm of
1 is assigned to ΘW in context of ca1 (i.e., a vacuous bba). In that case, the plausibility of all
events is equal to one. Thus, according to our model ca1 is not ascribed as a cause of w1.

Case of partial ignorance
This case includes two situations as follows:

1. focal elements are all the supersets of w1: in this situation, the plausibility of w1 given
ca1 will be always equal to one. It is also the case of its complement {w2, w3} given
ca1. Consequently, we are in a situation of ignorance and cannot say that ca1 is either
a cause or not of w1.

2. at least one focal element is a superset of w1: it is the general case described in the
experimental strategy subsection. Note that the superset of w1 denoted by w should be
different from the frame of discernment. the conditional bbm of w in context of ca1 is
equal to x; x ∈ ]0, 1]. The value of x has been varied according to three levels, namely
under 0.25, between 0.25 and 0.5 and greater than 0.5.

Figure 6.12 shows the results obtained after making 90 simulations (30 for each level).
Table 6.4 and Table 6.5 summarize the results of Figure 6.12.
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Figure 6.12: Scenario 1, test 2: ascription of ca1

Table 6.4: Scenario 1, test 2: state of ca1 per level of uncertainty

m(w|s1, ca1) state of the ca1 number of times %

]0,0.25]
very strong 0 0

strong 0 0
weak 0 0

non-cause 30 100

]0.25,0.5]
very strong 0 0

strong 3 10
weak 0 0

non-cause 27 90

]0.5,1]
very strong 0 0

strong 8 17
weak 0 0

non-cause 22 73

From these tables, we can conclude that if Anne wakes up and then perhaps goes back
to sleep then we cannot say that the apple was ripe and fell on her is a cause of her
awakening. In fact, in 88% of the cases ca1 is ascribed as a non-cause of w1.

Table 6.5: Scenario 1, test 2: state of ca1

very strong strong weak non-cause

number of times 0 11 0 79

% 0 12 0 88

From Table 6.4 and Table 6.5, we can conclude that:

- if w which is a superset of w1 in context of ca1 is a focal element, then it does not
mean that ca1 will be ascribed as a cause of w1. In fact as shown in Table 6.4, in
most cases (88% of the cases) whatever the level of uncertainty, ca1 is not ascribed
as a cause of w1.

- the percentage where ca1 is not ascribed as a cause of w1 depends on the confidence
in w in context of ca1. Thus, it decreases from 100% when it is less than 0.25, to
90% when it is between 0.5 and 0.25 and to 73% if it is greater to 0.5.

- if ca1 is ascribed as a cause of w1, it is only a strong cause (12% of the cases).
The more confident we are in w in context ca1, the highest will be the plausibility
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that ca1 is a cause of w1. In fact, when this bbm is between 0.5 and 0.25 then in
10% of the cases ca1 is ascribed a strong cause of w1. This rate increases to 17%
if m(w|s1, ca1) is greater than 0.5.

Test 3: aggregate bbas of all simulations

As explained in the experimentation strategy subsection, from the different simulations for a
given test an agent can decide about the strength of the cause. The most common way is to
compare between the different resulting frequencies.

Having different distributions can be seen as having several experts that have expressed
their beliefs. Dempster’s rule of combination is therefore used to merge these beliefs into
a single distribution. It is only at this final stage that the agent ascribes causality on the
aggregated distribution. Accordingly, we will compare the results obtained from computing
and comparing the different percentages of each strength of a given cause with those found
after merging beliefs using Dempster’s rule of combination.

Decision about ca1 after test 1 In test 1 as mentioned in Table 6.2, we have found that
when m(w1|s1, ca1) is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is ascribed as a very strong cause.
- ]0.5,1], then ca1 is ascribed as a very strong cause.
From Table 6.3, we can conclude that in general ca1 is ascribed as a very strong cause of w1.

By applying Dempster’s rule of combination, we have obtained a single distribution. It is
on this distribution that we have compared plausibilities as defined in our causality ascription
model. We have found that when m(w1|s1, ca1) is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is ascribed as a very strong cause.
- ]0.5,1], then ca1 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca1 is a very strong
of w1.

Decision about ca1 after test 2 In test 2 as mentioned in Table 6.4, we have found that
when m(w|s1, ca1) is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is a non-cause.
- ]0.5,1], then ca1 is a non-cause.
From Table 6.5, we can conclude that in general ca1 is a non-cause of w1.

By applying Dempster’s rule of combination, we have found that when m(w|s1, ca1) is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is ascribed as a non-cause cause.
- ]0.5,1], then ca1 is ascribed as a non-cause.
By combining all beliefs from the 90 simulations we have also found that ca1 is a non-cause
of w1.
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Table 6.6: Scenario 1, test 1: state of cai per level of uncertainty

ca2 ca3

m({w1}|s1, cai) state of the ca1 number % number %

]0,0.25]
very strong 1 3 1 3

strong 17 57 13 43
weak 0 0 0 0

non-cause 12 40 16 54

]0.25,0.5]
very strong 23 77 20 67

strong 7 23 10 34
weak 0 0 0 0

non-cause 0 0 0 0

]0.5,1]
very strong 30 100 25 84

strong 0 0 5 16
weak 0 0 0 0

non-cause 0 0 0 0

Generally as shown in Table 6.7, if Anne wakes up and then we are in a good position to
say that children playing and making noise beside her is a cause of her awakening. In fact,
in 60% of the cases ca2 is ascribed as a very strong cause of w1 and in 27% of the cases it is
identified as strong cause. The fact that a child fell on his back is also a potential cause of
her awakening. However, it is seen as a weaker cause than ca2. In fact, in 51% of the cases
it is seen as a very strong cause and in 31% of the cases it is ascribed as a strong cause.

Table 6.7: Scenario 1, test 1: state of ca2 and ca3

cai very strong strong weak non-cause

number of times
ca2 54 24 0 12
ca3 46 28 0 16

%
ca2 60 27 0 13
ca3 51 31 0 18

Results obtained from Table 6.6 and Table 6.7 concerning ca2 et ca3 confirm those found
when dealing with ca1. In fact, if the confidence in the occurrence of the consequence namely
w1 in context of ca2 increases, ca2 will be ascribed as a stronger cause of w1. Indeed, if the
bbm allocated to w1 in context of the potential cause is:

- greater than 0.5 then in most cases (100% of the cases for ca2 and 84% of the cases for
ca3), the observed event is ascribed as a very strong cause of w1 in context of sleeping
under the apple tree.

- between 0.25 and 0.5 then cai is either ascribed as a very strong cause (77% of the cases
for ca2 and 67% of the cases for ca3) or a strong cause (23% of the cases for ca2 and
34% of the cases for ca3).

- less than 0.25 then cai is generally ascribed as either as a strong cause (57% of the cases
for ca2 and 43% of the cases for ca3) or as a non cause of w1 (40% of the cases for ca2

and 54% of the cases for ca3).
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Table 6.9: Scenario 1, test 2: state of ca2 and ca3

very strong strong weak non-cause

number of times
ca2 0 48 0 42
ca3 0 48 0 42

%
ca2 0 53 0 47
ca3 0 53 0 47

From Table 6.8 and Table 6.9, we can conclude that:

- the percentage where ca1 is not ascribed as a cause of w1 depends on the confidence in
w in context of cai. Thus, it decreases from 60% for ca2 and ca3 when it is less than
0.25, to 47% for ca2 and to 43% for ca3 when it is between 0.5 and 0.25 and to 33% for
ca2 and to 37% for ca3 if it is greater to 0.5.

- if cai is ascribed as a cause of w1, it is only a strong cause (53% of the cases). The
more confident we are in w in context cai, the highest will be the plausibility that cai
is a cause of w1. In fact, when this bbm is less than 0.25 then in 40% of the cases ca2

is ascribed as a strong cause of w1 and in 40% of the cases ca3 is ascribed as a strong
cause of w1. This rate increases to 53% if m(w|s1, ca2) is between 0.5 and 0.25 and to
44% if m(w|s1, ca3) is between 0.5 and 0.25. It becomes respectively 67% and 63% if
the bbm is greater than 0.5.

Test 3:

• Decision about ca2 after test 1:
In Test 1, we have found that when m(w1|s1, ca2) is in:
- ]0,0.25], then ca2 is ascribed as a strong cause.
- ]0.25,0.5], then ca2 is ascribed as a very strong cause.
- ]0.5,1], then ca2 is ascribed as a very strong cause.
From Table 6.7, we can conclude that in general ca2 is ascribed as a very strong cause
of w1.

By applying Dempster’s rule of combination, we have found that when m(w1|s1, ca2) is
in:
- ]0,0.25], then ca2 is ascribed as a strong cause.
- ]0.25,0.5], then ca2 is ascribed as a very strong cause.
- ]0.5,1], then ca2 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca2 is a very
strong of w1.

• Decision about ca2 after test 2:
In Test 2, we have found that when m(w|s1, ca2) is in:
- ]0,0.25], then ca2 is a non-cause.
- ]0.25,0.5], then ca2 is ascribed as a strong cause.
- ]0.5,1], then ca2 is ascribed as a strong cause.
From Table 6.9, we can conclude that in general ca2 is a strong cause of w1.
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By applying Dempster’s rule of combination, we have found that when m(w|s1, ca2) is
in:
- ]0,0.25], then ca2 is a non-cause.
- ]0.25,0.5], then ca2 is ascribed as a strong cause.
- ]0.5,1], then ca2 is ascribed as a strong cause.
By combining all beliefs from the 90 simulations we have also found that ca2 is a strong
cause of w1.

The two alternatives used to decide about the state of the observed event ca2 have led to the
same conclusions.

• Decision about ca3 after test 1:
In Test 1, we have found that when m(w1|s1, ca3) is in:
- ]0,0.25], then ca3 is ascribed as a non-cause cause.
- ]0.25,0.5], then ca3 is ascribed as a very strong cause.
- ]0.5,1], then ca3 is ascribed as a very strong cause.
From Table 6.7, we can conclude that in general ca3 is ascribed as a very strong cause
of w1.

By applying Dempster’s rule of combination, we have found that when m(w1|s1, ca3) is
in:
- ]0,0.25], then ca3 is a non-cause cause.
- ]0.25,0.5], then ca3 is ascribed as a very strong cause.
- ]0.5,1], then ca3 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca3 is a very
strong cause of w1.

• Decision about ca3 after test 2:
In Test 2, we have found that when m(w|s1, ca3) is in:
- ]0,0.25], then ca3 is a non-cause.
- ]0.25,0.5], then ca3 is ascribed as a strong cause.
- ]0.5,1], then ca3 is ascribed as a strong cause.
From Table 6.9, we can conclude that in general ca3 is a strong cause of w1.

By applying Dempster’s rule of combination, we have found that when m(w|s1, ca3) is
in:
- ]0,0.25], then ca3 is a non-cause.
- ]0.25,0.5], then ca3 is ascribed as a strong cause.
- ]0.5,1], then ca3 is ascribed as a strong cause.
By combining all beliefs from the 90 simulations we have also found that ca3 is a strong
cause of w1.

Here also the two alternatives used to decide about the state of the observed event ca3 have
led to the same conclusions.

In this scenario, we have pointed out that our model can handle n-ary variables. Besides,
we have shown that causes can be a disjunction of hypotheses. In fact, the observed event
ca2 corresponding to the event children making noise is represented with the subset {c1, c2}
reflecting the hesitation between saying that children have made a lot or little noise.
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6.3.5 Scenario 2

Let us consider the following sequence of observations: “We were at a forest, the wood was
dry. There was a lightening. An arsonist was with us playing with a match. A forest fire and
a big house fire started”.

A belief network represent the background knowledge of an agent. Figure 6.15 shows the
relation between variables in the network.

• H (for house fire)
ΘH={h1: big, h2: medium, h3: small, h4: no};

• F (for forest fire)
ΘF={f1: yes, f2: no};

• L (for lightening)
ΘL={l1: yes, l2: no};

• D (for wood dry)
ΘD={d1: yes, d2: no};

• M (for light a match)
ΘM={m1: yes, m2: no}.

D

L

F

M

F

H

Figure 6.15: Network of scenario 2

Abnormal event and potential causes of scenario 2

A forest fire and a big house fire is an abnormal event denoted by e, in context of wood
dry. With our belief model, we can consider that the consequence is the abnormal event
e ⊆ ΘH × ΘF , such that e is composed of a conjunction of big house fire ({h1}) and forest
fire (which is a disjunction of all kinds of forest fires {f1, f2}). Hence, e = {f1, f2} × {h1}.

In context of wood dry, we want to ascribe causes of e such that potential causes are:

• ca1: a lightening, i.e., {l1};

• ca2: an arsonist lit a match, i.e., {m1}.
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Test 1: conditional bbm assigned to the effect is non-zero

In this test, we want to know if either the lightening (ca1) or matching a lit (ca2) is the cause
of the forest fire and the big house fire (e). For that we have assigned a conditional bbm
equal to x to e. The value of x has been varied according to three levels, namely under 0.25,
between 0.25 and 0.5 and greater than 0.5.
Figure 6.16 presents the results of causality ascription of ca1 and ca2, after making 90 simu-
lations (30 per level). Table 6.10 and Table 6.11 summarize these different results.

Figure 6.16: Scenario 2, test 1: ascribing causes of e

Table 6.10: Scenario 2, test 1: state of cai per level of uncertainty

ca1 ca2

m(e|d1, cai) state of the cai number % number %

]0,0.25]
very strong 21 70 17 57

strong 0 0 0 0
weak 0 0 0 0

non-cause 9 30 13 43

]0.25,0.5]
very strong 30 100 30 100

strong 0 0 0 0
weak 0 0 0 0

non-cause 0 0 0 0

]0.5,1]
very strong 30 100 30 100

strong 0 0 0 0
weak 0 0 0 0

non-cause 0 0 0 0

Table 6.11: Scenario 2, test 1: state of ca1 and ca2

cai very strong strong weak non-cause

number of times
ca1 81 0 0 9
ca2 77 0 0 13

%
ca1 90 0 0 10
ca2 86 0 0 14
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From these tables, we notice that if the bbm allocated the event e in context of the potential
cause is:

- greater than 0.25 then in 100% of the cases ca1 and ca2 are ascribed as a very strong
cause of e.

- less than 0.25 then the observed event is ascribed in most cases as a very strong cause
(70% of the cases for ca1 and 57% for ca2).

Test 2: conditional bbms assigned to subsets not contradicting the effect are non-
zero

As done in scenario 1, we have studied here the case where a bbm of zero is assigned to the
event e in the context of d1 and a non-zero bbm is assigned to a subset that do not contradict
with e. Obviously, as for scenario 1, in the case where a bbm of one is assigned to ΘH ×ΘF

or it is shared between only events that do not contradict with e, then we are in a case of
ignorance. Consequently, we are not able to say if the observed event is a cause of e.

In the following, we will investigate the case of partial ignorance by considering the case
where at least one focal element denoted by e′ does not contradict with e. The conditional
bba defined in context of d1,ca1 (resp. d1, ca2) is given by:

• the bbm assigned to e is 0;

• a random focal element, e′, different from the frame of discernment and that do not
contradict with e having a bbm of x; x ∈ ]0, 1]. As explained in the experimental strat-
egy subsection, we have considered three levels of uncertainty of x namely x belonging
to ]0,0.25], ]0.25,0.5] and ]0.5,1]);

• remaining subsets randomly share a mass of 1− x.

As shown in Figure 6.17, results of causality ascription depend on the bbm of e′ in context of
d1.

Figure 6.17: Scenario 2, test 2: ascription of ca1 and ca2

Table 6.12 summarizes the results of Figure 6.17. Table 6.13 presents the final results
about the 90 simulations for each potential cause.
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Table 6.12: Scenario 2, test 2: state of cai per level of uncertainty

ca1 ca2

m(e′|d1, cai) state of the ca1 number % number %

]0,0.25]
very strong 16 53 17 57

strong 0 0 0 0
weak 0 0 0 0

non-cause 14 47 13 43

]0.25,0.5]
very strong 30 100 30 100

strong 0 0 0 0
weak 0 0 0 0

non-cause 0 0 0 0

]0.5,1]
very strong 30 100 30 100

strong 0 0 0 0
weak 0 0 0 0

non-cause 0 0 0 0

Table 6.13: Scenario 2, test 2: state of ca1 and ca2

cai very strong strong weak non-cause

number of times
ca1 76 0 0 14
ca2 77 0 0 13

%
ca1 84 0 0 16
ca2 86 0 0 14

From these tables, we can conclude that when the bbm allocated to e′ in context of wood
dry and the observed event is:

- greater than 0.5 then in 100% of the cases ca1 and ca2 are ascribed as a very strong
cause of e.

- less than 0.25 then the observed event is ascribed in most cases as a very strong cause
(53% of the cases for ca1 and 57% for ca2).

Test 3: aggregate bbas of all simulations

Dempster’s rule of combination is used to merge the different distributions generated from the
90 simulations. At the end, the agent ascribes causality on the aggregated distribution. In
the following, we will compare the results given after ascribing the causes for each simulation
with those found after merging beliefs.

Decision about ca1 after test 1
Let us start with ca1 when the bba is defined according to the requirements of test 1:

As mentioned in Table 6.10, we have found that when m(e|d1, ca1) is in:
- ]0,0.25], then ca1 is ascribed as a very strong cause.
- ]0.25,0.5], then ca1 is ascribed as a very strong cause.
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- ]0.5,1], then ca1 is ascribed as a a very strong cause.
From Table 6.11, we can conclude that in general ca1 is ascribed as a very strong cause of e.

By applying Dempster’s rule of combination, we have found that when m(e|d1, ca1) is in:
- ]0,0.25], then ca1 is ascribed as a very strong cause.
- ]0.25,0.5], then ca1 is ascribed as very strong cause.
- ]0.5,1], then ca1 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca1 is ascribed as
a very strong cause of e.

Decision about ca1 after test 2
Let us now compare the results about the state of ca1 when the bba is defined according to
the requirements of test 2.

As mentioned in Table 6.12, we have found that when m(e′|d1, ca1) is in:
- ]0,0.25], then ca1 is ascribed as a very strong cause.
- ]0.25,0.5], then ca1 is ascribed as a very strong cause.
- ]0.5,1], then ca1 is ascribed as a very strong cause.
From Table 6.13, we can conclude that in general ca1 is ascribed as a very strong cause of e.

By applying Dempster’s rule of combination, we have found that when m(e′|d1, ca1) is in:
- ]0,0.25], then ca1 is a ascribed as a very strong cause.
- ]0.25,0.5], then ca1 is a ascribed as a very strong cause.
- ]0.5,1], then ca1 is a ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca1 is a ascribed as
a very strong cause of e.

Decision about ca2 after test 1

Let us consider the results concerning ca2 when the bbm satisfies the requirement of test 1.
As it is presented in Table 6.10 that when m(e|d1, ca2) is in:
- ]0,0.25], then ca2 is ascribed as a very strong cause.
- ]0.25,0.5], then ca2 is ascribed as a very strong cause.
- ]0.5,1], then ca2 is ascribed as a very strong cause.
From Table 6.11, we can conclude that in general ca2 is ascribed as a very strong cause of e.

By applying Dempster’s rule of combination, we have found that when m(e|d1, ca2) is in:
- ]0,0.25], then ca2 is ascribed as a very strong cause
- ]0.25,0.5], then ca2 is ascribed as a very strong cause.
- ]0.5,1], then ca2 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca2 is ascribed as
a very strong cause of e.

Decision about ca2 after test 2
Let us now compare the results about the state of ca2 when the bba is defined according to
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the requirements of test 2.

As mentioned in Table 6.12, we have found that when m(e′|d1, ca2) is in:
- ]0,0.25], then ca2 is ascribed as a very strong cause.
- ]0.25,0.5], then ca2 is ascribed as a very strong cause.
- ]0.5,1], then ca2 is ascribed as a very strong cause.
From Table 6.13, we can conclude that in general ca2 is ascribed as a very strong cause of e.

By applying Dempster’s rule of combination, we have found that when m(e′|d1, ca2) is in:
- ]0,0.25], then ca2 is a ascribed as a very strong cause.
- ]0.25,0.5], then ca2 is a ascribed as a very strong cause.
- ]0.5,1], then ca2 is a ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca2 is a ascribed as
a very strong cause of e.

We notice that the two alternatives used to decide about the state of the observed event
either ca1 or ca2 have led to the same results.

In this scenario, we have pointed out that our model can deal with consequences that are
subsets of the cartesian product of several variables. In fact, the abnormal event e corresponds
to the event a forest fire and a big house fire which is represented with {f1, f2} × {h1}.

6.3.6 Scenario 3

In this scenario, we have illustrated the use of our model on computer security area.

Let us consider the following sequence of observations: “An attacker conducts a stealthy
port scan of a network, sending packets to several well-known ports (e.g., ftp, telnet, http)
looking for systems that might be running those services. Those services are present on the
system. The attacker penetrate the system.”

The background knowledge of an agent is depicted in Figure 6.18. Variables are repre-
sented with nodes such that:

• Att (for an attack)
ΘAtt={a1: DOS, a2: U2R, a3: no};

• Ser (for services)
ΘSer={ser1: yes, ser2: no};

• P (for sending hight number of packets)
ΘP={p1: yes, p2: no};

• Sc (for scan)
ΘSc={sc1: yes, sc2: no}).
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Ser

Sc
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Figure 6.18: Network of scenario 3

Abnormal event and potential causes of scenario 3

A DOS attack is an abnormal event in context of running services ser1. We want to ascribe
causes of this attack a1 such that potential causes are:

• ca1: packets were sent, i.e., {p1};

• ca2: a scan was made, i.e., {sc1}.

Test 1: conditional bbm assigned to the effect is non-zero

In this test, we want to know if either the fact that packets were sent (ca1) or a scan was
made(ca2) is the cause of a DOS attack (a1). For that we have assigned a conditional bbm
equal to x to a1. The value of x has been varied according to three levels, namely under
0.25, between 0.25 and 0.5 and greater than 0.5. Figure 6.19 presents the results of causality
ascription for all the potential causes, namely ca1 and ca2, after making 90 simulations (30
per level).

Figure 6.19: Scenario 3, test 1: ascribing causes of a1

Table 6.14 summarizes the different results presented in Figure 6.19. General results are
presented in Table 6.15.
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Table 6.14: Scenario 3, test 1: state of cai per level of uncertainty

ca1 ca2

m(a1|ser1, cai) state of the ca1 number % number %

]0,0.25]
very strong 1 3 1 3

strong 10 33 20 67
weak 0 0 0 0

non-cause 19 64 9 30

]0.25,0.5]
very strong 22 73 17 57

strong 5 17 9 30
weak 0 0 0 0

non-cause 3 10 4 13

]0.5,1]
very strong 30 100 30 100

strong 0 0 0 0
weak 0 0 0 0

non-cause 0 0 0 0

Table 6.15: Scenario 3, test 1: state of ca1 and ca2

cai very strong strong weak non-cause

number of times
ca1 53 15 0 22
ca2 48 29 0 13

%
ca1 59 17 0 24
ca2 53 32 0 15

From these tables, we conclude that the highest the confidence in the occurrence of the
consequence a1 is, the strongest the observed event will be ascribed as a cause of a1. In
particular, we find that when it is:

- greater than 0.5 then in 100% of the cases ca1 and ca2 are ascribed as a very strong
cause of a1.

- between 0.25 and 0.5 then ca1 is either ascribed as a very strong cause (73% of the cases
for ca1 and 57% for ca2) or a strong cause (17% of the cases for ca1 and 30% for ca2).

- less than 0.25 then ca1 is ascribed as a very strong cause is few cases (3% of the cases
for ca1 and ca2), a strong cause (33% of the cases for ca1 and 67% for ca2) or as a non
cause of a1 (64% of the cases for ca1 and 30% for ca2).

Test 2: conditional bbms assigned to subsets not contradicting the effect are non-
zero

What if we are not certain that an attack took place, i.e., we support {a1, a2, a3} or we do
not know precisely its type, for instance it can be a DOS or an U2R attack. In this case a
bbm of zero is assigned to ai in the context of ser1 and {a1, a2} will be a focal element.

As mentioned in the previous scenarios, in the case of a conditional vacuous bba (only one
focal element ΘAtt) then we are in a case of ignorance. Moreover, if all the subsets that do
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not contradict a1 are focal elements then the plausibility of a1 as well as the plausibility of
a1 are equal to one. Consequently, in both cases we are not able to say if cai is a cause of the
DOS attack.

In the following, we will investigate the case of partial ignorance where we only know that
the attacker succeeds to penetrate the system. Accordingly, the conditional bba in context of
ser1, cai satisfies these constraints:

• the bbm assigned to a1 is 0;

• the bbm of focal element {a1, a2}, reflecting our imprecision about the kind of the attack
is x; x ∈ ]0, 1]. Three levels of uncertainty of x were defined, namely x belonging to
]0,0.25], ]0.25,0.5] and ]0.5,1] are considered;

• remaining elements randomly share a mass of 1− x.

For each level of uncertainty, we have generated 30 times our model. Figure 6.20 depicts the
different ascribed strength of ca1 and ca2 respectively in this case of partial ignorance.

Figure 6.20: Scenario 3, test 2: ascription of ca1 and ca2

Table 6.16 summarizes the results of Figure 6.20. Table 6.17 presents the final results
about the 90 simulations for ca1 and ca2.
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Table 6.16: Scenario 3, test 2: state of cai per level of uncertainty

ca1 ca2

m({a1, a2}|ser1, cai) state of the ca1 number % number %

]0,0.25]
very strong 0 0 0 0

strong 2 7 12 40
weak 0 0 0 0

non-cause 28 93 18 60

]0.25,0.5]
very strong 0 0 0 0

strong 5 17 18 60
weak 0 0 0 0

non-cause 25 83 12 40

]0.5,1]
very strong 0 0 0 0

strong 5 17 20 67
weak 0 0 0 0

non-cause 25 83 10 33

Table 6.17: Scenario 3, test 2: state of ca1 and ca2

cai very strong strong weak no-cause

number of times
ca1 0 12 0 78
ca2 0 50 0 40

%
ca1 0 13 0 87
ca2 0 56 0 44

From these tables, we can conclude that:

- the number of times where ca1 and ca2 are identified as non-causes of the DOS attack
a1 depends on the confidence in {a1, a2} in context of ca1 and on context of ca2. In
fact, for ca1 it decreases from 93% when it is less than 0.25, to 83% when it is greater
than 0.25. We notice the same behavior for ca2 where it decreases from 60% when it is
less than 0.25, to 40% when it is between 0.25 and 0.5 to 33% if it is greater to 0.5.

- if ca1 or ca2 is ascribed as a cause of a1, it is always a strong cause. The most confident
we are in {a1, a2}, the highest will be the possibility that the observed event is cause of
a1. In fact,
- for ca1, when this bbm is less than 0.25 then in 7% of the cases ca1 is ascribed as a
strong cause of a1. This rate increases to 17% if m(w|s1, ca1) is greater than 0.25.
- for ca2, when this bbm is less than 0.25 then in 40% of the cases ca2 is ascribed as a
strong cause of a1. This rate increases to 60% if m(w|s1, ca1) is between 0.25 and 0.5
and to 67% if it is greater than 0.25

Test 3: aggregate bbas of all simulations

As for the two previous scenarios, for each observed event ca1 and ca2, we will compare the
results of our causality ascription model found after for each simulation with those found after
merging beliefs using Dempster’s rule of combination.
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Decision about ca1 after test 1
Let us start with ca1 when the bba is defined according to the requirements of test 1:

As mentioned in Table 6.14, we have found that when m(a1|ser1, ca1) is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is ascribed as a very strong cause.
- ]0.5,1], then ca1 is ascribed as a a very strong cause.
From Table 6.15, we can conclude that in general ca1 is ascribed as a very strong cause of a1.

By applying Dempster’s rule of combination, we have found that when m(a1|ser1, ca1) is
in:
- ]0,0.25], then ca1 is a non-cause
- ]0.25,0.5], then ca1 is ascribed as very strong cause.
- ]0.5,1], then ca1 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca1 is ascribed as
a very strong cause of a1.

Decision about ca1 after test 2
Let us now compare the results about the state of ca1 when the bba is defined according to
the requirements of test 2.

As mentioned in Table 6.16, we have found that when m({a1, a2}|ser1, ca1) is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is a non-cause.
- ]0.5,1], then ca1 is a non-cause.
From Table 6.17, we can conclude that in general ca1 is a non-cause of a1.

By applying Dempster’s rule of combination, we have found that whenm({a1, a2}|ser1, ca1)
is in:
- ]0,0.25], then ca1 is a non-cause.
- ]0.25,0.5], then ca1 is a non-cause.
- ]0.5,1], then ca1 is a non-cause.
By combining all beliefs from the 90 simulations, we have also found that ca1 is a non-cause
of a1.

Decision about ca2 after test 1
Results concerning ca2 when thebbm satisfies the requirement of test 1 are presented in Ta-
ble 6.14. In fact, when m(a1|ser1, ca2) is in:
- ]0,0.25], then ca2 is ascribed as a strong cause.
- ]0.25,0.5], then ca2 is ascribed as a very strong cause.
- ]0.5,1], then ca2 is ascribed as a very strong cause.
From Table 6.15, we can conclude that in general ca2 is ascribed as a very strong cause of a1.

By applying Dempster’s rule of combination, we have found that when m(a1|ser1, ca2) is
in:
- ]0,0.25], then ca2 is ascribed as strong cause
- ]0.25,0.5], then ca2 is ascribed as very strong cause.
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- ]0.5,1], then ca2 is ascribed as a very strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca2 is ascribed as
a very strong cause of a1.

Decision about ca2 after test 2
Let us consider the results presented in Table 6.16 about ca2 when the bbm satisfies the re-
quirement of test 2. In fact, when m({a1, a2}|ser1, ca2) is in:
- ]0,0.25], then ca2 is a non-cause.
- ]0.25,0.5], then ca2 is ascribed as a strong cause.
- ]0.5,1], then ca2 is ascribed as a strong cause.
From Table 6.17, we can conclude that in general ca2 is ascribed as a strong cause of a1.

By applying Dempster’s rule of combination, we have found that whenm({a1, a2}|ser1, ca2)
is in:
- ]0,0.25], then ca2 is a non-cause.
- ]0.25,0.5], then ca2 is a strong cause.
- ]0.5,1], then ca2 is a strong cause.
By combining all beliefs from the 90 simulations, we have also found that ca2 is a strong cause
of a1.

We notice that the two alternatives used to decide about the state of the observed event
either ca1 or ca2 have led to the same results.

In this scenario, we have shown the use of our model in context of the computer security
area to discriminate between potential causes of an attack. Even though, belief networks
have been exploited in many real-world applications (e.g., threat assessment (Benavoli et al.,
2009), system analysis (Simon et al., 2008)), it will be difficult to use our approach in some
applications requiring in their modeling a high number of nodes. Indeed, the major drawback
of the belief function theory remains its high computational complexity since it works on
subsets of the frame of discernment.

6.4 Conclusion

In this chapter, we first described the developed causal belief network on which we simulated
the effect of an intervention using the belief graph mutilation and augmentation approaches.
Indeed, on this network we are able to compute the simultaneous effect of observations and
interventions.
Then, we presented several scenarios to show the feasibility and the usefulness of the belief
causality ascription model to ascribe the causes of an abnormal situation from a sequence of
reported events.



Conclusion

This PhD thesis was devoted to the modeling of causal reasoning from uncertain knowledge.
Uncertainty is formalized under the belief function framework.

Causality should be well distinguished from spurious correlation. For that we have fo-
cused on the concept of interventions under the belief function framework. Interventions are
external manipulations to the system that force a target variable to have a specific value.
An action on a cause forcing it to take place will lead to the occurrence of the effect. As
for probability and possibility theories, a graphical structure (a causal network) is needed to
specify the mechanisms concerned by these external actions.

Besides, a causal network can be seen as an associational network where arcs do not only
represent dependence relations. More precisely, the parent set of a given variable is seen as
its immediate causes. Accordingly, the equivalence hypothesis of directed associational net-
works is not valid any more. Thus, a causal network is a proper associational network but
the contrary is not always true. This means that its structure is more meaningful and more
expressive than the standard network.

For that reasons, as a main contribution we have revised the theoretical foundations of
existing belief networks and we have proposed a new associational belief network so-called
Belief network with conditional beliefs (BNC ). This latter is a directed acyclic graph where
conditional bbas can be defined in the context of one or more than one parent nodes. To
compute the global joint distribution, we have proposed a new belief chain rule based on
uniform operations to get rid from conditioning and to extend beliefs to a joint frame.

Another main contribution of this thesis is a graphical model to deal with interventions
namely the causal belief network with conditional beliefs (CBNC ). This network is an appro-
priate model to represent imperfect causal knowledge in particular it is ideal for ignorance
situations. It consists of a BNC with a special interpretation in the sense that edges point
from causes toward effects.

We have presented an approach to define belief causation and model the effect of interven-
tions. Therefore, a generalization of the “do” operator under the belief function framework
was proposed to compute the effect of these external actions. We have shown that inter-
ventions are graphically handled by altering the structure of the causal graph. Mutilation
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consists of cutting off the link relating the variable of interest to its parents, whereas the
second method, namely augmentation, consists of adding a fictive node DO representing the
intervention as a new parent of the manipulated variable. Even if the joint distribution is not
defined as for probability distribution, these two different methods remain equivalent under
the belief function framework.

We have also investigated the case of non-standard external actions. Indeed, we have
pointed out that an intervention can be imperfect or have imperfect consequences. By im-
perfect interventions, we refer to interventions that may for instance uncertainly occur (i.e.,
takes place with a degree of belief). An intervention can have imperfect consequences in the
sense that it does not succeed to put its target into one specific value. We have shown that
these kinds of interventions have a natural encoding under the belief function framework and
can easily be modeled through the CBNC representation.

In the last part of the thesis, we have proposed a model for causality ascription to identify
influential relationships between different attributes of the system namely causality, facili-
tation or justification in the presence observational and interventional data. An intelligent
artifact will look for the causes of an exceptional event that have changed the normal course
of things to an abnormal situation. For that purpose, we have provided several definitions for
the concepts of acceptance, rejection and ignorance. Since decision makers are not only inter-
ested in the presence of a causal link, our proposed model allows defining different strengths
of a causal relationship.

Finally, we have implemented our belief causal network and showed that the belief graph
augmentation and the belief graph mutilation are equivalent methods to deal with interven-
tions. Besides, we have illustrated the feasibility and the usefulness of our belief causality
ascription model through several scenarios. In fact, an agent will be able to discriminate be-
tween potential causes and ascribe the ones of the abnormal event. Through these scenarios,
we have pointed out that our model can handle n-ary variables. Besides, we have shown that
causes can be a disjunction of hypotheses and that effects can be represented as subsets of
the cartesian product of some variables. Then, we have explained the usefulness of our model
through a scenario in the context of the computer security area.

Some interesting future works have to be mentioned. First, we can explore belief causal
inference and then extend the proposed tools for a complete mechanism of causal reasoning in
presence of observational and interventional data. We can also study the relationship between
interventions and belief changes in a belief function framework and analyze its relation with
the belief function counterpart of Jeffrey’s rule (Smets, 1993c) under uncertain inputs. We
will investigate if this rule can encode the concept of interventions in belief causal graphical
models and if it guarantees the uniqueness of the solution.

Another contribution regarding the causality ascription model is to develop an axiomatic
system that includes formal properties of causation and facilitation. Moreover, we can take
into account hidden causes in our model. Besides, we can investigate the counterpart of
the Semi Markovian Causal Models (Tian & Pearl, 2002) which are an extension of causal
Bayesian networks for modeling problems with latent variables. However, in theses models
there is a problem of identifiability when making causal reasoning. In fact, we are not neces-
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sarily able to identify the effects of an intervention on some variables. It will be interesting
to study if it will be the same for their belief counterparts.

Another line or research will be to handle particular belief functions (e.g., qualitative,
continuous belief function). Accordingly, we can compare the results of qualitative non-
monotonic consequence model with the qualitative belief model.

From application point of view and in parallel to further theoretical elaboration, the belief
causality ascription model can be used in the context of the computer network security system
in the areas of intrusion detection. Indeed, we will develop methods allowing the ascription of
several types of causes of attacks that can be either very strongly, strongly or weakly rejected
events in the normal course of things. Note that our approach can also be used in other fields
(e.g., marketing).
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Appendix A
Proofs of Chapter 4

A.1 Introduction

In this appendix, we recall the different propositions given in Chapter 4 and provide their
proofs.

A.2 Proofs of propositions

Proposition 4.1 Let G be a belief causal network and mV
G be the joint mass distribution

related to G. The effect of an intervention do(aij) on the mass distribution is given by:

mV
G (v|do(aij)) =

{ ∑
v′∩a↑Vij =v

m
V \Ai

G (v′)↑V if v↓Ai = {aij}

0 otherwise

(A.1)

where v is a subset from the cartesian product of the variables in V .

Proof of Proposition 4.1 In Definition 4.1, we have explained that an intervention on the
belief causal graph corresponds to an observation on the mutilated graph:

mV
G (.|do(aij)) = mV

Gmut
(.|aij).

Using Dempster’s rule of conditioning, we have :

(1) mV
Gmut

(.|aij) = mV
Gmut

⊕mAi
Gmut

, with mAi
Gmut

a certain bba focused on aij .

Note that using the independence principle, mV
Gmut

can be written as a combination of
local distributions. In particular,

(2) mV
Gmut

= m
V \Ai

Gmut

↑V ⊕ mAi
Gmut

(. | Pa(Ai))
↑V .

Intervening on Ai amounts to cutting-off the links relating it to its initials causes PA(Ai).
Thus, Ai becomes independent of PA(Ai). Formally,

(3) mAi = mAi(. | Pa(Ai)).

On the other hand, mAi
Gmut

is a certain bba. Then,

(4) mAi
Gmut

⊕ mAi
Gmut

= mAi
Gmut

.

Using (1), (2), (3) and (4), we obtain:

(5) mV
Gmut

(. | aij) = m
V \Ai

Gmut

↑V ⊕ mAi
Gmut

.
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Dempster’s rule of combination is defined as the orthogonal sum of two bbas, here m
V \Ai

Gmut

↑V

and mAi
Gmut

. Focal elements of the aggregated bba are all the possible intersections between

pairs of focal elements of m
V \Ai

Gmut

↑V and mAi
Gmut

.

mAi
Gmut

is a certain bba. Thus, its focal element is aij . Let us denote by v′ focal elements

of m
V \Ai

Gmut

↑V and by v elements of the aggregated bba. Hence, v will be considered as a focal

element only if v↓Ai = {aij}. Thus, mV
G (v|do(aij)) will be defined as follows:

mV
G (v|do(aij)) =

∑
v′∩a↑Vij =v

m
V \Ai

G (v′)↑V if v↓Ai = {aij}

= 0 otherwise

Proposition 4.2 Let G be a belief causal network in which a variable Ai is forced it to take
the value aij , do(aij). In the case where the initial bba of the target variable is non-dogmatic,
the effect of this intervention on the joint mass distribution mV

G is given as follows:

mV
G (v|do(aij)) =

{ ∑
F∩a↑Vij =v

mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V if v↓Ai = {aij}

0 otherwise

(A.2)

where F represent focal elements of (mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V ) and v any

subset of the cartesian product of variables in V .

Proof of Proposition 4.2 From Proposition 4.1, two cases arise:

- If v↓Ai = {aij}, then:

mV
G (v|do(aij)) =

∑
v′∩a↑Vij =v

m
V \Ai

G (v′)↑V

On the other hand, using the independence principle, we have:

mV
G = m

V \Ai

G
↑V
⊕ ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Ai×PA(Ai))↑V

Thus, when the bba of the target variable is non-dogmatic we can use the decombination
operator as follows:

m
V \Ai

G
↑V

= mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V

Let us denote by F , the set of focal elements of (mV
G 	( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V ).

Thus,

mV
G (v|do(aij)) =

∑
F∩a↑Vij =v

mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V

- If v↓Ai 6= {aij}, then the proof is immediate from Proposition 4.1. ClearlymV
G (v|do(aij)) =

0

Corollary 4.1 Let G be a belief causal network whose joint mass distribution is mV
G . In the

case where the initial bba of the target variable is non-dogmatic, the effect of an intervention
do(aij) on a variable Ai of this graph forcing it to take the value aij can be also computed as
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follows:

mV
G (v|do(aij)) =

{ ∑
F∩{(aij ,Pa(Ai))}↑V =v

mV
G (.|aij , Pa(Ai))⊕mPA(Ai)

G (Pa(Ai))
↑V if v↓Ai = {aij}

0 otherwise

(A.3)

where F is a focal element of mV
G (.|aij , Pa(Ai))⊕mPA(Ai)

G (Pa(Ai))
↑V and v is a subset from

the cartesian product of variables in V .

Proof of Corollary 4.1 From Proposition 4.2, we have shown that when the bba of the
target variable is non-dogmatic:

- If v↓Ai = {aij}, then:

(1) mV
G (v|do(aij)) =

∑
F∩a↑Vij =v

mV
G 	 ( ⊕

Pa(Aj)
mAi
G (.|Pa(Ai)) (Aj×PA(Aj))↑V

Using conditioning, the bba mV
G is computed as:

(2) mV
G (.|aij , Pa(Ai))⊕mAi×PA(Ai)

G ({(aij , Pa(Ai))})↑V
Where,

(3) m
Ai×PA(Ai)
G ({(aij , Pa(Ai))})↑V ) = mAi

G (.|Pa(Ai)) (Aj×PA(Aj))↑V ⊕mPA(Ai)
G (Pa(Ai))

↑V

From (1), (2) and (3), mV
G (v|do(aij)) is given by:∑

F∩{(aij ,Pa(Ai))}↑V =v

mV
G (.|aij , Pa(Ai))⊕mPA(Ai)

G (Pa(Ai))
↑V

where F is a focal element of mV
G (.|aij , Pa(Ai))⊕mPA(Ai)

G (Pa(Ai))
↑V

- If v↓Ai = {aij}, then mV
G (v|do(aij)) = 0.

Proposition 4.3 Let Gaug be an augmented causal belief graph where the DO node is set
to the value nothing.
Its corresponding bba mV

Gaug(.|do(nothing)) encodes the same joint distribution as the original
causal belief graph.

mV ′
Gaug(.|do(nothing)) = mV

G (A.4)

where V ′ = V ∪DO.

Proof of Proposition 4.3 Let us denote by V ′ the set of the variables in the graph, i.e.,
V ′ = V ∪DO. The global mass distribution on the mutilated graph mV ′

Gaug is computed as:

mV ′
Gaug = mV �V ′

Gaug ⊕m
DO�V ′
Gaug

= m
V \Ai�V ′

Gaug ⊕ mAi�V ′

Gaug (.|Pa′(Ai)) ⊕ mDO�V ′
Gaug

Conditioning mV ′
Gaug on do(nothing), corresponds to observing the value nothing on the

network:
mV ′
Gaug(.|do(nothing)) = m

V \Ai�V ′

Gaug ⊕ mAi
Gaug(.|Pa′(Ai))

�V ′ ⊕ mDO�V ′
Gaug ⊕ mDO�V ′

Gaug .

In the case where mDO is a certain bba, focused on do(nothing), mDO is idempotent, i.e.,
mDO ⊕mDO = mDO.
Therefore, using Equation 4.6 mV ′

Gaug(.|do(nothing)) becomes:

= m
V \Ai�V ′

Gaug ⊕ mAi
Gaug(.|Pa(Ai))

�V ′ ⊕ mDO�V ′
Gaug

= mV �V ′
G ⊕ mDO�V ′

Gaug
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Using Equation 4.13, we get: mV ′
Gaug(.|do(nothing)) = mV

G .

Proposition 4.4 Let G be a causal belief network and Gmut and Gaug its corresponding
mutilated and augmented graphs after acting on the variable Ai by forcing it to take the value
aij . Then as for probability and possibility theories, computing the effects of interventions
using the mutilation of the graph or its augmentation gives the same results.

mV
G (.|do(aij))

= mV
Gmut

(.|aij)
= mV ′

Gaug(.|do(aij))

Proof of Proposition 4.4 Let Gaug be an augmented causal belief network on which an
intervention is performed on a variable Ai setting it to the value aij , i.e., do(x) = do(aij).
From Equation 4.1, we have mV

G (.|do(aij)) = mV
Gmut

(.|aij).
Let us denote by V ′ the set of the variables in the graph, i.e., V ′ = V ∪DO. According

to the conditional independence principle, mV ′
Gaug is given by:

m
V \Ai�V ′

Gaug ⊕ mAi
Gaug(.|Pa′(Ai))�V

′ ⊕ mDO�V ′
Gaug .

When mDO is a certain bba focused on aij , from Equation 4.6 and Equation 4.9 we get:
mV
Gaug(.|do(aij)) = mV

G (.|do(aij)).
Accordingly, mV

Gaug(.|do(aij)) = mV
G (.|do(aij)) = mV

Gmut
(.|aij)

Proposition 4.5 The global joint distribution obtained after intervening on the initial
graph G by forcing a variable Ai to take the imprecise value subik leads to the same results
obtained after observing subik on the mutilated graph Gmut:

mV
Gmut

(.|subik) = mV
G (.|do(subik))

Proof of Proposition 4.5 Same as the proof presented for standard interventions, i.e.,
proof of Proposition 4.1.

Proposition 4.6 Let G a belief causal network and let Gmut and Gaug its corresponding
mutilated and augmented graphs. Dealing with imprecise interventions using the mutilation
of the graph or its augmentation gives the same results.

mV
G (.|do(subik))

= mV
G mut(.|subik)

= mV ′
G aug

(.|do(subik))

Proof of Proposition 4.6 The proof presented for standard interventions remains valid
here.

Proposition 4.7 Standard interventions are a particular case of imprecise interventions
when the the subset representing the possible target values is composed of one element, i.e.
subij = {aij}.

mDO(do(x)) =

{
1 if x = subik = {aij}, subik ⊆ ΘAi

0 otherwise
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Proposition 4.8 Interventions with ignored target values are a particular case of imprecise
interventions: the subset representing the possible target values corresponds to the frame of
discernment, i.e. subij = ΘAi .

mDO(do(x)) =

{
1 if x = subik, subik = ΘAi

0 otherwise

Proofs of Proposition 4.7 and Proposition 4.8 Proofs are immediate. The belief
function theory allows to allocate beliefs to subsets. A subset includes elementary events and
the whole frame of discernment of a given variable.

Proposition 4.9 Standard interventions are a particular case of uncertain interventions
when the source is fully reliable, i.e., α = 0.

mAi(subik|do(aij)) =

{
1 if subik = aij

0 otherwise

Proof of Proposition 4.9 The proof is immediate by the application of Equation 4.21.

Proposition 4.10 The beliefs provided about the non-occurrence of an intervention are
accepted without any modification. They are defined like standard interventions.

mAi,αdo(nothing)=0(.|do(nothing)) = mAi(.|do(nothing))

Proof of Proposition 4.10 The non-occurrence of the intervention is a certain fact. Thus
αdo(nothing) = 0, amounts to keep the same mass distribution defined in Equation 4.26.

Proposition 4.11 An augmented belief function causal graph where the DO node is set to
the value nothing encodes the same joint distribution than the initial causal belief network.

mV ′
Gaug(.|do(nothing)) = mV

G

where V ′ = V ∪DO.

Proof of Proposition 4.11 The proof provided for Proposition 4.3 remains valid for Propo-
sition 4.11.

Proposition 4.12 Uncertain interventions with a certain consequence are a particular case
of uncertain ones with uncertain consequences when the parameter βj is set to one.

mAi(subik|do(aij)) =

{
1− α if subik = aij
α if subik = ΘAi

Proof of Proposition 4.12 A certain consequence means that it exists one focal element
which is the target value aij . The proof is immediate by the application of the Equation 4.31
for βj = 1.
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A.3 Conclusion

In this appendix, we have given proofs of the different propositions that we have provided in
Chapter 4.



Appendix B
Proofs of Chapter 5

B.1 Introduction

In this appendix, we recall the different propositions given in Chapter 5 and provide their
proofs.

B.2 Proofs of propositions

Proposition 5.1 If ΘE = {ei, ei} then:

• ei is weakly accepted iff ei is strongly accepted iff ei is very strongly accepted iff
pl(ei)>pl(ei).

• ei is weakly rejected iff ei is strongly rejected iff ei is very strongly rejected if pl(ei)<pl(ei).

Proof of Proposition 5.1 All the definitions presented in Definition 5.1 collapsed in the
case where ΘE = {ei, ei}.

Proposition 5.2 If an event ei is very strongly rejected in a given context and after ob-
serving an event ej it becomes very strongly accepted, then ej is said to be a very strong
cause of ei, namely

plt(ei|c) < plt(ei|c);

plt+n(ei|ej , c) > plt+n(ei|ej , c)

Proof of Proposition 5.2 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a very strong reject. Thus, plt(ei|c) < plt(ei|c). After the observation
of the event ej , ei becomes very strongly accepted. To compute the effect of observations, we
have to use conditioning. Accordingly, we get: plt+n(ei|ej , c) > plt+n(ei|ej , c).
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Proposition 5.3 If an event ei is very strongly rejected in a given context and after ob-
serving an event ej it becomes strongly accepted, then ej is said to be a strong cause of ei,
namely

plt(ei|c) < plt(ei|c);

∃e 6= ei,

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proof of Proposition 5.3 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a very strong reject. Thus, plt(ei|c) < plt(ei|c). After the observation
of the event ej , ei becomes strongly accepted. To compute the effect of observations, we have
to use conditioning. Using the definition of conditional strong accept, we get: (1)

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proposition 5.4 If an event ei is strongly rejected in a given context and after observing
an event ej it becomes very strongly accepted, then ej is said to be a strong cause of ei,
namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

plt+n(ei|ej , c) > plt+n(ei|ej , c)

Proof of Proposition 5.4 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a strong reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

After the observation of the event ej , ei becomes very strongly accepted. To compute the
effect of observations, we have to use conditioning. Accordingly, we have: plt+n(ei|ej , c) >
plt+n(ei|ej , c).
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Proposition 5.5 If an event ei is very strongly rejected in a given context and after ob-
serving an event ej it becomes weakly accepted, then ej is said to be a weak cause of ei,
namely

plt(ei|c) < plt(ei|c)

∃e 6= ei,

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proof of Proposition 5.5 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a very strong reject. Thus, plt(ei|c) < plt(ei|c). After the observation
of the event ej , ei becomes weakly accepted. To compute the effect of observations, we have
to use conditioning. Using the definition of conditional strong accept, we get: (1)

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proposition 5.6 If an event ei is strongly rejected in a given context and after observing
an event ej it becomes strongly accepted, then ej is said to be a weak cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

∃e 6= ei,

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proof of Proposition 5.6 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a strong reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

After the observation of the event ej , ei becomes strongly accepted. To compute the effect of
observations, we have to use conditioning. Using the definition of conditional strong accept,
we get: (1)

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))
An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)
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Proposition 5.7 If an event ei is weakly rejected in a given context and after observing an
event ej it becomes very strongly accepted, then ej is said to be a weak cause of ei namely,

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c)

plt+n(ei|ej , c) > plt+n(ei|ej , c)

Proof of Proposition 5.7 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a weak reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

After the observation of the event ej , ei becomes very strongly accepted. To compute the
effect of observations, we have to use conditioning. Accordingly, we have: plt+n(ei|ej , c) >
plt+n(ei|ej , c).

Proposition 5.8 If an event ei is strongly rejected in a given context and after observing
an event ej it becomes weakly accepted, then ej is said to be a very weak cause of ei, namely

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

Proof of Proposition 5.8 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a strong reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

After the observation of the event ej , ei becomes weakly accepted. To compute the effect of
observations, we have to use conditioning. Using the definition of conditional strong accept,
we get: (1)

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))
An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)
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Proposition 5.9 If an event ei is weakly rejected in a given context and after observing an
event ej it becomes strongly accepted, then ej is said to be a very weak cause of ei, namely

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c)

∃e 6= ei, pl
t+n(e|ej , c) < plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

Proof of Proposition 5.9 The effect ei is abnormal in context c. The definition of abnor-
mality is here defined as a weak reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

After the observation of the event ej , ei becomes strongly accepted. To compute the effect of
observations, we have to use conditioning. Using the definition of conditional strong accept,
we get: (1)

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

An event is strongly accepted if it is not very strongly accepted. Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proposition 5.10 If an event ei is weakly rejected in a given context and after observing
an event ej it becomes weakly accepted, then ej is said to be a slight cause of ei, namely

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c)

∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))
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Proof of Proposition 5.10 The effect ei is abnormal in context c. The definition of
abnormality is here defined as a weak reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

After the observation of the event ej , ei becomes weakly accepted. To compute the effect of
observations, we have to use conditioning. Using the definition of conditional strong accept,
we get: (1)

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proposition 5.11 to Proposition 5.19 (see Section 5.3.3)

Proofs of Proposition 5.11 to Proposition 5.19 The proofs of propositions concerning
the causality ascription in presence of interventional data are similar to the ones in presence
of observational data. However, instead of conditioning we have to apply causal condition-
ing using the do operator under the belief function framework as it has been explained in
Chapter 4.

Proposition 5.20 An event ej is said to confirm another event ei if:

plt(ei) · plt+n(ej) < plt+n(ei, ej)

Proof of Proposition 5.20 According to Definition 1.2 we have,

pl(ei|ej) > pl(ei)

Using conditioning, we have:
plt+n(ei, ej)

plt+n(ej)
> plt(ei)

It is equivalent to:

plt+n(ei, ej) > plt(ei) · plt+n(ej)
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Proposition 5.21 An event ej is said to attenuate another event ei if:

pl(ei, ej) < pl(ei) · pl(ej)

Proof of Proposition 5.21 According to Definition 1.3 we have,

pl(ei|ej) < pl(ei)

. Using conditioning, we have:
plt+n(ei, ej)

plt+n(ej)
< plt(ei)

It is equivalent to:
plt+n(ei, ej) < plt(ei) · plt+n(ej)

Proposition 5.22 If an event ei is very strongly rejected in a given context and after ob-
serving an event ej it becomes ignored then ej is said to very strongly facilitate the occurrence
of ei. Namely,

plt(ei|c) < plt(ei|c).

plt+n(ei|ej , c) = plt+n(ei|ej , c).

Proof of Proposition 5.22 The effect ei is abnormal in context c. The definition of
abnormality is here defined as a very strong reject. Thus, plt(ei|c) < plt(ei|c). After the
observation of the event ej , ei becomes ignored. Accordingly, we obtain:

plt+n(ei|ej , c) = plt+n(ei|ej , c).

Proposition 5.23 If an event ei is strongly rejected in a given context and after observing
an event ej it becomes ignored then ej is said to strongly facilitate the occurrence of ei.
Namely,

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

plt+n(ei|ej , c) = plt+n(ei|ej , c).

Proof of Proposition 5.23 The effect ei is abnormal in context c. The definition of
abnormality is here defined as a strong reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) < plt(e|c)

After the observation of the event ej , ei becomes ignored. Accordingly, we obtain:

plt+n(ei|ej , c) = plt+n(ei|ej , c).
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Proposition 5.24 If an event ei is weakly rejected in a given context and after observing an
event ej it becomes ignored then ej is said to weakly facilitate the occurrence of ei. Namely,

∃e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ej |c)) ≤ plt(e|c)

plt+n(ei|ej , c) = plt+n(ei|ej , c).

Proof of Proposition 5.24 The effect ei is abnormal in context c. The definition of
abnormality is here defined as a weak reject. Thus, (1)

plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

Since very strongly rejected is not verified, (2)

plt(ei|c) ≤ plt(ei|c)

From (1) and (2), we have

∀e 6= ei, pl
t(ei|c) ≤ plt(ei|c) = Argmin(plt(ek|c)) ≤ plt(e|c)

After the observation of the event ej , ei becomes ignored. Accordingly, we obtain:

plt+n(ei|ej , c) = plt+n(ei|ej , c).

Proposition 5.25 If an event ei is ignored in a given context and after observing an event
ej it becomes very strongly accepted then ej is said to very strongly justify the occurrence of
ei. Namely,

plt(ei|c) = plt(ei|c)

plt+n(ei|ej , c) > plt+n(ei|ej , c)

Proof of Proposition 5.25 The event ei is ignored in a given context. Accordingly, we
have:

plt(ei|c) = plt(ei|c)

After the observation of the event ej , ei becomes very strongly accepted. To compute the
effect of observations, we have to use conditioning. Accordingly, we get:

plt+n(ei|ej , c) > plt+n(ei|ej , c)

Proposition 5.26 If an event ei is ignored in a given context and after observing an event ej
it becomes strongly accepted then ej is said to strongly justify the occurrence of ei. Namely,

plt(ei|c) = plt(ei|c)

∃e 6= ei, pl
t+n(e|ej , c) < plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))
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Proof of Proposition 5.26 The event ei is ignored in a given context. Accordingly, we
have:

plt(ei|c) = plt(ei|c)

After the observation of the event ej , ei becomes strongly accepted. To compute the effect of
observations, we have to use conditioning. Using the definition of conditional strong accept,
we get: (1)

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) < plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proposition 5.27 If an event ei is ignored in a given context and after observing an event
ej it becomes weakly accepted then ej is said to weakly justify the occurrence of ei. Namely,

plt(ei|c) = plt(ei|c).

∃e 6= ei, pl
t+n(e|ej , c) ≤ plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

where plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

Proof of Proposition 5.27 The event ei is ignored in a given context. Accordingly, we
have:

plt(ei|c) = plt(ei|c)

After the observation of the event ej , ei becomes weakly accepted. To compute the effect of
observations, we have to use conditioning. Using the definition of conditional strong accept,
we get: (1)

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c))

An event is strongly accepted if it is not very strongly accepted, Accordingly, (2)

plt+n(ei|ej , c) ≤ plt+n(ei|ej , c)

From (1) and (2), we have:

plt+n(e|ej , c) ≤ plt+n(ei|ej , c) = Argmax(plt+n(ek|ej , c)) ≤ plt+n(ei|ej , c)

Proposition 5.28 to Proposition 5.33 (see Section 5.6)

Proofs of Proposition 5.28 to Proposition 5.33 As for causality ascription, the proofs
of propositions concerning the facilitation and justification ascription in presence of inter-
ventional date are similar to the ones in presence of observational data. However, instead
of conditioning we have to apply causal conditioning using the do operator under the belief
function framework as it has been explained in Chapter 4.
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B.3 Conclusion

In this appendix, we have provided proofs of the different propositions that we have provided
in Chapter 5.
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Cognitifs du Raisonnement Causal.

Duncan, O. (1975). Introduction to structural equation models. New york: Academic Press.



172 References

Dupin de Saint-Cyr, F. (2008). Scenario update applied to causal reasoning. In Interna-
tional Conference on Principles and Knowledge Representation and Reasoning (KR’08)
(p. 188-197).

Dupin de Saint-Cyr, F., & Lang, J. (2002). Belief extrapolation (or how to reason about
observations and unpredicted change). In International Conference on Principles and
Knowledge Representation and Reasoning (KR’02) (p. 497-508).

Eberhardt, F., & Scheines, R. (2007). Interventions and causal inference. In Philosophy of
Science Association (Vol. 74, p. 981-995).

Eells, E. (1991). Probabilistic causality. Cambridge: Cambridge University Press.
Elouedi, Z., Mellouli, K., & Smets, P. (2001). Belief decision trees: theoretical foundations.

International Journal of Approximate Reasoning , 28 (2-3), 91-124.
Fonck, P. (1994). Conditional independence in possibility theory. In Uncertainty in Artificial

Intelligence (UAI’94) (pp. 221–226).
Foucher, S., Laliberte, F., Boulianne, G., & Gagnon, L. (2006). A Dempster-Shafer based

fusion approach for audio-visual speech recognition with application to large vocabulary
french speech. In International Conference on Acoustics, Speech and Signal Processing
(ICASSP’06) (Vol. 1, p. 597-600).

Gänderfors, P. (1992). Belief revision. Cambridge University Press.
Giunchiglia, E., Lee, J., McCain, N., Lifschitz, V., & Turner, H. (2004). Nonmonotoni causal

theories. Artificial Intelligence, 153 , 49-104.
Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical causal models in psychol-

ogy. Cambridge: MIT Press.
Goldszmidt, M., & Pearl, J. (1992). Rank-based systems: A simple approach to belief revision,

belief update, and reasoning about evidence and actions. In International Conference
on Principles of Knowledge Representation and Reasoning (KR’92) (p. 661-672).

Good, I. (1961a). A causal calculus I. British Journal for the Philosophy of Science, 11 ,
305-318.

Good, I. (1961b). A causal calculus II. British Journal for the Philosophy of Science, 12 ,
43-51.

Gordon, J., & Shortliffe, E. H. (1984). The Dempster-Shafer theory of evidence. In Rule-
Based Expert Systems: the MYCIN Experiments of the Stanford Heuristic Programming
Project (pp. 272–292).

Granger, C. (1980). Testing for causality: A personal viewpoint. Journal of Economic
Dynamics and Control , 2 , 329-352.

Guan, J. W., & Bell, D. A. (1991). Evidence theory and its applications. Elsevier science.
Halpern, J., & Pearl, J. (2005). Causes and explanations: A structurel model approach. Part

i: Causes. British Journal for the Philosophy of Science, 56 (45), 843-887.
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Vejnarová, J. (2012). Conditioning in evidence theory from the perspective of multidimen-
sional models. In International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU’12) (Vol. 299 CCIS, p. 450-459).
Springer-Verlag.

Verma, T., & Pearl, P. (1990). Equivalence and synthesis of causal models. In Uncertainty
in Artificial Intelligence (UAI’90) (p. 255-270).

Vogt, W. (2005). Dictionary of statistics and methodology : a nontechnical guide for the
social sciences. Sage Publications.

Walley, P. (1991). Statistical reasoning with imprecise probabilities. Chapman and Hall,
London.

Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford Uni-
versity Press.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20 , 557-585.
Xu, H., & Smets, P. (1994). Evidential reasoning with conditional belief functions. In

Uncertainty in Artificial Intelligence (UAI’94) (p. 598-606).
Xu, H., & Smets, P. (1996). Reasoning in evidential networks with conditional belief functions.

International Journal of Approximate Reasoning , 14 , 155–185.
Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,

1 , 3–28.



176 References

Zadeh, L. (2001). Causality is undefinable (Tech. Rep.). Univ. of California, Berkley.


