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Abstract
In this thesis, we have developed a new decision tree approach under uncertainty. This
so-called belief decision tree is a new classification method adapted to uncertain data
where the uncertainty is represented by belief functions. We have developed two major
procedures regarding a belief decision tree. The first procedure concerns its construction
from a given training set characterized by uncertainty in the classes of its objects, and
represented by the means of belief functions. In order to build the tree, many parameters
adapted to this uncertain context, are defined such as the attribute selection measure,
the partitioning strategy, the stopping criteria and the structure of leaves. Once the
belief decision tree is constructed, the second procedure is related to the classification of
instances, using the belief function formalism. Our objective is to provide a method able
to classify objects even those characterized by uncertain attribute values. Simulations are
performed in order to show the feasibility of our belief decision tree approach. Finally, some
improvements are added to belief decision trees in order to better handle the uncertainty
in the training set. Hence, methods for assessing beliefs, given by experts, on the classes
of training instances are proposed. Furthermore, our belief decision tree approach is
extended to deal with the case where uncertainty also occurs in the attributes of the

training instances.

Résumé
Dans cette these, nous avons développé une nouvelle approche d’arbre de décision dans

un environnemnet incertain. Cette nouvelle méthode de classification, appelée arbre de
décision crédibiliste, est adaptée aux données incertaines ou l'incertitude est représentée
par des fonctions de croyance. Nous avons développé deux procédures majeures relatives
aux arbres de décision crédibilistes. La premiere procédure concerne sa construction a
partir d’un ensemble d’apprentissage caractérisé par une incertitude dans les classes de ses
objets, et qui est représentée par des fonctions de croyance. Afin de construire cet arbre,
plusieurs parametres adapatés a cet environnment incertain, sont définis a savoir la mesure
de sélection d’attributs, la stratégie de partitionnement, les critéres d’arrét et la structure
des feuilles. Une fois I'arbe de décision crédibiliste construit, la seconde procédure est
relative a la classification des instances et ce en utilisant le formalisme des fonctions de
croyance. Notre objectif est d’offrir une méthode capable de classer les objets, méme ceux
caractérisés par des valeurs incertaines d’attributs. Des simulations ont été effectuées afin
de montrer la faisabilté de notre approche d’arbre de décision crédibiliste. Finalement, des
améliorations sont ajoutées aux arbres de décision crédibilistes afin de mieux manipuler
I'incertitude dans ’ensemble d’apprentissage. Ainsi, des méthodes d’évaluation des croy-
ances, données par les experts, sur les classes des instances d’apprentissage, sont propoées.
Par ailleurs, notre approche est étendue, pour traiter le cas d’incertitude dans les attributs

des instances d’apprentissage.



Introduction

Classification techniques have the major objective to find for each object its
corresponding class by taking into account their attributes (characteristics).
These techniques are widely used in different fields such as medicine, indus-
try, marketing, finance, etc.

The classification techniques are divided into two groups: those work-
ing under a supervised mode where classes of instances in the training set
are known a priori, and those working under an unsupervised mode where
classes are not fixed a priori.

In addition to statistical classification techniques where the widely used
method is the discriminant analysis, several non parametric classification
techniques have been developed (Weiss & Kulikowski, 1991). The best known
in the supervised mode are decision trees, k-nearest neighbors, neural net-
works, etc, whereas in the unsupervised mode, the most classical method, is
the clustering.

These ‘new’ techniques are characterized by their application to complex
fields like the artificial intelligence, the pattern recognition, the speech recog-
nition, the control of the industrial process, and so on.

However, the standard versions of these different techniques are inade-
quate and badly adapted to ensure their role of classification in an environ-
ment characterized by a lot of uncertain and imprecise parameters. Hence,
having an uncertain, or imprecise or even missing information relative to any
parameters of the classification problem may affect the correctness of classi-
fication results.
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That is why researches are oriented to the improvement and the exten-
sion of these techniques, in order to adapt them to this kind of environment.
Thus, the idea is to develop classification methods based on theories manag-
ing uncertainty and imprecision such as probability theory, fuzzy set theory,
and belief function theory.

In this thesis, we are interested to the decision tree method. This non
parametric technique, working under a supervised mode, is one of the most
used classification methods in artificial intelligence (Quinlan, 1986, 1993),
due notably to its simple structure and its accurate results ‘easy’ to inter-
pret by experts and even by ordinary users.

In order to overcome the limitations encountered in standard decision
trees, and due to the uncertainty and the imprecision in some classification
parameters, two kinds of decision tree were developed: probabilistic de-
cision trees (Quinlan, 1987a, 1990b) and fuzzy decision trees (Umano
et al., 1994), (Zeidler & Schlosser, 1996), (Marsala, 1998).

Probabilistic decision trees try to classify new instances where one or
several needed attribute values are missing or uncertain. However, this kind
of tree is operational only if there is no uncertainty in the training set, but
where pruning is applied to the induced tree. Fuzzy decision trees have been
defined to cope with data where both classes and attributes are represented
by fuzzy values.

Inspite of its several advantages, the belief function theory had not yet
been applied to decision trees when we started this work.

The objective of this thesis is to develop this new concept that we have
called belief decision trees. This new approach is based on both the de-
cision tree technique and the belief function theory in order to cope with
uncertainty in the classification problem parameters.

Recently, Denceux and Skarstein-Bjanger (2000) have studied a similar
problem with another interpretation different from the one that will be pre-
sented in this thesis. They consider the data as a ‘random sample’, but what
is developed, is limited to binary classes.
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Belief function theory as interpreted in the Transferable Belief Model
(TBM) (Smets, 1988, 1998b; Smets & Kennes, 1994; Smets & Kruse, 1997)
provides a mathematical tool to treat subjective, and personal judgments
on the different parameters of any classification problem and can be easily
extended to deal with objective probabilities. It allows experts to express
partial beliefs in a much more flexible way than probability functions do.
Besides, it permits to handle partial or even total ignorance concerning clas-
sification parameters.

Belief function theory offers interesting tools to combine several pieces
of evidence, like the conjunctive and the disjunctive rules of combination.
Decision making is solved through the pignistic transformation. In addition
to these advantages, this theory is easily applied to reasoning based systems
like decision support systems and expert systems.

Hence, the belief function theory provides a convenient framework to han-
dle uncertainty in the decision tree technique and consequently to develop
what we call a belief decision tree approach.

Belief decision trees should cope with uncertain classification parameters.
This uncertainty occurs at two levels:

- Classes: Suppose the class assigned to an object in the training set is not
known with certainty. It can be a disjunction of classes (the object belongs
either to the first or the second class, etc). The general case consists in
having degrees of belief on the actual class of the object.

- Attributes: Suppose one or several attribute values of some objects are
not known with certainty. So, it is interesting to assign for each attribute a
basic belief assignment representing beliefs on its values. In this thesis, we
only deal with symbolic attributes.

In our belief decision tree approach, we will develop two important pro-
cedures:

- The construction of the belief decision tree: The structure of the
training set’ must be defined in order to take into account the uncertainty
of some parameters.

!The structure of a ‘standard’ training set in a certain environment is composed of
elements represented as pairs (attributes, class) where for each object, we know exactly
the value of each one of its attributes and also its assigned class which is unique.
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In this thesis, we will basically handle uncertainty in the classes of the
training objects. The attribute values of objects in the training set are sup-
posed to be known with certainty.

Given this structure of the training set, the second step consists in defin-
ing an attribute selection measure allowing to find the root of the belief
decision tree and those of the induced sub-trees. This measure has to take
into account the basics of the belief function theory in order to deal with this
uncertain context.

Then, we have to develop the algorithm for building the belief decision
tree relative to the structure of the training set. To ensure this objective,
and in addition to the attribute selection measure, other parameters have
to be defined like, the partitioning strategy, the stopping criteria, and the
structure of leaves.

- The classification of new instances: Once the belief decision tree
is constructed, the second procedure is the inference procedure allowing the
classification of new instances. Three cases will be studied:

1. The object to classify is characterized by attribute values which are known
with certainty.

2. The object to classify is characterized by some (or all) disjunctive attribute
values. This case involves the total ignorance of the value of one (or more)
attribute(s).

3. The object to classify is characterized by some (or all) uncertain at-
tribute values. Hence, each attribute of the object is defined by a basic belief
assignment representing beliefs on its values. Obviously, this latter case is
considered as the generalized case involving the simple and the disjunctive
ones.

In practice, uncertainty occurs frequently in either attributes or classes.
Therefore, in almost all fields where decision trees are applied and whenever
uncertainty happens, the belief decision tree technique will be useful. We can
mention several fields of classification where uncertainty is encountered like
medicine where diseases (classes) of some patients or even their symptoms
(attributes) may be uncertain.
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Furthermore, belief decision trees can be applied to marketing, finance, or
management problems. Moreover, the illustrative example used in this thesis
deals with the classification of clients in a bank in order to plan a loan policy.

Uncertainty can also be present in other fields and hence, the use of belief
decision trees is required, such that in military problems dealing for example
with radar sensors, or in strategic problems like classification of scenarios
according to their hypotheses relative to a strategic domain.

So, belief decision trees provide a tool to classify data pervaded with un-
certainty, thus widening the scope of application of the classification proce-
dures to those new domains where uncertainty cannot be avoided. Problems
neglected in the past because of the lack of an adequate tool might become
manageable thanks to our method.

Since we deal with subjective judgments allowing the treatment of expert
opinions on classes relative to training objects, we will also develop methods
for tuning the opinions of the experts by assessing their corresponding relia-
bility factors and consequently evaluating their beliefs.

In this work, we study the case where uncertainty encountered in the
training set concerns only the classes of the training objects. Some improve-
ments related to uncertainty in attributes in the training set will also be
defined.

Our thesis is organized in eight chapters distributed on three parts:

- Part 1 presents the necessary theoretical aspects concerning the belief
function theory and the decision trees.

- Part 2 details the construction of the belief decision tree when the knowl-
edge about the classes of the training objects is represented by a belief func-
tion. Two approaches are proposed for the attribute selection procedure: the
averaging approach based on the extension of Quinlan method, and the con-
junctive approach more based on the basics of the transferable belief model
itself. The belief decision tree method can be adapted to handle the classifi-
cation of new objects when uncertainty occurs in some (or all) the values of
their attributes. Implementation and simulation are performed in order to
judge of the feasibility of our method.
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- Part 3 provides some improvements that can be added to the belief decision
tree approach. It treats the problems of assessing the beliefs encountered in
the training objects. Experts produce the knowledge about the classes of the
training objects. Their reliability is assessed either individually or in group.
Our belief decision tree method is also extended to handle the case where
uncertainty pervades the attributes of the training instances.

Finally, a general conclusion summarizes the major achievements of this
thesis and presents possible future developments.

Three appendices complete this thesis. The first one describes a small
example of the use of the belief decision tree approach within the scenario
method. The second appendix presents the different data manipulated in
the simulation. The third appendix presents an example of artificial bba’s
on classes used for performing simulations.



Part 1

Theoretical Aspects
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In this first part, we present the theoretical aspects used in our thesis.
Our thesis deals with belief decision trees which permits the application of
the decision tree technique to an uncertain context, and where the uncer-
tainty is represented by belief functions.

This part of preliminaries presents the necessary background concerning
the belief function theory and the decision tree method. This first part is
composed of two chapters:

e The first chapter deals with the belief function theory as understood in
the transferable belief model. This theory is a useful tool to represent
uncertain knowledge.

This chapter describes the basic notions of this theory and some il-
lustrative examples. In fact, definitions of different functions provided
by this theory are given. Besides, useful concepts within the belief
function theory are detailed namely the combination, the Generalized
Bayes Theorem, the discounting, the projection and the extension of
belief functions, the coarsening and the refinement, and also the deci-
sion process.

e The second chapter presents the classification method called the deci-
sion tree which is among the well known machine learning techniques.

This chapter details the basic characteristics of the decision tree method
and some of its improvements related notably to decision tree under
probability and fuzzyness. Illustrative examples are also provided in
this chapter in order to more explain the different basics presented.

These two chapters are useful to understand the developments made in
this thesis concerning the belief decision tree approach.
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Chapter 1

Belief function theory

1.1 Introduction

The theory of belief functions is considered as a useful theory for represent-
ing and managing uncertain knowledge. This theory is introduced by Shafer
(1976) as a model to represent quantified beliefs.

The belief function theory is widely applied to artificial intelligence where
it is usually called the Dempster-Shafer theory (Gordon & Shortliffe,
1984). However, several interpretations of such terms are proposed (Smets,
1991): in particular the lower probability model (Walley, 1991), the
Dempster’s model (Dempster, 1967, 1968), the theory of hints (Kohlas
& Monney, 1995), and the Transferable Belief Model (TBM) (Smets,
1988, 1998b; Smets & Kennes, 1994; Smets & Kruse, 1997). The first three
interpretations are somehow based on probability theory, whereas the last
one is not.

In this thesis, we deal with the interpretation of the belief function theory
as explained by the TBM. In this chapter, we present the basics of this the-
ory. Next, some special belief functions are described. Then, several concepts
of the belief function theory are detailed like the combination, the General-
ized Bayes Theorem, the discounting, the projection and the extension of
belief functions, the coarsening and the refinement. Finally, we present some
criteria used to solve the decision process within this theory.
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12 Chapter 1: Belief function theory

1.2 Basic concepts

1.2.1 Frame of discernment

Let © be a finite non empty set including all the elementary events related
to a given problem. These events are assumed to be exhaustive and mutu-
ally exclusive. Such set © is called the frame of discernment. It is also
referred to as the universe of discourse or the domain of reference
(Smets, 1988).

Generally, we handle all the subsets of © which belong to the power set
of ©, denoted by 2° and defined as follows:

2°={A:AC0O} (1.1)

Every element of 2° is called a proposition or an event. It can also be
seen as a possible answer to a given question.

Note that the empty set () belongs to the power set 2© and it corresponds
to the impossible proposition (the contradiction), whereas the set © corre-
sponds to the certain proposition (the tautology).

Example 1.1 Let’s treat a classification problem of aerial targets. Suppose
the frame of discernment related to this problem is defined as follows:
© = {Airplane, Helicopter, Missile}

The corresponding power set of © 1is:
29 = {0, { Airplane}, { Helicopter}, { Missile}, { Airplane, Helicopter},
{Airplane, Missile}, { Helicopter, Missile}, { Airplane, Helicopter, Missile}}

1.2.2 Basic belief assignment

The impact of a piece of evidence on the different subsets of the frame of dis-
cernment © is represented by the so-called basic belief assignment (bba),
called initially by Shafer (1976) basic probability assignment, an expression
that has unfortunately created serious confusion in the past.
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The bba is defined as follows:

m:2° —[0,1]

> m(A) =1 (1.2)

ACO

The value m(A), named a basic belief mass (bbm), shows the part of
belief exactly committed to the event A of © given a piece of evidence. Due
to the lack of information, this quantity cannot be apportioned to any strict
subset of A. So, it represents the direct specific support of evidence on A.

The quantity m(©) measures the portion of belief assigned to the whole
frame O. It represents the beliefs not assigned to the different subsets of ©.

Shafer (1976) has initially proposed a normality condition expressed by:
m(0) =0 (1.3)
Such bba is called a normalized basic belief assignment.

Smets (1990) relaxes this condition and interprets m(()) as the amount of
conflict between the pieces of evidence or as the part of belief given to the
fact that none of the hypotheses in © is true, in other words the hypotheses
making up the frame of discernment of hypotheses are not exhaustive. This
last interpretation refers to the so-called open-world assumption (Smets,
1990) (by opposition to the exhaustive frame of discernment which is referred
to as the closed-world assumption).

Example 1.2 Assume © = { Airplane, Helicopter, Missile}

Suppose a sensor expresses a piece of evidence concerning the nature of a
detected aerial target. The bba related to the sensor’s evidence is defined as
follows:

m({Airplane}) = 0.6;

m({ Airplane, Helicopter}) = 0.2;

m(0) =0.2;

For example, 0.6 represents the part of belief exactly supporting that the
detected aerial target is an airplane.
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1.2.3 Focal elements, body of evidence, core

The subsets A of the frame of discernment © such that m(A) is strictly pos-
itive, are called the focal elements of the bba m.

The pair (F,m) is called a body of evidence where F' is the set of all
the focal elements relative to the bba m.

The union of all the focal elements of m are named the core and are
defined as follows:

p= J 4 (1.4)
A:m(A)>0

Example 1.3 Let’s continue with the Example 1.2, the subsets { Airplane},
{Airplane, Helicopter}, and © are the focal elements of the bba m.

So, (F,m) is called the body of evidence such that:
F = {{Airplane}, { Airplane, Helicopter}, O}

The core of this bba m is defined as follows:
o = {Airplane} U {Airplane, Helicopter} U© = ©

1.2.4 Belief function

A belief function, denoted bel, corresponding to a specific bba m, assigns
to every subset A of © the sum of the masses of belief committed exactly to
every subset of A by m (Shafer, 1976).

Contrary to the bba which expresses only the part of belief committed
exactly to A, the belief function bel represents the total belief that one com-
mits to A without being also committed to A.

The belief function bel is defined as follows:

bel : 2° — [0,1] such that:

bel(A)= > m(B) (1.5)

0£BCO

The bbm m(f) is not included in bel(A) as () is both a subset of A and A.
We want in bel(A) only the bbm given to the subsets that support A without
supporting A.
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Theorem 1.1 (Shafer, 1976) Let © be a frame of discernment, the function
bel : 29 — [0,1] is a belief function if and only if it satisfies the following
conditions:

bel(0) =0 (1.6)
For all Ay,... A, €29,

bel(A1 U ... UA,) > > bel(A;) —

D bel(AinA;) — = (=1)"bel(A; N ... N Ay) (1.7)

1>]

Usually, bel(©) = 1 is assumed (Shafer, 1976) corresponding to a closed-
world assumption. It can be ignored and we only require bel(©) < 1.

Properties

o Sub-additivity:

bel(A) + bel(A) < 1 (1.8)

This rule shows that the knowledge of the belief given to a proposition
A does not necessarily give us an information about the degree of belief
of the proposition A (Lopez De Mantaras, 1990).

Contrary to the theory of probability, in the belief function theory
increasing beliefs on a proposition A does not necessary require the
decrease of beliefs on A.

e Monotonicity:
A C B = bel(B) > bel(A) (1.9)

Hence, © will get the highest value of bel (the upper limit), whereas ()
will get the lowest value (the lower limit).

e For A, BC O, AnB =),

bel(AU B) > bel(A) + bel(B) (1.10)
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e m(A) may be expressed by the values of bel as follows (Smets, 2002):

m(A) = (=) 1Plbel(B), VA C O, A+ (1.11)

e the bbm m(0) is computed as follows:

m(0) =1 — bel(O) (1.12)

Example 1.4 The belief function bel corresponding to the bba m (see Ex-
ample 1.2) is deﬁned as follows:

bel(0) =

bel({Azrplane}) = 0.6;

bel({ Helicopter}) = bel({ Missile}) = bel({ Helicopter, Missile}) = 0;

bel({ Airplane, Helicopter}) = 0.6 + 0.2 = 0.8;

bel({ Airplane, Missile}) = 0.6;

bel(©) =0.6+02+02=1;

For example, 0.8 is the total belief committed to the proposition { Airplane,
Helicopter}. It represents the sum of the bbm’s assigned to this set and also
to its subsets.

1.2.5 Plausibility function

The plausibility function p/ quantifies the maximum amount of belief that
could be given to a subset A of the frame of discernment. It is equal to the
sum of the bbm’s relative to subsets B compatible with A. In other words,
it contains those parts of belief that do not contradict A (BN A # ().

pl : 29 — [0,1] such that:

pl(A) = > m(B) (1.13)
ANB#0

= bel(0) — bel(A) (1.14)

=> m(B) - Zm(B) (1.15)

where A is the complement of the subset A relative to ©.
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Properties

e pl(A) can be expressed by bel(A), we get:

pl(A) = bel(A) + Z m(B)

ANB#(,BZ A

Over additivity:

pl(A) +pl(A) > 1

Monotonicity:

A C B = pl(B) > pl(A)

For A, BC ©, ANB =10,

pl(AU B) < pl(A) + pl(B)

For A C ©,

bel(A) < pl(A)

17

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

Example 1.5 The plausibility function pl corresponding to the bba m (see

Ezxample 1.2) is defined as follows:
pl(0) = 0;

({Azrplcme}) =06+02+02=1;
pl({Helicopter}) = 0.2+ 0.2 = 0.4;
pl({Missile}) = 0.2;
pl({Airplane, Helwopter}) =064+02+02=1;
pl({Airplane, Missile}) = 0.6 + 0.2+ 0.2 = 1;
pl({Helicopter, Missile}) = 0.2 + 0.2 = 0.4;
pl(©) = 0.6+0.2+0.2=1;

For example, 0.2 represents the maximum degree of belief that the propo-

sition {Missile} may have.

1.2.6 Commonality function

The commonality function ¢ has no immediate intuitive interpretation.
However, it may represent the total mass that is free to move to every element

of A (Barnett, 1991). It is defined as follows:
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q:2° —[0,1] such that:

a(4) = Y m(B) (1.21)

ACB

We have to notice that the commonality function is an interesting and
useful tool simplifying the computations in the belief function theory. Its
interpretation is given in details in (Smets, 1998b). Indeed, it can be under-
stood as the amount of uncertainty in the context where we accept as true
that the actual world belongs to A and can also be defined as follows:

q(A) = m[A](A) for all A C © (1.22)

where m[A](A) is the conditional bbm allocated to A in the context where
A is (accepted as) true.

Properties

e The commonality value relative to the empty set is defined as follows:
q(0) =1 (1.23)

e The commonality value relative to the whole frame of discernment is
defined as follows:

1(0) = m(©) (1.24)

Example 1.6 The commonality function q corresponding to the bba m (see
Ezxample 1.2) is defined as follows:
q(0) =1;
q({Airplane}) =06 +0.2+0.2=1;
q({Helicopter}) = 0.2+ 0.2 = 0.4;
q({ Missile}) = 0.2;
q({Airplane, Helicopter}) = 0.2 4+ 0.2 = 0.4;
q({Airplane, Missile}) = q({ Helicopter, Missile}) = 0.2;
q(©) =0.2;

Remark:

Note that the basic belief assignment (m), the belief function (bel), the plau-
sibility function (pl) and the commonality function (¢) are in one to one
correspondence with each other. They can be considered as different expres-
sions of the same information (Denceux, 1999).
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1.3 Special belief functions

1.3.1 Introduction

In the literature, several kinds of belief functions are proposed. Such func-
tions are used to express particular situations related generally to uncer-
tainty. In this section, we present the vacuous belief function, the categorical
belief function, the certain belief function, the simple support function, the
Bayesian belief function, the consonant belief function, the dogmatic and
non-dogmatic belief functions.

1.3.2 Vacuous belief function

A vacuous belief function is a normalized belief function defined such
that (Shafer, 1976):

m(©) =1and m(A) =0 for A # O (1.25)
In other words,
bel(©) =1 and bel(A) =0 for A # O (1.26)

Such basic belief assignment where © is the unique focal element, quan-
tifies the state of total ignorance since there is no support given to any
strict subset of ©.

Example 1.7 Assume a sensor Sy was not able to detect the nature of the
aerial target. Hence, we get a state of total tgnorance where the corresponding
bba myg s a vacuous bba defined as follows:

mo(©) =1 and my(A) =0 for A# O

1.3.3 Categorical belief function

A categorical belief function is a normalized belief function such that its
bba is defined as follows (Mellouli, 1987):

m(A) =1 for some A C © and m(B) =0, for BC©,B# A (1.27)

Such function has a unique focal element A (which is not imperatively a
singleton event) different from the frame of discernment ©.

Example 1.8 We get a piece of evidence ensuring that the aerial target can
not be a missile. So, the corresponding bba m presents a categorical belief
function characterized by:

m({ Airplane, Helicopter}) = 1;
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1.3.4 Certain belief function

A certain belief function is a categorical belief function such that its focal
element is a singleton. Its corresponding bba is defined as follows:

m(A) =1 and m(B) =0 for all B# A and B C © (1.28)
where A is a singleton event of ©.
Such function represents a state of total certainty as it assigns all the
belief to a unique elementary event.

Example 1.9 Assume a sensor S. affirms that the detected aerial target is
an airplane. The corresponding bba m. is a certain basic belief assignment

defined as follows:
me({Airplane}) = 1;
1.3.5 Simple support function

A belief function is called a simple support function (ssf) if it has at
most one focal element different from the frame of discernment ©. This focal
element is called the focus of the ssf.

A simple support function is defined as follows (Smets, 1995):

w if X =0
mX)=< 1—-w if X = A for some A C O (1.29)
0 otherwise

where A is the focus and w € [0, 1].

This ssf describes a belief function induced by a piece of evidence sup-
porting A (with 1 — w) and leaving the remaining beliefs for ©.

Note that the empty set () can be considered as a focus of a simple support
function.

Example 1.10 Let’s continue with the Example 1.1. Assume we have a bba
defined as follows:

m({ Helicopter, Missile}) = 0.7;

m(©) = 0.3;

m s called a simple support function where the focus is the proposition
{Helicopter, Missile}.
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1.3.6 Bayesian belief function

A Bayesian belief function is a particular case of belief functions defined
as follows (Shafer, 1976):

bel(0) =0 (1.30)
bel(©) =1 (1.31)
bel(AU B) = bel(A) + bel(B) whenever A, BC © and ANB=0 (1.32)

Properties

e bel is a Bayesian belief function if all its focal elements are singletons.
Hence, bel becomes a probability distribution.

e As in the probability theory:
bel(A) +bel(A) =1 for AC © (1.33)

e In the case of Bayesian belief functions we get:

bel = pl (1.34)
Example 1.11 Let’s consider © = {Airplane, Helicopter, Missile}.

We get a piece of evidence expressed by the following bba my,:
my({ Airplane}) = 0.3;
my({ Helicopter}) = 0.4;
mb({Mzsszle}) =0.3;
my(0) =

The bba my, is a Bayesian bba since all its focal elements are singletons.

1.3.7 Consonant belief function
A belief function is said to be consonant if all its focal elements (A, As, ...,

A,,) are nested, that is A1 C A, C ... C A,.

Properties

e Every simple support function is a consonant belief function.

e bel is a necessity measure:

bel(AN B) = min(bel(A), bel(B)) (1.35)
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e pl is a possibility measure:

pl(AU B) = max(pl(A), pl(B)) (1.36)

Example 1.12 Let’s consider the same bba defined in the Example 1.2:
m({Airplane}) = 0.6;
m({Airplane, Helicopter}) = 0.2;
m(©) =0.2;

We note that the focal elements of this bba m are nested. Hence, it is a
consonant bba.

1.3.8 Dogmatic and non-dogmatic belief functions

A belief function is said to be dogmatic if and only if its corresponding bba
m is such that m(©) = 0. This case involves some previous cases (certain
belief functions, Bayesian belief functions, categorical belief functions). A
non-dogmatic belief function is defined such that m(©) > 0 (Smets,
1995).

1.4 Combination

Handling information induced from different experts requires an evidence
gathering process in order to get the fused information. The belief function
theory, as understood in the TBM framework, offers interesting rules for
aggregating the basic belief assignments (bba’s) induced from distinct pieces
of evidence and provided by two (or more) sources of information.

1.4.1 Combination of two information sources

Let m; and msy be two bba’s defined on the same frame of discernment ©.
These two bba’s are collected by two ‘distinct” pieces of evidence and induced
from two experts (information sources). These bba’s can be combined either
conjunctively or disjunctively.

The conjunctive rule of combination

The conjunctive rule of combination handles the case where both sources
of information are fully reliable. The result of combination is a joint bba
presenting the conjunction of the two pieces of evidence induced from the
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two sources. Hence, the induced bba quantifies the combined impact of the
two pieces of evidence. It is defined as follows (Smets, 1998a):

(m@ma)(A) = > mi(B)ma(C) (1.37)

B,CCO:BNC=A

This rule can be simply computed in terms of the commonality functions
as follows:

(@) (A) = ¢1(A)g2(A) (1.38)

where ¢; and ¢y are respectively the commonality functions corresponding
respectively to the bba’s my and ms.

The conjunctive rule is considered as the unnormalized Demspter’s rule
of combination dealing with the closed world assumptions, defined as follows
(Shafer, 1976, 1986):

(my ® my)(A) = K(mi(Q)my)(A) (1.39)

where
K =1— (m@Qms) () (1.40)
and (my @& ms)(0) =0 (1.41)

K is called the normalization factor.

Properties

The conjunctive rule of combination is characterized by the following prop-
erties:

o Compositionality:

(m1()ms)(A) is function of A, m; and my.

o Commutativity:
m1®m2 = m2®m1 (142)
e Associativity:

(my @ma) Q)ms = mi Q) (ma()ms) (1.43)
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e Non-idempotency:

The conjunctive rule of combination is not idempotent. So usually:
m@Qm # m (1.44)

Neutral element:

The neutral element within the conjunctive rule of combination is
the vacuous basic belief assignment representing the total ignorance.
Hence,

m@Q)my = m (1.45)
where my is a vacuous bba.

Separable support function:

The combination of simple support functions using the conjunctive rule
leads to the so-called separable support function (Smets, 1995).

Example 1.13 Let’s consider the frame of discernment given in the Exam-
ple 1.1. Assume we have two distinct sensors S1 and Ss providing evidence
on the nature of the detected aerial target.

Two bba’s my and msy are relative to respectively S and Ss.
my ({ Airplane}) = 0.6;
my ({Airplane, Helicopter}) = 0.2;

mo({ Helicopter}) = 0.4;
ma({Airplane, Helicopter}) = 0.3;

Applying the conjunctive rule of combination, we get:

{Airplane}) = 0.36;

{Airplane, Helicopter}) = 0.18;
) = 0.06;

)(
my @mQ; E{Helicopter}) = 0.16;
)

ml@mQ represents the joint bba induced from the combination of my and
meo by using the conjunctive rule of combination.
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The disjunctive rule of combination

The dual of the conjunctive rule is the disjunctive rule of combination that
builds the bba representing the impact of two pieces of evidence when we
only know that at least one of them is to be accepted, but we do not know
which one. This rule is defined as follows (Smets, 1998a):

(m1©@m32)(A) = Z my (B)ma(C) (1.46)

B,CCO:BUC=A

Example 1.14 Let’s continue with the same example (Example 1.13). How-
ever, we assume at least one of the two sensors (Sy and Sy) is accepted, but
we do not know which one. Hence, we will apply the disjunctive rule of
combination. We get:

(m1©@my) ({ Airplane, Helicopter}) = 0.56;

(m1©@m3)(0) = 0.44;

Remark:

We have to mention that the disjunctive rule of combination (as the conjunc-
tive rule of combination) is commutative and associative. So,

miQ@ms = me@@m, and (1.47)

(m1©@m2)©@m3 = m1©(m2Qms) (1.48)

1.4.2 Combination of several information sources

Since the conjunctive and the disjunctive rules of combination are both com-
mutative and associative, combining several pieces of evidence induced from
distinct information sources (either conjunctively or disjunctively) may be
easily ensured by applying repeatedly the chosen rule.

1.5 Generalized Bayes Theorem

Smets (1993a) has generalized the Bayesian theorem (GBT) within the TBM
framework. Assume a vacuous a priori belief on a frame © where for each
element 6; of © you know what would be your beliefs on another frame X if
0; happened (belX [6;], what is usually denoted as bel(.|6;)).



26 Chapter 1: Belief function theory

Suppose you learn that the actual value of X isin x C X, then the GBT
allows you to derive the conditional belief over © given x. In particular, one
has (Smets, 1993a):

pl®)(0) = 1 — [ (1 = pl¥[8:](x)) (1.49)

Furthermore, if we assume we have only some beliefs on the value of z,

and these beliefs are represented by a belief function bel® over X (m* its
bba), then the GBT becomes:
pl°[m Z m™ (z)pl®[z](0) (1.50)
zCX
where plg[0](6) =0 (1.51)

The bba’s and the belief functions on © are computed from these plausi-
bility functions.

1.6 Discounting

Dealing with evidence expressed by experts requires to take into account the
level of expertise of each information source. In fact, experts are not fully
reliable and a method of discounting seems imperative to update experts’
beliefs by taking into account their reliability. The idea is to weight most
heavily the opinions of the best experts and conversely for the less reliable
ones.

Let (1 — «) be the degree of trust assigned to the expert (Ling & Rudd,
1989). In fact, it quantifies the strength of reliability given to this expert.
There would be a bba defined on the set {reliable, not reliable} such that
(Smets, 1992):

m(reliable) = 1 — « and m(not reliable) = « (1.52)
Updating the expert’s opinions leads to:
m*(A) = (1 — a)m(A) for AC O (1.53)

m*(©) =a+ (1 —a)m(O) (1.54)

This operation is called by Shafer (1976) a discounting and the coeffi-
cient « is named the discounting factor (Guan & Bell, 1993). The larger
a, the closer m® is from the vacuous belief function.



Chapter 1: Belief function theory 27

Properties
e o = (0 means that the expert is totally reliable.

e o = 1 means that the expert is not reliable at all. His opinions have to
be totally ignored.

Example 1.15 Let’s discount the bba m (given in the Ezample 1.2). We
assume the degree of reliability given to the expert is equal to 0.8. So we get:
m*({Airplane}) = 0.8 % 0.6 = 0.48;
m*({ Airplane, Helicopter}) = 0.8 x 0.2 = 0.16;
m*(©) = 0.2+ (0.8 % 0.2) = 0.36;

1.7 Projection and extension of belief func-
tions

1.7.1 Introduction

Generally the bba’s induced from experts are defined on different frames of
discernment. In order to allow the combination of information, two concepts
are proposed: the projection and the extension of belief functions.

In this section, we introduce the notions of variables, configurations and
valuations. Then, we define the concepts of projection and extension of
subsets of variables and those of belief functions.

1.7.2 Variables and configurations

Let £ be a finite set where each element is represented by a variable. Vari-
ables are denoted by upper-case Latin alphabets, X, Y, Z, ..., whereas
subsets of variables are denoted by lower-case Latin alphabets g, A, ... Each
variable X is associated to its frame of discernment ©y which is the set of
all the possible values related to this variable.

A frame of discernment ©; can be defined for a subset h of £. Such frame
is the cross product of the different frames of discernment of the different
variables.

On = x{Ox : X € h} (1.55)

The elements of O, are called configurations of h.
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1.7.3 Valuations

For each subset of variables h, is assigned a set V},. The elements of V}, are
called valuations of h. The set of all the valuations is defined as follows
(Shenoy, 1997):

V=U{V,:hC&} (1.56)
where £ is the set involving all the variables.

In the case of belief functions, the valuation function is considered as
a non negative numeric function defined on the frame of discernment of a
subset of configurations of h (0) such that basic belief assignments, belief
functions, plausibility functions, ...

1.7.4 Projection

Let g and h be two sets of variables, h C ¢g. Let x be a configuration of ¢
and ¢ be a non empty subset of the frame of discernment ©,.

The projection of configurations consists simply in dropping the extra
coordinates. The projection of  to h is denoted by x*".

The projection of the set § on h is defined as follows (Shenoy & Shafer,
1990):

o = {a* x € 6} (1.57)

1.7.5 Extension

The extension of subsets is accomplished from a little frame of discernment
to a larger one.

Let g and h be two sets of variables, h C g, g # h and A be a non empty
set of the frame of discernment ©,.

The extension of A to g, denoted by A" is called the cylindric exten-
sion. It is obtained by applying A xO,_.
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1.7.6 Projection and extension of belief functions

Let g and h be two distinct sets of variables and let bel, and bel;, be two be-
lief functions, defined respectively on ©, and ©;, and characterized by their
corresponding bba’s m, and m,.

If h C g, we can define the projection of bel, on ©) denoted by (bel,)*"
which consists in dropping information, it is also called marginalization,
whereas the extension of bel;, on ©, denoted by (bel;,)™ allows the informa-
tion in bel;, to be extended to a larger frame.

Three cases related to the concepts of projection and extension are pre-
sented (Mellouli, 1987):

e Case 1: If g C h then

(mg) (A x ©p,_,) = my(A) for all A C O, (1.58)

(mg)™(B) = 0 for all B which has not the form of A x ©;,_, (1.59)

h

In this case, (m,)™ is called the vacuous extension of m, to O,.

e Case 2: If h C g then forall A C 9,

Proj(A,0,) ={0:0€ 0, AN ({0} x O,_) # 0} (1.60)

(mg)""(B) = > mg(A) for all B C O, (1.61)

ACO,, Proj(A,0,)=B
In this case, (m,)*" is called the marginal of m, to Oy,.
e Case 3: Ifh ¢ gand g ¢ h then
(g™ = ((mg) o) (1.62)

To compute (mg)w, we project m, on the set composed of the inter-
section between ¢g and h, then we extend them to the set A.

Example 1.16 Let’s continue with the example of the aerial target and let’s
try to more specify each type of its targets.

Let & be a set of variables such that:
¢ = {Type_airplane, Type_helicopter, Type_missile}
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We associate a frame of discernment including all the possible values
of each variable. We get three frames of discernment relative respectively
to Type_airplane, Type_helicopter, Type_missile. In order to facilitate the
notations, we assign 1 for the variable Type_airplane, 2 for the variable
Type_helicopter, 3 for the variable Type_missile.

So, £ ={1,2,3} and let:

Oy = {Transport_airplane, Fighter _airplane}
Oy2y = {T'ransport_helicopter, Fighter_helicopter}
O3y = {Ground_missile, Air _missile}

Let ©y1 9y be the frame of discernment relative to both Type_airplane and
Type_helicopter. Using the Equation (1.55), we get:

Op.2) = Oy X Opz
= {(Transport_airplane, Transport_helicopter), (Transport_airplane,
Fighter_helicopter), (Fighter_airplane, Transport_helicopter), (Figh —
ter_airplane, Fighter_helicopter)}

Let belyi 2y be a belief function defined on Oy 5y and characterized by a
bba myy 2y such that:

my 2y ({(Transport_airplane, Transport_helicopter)}) = 0.6;

my 2y ({(Transport_airplane, Transport_helicopter), (Transport_airplane,

Fighter_helicopter)}) = 0.2;

m{1,2}(@{1,2}) =0.2;

e Case 1: : Let’s define (m19y) "3 Applying the Equations (1.58)
and (1.59), we get:
(m{1,2})T{1’2’3} ({(Transport_airplane, Transport_helicopter) } xOysy) =
0.6;

(my1.0) 23 ({(Transport_airplane, Transport_helicopter), (Transp-
ort_airplane, Fighter_helicopter)} x ©s;) = 0.2;

(M) (O12.5y) = 0.2;

The bba (m{172})“1’2’3} is the vacuous extension of mg 2y to O 23).

o Case 2: : Let’s define (my )"V, Applying the Equations (1.60) and
(1.61), we get:
(my1,2)) " ({Transport_airplane}) = 0.6 + 0.2 = 0.8;
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(m{l,g})i{l} (@{1}) = 02,

The bba (m{m})ul} is the marginal of mg 2y to Ogy.

o Case 3: : Let’s define (myo)"3. Applying the Equations (1.58),
(1.59), (1.60), (1.61) and (1.62), we get:
(M1 o) "3 = ((myy o) )3 defined as follows:

(my1.2y) "3 ({Transport_airplane} x Oy) = 0.6 + 0.2 = 0.8;
(m o) " (O 5)) = 0.2;

1.8 Coarsening and refinement

1.8.1 Introduction

In practice, it is common to deal with sources of information having different
frames of discernment but compatible.

In order to deal with these sources and basically to be able to aggregate
their beliefs, relations should be established between their different frames of
discerment. Two operations are defined: the refinement and the coars-
ening.

1.8.2 Refinement and coarsening

Let €2 and © be two finite sets. The idea behind the refinement consists in
obtaining one frame of discernment €) from the set © by splitting some or all
of its events (Shafer, 1976). On the other hand, the coarsening corresponds
to a grouping together the events of a frame of discernment © to another
frame compatible but which is more larger Q (Smets, 1993b, 1997).

Let’s define a mapping w : 2° — 22 such that (Shafer, 1976):

w({0}) #0 for all € © (1.63)

W) Nw{#}) =0if 0 £ 6 (1.64)

Jw{oh) =0 (1.65)

0co
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So, given a disjoint partition w({f}), we may set (Shafer, 1976):
w(A) = | Jw({0}) (1.66)
e A

where w(A) represents all the possibilities in the frame Q by splitting the
elements of A.

Such mapping w is called a refining, () is named a coarsening of © and
(2 is a refinement of ©.

Example 1.17 Let’s continue with the Fxample 1.1, a refinement of the
frame of discernment © is:

Q = {Transport_airplane, Fighter_airplane, Transport_helicopter, Figh-
ter_helicopter, Ground_missile, Air_missile} where

w(Airplane) = {Transport_airplane, Fighter_airplane}

w(Helicopter) = {Transport_helicopter, Fighter_helicopter}

w(Missile) = {Ground_missile, Air _missile}

On the other hand, © 1is considered as the coarsening of 2.

1.8.3 Definition of bba’s

Due to refinement and regarding bba’s, it is easy to update a bba m® defined
on the frame of discernment © to a refinement €2, we get the bba m* defined
as follows:

m?(B) = { m®(A) if B=w(A) for some A C © (1.67)

0 otherwise

The inverse operation is not obvious since it may exist some subsets A
of €2 that are not be discerned by © and consequently are not equal for any
B C ©. In (Shafer, 1976), we have the following definitions:

0292 20
6(A) ={0 O :w{f)nA£pD (1.68)

Therefore, the bbm given to A belonging to 2, by a bba m%, can be
transferred to §(A), so we get:

m®B)= Y  mA)foral BCO (1.69)
{ACQ,B=0(4)}

This last equation results from the condition bel®(B) = bel}(w(B)) for all
BC®O
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1.9 Decision process

1.9.1 Introduction

The theory of belief functions is characterized by its ability to handle un-
certainty and to ensure the combination of evidence induced from different
sources.

In order to make a decision, we hope to select the most likely hypothesis
which may be difficult to realize directly with the basics of the belief function
theory where bbm’s are given not only to singletons but also to subsets of
hypotheses.

In this section, we present some solutions allowing to ensure the decision
making within the belief function theory. The best known is the pignistic
probability proposed by the Transferable Belief Model (TBM) (Smets, 1988,
1998b; Smets & Kennes, 1994; Smets & Kruse, 1997). Other criteria will be
presented like the maximum of credibility and the maximum of plausibility
(Janez, 1996).

1.9.2 Pignistic probability
The TBM is based on a two level mental models:

e The credal level where beliefs are entertained and represented by belief
functions.

e The pignistic level where beliefs are used to make decisions and repre-
sented by probability functions called the pignistic probabilities.

When a decision must be made, beliefs held at the credal level induce a
probability measure at the pignistic measure denoted BetP (Smets, 1998b).
The link between these two functions is achieved by the pignistic transfor-
mation.

NnB| m(B)
1Bl (1 —m(0))

BetP(A) = 14

BCO

, forall A C O (1.70)

It is the only transformation between belief functions and probability
functions that satisfies some natural rationality requirements. The major
one is described as follows: Suppose two contexts C and Cs5, suppose your
beliefs in context C; is represented by m; and that the choice of the context
obeys to some random process, with P(C}) = p and P(Cy) = ¢ with p+¢ = 1.
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Let " denotes the operator that transforms a bba into a probability function.
We want that it satisfies:

L(pmi+qgmg)=pTL(my) + qT(my) (1.71)

This translates the property that transforming the belief held before
knowing the context that will be selected is the same as combining the condi-
tional probability functions one would have obtained if the context had been
known. Full details can be found in (Smets, 1998b, 2002; Smets & Kennes,
1994; Smets & Kruse, 1997). The probability function so obtained is then
used to compute the expected utilities needed for optimal decision making.

Note that all over this thesis, we will use the pignistic transformation as
a process to help us to make a decision.

Example 1.18 Let © = {Airplane, Helicopter, Missile}.

Assume at the credal level, we have the following bba m defined as follows:
m({Helicopter}) = 0.4;

m({Airplane, Helicopter}) = 0.3;

m(©) = 0.3;

In order to make a decision, we have to compute the pignistic probability
BetP corresponding to the bba m, we get:

BetP({Airplane}) = 0.25;

BetP({Helicopter}) = 0.65;

BetP({Missile}) = 0.1;

It is more probable that the detected aerial target is a helicopter.

1.9.3 Maximum of credibility

It consists in choosing the hypothesis having the highest value of the belief
function bel, that is the most credible hypothesis.

Decision based on the maximum of credibility is considered as a pes-
simistic approach since it chooses the ‘best” hypothesis based on the minimum
‘chance’ to realize (Janez, 1996).
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Example 1.19 Let’s continue with the Fxample 1.18, and try to make a
decision by using the criterion of the mazximum of credibility. We get:

bel({ Airplane}) = 0;

bel({ Helicopter}) = 0.3;

bel({ Missile}) = 0;

The largest value of bel is the one assigned to the hypothesis { Helicopter}.

According to the maximum of credibility, the helicopter is the detected
aerial target.

1.9.4 Maximum of plausibility

It consists in choosing the hypothesis having the highest value of the plausi-
bility function pl which means that we support the hypothesis that gives the
less evidence for the contrary hypothesis.

Contrary to the maximum credibility criterion, this criterion is consid-
ered as optimistic since it takes into account of the maximum of ‘chance’ of
realization of each hypothesis.

Example 1.20 Let’s continue with the Fxample 1.18, and try to make a
decision by using the criterion of the maximum of plausibility. We get:
pl({Airplane}) = 0.6;
pl({Helicopter}) = 1;
pl({Missile}) = 0.3;

The largest value of pl is the one assigned to the hypothesis { Helicopter}.
So according to the mazimum of plausibility, the helicopter is the detected
aerial target.

1.10 Conclusion

In this chapter, we have presented the basic concepts of the belief function
theory as understood in the transferable belief model. The different notions
are illustrated by examples.

Through this presentation, this theory seems appropriate to handle uncer-
tainty in classification problems especially within the decision tree technique.
The following chapter will deal with this technique of decision tree where its
basics will be described.
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Decision trees

2.1 Introduction

Decision trees are considered as one of the most widely used classification
techniques. They represent a sequential procedure for deciding the class
membership of a given instance.

Decision trees are especially used in artificial intelligence since their abil-
ity to express classification knowledge in a formalism easy to interpret. So,
they are applied successfully to many areas such as expert systems, medical
diagnoses, speech recognition, etc. They can also be used in other fields like
marketing, finance, industry, and so on.

Decision trees present a system using a top-down strategy based on the
divide and conquer approach where the major aim is to partition the tree
in many subsets mutually exclusive. Each subset partition corresponds to a
classification sub-problem.

In this chapter, we are interested to the basics of decision trees. We
focus on standard decision trees where their representation, objectives and
procedures will be described, then we present some decision tree algorithms.
Finally, advantages and drawbacks of decision trees will be detailed.

In the second part of this chapter, two kinds of this classification tech-
nique in an uncertain and imprecise environment will be briefly exposed:
probabilistic decision trees and fuzzy decision trees.

37
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2.2 Terminology

A typical problem of classification is described as follows (Yuan & Shaw,
1995):

e Object universe (U): It contains all the objects (instances) already
classified or to classify.

U - {Il,IQ, }

e Attributes (A): They describe each instance of the object universe
U. In fact, each attribute is considered as one property of the object
and can be represented by either a qualitative variable (Eg: color) or
a quantitative variable (Eg: height, old, etc) which may have either
discrete or continuous values (Baim, 1988).

A — {Al,AQ, ,Am}

e Classes (C): They are represented by the set of classes in which each
object of the universe U has to belong.

O — {Ol, CQ, ceey Cn}

e Training set (77): It includes all the objects whose classes are known.
Hence, the elements of this set are (m + 1)-tuples where each element
is composed by the attributes’ values of the object, and its assigned
class which is unique.

Hence, the classification task is to find a general classification rule that
works well on the objects in a given training set (Quinlan, 1990a) in order to
be useful to correctly classify new objects. A high rate of correct classification
remains the main objective of decision trees.

2.3 Decision tree representation
A decision tree is a representation of a decision procedure allowing to deter-
mine the class of an object. It is composed of three basic elements:

1. A decision node specifying a test attribute.

2. An edge or a branch corresponding to the one of the possible at-
tribute values which means one of the test attribute outcomes. It leads
generally to a sub decision tree or to a leaf.

3. A leaf which is also named an answer node, including objects that,
typically, belong to the same class, or at least are very similar.
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In order to classify a new instance, we start by the root of the decision
tree, then we test the attribute specified by this node. The result of this test
allows to move down the tree branch relative to the attribute value of the
given instance. This process will be repeated until a leaf is encountered.

In a decision tree, each path from the root to a leaf corresponds to a
conjunction of test attributes and the tree is considered as a disjunction of
these conjunctions.

Example 2.1 Let’s give a simple example of a classification problem that
may be treated by the decision tree technique. Assume a bank wants to de-
velop a classification of its clients by taking into account a number of their
attributes. This classification will be useful since it allows to the bank to plan
its loan policy.

e The object universe will be composed by the different clients:
U = {Clientl, Client2, ...}
o The attributes are the different characteristics allowing to distinguish

one category of the bank’s clients from another. In this example, for
sake of simplicity, we only consider three attributes which are:

A = {Income, Property, Unpaid_credit}
Each attribute may take the following values:
- Income with possible values {No, Low, Average, High},

- Property with possible values { Less, Greater}, that is to express if the
property’s value of the client is less or greater than the loan expected by
him,

- Unpaid_credit with possible values {Yes, No} in order to know if the
client has an unpaid credit or not.

o Three classes are defined by the bank and one of them will be assigned
to each client asking for a loan:

- 4 including good clients, i.e., reliable clients, for whom the bank
accepts to give the whole loan.

- Uy to which belongs moderate clients, for whom the bank accepts to
give a part of the loan.

- C3 regrouping ‘bad’ clients for whom the bank refuses to give the loan.

C = {Cla 027 03}7'
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Now, we have to define the different classification rules allowing to find
for each client the appropriate class regarding its attributes.

For instance, we could have this kind of decision tree (see Figure 2.1):

Income
High Low No Average
Unpaid_credit Property Cs Unpaid_credit
Yes No Greater Less Yes No
PrOp erty 01 C2 C3 C2 01
Greater Less
Cy Cy

Figure 2.1: Decision tree

2.4 Objectives

The major objectives of a decision tree can be summarized as follows (Safa-
vian & Landgrebe, 1991):

1. Classifying correctly as much as possible the objects of the training set.

2. Classifying correctly the new objects (not belonging to the training set)
with a high rate, i.e., with a high percent of correct classification.

3. Having a simple structure easy to understand.

4. Updating easily the training set.

2.5 Decision tree procedures
A decision tree is made of two different procedures:
1. The first for building the tree.

2. The second for the classification of objects.
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2.5.1 Building decision tree procedure
Description

The building of a decision tree is based on a given training set. It consists in
selecting for each decision node the ‘appropriate’ test attribute and also to
define the class labeling each leaf of the induced tree.

Generally, the first task is to generate the different tests on each variable
(attribute). For quantitative variables (either discrete or continuous), we
get binary tests (X >, X <, ...), whereas for the qualitative variables these
tests have to take into consideration all the different values of the variable.
However, a pooling of certain values into one alternative may be possible
(Decaestecker, 1997).

Then, the objective is to find in each decision node of the tree, the best
test attribute allowing to diminish as much as possible the mixture of classes
between each subset created by the test. In other words, the main idea is
therefore to find the test attribute in order to get disjoint data facilitating
the determination of objects’ classes. This process will continue for each sub
decision tree until reaching leaves and fixing their corresponding classes.

More details relative to building decision tree algorithms will be found in
Section 2.6.

Pruning step

The pruning step is intimately related to the induced tree and consequently
to the construction procedure. It consists in removing some edges that seem
useless to forecast new objects’ classes. It allows to simplify a decision tree
already built and which may be complex and characterized by several levels.
Hence, it represents a good way to control the growth of the tree, but it
remains an optional procedure in decision tree algorithms.

Instead of a full-size tree, we will get a smaller tree which should give a
better classification performance with a minimum error rate.
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Two kinds of pruning can be applied (Esposito, Malerba, & Semeraro,
1997), (Furnkranz, 1997):

1. The pre-pruning: applied while the decision tree is built. This pre-
pruning affects strongly the stopping criteria of the growth of the tree.

2. The post-pruning: considered as the common pruning which is ap-
plied after the construction of the decision tree.

2.5.2 Classification procedure with decision trees

In this section, we present an inference procedure for decision making re-
garding the classification task. In fact, the classification of a new instance is
ensured as follows (Quinlan, 1987b):

e If the root of the decision tree is a leaf

then the instance’s class will be the one labeling this leaf.

e FElse if the root is a test attribute
then each test’s outcome will be a sub decision tree and the

process continues.

To classify an object, we start with the root of the decision tree, we test
the attribute specified by this node. The result of this test allows us to move
down the tree branch according to the attribute value of the given instance.
This process is repeated until a leaf is encountered, the instance is being then
classified in the same class as the one characterizing the reached leaf.

We notice that a path in a decision tree is equivalent to a production rule
with the standard form:

If [premiss] then [conclusion]

where the premiss is the conjunction of the different tests, whereas the con-
clusion contains the class mentioned by the leaf found when at least one of
the stopping criteria is verified.

Therefore, a decision tree is considered as a rule basis where each new
instance can be classified by using the classical inference method of the de-
duction reasoning (as in artificial intelligence).
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2.6 Algorithms

2.6.1 Introduction

Several algorithms have been developed in order to ensure the construction
of decision trees. These algorithms are among the most well known and ap-
plied of all classification techniques especially in a supervised learning.

In fact, there are two ways to construct a decision tree:

1. The entire training set is available, thus the tree will be built by taking
into account this whole set. Such used procedure is referred to as a
non-incremental algorithm.

2. The training set arrives in a stream. For this case, two methods may
be applied:

e Once the new training set becomes available, we will discard the
current tree and replace it by taking into account the enlarged
training set.

e Based on the new information, we will revise the existing tree.
This is known as an incremental algorithm.

Among the non-incremental algorithms, we mention the ID3 and C4.5
algorithms developed by Quinlan (1986, 1993) which are probably the most
popular ones. We can also mention the CART algorithm of Breiman et al.
(1984).

In addition to these non-incremental algorithms, many incremental build-
ing decision tree algorithms have been proposed such as the ID4 of Schlimmer
and Fisher (1986) and notably ID5 and ID5R. of Utgoff (1988, 1989b).

2.6.2 Hunt’s procedure

The original idea of an algorithm allowing the building of a decision tree
relative to a training set, was initially proposed by Hunt in the late 1950’s
(Hunt, Marin, & Stone, 1966).

Let T be a training set of objects which may belong to one of the classes
C, Cy,..., Ch.

1. If all the objects belong to the same class, the decision tree relative to
the training set will be a leaf labeled by this class.
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2. Otherwise (T contains objects belonging to a mixture of classes), let
an attribute Ay be a test with possible values (vq, v, ..., vf). The
training set will be partitioned into subsets T7,T5,... Ty where each
set Ty (t =1,...,f) corresponds to the value v; of the test Ay. Then,
the same procedure will be applied for each subset.

As a conclusion, a decision tree relative to a training set consists in a
decision node identifying the test attribute, then one branch will be created
for each possible outcome. The same process will be repeated recursively.

2.6.3 Decision tree algorithm parameters

The majority of building decision tree algorithms proceeds identically, by us-
ing a descendent way (from the root to the leaves). To ensure this approach,
many parameters have to be defined and they can be considered as generic
parameters of the algorithm.

The building decision tree formalism is also referred to as Top Down
Induction of Decision Tree (TDIDT) (Van de Merckt, 1995) since it pro-
ceeds to successive divisions of the training set where each division represents
a question about an attribute value.

A generic decision tree algorithm is characterized by the next properties:

1. The attribute selection measure: An attribute is chosen in order
to partition the training set in an ‘optimized’ manner. A decision node
relative to this attribute is created. It becomes the root of the corre-
sponding (sub) decision tree. The idea is to use an attribute selection
measure taking into account the discriminative power of each attribute
over classes. In other words, considering the ability of each attribute
to determine training objects’ classes.

The selection measure is generally based on the information theory
(Shannon, 1948), we can for instance mention those suggested by Quin-
lan: the information gain (Quinlan, 1986) and the gain ratio
(Quinlan, 1993). Other measures are also developed namely the Lopez
De Mantaras measure (Lopez De Mantaras, 1991), the normal-
ized gain (Jun & Kim, 1997). More details can be found in (Mingers,
1989a), (Liu & White, 1994), (White & Liu, 1994).
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2. The partitioning strategy: The current training set will be divided
by taking into account the selected test attribute. In the case of sym-
bolic attributes (with a finite number of values), this strategy consists
in testing all the possible attribute values, whereas in the case of nu-
meric attributes, a discretization step is generally needed (Fayyad &
Irani, 1992), (Wehenkel, 1997).

3. The stopping criteria: They deal with the condition(s) of stopping
the growth of a part of the decision tree (or even all the decision tree).
In other words, they determine whether or not a training subset will
be further divided.

It is generally fulfilled when all the remaining objects belong to only one
class. Therefore, the part of the decision tree verifying this criterion
will be declared as a leaf. Note that other stopping criteria can be
proposed like the case where there is no further attribute to test.

These different steps are applied recursively to the training subsets that
do not verify any stopping criteria.

The major difference between these algorithms lies basically on the choice
of these parameters (the attribute selection measure, the partitioning strat-
egy, the stopping criteria).

2.6.4 Examples of building decision tree algorithms
Definitions

Let’s denote by T a training set and C' = {C},C5, ... ,C,} be the set of n
mutually exclusive and exhaustive classes so that each instance in 7" belongs
to one and only one class. Let A be one attribute which domain D(Ay) is
finite, D(Ay) contains all the values relative to the attribute Ag.

The algorithms that will be presented in this section use the information
gain criterion of Quinlan (1986, 1993) defined as follows:

Gain(T, Ar) = Info(T) — Infoa, (T) (2.1)
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where Info(T Zf?"equ{/[“T ngreq|(7€/|*i,T) (2.2)
and Infoy, (T) = Z | Ak|[nfo(TvA’“) (2.3)

UED(Ak) | |

freq(C;, T) denotes the number of objects in the set 7" belonging to the class
C; and TvA’c is the subset of objects for which the attribute A, has the value v.

Note that Info(T) represents the classical formula for the entropy rela-
tive to the training set 7" and Infoy, (T) represents a weighted average of
the entropies relative to all the subsets T (v € D(Ay)).

The best attribute relative to the training set 7" is the one that maximizes
Gain(T, Ay).

ID3 algorithm

ID3 is an inductive learning algorithm that constructs classification rules in
the form of a decision tree. The input of the ID3 is the training set composed
of objects and their classes, and produces a classification procedure of objects
as an output (Maher & Clair, 1993).

The different steps of the ID3 algorithm are summarized as follows:

1. If all instances belong to one class, then the decision tree is a leaf
containing that class.

2. Otherwise,

e Define the test attribute by using the information gain criterion.
The best attribute is the one that maximizes Gain (T, Ay).

e Divide the training set 7" into several subsets, one for each value
of the selected attribute.

e Apply the same procedure for each subset using only the data that
belong to them.
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Example 2.2 This a simple example usually found in the literature (Quin-
lan, 1983) in order to explain the unfolding of the ID3.

Let T be the training set composed by eight objects which are characterized
by three attributes:

- Eyes: Brown or Blues.

- Hazir: Blond or Black or Red.

- Height: Tull or Short.

Two classes are possible either, Cy or Cy. T is described as follows (see
Table 2.1):

Table 2.1: Training set
Hair | Eyes | Height | Class
Blond | Brown | Short 4
Blond | Blue Tall Cy
Blond | Brown Tall C,
Blond | Blue Short 4
Red Blue Tall Cy
Dark | Brown | Short 4
Dark | Blue Tall 4
Dark | Brown Tall C,

Let’s compute the value of Info(T) relative to the training set T using
the Equation (2.2):

freq(Cy,T) freq(C,T)  freq(Cs,T) freq(Cy,T)
I T)=— [ — l
O = e T
= —élo 1 élo 4
- 7R 928 3 928
— 1.

?

We have to apply the Equation (2.1) in order to compute the information
gain of each attribute. Let’s firstly compute Infoper(T), Infopyes(T), and
Infopeight(T) by using the Equation (2.3):

4 | 3 |
Infons (1) =+ Info(Tfa) + L Info(T") + 2nfo(T}is)
4 2 2 2 2 1 1 1 3 2 2 1 1
= 2 (=Z10gs= = Z10gsZ) + =(—=l0gs=) + 2 (—Zlogs= — ~logs=
8( 40924 40924)+8( 10921)+8( 30923 30923)
— 0.844;
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48
_ 4 Eyes 4 Eyes
Infopyes(T) = gI”fO(TBzue ) + glnfo(TBrown)
5 el 3 et
[nfoHeight(T) = glnfO(Tﬁzllght) + glnfo(Tgboftht)
= 0.451;
Hence,

Gain(T, Hair) = Info(T) — Infoyar(T)
=1-0.844
— 0.156;

Gain(T, Eyes) = 0;
Gain(T, Height) = 0.549;

According to the information gain criterion, the height attribute will be
selected as the root of the decision tree relative to the training set. So, we get

see Figure 2.2):

( 4 Height
T Mort
? ?

Figure 2.2: Decision tree (Level 1)

We have two branches in level 1, we have to look for the test attribute for

each node induced by each branch.

e Let’s start by the first branch, for simplifying notations let’s denote

by T'1 the subset Tﬁﬁght containing the objects of T having tall as the

height value:

1 4 4

1
I?’LfO(Tl) = —glOQQS — glogzg

= 0.722;
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2 , 1 , 2 :
Infonay(T1) = = Info(T1EE) + ~Info(TUEF) + = Info(T1fe)
= 0.4;

Brown

3 2
Infopyes(T1) = anfo(Tngf:) + g[nfo(TlEyes )
= 0.551;

Hence, Gain(T1, Hair) = 0.322 and Gain(T1, Eyes) = 0.171;

The hair attribute will therefore be the root of the sub decision tree rel-
ative to the branch of tall height.

We have to apply the same algorithm in order to continue with the
induced sub decision tree.

e For the second branch which corresponds to a short height, we notice
that one of the stopping criteria is fulfilled. In fact, the three instances
having short as a value of the height attribute are belonging to the same
class C'y, so the induced node from the short branch is declared as a leaf

and labeled by the class C;.

Continuing the same process, the final decision tree will be presented by
(see Figure 2.3):
Height

Tall Short

Hair 4

Blond " Red Dark

02 02 Eyes

Blue Brown
4 Cy

Figure 2.3: Final decision tree
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Remark:

Although it has shown good results, the information gain criterion presents
a serious limitation. It favors attributes with a large number of values over
those with few number of values (Quinlan, 1993).

To overcome this drawback, Quinlan has proposed a kind of normalization
known as the gain ratio criterion. In this manner, the attributes with
many values will be adjusted.

, _ Gain(T, Ay)
tio(T, Ay) = 2.4
Gain ratio(T, Ar) Split Info(T, Ay) (2.4)
T A T A
where Split Info(T, Ag) = — E | % |l092| % | (2.5)
veoiny T T

Split Info(T, Ax) measures the information in the attribute due to the
partition of the training set 7" into training subsets. This quantity describes
the information content of the attribute itself.

The idea is to compute the gain ratio of each test attribute, the one pre-
senting the highest value will be selected as the attribute test.

A more complete version of induction of decision trees called C4.5 algo-
rithm is available in (Quinlan, 1993). It presents in details the gain ratio as
the attribute selection measure to be used to choose attributes in the decision
nodes. Besides, it offers some improvements related notably to the pruning
step.

ID/ algorithm

ID4 is one of the incremental decision tree algorithms developed by Schlim-
mer and Fisher (1986) which incrementally builds a decision tree. In fact,
instead of building a tree using a set of objects, ID4 will update the induced
decision tree based on each individually observed instance (Utgoff, 1988).

For each new instance, ID4 applies the following steps:

1. For each node, recompute the values of the attribute selection measure
for the different attributes.

2. If the node is a leaf, and the new object does not affect it, then no
change will be induced on this node.
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3. Otherwise, change the leaf node to a decision node such that the cho-
sen attribute is the one having the highest attribute selection measure
value.

4. If the current node is a decision node such that its current attribute
root won’t be the best one, change it by the appropriate attribute, then
discard all the sub-trees below.

5. Update the tree recursively and when necessary grow a branch.

This algorithm presents an important drawback concerning the discard
of a part (or all) of the tree when the test attribute should be replaced since
it constitutes a lost training effort.

ID5R algorithm

Another known incremental algorithm is the ID5R!. Contrary to the ID4,
where we have to discard the subtrees below the old attribute, in the ID5R
algorithm the idea is to restructure the tree (by a pull-up process), so that the
desired test attribute becomes the new root. This is allowing to re-calculate
the proportions of classes without needing to re-examine training objects.
For more details see (Utgoff, 1988, 1989b).

This algorithm has the interesting property to induce the same tree as
when all the training objects had been given in one batch (Utgoff, 1989a).

Remarks:

There are several decision tree algorithms where the differences reside gen-
erally in the used attribute selection measure and the applied pruning tech-
nique. Other parameters like the stopping criteria and the partitioning strat-
egy may distinguish between these algorithms.

As exposed in this section, another aspect may differentiate between de-
cision tree algorithms concerning the incremental algorithms and the non-
incremental ones. We have to mention that in this thesis, we will be inter-
ested only with this latter kind of algorithms and notably those of Quinlan:
the ID3 and C4.5 algorithms (Quinlan, 1986, 1993).

L The first version was developed under the name of ID5 in 1988 (Utgoff, 1988, 1989b).
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2.7 Advantages and drawbacks

2.7.1 Advantages

Decision trees are characterized by their capability to break down a com-
plex decision problem into several simpler decisions. They provide a power-
ful formalism for representing comprehensible, accurate classifiers (Quinlan,
1990b).

Furthermore, they allow to express knowledge in a simple manner easily
understandable by the users and which facilitates the participation of experts
in the production of rules that may exist between attributes.

Besides, they offer the possibility to integrate qualitative and quantita-
tive variables in the model, they also select the most informative variables.

The different tests on each attribute value allow to reduce the computa-
tional complexity. In fact, unlike some classification techniques where each
attribute value should be tested on the different classes, in decision trees
these tests will be applied only to some classes. Thus, it will make the clas-
sification process faster.

Finally, this technique seems able to adapt to environment where lies un-
certainty and imprecision. Hence, probabilistic decision trees (Quinlan,
1990b) and fuzzy decision trees (Umano et al., 1994), (Zeidler & Schlosser,
1996), (Marsala, 1998) have been developed and will be described in the next
section (see Section 2.8).

2.7.2 Drawbacks

Despite their advantages, the decision trees present some drawbacks. We no-
tably mention the overlap related to the large number of classes which may
increase the number of leaves in the tree and consequently complicate the
comprehension and the interpretation of the tree.

We also notice the accumulation of errors from level to level especially in
a large tree. Besides, there is a difficulty to find the optimal decision tree,
this difficulty is strongly related to the design of the decision tree.
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2.8 Decision trees under probability and fuzzy-
ness

The results provided by decision trees are categorical and do not convey po-
tential uncertainties in classification (Quinlan, 1987a). Hence, small changes
in the attribute value may affect the membership class. Furthermore, impre-
cise or missing information may prevent the unfolding of the classification
task.

Hence, two kinds of decision trees have been developed: probabilistic
decision trees and fuzzy decision trees.

2.8.1 Probabilistic decision trees
Definition

A probabilistic decision tree (Quinlan, 1987a, 1990b) deals with statistical
uncertainty. It is interested basically to the classification of objects char-
acterized by missing or uncertain attribute values. A probabilistic decision
tree is constructed based on a training set having the same structure as in
an ordinary decision tree, but where the induced tree is pruned.

Imperfect leaves

A leaf produced by pruning may generally misclassify some objects in the
training set (Quinlan, 1987a). Hence, some leaves will represent more than
one class: the objects really belonging to the leaf’s class and those which are
misclassified (due to generally the application of pruning) . These leaves are
referred to as imperfect leaves.

Let nb be the number of objects in a leaf and e be the number of objects
that are associated to this leaf but do not really belong (due to the pruning).
So, the probability that a new object has as a class the leaf’s class is %
This ratio is referred to as central estimation.

A more pessimistic estimation is equal to %, this latter estimation
is invoked when a leaf contains a very small value of nb. So, the first estima-
tion may not give a reliable probability of error of new objects.



54 Chapter 2: Decision trees

An object at a leaf L has generally a probability P(C|L) representing that
the object at L belongs to the class C' and which is equal to the previous
estimation (either central or pessimistic).

Unknown or imprecise attributes

A good classifier must be able to give the object’s class even when some infor-
mation needed to ensure the classification task are not available or uncertain.

The general idea preconized by Quinlan (1990b) is to take into account
all the possible alternatives for the unknown attribute value. Then for each
possible value, we have to look for the assigned class. Finally, an aggregation
of the different results has to be done.

Probability of belonging to a leaf

A path from the root of the decision tree to a leaf L passes through branches
(edges) By, Bs, ... where each branch corresponds to the result of a particular
test. Hence, the probability that an object I will reach a leaf L is defined as
(Quinlan, 1990b) :

P](L) — P](Bl)P](BQ|BI)P[(B?,|BQ&B1) (26)

In the simple case where all the attribute values are known, each of these
probabilities will be either 0 or 1 and consequently P; will be equal to 1 if
the object I will reach the leaf L. Otherwise, it will be equal to 0.

In this case, the path followed by taking into account the tests’ outcomes
will be unique and the object will be associated to only one leaf. However
in the case where there are unknown attribute values, the probability P;(L)
may be non-zero for more than one leaf and may also be less than one.

Classification procedure

When a new instance is presented with some unknown attribute values, it
may belong to many classes with different probabilities. The probability that
an object I belongs to a class C' is given by (Quinlan, 1990b):

ZPI P(C|L) (2.7)

where P(C|L) is the probability that the class C' is associated to the leaf L
(either central or pessimistic estimate). Remember that this probability is
equal to 1 if the leaf is represented by just only one class.
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Remarks:

The same approach can be used when we deal with partial information re-
garding an attribute value. We are just interested to the values shown by
the partial information.

For continuous attributes, the value might be specified in a range [X,Y].
If we assume the attribute value is uniformly distributed in this interval, the
probability that the attribute has a value less than or equal to some threshold
V' is (Quinlan, 1990b):

If V.< X Probab =0 (2.8)

If V.>Y  Probab =1 (2.9)

V-X

Otherwise: Probab =
erwise: Proba v X%

(2.10)

These probabilities will be used to compute Px(B;|Bi&....).

2.8.2 Fuzzy decision trees
Introduction

The work started by Quinlan (1987a, 1990b) concerning the probabilistic
decision trees remains insufficient since it basically emphasizes on the classi-
fication task and it is only based on the treatment of statistical uncertainty
dealing with information presented in a probabilistic manner.

In fact, two types of uncertainty may occur: statistical and cognitive.
This latter which may be presented by imprecise or missing information can
also be treated by applying fuzzy theory. Thus, the idea is to develop the
so-called fuzzy decision trees.

Definitions

Fuzzy concepts can be introduced in a classification problem into two levels
(Yuan & Shaw, 1995):

1. Object: An object is said to be fuzzy if at least one of its attributes
is fuzzy.



56 Chapter 2: Decision trees

2. Class: A class is said to be fuzzy if it can be represented in fuzzy
terms.

Like the classical one, a fuzzy decision tree is composed by three kinds of
elements (Marsala & Meunier, 1997):

1. Nodes: for testing attributes.

2. Edges: associated to the results of the test attributes and which their
values are represented by fuzzy sets.

3. Leaves: as terminal nodes, labeling classes with membership degrees.

We notice that in a fuzzy decision tree, each leaf may be labeled by more
than one class.

Hence, fuzzy decision trees are characterized by their ability to take into
account imprecision and fuzziness of the knowledge either presented in at-
tributes or even in classes.

Methods of construction of fuzzy decision trees

Several methods to build fuzzy decision trees have been proposed, most of
them are based on the ID3 algorithm (Janikow, 1998). The major differ-
ence between ID3 and the fuzzy ID3 lies basically on the computation of
the information gain. For the ID3 algorithm, this measure is based on the
proportions of the attribute values. However in the fuzzy algorithm, it uses
the membership degrees of each attribute values.

As in classical decision trees, the difference between these algorithms in
the fuzzy context resides especially in the choice of the attribute selection
measure which has to take into account the discrimination power and also
the fuzzy modalities assigned to the attributes.

The fuzzy ID3 algorithm (Umano et al., 1994): This algorithm, de-
veloped by Umano et al. (1994) is considered as a new version of the ID3
algorithm treating numeric attributes presented by fuzzy modalities.

In fact, the fuzzy ID3 algorithm is the extension of the ID3 applied to a
fuzzy set of data and where the objective is to generate a fuzzy decision tree
where the attributes are fuzzy sets defined by the user.
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This algorithm differs from the classical ID3 on the way to compute the
information gain based on the probability of membership values for data
(Umano et al., 1994).

Let T be the training set where each object has m numerical values re-
lated to the attributes A;, As, ..., A,,, and where the set of classes is defined
by C' = {C4,Cs,....,C,}. Assume the fuzzy sets Fyi, Fio, ..., Fip for the at-
tribute Ay, and where the value of f varies on every attribute. Let T be
a fuzzy subset of T" whose class is C; and |T'| is the sum of the membership
values in a fuzzy set of data T

The steps of the algorithm are presented as follows (Umano et al., 1994):

1. Generate the root node including all the objects belonging to the train-
ing set (a fuzzy set of all data with the membership value 1).

2. If a node (with the objects) satisfies one of the following conditions :

(a) the proportion of objects belonging to a class C; is defined as

%T‘ > 0, where 6, is a threshold.

(b) The number of objects is the training set is such that |T'| < 6,
where 6, is a threshold.

follows:

(c) There are no attributes for more classification.
Hence, the node is declared as a leaf.

3. If one of the above conditions is not satisfied, it is a test node defined
as follows:

(a) For each attribute Ay, compute the information gain Gain(T, Ay),
then choose the attribute presenting the highest information gain
attribute A,,0z-

(b) Divide T into fuzzy subsets T3, T, ..., Ty by taking into account
the A,,q.’s values. The membership degrees in each T} are equal to
the product of the membership value in 7" and the value of F},,,
of the value of A,,,, in T.

(c) Generate f new nodes relative to the fuzzy subsets 1, T5, ..., T
where the edges are labeled by the different F,,45.

(d) Replace T by T; (t =1,2,..., f) and repeat from 2 recursively.
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The information gain Gain(T, Ay) for the attribute Ay by a fuzzy set of
data T is defined by:

Gain(T, Ax) = Info(T) — Infou, (T) (2.11)
where Info(T) = — zn:pilogzpi (2.12)
i=1
f
Infoa,(T) = pulnfo(Ty,) (2.13)
=1
Di = ||T;| (2.14)
Prt = % (2.15)

To assign a class name to a leaf, two methods are proposed by (Umano
et al., 1994):

1. The object is assigned to the class name having the highest membership
value (the other classes are ignored).

2. The object is assigned to all class names with their membership values.

Classification procedure: In order to classify a new instance, Umano et
al. (1994) have suggested to calculate the membership values of each leaf by
taking into account the attributes’ values of the given object. The idea con-
sists in the aggregation of membership values on each path by applying the
multiplication. Then to get the total membership value of the path attached
to each leaf, we also adopt the multiplication. Finally, for the aggregation of
the different values for the same class, we adopt the addition. That’s why
this technique is often referred to as ‘* * + method’.

The Zeidler’s algorithm: Other researchers such as Zeidler and Schlosser
(1996) have suggested a fuzzy decision tree algorithm derived from the one
developed by Umano et al. (Umano et al., 1994).

The idea of Zeidler and Schlosser lies on developing a method for han-
dling continuous-valued attributes with automatically generated membership
functions. This contribution is achieved by using the so-called cut points
allowing to compute the information gain of each attribute.
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Remark:

Other algorithms for constructing fuzzy decision trees have been proposed,
we can especially mention the one suggested by Marsala (1998) and in which
he basically proposes another selection measure.

2.9 Conclusion

Decision trees are considered as one of the best classification techniques es-
pecially in artificial intelligence applications. It is now applied to many new
computer science applications, notably those related to knowledge discovery
such as expert systems, data mining...

Despite the advantages provided by decision trees and the improvements
given as probabilistic and fuzzy decision trees, many researches are still
needed in order to deal with the uncertainty especially the cognitive one,
that may occur in the different parameters related to any classification prob-
lem.

The belief function theory as understood in the Transferable Belief Model
(TBM) seems to be one of the appropriate formalism to cope with this kind
of uncertainty. Thus, our objective will be to develop what we call a belief
decision tree approach that will be presented in the following part of this
thesis.
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Belief Decision Tree
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In this second part, considered as the major part of our thesis, we detail
the developments that we have proposed in order to build belief decision
trees, then to use them for classifying new objects.

This part is composed of four chapters:

e Chapter 3 presents the definition of a belief decision tree, its objectives
and its representation. It also explains the nature of the uncertainty
encountered in the data of the training set.

e Chapter 4 details the parameters that will be used to construct a belief
decision tree. These parameters are the attribute selection measure,
the partitioning strategy, the stopping criteria and the leaf structure,
all of which have to be adapted to the uncertain context.

e Chapter 5 deals with the construction procedure of the belief decision
tree and its use for the classification of new instances. For this latter
procedure, several cases are treated. They depend on the values of the
attributes of the instances to classify which may be certain, disjunctive
or even uncertain.

e Chapter 6 presents implementation and simulation issues. The major
algorithms are detailed. Simulations on data sets are performed in or-
der to judge the feasibility of our algorithms.
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Chapter 3

Presentation

3.1 Introduction

Decision trees are considered as an efficient machine learning method for ex-
pressing classification knowledge and using it. That’s why, they are widely
applied to a variety of fields notably in artificial intelligence.

Despite their accuracy and efficiency when precise and certain data are
available, the standard decision tree algorithms show serious limitations when
dealing with uncertainty. Such uncertainty may affect the parameters of any
classification problem and can appear either in the construction or in the
classification phase.

Faced to uncertain parameters, the standard decision trees seem to be
insufficient to provide significant classification results. In fact, their results
are categorical and do not convey the uncertainty that may occur in the at-
tribute values or in the objects’ classes.

To overcome this limitation, we propose to develop what we call a be-
lief decision tree, a new classification technique based on the decision tree
within the belief function theory in order to deal with uncertainty that may
pervade any classification problem.

This theory for uncertainty representation, as understood in the Trans-

ferable Belief Model (TBM), provides a convenient framework for managing
and manipulating uncertain knowledge, especially the cognitive uncertainty.

65
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In this chapter, we present the definition of a belief decision tree. Then,
we define the structure of the training set which will be illustrated by an
example. Finally, the belief decision tree objectives and representation will
be described.

3.2 Definition

A belief decision tree is a decision tree in an uncertain environment. The un-
certainty will be represented and handled by the means of the belief function
theory as explained in the Transferable Belief Model (TBM).

Contrary to a classical decision tree where objects’ classes and attribute
values are known with certainty, in a belief decision tree these two funda-
mental parameters may be uncertain. Such uncertainty can appear either in
the construction or the classification phase.

3.3 Structure of the training set

3.3.1 Definition

Any decision tree is constructed from a training set of objects using succes-
sive refinements. This set is the basis leading to the induction of the tree
and consequently to the classification of new instances in the inference phase.

This training set is generally composed of elements (objects) represented
as pairs (attributes, class) where for each object, we know exactly the value
of each one of its attributes and also its assigned class which is unique.

However, due to the uncertainty introduced here, the structure of the
training set may be different from the traditional one.

Unlike the standard training set, we assume it may contain data where
there is some uncertainty in the knowledge of the classes. In other words, each
class of the training instances may be uncertain or even unknown, whereas
the values of the attributes characterizing each training instance are sup-
posed to be known with certainty.
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We propose to represent the uncertainty on the classes of the training
instances by a basic belief assignment (bba) defined on the set of possible
classes considered in the classification problem. This bba, generally given by
an expert (or several experts), represents the opinions-beliefs of this expert
about the actual value of the class for each object in the training set.

Note that all over this thesis, we only deal with symbolic attributes.

3.3.2 Notations and assumptions

In this thesis, we use the following notations:
e 7T a given training set,
e S: a given set of objects,
e [;: an instance named also an object, or a case, or an example,
o A={A, As... A, }: aset of m attributes,
e D(Ag): the domain of the attribute Ay € A,
o Aj(I;): the value of the attribute Ay for the object I;,

o S ={I;:1; € S and Ai(I;) = v}: the subset of objects belonging to
S and for which the value of the attribute Ay € A is v € D(Ag),

e O ={C},C,,...,C,}: the frame of discernment involving all the pos-
sible classes related to the classification problem. The classes C;’s are
assumed to be mutually exclusive and exhaustive,

e C(I;): the actual class of the object I,

o mO{I;}[B](C): the conditional bbm given to C' C © relative to an
object I; given by an agent g that accepts that the information B is
true. If the corresponding bba is discounted by a discounting factor «,
the notation becomes mg-*{I;}[B](C).

Useless indices are omitted, generally when the missing elements are
clearly defined from the context.



68 Chapter 3: Presentation

Example 3.1 This is a simple example, presented in the previous chapter,
(see Example 2.1) to illustrate our ‘new’ structure of the training set T within
the belief function framework.

We assume there are eight objects (clients) I; (j € {1,2,3,4,5,6,7,8})
that may belong to one of the three possible classes C; (i € {1,2,3}) related
to the given classification problem.

Assume a bank wants to classify its clients by taking into account a num-
ber of their attributes. This classification may help the bank to plan its client
policy loan.

The training set instances are characterized by three symbolic attributes

defined as follows:
e Income with possible values { No, Low, Average, High},
e Property with possible values {Less, Greater},
e Unpaid_credit with possible values {Yes, No}.
Three classes may be assigned to clients (© = {Cy,Cy, C3}):

e (' including good clients, i.e., reliable clients, for whom the bank ac-
cepts to give the whole loan.

e (5 to which belongs moderate clients, for whom the bank accepts to give
a part of the loan.

o (5 regrouping ‘bad’ clients for whom the bank refuses to give the loan.

For each client I; belonging to the training set T', we assign a bba me{lj}
expressing beliefs on its assigned classes. These functions are defined on the
same frame of discernment © = {C}, Cy, C3}.
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The structure of the training set T can be defined as follows (see Table
3.1):

Table 3.1: Training set T relative to a belief decision tree

Income | Property | Unpaid_credit | Class
High Greater Yes m®{I}
Average Less No m®{I,}
High Greater Yes m®{I3}
Average | Greater Yes m®{I,}
Low Less Yes m®{Is}
No Less No m®{Is}
High Greater No m®{I;}
Average Less Yes m®{Is}
where
m®{L}(C)=0.7;  mP°{I,}(O) =0.53;
mO{L}(Cy)=0.5;  mP{L}(CLUCy)=0.4; mP{L}(O)=0.1;
m®{L}(C)=0.6;  mP°{I3}(O) =0.4;
m9{14}(C'2):06, ’ITLG{Ll}(Cg) :03, m@{f4}(@):01,
’ITLG{]()}(C’?,):OZ ’ITLG{[5}(CQ UCg) :02, m@{f5}(@):01,
m®{Is}(C3)=0.95; mP°{I;}(O) =0.05;
m®{I;}(C1)=0.95; mP°{I;}(O) =0.05;
mO{I}(Cy)=0.4;  mP{I}(C3) =0.4; m®{3}(©)=0.2;

For instance, for the client I, 0.7 of beliefs are exactly committed to the
class Cy showing that when the belief is 0.7 then the client Iy is a good client
(for whom the bank accepts to give the whole loan) , whereas 0.8 is assigned
to the disjunction of classes Cy U Cy U (s, i.e., 0.3 is assigned to the whole
frame of discernment (ignorance).

3.3.3 Special cases

Among the advantages of working under the belief function framework, we
notice that the two extreme cases namely the total knowledge and the total
ignorance regarding training instance classes, can be easily expressed:

e When the class of the object I; is perfectly known and is unique, it will
be represented by a certain basic belief assighment (see Section 1.3.4)
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having as the only focal element this class. Therefore, if the class of
the object is C; then its corresponding bba is defined as:

and m®{I,}(C) = 0 for all C #C;, C C O (3.1)

{ m®{L;}(C;) =1 for some C; CO,C; # 0O, |C;| =1
Such case is referred to as total knowledge and corresponds to the
classical ‘certain’ context. Hence, our representation is also appropriate
to describe the standard case, handled by Quinlan (1986, 1993), where
all the classes of the training instances are known with certainty.

When no information concerning the class of the object I; is available
which means that the expert is not able to give any judgment about
the instance’s classes. Thus, the bba will be a vacuous basic belief
assignment (see Section 1.3.2) defined by:

m®{[;}(0) =1
{ m®{I;}(C)=0for C Cc© (3.2)

Such case is referred to as total ignorance.

We have to mention that this case is not generally taken into account
(ignored) in a training set since it does not provide any information
regarding the instances’ classes used to ensure the learning and the
construction of the tree.

In addition to these two special cases, the case of disjunctive classes may

be easily described by the so-called categorical belief function (see Sec-
tion 1.3.3). In practice, this latter case often happens and corresponds to a
disjunction of classes that will be assigned to a training instance by an expert.

Such opinion will be represented by a bba characterized by only one focal

element representing the union of classes assigned to this training instance
I; and expressed as follows:

{ m®{I;}(C;) =1 for some C; C ©,C; # O, |C;| > 1 (3.3)

and m®{I;}(C) =0 for C CO,C # C;
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3.4 Objectives

In addition to the objectives of a standard decision tree (see Section 2.4), a
belief decision tree aims at realizing two major objectives:

1. Building a decision tree from a given set of training instances charac-
terized by uncertainty in their classes. In other words, ensuring the
induction of the belief decision tree.

2. Ensuring the classification of new instances that may be described by
uncertain or even unknown attribute values. Such procedure is also
called the inference procedure.

3.5 Belief decision tree representation

Once the structure of the training set is defined, the representation of our
belief decision tree is composed by the same elements as in the traditional
decision tree:

e Decision nodes for testing attributes.
e Branches for specifying attribute values.

e Leaves dealing with classes of the training instances.

Due to the uncertainty related to training instances’ classes, the structure
of leaves will change. Instead of assigning a unique class to each leaf, it will
be labeled by a bba expressing a belief on the actual class of objects belonging
to the leaf. The computation of each leaf’s bba will be shown in the next
chapter.

3.6 Conclusion

In this presentation chapter, we have defined the belief decision tree ap-
proach as a new technique associating the decision tree technique with the
belief function theory. Hence, we have detailed the characteristics of this new
approach namely its definition, the structure of the training set, its objec-
tives and also its representation.

The objective of the next chapter is to define the basic parameters making
up the belief decision tree. We basically mention the attribute selection mea-
sure, the partitioning strategy, the stopping criteria and also the structure
of leaves.
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Chapter 4

Belief decision tree parameters

4.1 Introduction

Ensuring the construction of a belief decision tree and consequently the clas-
sification of new instances require the definition of fundamental parameters.
These parameters have to cope with the uncertainty held in the training set.

As defined in the previous chapter, the structure of the training set is
characterized by an uncertainty affecting the classes of the training instances,
whereas the values of their attributes are known with certainty.

Hence, the attribute selection measure, the partitioning strategy, the stop-
ping criteria and even the structure of leaves have to take into account the
uncertainty expressed by the means of belief functions.

In the first part of this chapter, we develop the attribute selection mea-
sure in this uncertain context using the belief function framework. In fact,
two approaches will be proposed: the first one is an averaging approach,
considered as the extension of Quinlan approach to an uncertain framework,
the second is a conjunctive approach based on the distance between training
objects.

Next, we focus on the definition of the partitioning strategy, the stopping
criteria and also the structure of leaves that will be used in the construction

of a belief decision tree.

The major results of this chapter are developed in (Elouedi, Mellouli, &
Smets, 2000a, 2000b, 2001a, 2001b).

73



74 Chapter 4: Belief decision tree parameters

4.2 The averaging and the conjunctive ap-
proaches for building belief decision trees

The training set in a belief decision tree is characterized by the fact that our
knowledge about the value of the actual class of its instances is represented
by a bba on O, the set of possible classes. The classical algorithms must be
adapted to cope with such a context poisoned with uncertainty.

Before describing our algorithms in details (in the next chapter), we ex-
plain how we derive two of them. Of course, these are many possible al-
gorithms, but the interest of the chosen ones comes from their close link
to:

e the classical approach developed by Quinlan (1986, 1993) for our so-
called averaging approach,

e the ideas behind the TBM itself (Smets, 1988, 1998b; Smets & Kennes,
1994; Smets & Kruse, 1997) for our so-called conjunctive approach.

4.2.1 The averaging approach

Suppose the decision tree is built, and consider one leaf, denoted S, and
suppose 80% of the objects in S are C objects. Why does this influence our
knowledge about the class to which belongs a new instance that falls in the
same leaf S ? There are (at least) two possible answers.

The sampling answer

We implicitly consider that the new object is an instance selected at random
from the same population as the one from which the instances in S were
selected. We assume the observed frequencies in S are ‘good estimators’ of
the distribution of the classes in the population. Then, the proportion 80% is
equated (may not be in a very rigorous way) to the probability that an object
randomly selected in the population represented by S is C1, i.e., belongs to
class C;. We observe a new instance, and we can say that the probability
that the new instance is a (', is 0.80. Therefore, the 80% proportion of C; in
S becomes finally the probability that the new instance that fallsin S is a .
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The largest the dominant proportion in S, the most confident we will
feel in our claim about the new object’s class. So, we would like that most
objects in a leaf belong to the same class. If this ideal is not achievable, we
would like to be able to assert with confidence that the new object’s class
is one among a few of the possible classes, and that many of the possible
classes can be excluded. The worst case for a leaf is encountered when every
class is equally represented, as assigning then a class to a new object falling
in that leaf would be unjustified and unsupported.

The heterogeneity of the probabilities is what entropy of Equation (2.2)
is supposed to quantify. The entropy is maximal when the classes are equi-
probable, and becomes smaller when the distribution of the classes becomes
further and further away from the equi-probability. The smallest entropy (of
value 0) is reached when the probability is 1 for one class, and 0 for all the
other classes.

Quinlan’s algorithm is based on that idea, and thus tries to minimize
the entropy at the leaf’s level. Unfortunately, the justification for using the
proportions instead of the probabilities can seriously be criticized. It would
be acceptable if the number of objects in S was really large, but in practice
this is not the case. Leaves with one element are even considered. So, the
suggested justification is hard to defend, and we feel the second one is more
appropriate.

The finite population answer

Suppose the data of S correspond to a population, not to a sample selected
from a larger population. We assume one object is selected at random, with
equi-probability, i.e., with probability 1/|S], from S, and that the new object
is a duplicate of this selected instance, so it is exactly equal to the selected
one. If we knew which object had been selected, the class of the new object
would be the class of the selected one, but we do not know which one in S
was actually selected. All we can say is that the probability that the new
object’s class is C;, is equal to the probability that the selected object is a Cj,
and this probability is equal, thanks to the equi-probable sampling method,
to the proportions of C; objects in S.

Entropy becomes then perfectly meaningful for the same reasons as given
in the previous analysis.
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Table 4.1: Training subset S (Standard case)

Ij pj Cl 02 03
L 0.2] 1 0 0
I 0.2 1 0 0
I3 021 0 1 0
I 021 0 1 0
I 021 0 0 1
Mean 2/5 [ 2/5 | 1/5

For instance, let Table 4.1 represents the five objects in the subset S of
the training set. The class of each object is defined by the indicator function.
Instances I; and I, are C’s, etc ... If each instance has a probability p; = 0.2
of being selected, then the probability of selecting a C'; object is just the sum
of the indicators weighted by the 0.2 probabilities. In fact, the indicator can
be understood as the probability that the selected object is a C; object given
the selected object is the instance I;. So, the probability that the selected
object is C; becomes:

P(C;) = Z P(C;| selected object is I;) p, (4.1)

IjES

Entropy could then be computed from these ‘expected values’.

The Equation (4.1) allows us to shift directly to the case where the classes
are uncertain, and the uncertainty is represented by a probability measure.
Table 4.2 presents the kind of data that could be collected from the five ob-
jects in S. Here object I; has a high probability of being a C}, but might
also be a (5 or a ('3, even though these last two options are individually less
probable than the first. The expected values are computed as in the previous
cases, and the probability that the randomly selected object is a C is 0.2 in
this object. Entropy could then be computed from these ‘ezpected values’.

What about the entropy in this context? We would like that there would
be as few ambiguity as possible when we classify a new object falling in a
leaf. So, we would like that the probability in a leaf points essentially to one
class, and entropy is an excellent measure to quantify this tendency. Hence,
the use of the entropy computed from the average probability function in a
leaf is plainly justified.
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Table 4.2: Training subset S (Probabilistic case)
[j pj Cl CQ Cg
I 02105]02]03
I 021041061 0
I3 021 0 1 0
I 0.2]10.1]07 0.2
I 021 0 | 051 0.5

Mean 1/5(13/5|1/5

Suppose now the uncertainty is represented by a bba, with me{fj} the
bba about the actual class to which the instance I; belongs (O is the set
of the possible classes). If one asks what is the bba of the class to which
belongs the randomly selected object, the answer happens to be the aver-
age of the m®{I;}’s. This results from the fact that the bba’s m®{I;} are
just conditional bba’s and if an object is selected according to a probability
distribution, then the resulting bba, denoted m, is :

m=Y_ m®{L}p

I]‘GS

This formula results from the conjunctive combination of the probability
function p; and the conditional bba’s m®{I;}’s, followed by a marginalization
of ©. It uses the relation (Smets, 1993a): mi@2(A4) = Y gcq m1[B](A) ma(B),
where m; and m, are defined on Q. The p;’s are the ms, and the m®{L;}’s
are the m[B] where B = {(I;,C;) : C; € ©}, Q=5 x 0, and A C ©.

The probability used to compute the entropy is now replaced by the
pignistic probability computed from m. It just happens that the pignistic
probability computed form m is the same as the average of the pignistic
probabilities computed for each object:

BetP = F(Z me{[j} p;) = Z F(me{jj}) Dj

where [' is the operator that transforms a bba into a pignistic probability
function. This linearity property is even the major property that justifies
the use of the pignistic probabilities (Smets, 1998b).
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In consequence, when uncertainty is represented by bba’s, it is enough to
compute the pignistic probability over O, the set of possible classes, for each
case, and proceeds as done in Table 4.2. The use of the entropy at the leaf
level is justified just as in the probabilistic case.

Using bba’s instead of probabilities on the classes is really not a real issue.
One may then raise the question: why to use the TBM in such a case?

The answer is to be found in dynamic contexts where the beliefs about
the classes for each individual can vary with time. New pieces of informa-
tion could be collected about the data in the training set, in which case the
bba’s will be adapted by applying the appropriate Dempster’s rules, and the
change in the pignistic probabilities will not be those one obtained if the
impact of the new information was handled within the probability model.
So using the TBM, even though not essential when the training set is fixed,
becomes interesting when our knowledge about the classes of the data in the
training set can vary.

Besides, suppose the value of a needed attribute of a new object is itself
uncertain, like the value being v; or vy. As it will be explained in Section
5.3, we will compute the bba m; from the data in the leaf reached if v; was
the object, and the bba my from the data in the leaf reached if vy was the
object. The combination of these two bba’s is obtained by the disjunctive
rule of combination, something that brings us far away from the pignistic
probabilities, and requires the whole TBM apparatus.

So even though in simple cases, the need for the TBM was not essential,
it becomes really so in more complicated contexts.

4.2.2 The conjunctive approach

The second method we considered is conceptually much closer to the TBM
itself. Let us first reconsider what can be done at the leaf’s level. In a given
leaf S, we suppose we have several objects and ideally they all belong to the
same class. So, every instance in S belongs to the same class, but we don’t
know which one. Each instance provides a bba m®{I;}, j = 1,...,|5], that
represents what is known from the instance I; about the class to which it
belongs, hence to the class that characterizes S. The belief we can build on
the class ‘common’ to those who belong to S is obtained by combining the
me{lj}, for I; € S, by the conjunctive combination rule. This idea is based
on similar approaches developed by Denoeux (Denceux, 1995), (Smets, 1999).
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So, if m®{I;} is the bba of an object I; in the considered leaf S, we
compute:

m®{S} = @r,esm® {1}

The bba m®{S} is what all the objects in a leaf S jointly express about the
class of those objects that belong to the leaf S.

So, the classification of a new instance that falls in a leaf S is based on
this joint bba m®{S}, and the class is decided using the pignistic probabili-
ties computed from this bba m®{S}.

Knowing what will be done once the tree is built, let us now shift to its
construction. What ‘nice’ property should be satisfied by the instances in a
leaf. Ideally, they should belong to the same class, but their actual classes
are unknown. Suppose then two objects with the same bba on O, the set of
possible classes. It seems reasonable to be satisfied if both objects fall in the
same leaf.

So, what we would like is that all objects in a leaf have bba’s that are
‘close’ to each others. Thus, a distance between bba’s, and in particular
between two bba’s, is required.

Distance between bba’s

Let m®{I;} and m®{I,} be two bba’s, both defined on ©. These two bba’s
are vectors in a 2/ dimension space. A natural distance is the euclidian
distance between the two vectors. But why to use the bba’s themselves, and
not any vector that is in one to one correspondence with the bba, like the bel
vector, or the ¢ vector... So, let f; be such a vector where f; is a function of
m®{I;} which value at X C O is denoted f;(X). We are going to show that
fi(X) = =In(¢®°{L;}(X)) is an appropriate choice. We define the distance
between two instances I; and I, belonging to S as:

Ay =Y (f(X) = fu(X))?

Xco
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We can then define the distance among the instance within one group S
as the average of the distance between pairs of instances in S:

where s = |5

Ideally, this distance should be minimized if the goal is that objects in
S are similar to each others. This ‘intra-group’ distance (because computed
within one group), has the advantage that minimizing it is equivalent to
maximizing the ‘inter-groups’ distances (the one computed between groups),
another criterion that could have been advocated.

The intra—group distance can be shown to be equal to:

Dg” = Z ij fw ))

= 282§”Z€S (X = 2£5(X) fu(X) + fu(X)?)
_ 2—2)(: 275126;‘] —2(IZ€:Sfj(X

_ l; Zf —é(lze;fj(X))Q

- Z Z 1(X) — F(X) )2

x Z varlance(fj (X))

The distance D% depends thus of f(X). This average f can be seen as the
function of a bba m that has the following property: when ‘added’ s times,
the result has the same ‘weight’ as the ‘addition’ of the s bba’s m®{I;}. As
far as within one group, all bba’s will be summarized by the result of their
combination by the conjunctive rule of combination, the ‘addition’ operation
can be seen as an application of the conjunctive combination.

So, we want:

@j:l,...,sm = @j:l,...,s m@{[]}
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Thanks to the property of the commonality functions, the conjunctive
combination rule can be written as a product, and even better, the logarithm
of the commonality function of the combination is the sum of the logarithms
of the commonality functions entered into the conjunctive combination.

Let x be defined as minus the logarithm (basis e as the choice of the basis
is arbitrary) of ¢, so let kK°{I;}(X) = —In(¢®{[;}(X)) for X C ©. Then, we
define:

“6{5} = @j:1,2,...,s ’fe{[j}

So, we get:

ROSY= ) w°{L}

7=12,....,8

If we take f(m®{I;}) = k°{I;}, and = 1k®{S}, we have a function f
that satisfies the idea that the impact of the s instances in the group under
consideration is equal to the impact of s times the ‘average’ case.

Beware that usually % is not the logarithm of a commonality function,
even though @j:L..s"f@{Ij} is the logarithm of a commonality function.

In fact, the (@) operator can innocuously be extended to ‘generalized be-
lief functions’, i.e., any real function on © which coefficients of its Mobius
transform (the equivalent of the basic belief masses) add to 1.

So, our proposed intra-group distance of instances 7 =1,... ,s becomes:
D = |S| DD (LX) = w(X) ) (4.2)
XCO I;eS

where k®{I;}(X) = — Ing®{[;} (X) and K(X) = ik ;s k¥4 L} (X).

The case where ¢®{I;}(©) = 0 is solved, thanks to the continuity of all
involved functions, by putting a very small mass € on O, proceeding with the
computation and taking the limit for e — 0.
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4.3 Belief decision tree parameters

In this section, we define the major parameters leading to the construction of
the belief decision tree in both the averaging and the conjunctive approaches.
At first, we describe what we have developed as attribute selection measures
to ensure the construction of a belief decision tree. Then, we present the par-
titioning strategy and the stopping criteria. Finally, we detail the structure
of leaves in belief decision trees.

4.3.1 Attribute selection measures in a belief decision
tree

Introduction

One of the fundamental parameters in a decision tree (and consequently in
a belief decision tree) is the attribute selection measure. This measure
is applied in order to choose ‘the best’ test attribute in each decision node
of the tree. In fact, it enables us to quantify the power of discrimination of
each attribute relatively to each class. It also allows optimizing the tree.

The attribute selection measure has to provide a better division of the
training set into small subsets that are more homogeneous and leading to
simpler representation and comprehension of the decision tree.

The structure of the training set is characterized by data for which the
class is uncertain. This uncertainty is expressed by a bba on the classes’
domain.

Averaging approach

Under this approach, the attribute selection measure is based on the entropy
computed from the average pignistic probability computed from the pignistic
probabilities of each instance in the node. We propose the following steps to
choose the appropriate attribute:

1. Compute the pignistic probability of each instance I; in a set of objects
S by:

C;eCCO
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2. Compute the average pignistic probability function BetP®{S} taken
over the set of objects S in order to get the average probability on each
class.

BetPO{S}(C;) = ﬁ S BetP®{1,}(Cy) (4.4)

I;eS

3. Compute the entropy of the average pignistic probabilities in S. This
Info(S) value is equal to:

Info(S) = — zn: BetP®{S}(C;)logy BetP°{S}(C)) (4.5)

4. Select an attribute A;. Collect the subset S:* made with the cases of
S having v as a value for the attribute Ay.

5. Compute the average pignistic probability for those cases in the subset
S#4k. Let the result be denoted BetP®{S:'*} for v € D(Ay), Ay € A.

6. Compute Infoa, (S) using the same definition as suggested by Quinlan
(see Equation 2.3), but using the pignistic probabilities instead of the
proportions. We get:

Ay,
Infoa,(S) = Z %[nfo(é’f’“) (4.6)

’UGD(Ak)

where I'n fo(S2%) is computed from the Equation (4.5) using Bet P®{S:*}.
The term Infoa,(S) is equal to the weighed sum of the different
Info(S:'*) relative to the considered attribute. These Info(S:*) are
weighted by the proportion of objects in S2%.

7. Compute the information gain provided by the attribute Ay in the set
of objects S such that:

Gain(S, Ay) = Info(S) — Infos,(S) (4.7)
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8. Using the Split Info (see Equation 2.5), compute the gain ratio relative
to the attribute Ay:

Gain Ratio(S, A) = Gain($, Ay)

~ Split Info(S, Ay) (4:8)

9. Repeat for every attribute A, € A and choose the one that maximizes
the gain ratio.

Example 4.1 Let’s illustrate our attribute selection measure based on the
average by a simple example already presented in the previous chapter (see
Ezxample 3.1). Let’s remind the training set (see Table 4.3):

Table 4.3: Training set T relative to a belief decision tree

Income | Property | Unpaid_credit | Class
High Greater Yes m®{I,}
Average Less No m® {1}
High Greater Yes m®{I3}
Average | Greater Yes m®{I,}
Low Less Yes m®{I}
No Less No m®{Is}
High Greater No m®{I;}
Average Less Yes m®{Ig}
where
m{L}(C)=0.7;  m®{1,}(©) =0.3;
m@{fg}(C'Q):O 5, mG{IQ}(CI U CQ) :04, m@{lg}(@):OZ,
m@{fg}(C’l):O 6, mg{jg}(("‘)) :04,
m@{f4}(C'2):0 6, m9{14}(C'3) :03, m@{[4}(@):01,
me{f5}(C’3):07, me{lg,}(CgUOg)—OQ me{j5}(@):01,
mO{Is}(C5)=0.95; mP{I:}(O) =0.05;
m®{I;}(C1)=0.95; m°{I;}(O) =0.05;
me{jg}(02)204, mg{jg}(Cg;) :04, m@{lg}(@):O,?,
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We have, to compute the average pignistic probability relative the training

set T (see Table 4.4):

Table 4.4: Computation of BetP®{T}

C, | Cy | Cs
BetP®{I,} 0.8 | 0.1 | 0.1
BetP®{I,} 0.23 [ 0.73 | 0.04
BetP®{I;} 0.74 [ 0.13 [ 0.13
BetP®{I,} 0.04 [ 0.63 | 0.33
BetP®{Is} 0.04 [ 0.13 ] 0.83
BetP®{Is} 0.02 [ 0.02 | 0.96
BetP®{I;} 0.96 | 0.02 | 0.02
BetP®{I3} 0.06 | 0.47 | 0.47

| Mean = BetP°{T} [ 0.36 | 0.28 | 0.36

The results induced from the pignistic transformation mean that the av-
erage probability that a training instance chosen randomly from T belongs
respectively to the classes Cy, Cy, and C5 are respectively 0.36, 0.28 and 0.36.

These probabilities will be used to compute Info(T) described as the en-
tropy relative to the whole training set T (see Equation 4.5):

3
Info(T) = = BetP(C;)log,BetP(C;)
=1

= —0.36 % 10g20.36 — 0.28 % [0g20.28 — 0.36 * [0g>0.36
= 1.575;

The value 1.575 represents the average amount of information needed to iden-
tify the class of an instance in the training set T.

Once the Info(T) is calculated, we have to look for the Informcome(T),
Infoproperty(T) and Infounpaid.creait(T). These computations will be ensured
by applying the Equation (4.6).

Let us do the computation for the income attribute. Let BetPe{T{ﬁgzme ,
BetPO{Tnome}, BetPO{T{ne"} and BetPO{T{*"*}, be the average pig-
nistic probability functions relative respectively to the clients belonging to T’

and having respectively high income, average income, low income and no
income (see Table 4.5):
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Table 4.5: Computation of BetP®{Tp}, BetP®{Tjome},
BetP®{ TI"ome} and BetP®{ Tlcome)

C, | C | G
Bet PP{TJc} [ 0.84 ] 0.08 | 0.08
BetPO{Tireomey 70,11 | 0.61 | 0.28

Bet PP{TImeome} 10.04 | 0.13 | 0.83
Bet PP{TIneome} 10.02 [ 0.02 | 0.96

The next step consists in the computation of Informeome(T). By applying
the Equation (4.6), we get:

[nfolncome = 73 Z BetPG{TI{IZLgc;)Lme}( )ZOQQBetPG{TI{IZLgczme}(OZ)

- —ZBetP@{TI”wme (C)logs Bet PO{T ez }(C:)

Average

= ZB tP@{TIncome ( )lOggBetPG{TInwme (Cz)

Low Low

— - ZB tPO{T "} (Cy)log, Bet PO {Tx"™}(C;)

= 0.921;

Then, we compute the information gain (see Equation 4.7), we get re-
spectively:

Gain(T, Income) = Info(T) — Informcome(T)
= 1.575—-0.921
= 0.654;
Split Info(T, Income) = 1.811;
Gain Ratio(T, Income) = 0.361;
By applying the same process, we get:
Gain Ratio(T, Property) = 0.276;
Gain Ratio(T,Unpaid_credit) = 0.004;
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The attribute that maximizes the gain ratio is the income attribute. It
will be chosen as the root of the belief decision tree relative to the training set
T and a branch is created for each one of the possible values of the income
attribute (High, Average, Low, No). The same procedure is applied, itera-
tively, to the instances that fall in each subset that is created according to the
values of the selected attribute.

Remark:

The classical case where there is no uncertainty relative to the classes of
the training instances is perfectly ensured by our attribute selection measure
based on the averaging approach. Therefore, we get the same results as with
the gain ratio of Quinlan.

Conjunctive approach

Our objective remains to develop an attribute selection measure able to han-
dle the uncertainty in the training set. Indeed, our second approach that we
call a conjunctive approach, consists in looking for a criterion that states for
each attribute value how much objects are close from each others. Thus, our
measure is based on the computation of distances between objects for each
attribute.

The conjunctive approach uses the intra-group distance D% (see Equation
4.2) that quantifies for each attribute value how much objects are close from
each others.

The attribute selection measure to build a belief decision tree under the
conjunctive approach is made of the following steps:

1. For each instance I; in the training set, compute :
KO{1;}(C) = —In¢®{I;}(C), VC C © (4.9)
from the bba m®{I;}.

2. For each attribute value v of the attribute A, compute the joint
k®{S4} defined on © by:

KO(SIY = 3 ROLL) (410)

A
I;€S, k
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. Hence for each attribute value, the intra-group distance SumD(S:'*) is

defined by:

SumD(S2k) =

5 X e |8Ak| KOS H(C))? (411)

I S'Ak CcCco

. Once the different SumD(S/¥) are calculated, for each attribute A, €

A, compute SumD 4, (S) representing the weighted sum of the different
SumD(S:'*) relative to each value v of the attribute Ay:

|53

5] —=—SumD(S;*) (4.12)

SumDy, (S) = Z

’UGD Ak:

. At this level, we may conclude which attribute will be chosen as a root

relative to the set of objects S. It consists in selecting the one presenting
the minimal SumDy, (S). In other words, the attribute presenting a
partition of objects in which objects are the closest from each others.
Nevertheless, we can proceed in order to take into account the number
of possible values for the domain of the attribute.

. By analogy to our averaging approach, we may also compute Dif f(S, A)

defined as the difference between SumD(S) and SumD 4, (S):

Dif f(S, Ax) = SumD(S) — SumD 4, (S) (4.13)
where
SumD(S B Z Z (k°{I;}(C) — |S| kO{SHO))?  (4.14)

. Using the Split Info (see Equation 2.5), compute the diff ratio relative

to the attribute Ay:

Dif f (S, Ax)
Split Info(S, Ax)

Diff Ratio(S, Ay) = (4.15)

. Repeat for every attribute Ay € A and choose the one that maximizes

the diff ratio.
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Example 4.2 Let’s use the same training set presented in the Example 4.1
and let’s try to apply our attribute selection measure based on this conjunc-
tive approach in order to find the test attribute.

We start by computing SumD(T), the sum of distances separating each
training instance to the whole set T'. We have:

m{T} = mg{f }@mG{IZ}@ @me{fs}
SumD(T Z S (50{1,H(C) - %KG{S}(C))Q

I €T CCO

= 13.437;

We proceed with the computation for the income attribute. Four values
may be possible which are high, average, low and no income. We define the
following bba’s:

m{T e} = me {1} Om{I;}@m®{I;};
mO{T o} = m®{LYEm®{L}@m®{Is};
mO{T{pm} = m®{Is}

and mG{TfV’;‘“’me} = mG{IG}

|T}IInc;)Lme | ILI‘ncome |
? ncome verage ncome
SumD pneome(T) = | 7{| SumD(Tifier™) + ] I Sum D (T hperane) +
|T125)ome |TIncome
L|T| S mD Tigg)ome) |T| S mD(T]{,ZC"me)
— 2.782;

By applying the same process to the other attributes, we get:

SumD property(T') = 7.730;
SumDUnpaid_credit (T) = 9353,

We have also to compute Dif f(T, Ay) for Ay € {Income, Property, Un-
paid_credit}. We get:

Dif f(T, Income) = 10.655;

Dif f(T, Property) = 5.707,
Dif f(T,Unpaid_credit) = 4.084;
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Then, the computation of the Diff Ratio gives the following results:

Dif f Ratio(T, Income) = 5.882;
Diff Ratio(T, Property) = 5.707;
Dif f Ratio(T, Unpaid_credit) = 4.279;

The application of the ‘Diff Ratio’ criterion leads to the choice of the
income attribute as the test attribute relative to the training set T'.

Particular cases: Some particular cases may be considered in the conjunc-
tive approach:

e The dogmatic case where training objects’ classes are described through
dogmatic bba’s characterized by a null bbm for ©. This case covers all
the following cases: Bayesian, certain, and categorical, and the com-
putation of the distances must be fixed in order to handle the infinity
terms that appear.

e The Bayesian case where the knowledge about the training objects’
classes are described through Bayesian bba’s, i.e., probability functions.

e The certain case where training objects’ classes are precisely known
with certainty. The class of such objects is represented by the so-called
certain bba assigning a value 1 to the class, and 0 to all the other
subsets of O.

e The categorical case where training objects’ classes are imprecise but
certain, and represented by a disjunction of possible classes. The bba
on the object’s class is a categorical bba having a unique focal element
different from the frame of discernment ©.

Before detailing these different cases, let’s define some notations. We use
the symbol oo to denote limit —Ine when € — 0 . It means in particular
that oo — oo =0 as —Ine + Ine = 0 for all ¢, hence the limit is also 0.

What do we compute?
kLI HC) = —Ing®{I;}(C) if ¢°{I;}(C) > 0,
or k?{I;}(C) = oo if ¢®{;}(C) =0
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For an attribute A;, we define:

p as the number of instances in the considered set.

réA’“ as the number of instances in the considered set with the value of

the attribute Ay equals to v, and k°{I;}(C) is finite.

52" as the number of instances in the considered set with the value of

the attribute Ay = v, and £°{I;}(C) is infinite.

v,Ap

pUAk =rj Ar s¢ " which is equal for every C.

>, pU = p for all Ay.

Let’s now detail these different cases:

The dogmatic case:

For each attribute value v of the attribute A, compute £ {S:*} de-
fined on © as follows:

KOLSHHC) = ) K{L}HO)
Lesyk
S DR 5 o) EN
1;€84% kO {1;}(C)#00

Ak: ’UAk
—tC + So oo

Hence, for each attribute value, the intra-group distance SumD(S2*)
is defined as follows:

SumD(Si*) =

D2 2 HnHe |5Ak| KOS (0))

I SA’“ CcCco

= vAk Z Z G{I} _pU,IAk( UAk +3 koo)Q)

CCO resy
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So we need,

v,A 1 v,A v,A
TC [ — Z R{IJ}(C) vak (tC k+SC koo)2

I'ESA"’
v,A v,A 2 1 v A v,A 2
=1tt;"" + 55 00 _p—v,A( 4557 00)
1
= 1t + 58 oo? — o ((t5™*)2 + 2t5 % si M 0o + (s*)200?)
Ap
_ ( v,Ap _ ( UC ) 2 h ll
= (5o va Joo© + something smaller
A
_ 'UAk 2 .
= (1- pv,A )oo® + something smaller
Hence,
A
Ary — 1 v,Ap 1 _ SUC i 2 :
SumD(S;*) = —e Z(SC (1 vAk)oo + something smaller) (4.16)
p> p>
cce

Once the different SumD(S:'*) are calculated, for each attribute Ay €
A, compute SumD 4, (S) representing the weighted sum of the different

SumD(S:'*) relative to each value v of the attribute Ay:

Ay
SumDa,(S) = Y |5g |SumD(S{)4’“)

vED(Ay) 151
v JAg
Z Z vAR (] —)oo2 + something smaller) (4.17)

vED(Ay) CCO

where we neglect the term |S|, that is not needed. The comparison
(based on SumDy, (S)) between two attributes is thus performed on

the terms: oA,
Z Z ( UAk - UCAk.))

vED(Ay,) CCO

The largest the term the worst the attribute. This is not a nice property
as such, but special case (the Bayesian belief function) is great provided
every singleton receives a positive probability.
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e The Bayesian case:

In that case, su** = p®4 for all |C| # 1, and s" A =0 for all || = 1.
It implies that the coefficients of the term in co? are always null. Note
that kK®{L;}(0) =

The term k®{S*} becomes:

KO{SHHC) = Y K{LHO)

Iesyk

2pests RO{LYHC)  if|C]=1

4.18
pPk oo if |C] > 1 (4.18)

{50 = {

The term SumD(S:*) becomes:

SumD(5%) = |S;k| Igsj S HLHO) - S;kﬁ@{sfk}(cw
- Z:%(n@{fj}(@pf% O1SHe))*
p:,lA: sz@'@ ~ 6] = 1)(00 ~ 0)?
= ZZ (-{L;}(c) RO{S}(e))?
:ple ;vamance 5 (KO{L}(0)) (4.19)
Finally,
SumD 4, (S Z sumD(SAk)
—%DZ zn s (ROLH)  (420)

Therefore, the dogmaticity of the Bayesian belief function is not a
problem anymore. The criterion is then based on the variance of the
—log(p{I;}(c)) as on the singleton commonalities equal plausibilities
and for a Bayesian belief function, plausibilities equal probabilities.
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e The certain case:

Suppose all the bba’s in the training set are certain bba’s. Each k vec-
tor is made of 0o ’s, except for the singleton focal element where it is
equal to 0. The intra-group distance is easier to compute when using
the difference between two s vectors. Among the objects in S2*, let
G be the set of objects where the focal element is ¢ € O.

The difference between two k’s that share the same focal set is 0, and
the one between two k’s with non equal focal sets is 200. The term
SumD(S:'*) is proportional to:

Yo RO{LY = R{L ) o Y D D D (RO} — wO{1u})

Ij,IwGka c€EO [EG: cx€O Iy EGcx

= Z [eX Z |G x| Mc, cx)00?
ceE® cx€O
=2 |Gc|(1S] = |Gel)oo”
ceEO
where

]2 if ¢ # cx
Ale, ex) = { 0 otherwise

Finally, SumD 4, (S) is proportional to :
SumDa,(S) oc Y > |G|(|S¥] — |Gel) (4.21)

vED(Ay) cEO

which is maximal when |G.| = [S/'*|/|©| and minimal when |G, =
|S24%| for one ¢ and 0 otherwise.

The categorical case:

Suppose all bba’s in the training set are categorical bba’s . Each
vector is made of co’s, except for the subsets of the focal set where it
is equal to 0.

The intra-group distance is easier to compute when using the diference
between two k’s vectors. The difference between two k’s that share
the same focal set is 0. The difference between two x’s with non equal
focal sets, for instance A and B C O, is 200 multiplied by the number
of subsets of A that are not subsets of B + the number of subsets of B
that are not subsets of A. The computation proceeds as in the certain
case.
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4.3.2 Partitioning strategy

The partitioning strategy also known as the splitting strategy, defines the
manner of the split of the training set according to the attribute values.

Since we deal with symbolic attributes, we create an edge for each value
of the attribute chosen as a decision node. Thus, we get several training sub-
sets where each one is relative to one branch and regrouping objects having
the same attribute value.

The partitioning strategy for the construction of a belief decision tree is
similar to the partitioning strategy used in the classical tree. This is due to
the fact that the uncertainty is linked to the classes of the training instances
and not to the values of their attributes.

4.3.3 Stopping criteria

The stopping criteria control the process of the construction of the belief
decision tree. They allow to stop the development of a path and to declare
the node as a leaf. In other words, the stopping criteria determine whether
or not a training subset should be further divided.

Four strategies are proposed as stopping criteria:

1. If the treated node includes only one instance. Hence, the leaf will
contain only this object.

2. If the treated node includes only instances for which the m®{l;}’s are
equal.

3. If there is no further attribute to test. In other words, if all the at-
tributes are split.

4. If the value of the applied attribute selection measure (using either the
gain ratio or the diff ratio) for the remaining attributes is less or equal
than zero which means that the possible partition does not provide a
better separation.

In such cases, a leaf will include one or several instances characterized
by the same values for the selected attributes but generally having different
bba’s on their actual classes.
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4.3.4 Structure of leaves

As mentioned, the leaf in a belief decision tree will be labeled by a basic belief
assignment since the classes of the different training instances are expressed
by the means of basic belief assignments.

The major question is how to compute each leaf’s bba? In fact, Two
cases must be treated:

In the averaging approach

Using the averaging approach in the attribute selection measure, the leaf’s
bba will be defined as follows:

1. When only one object belongs to the leaf L, the leaf’s bba would be
equal to this object’s bba as defined in the training set.

2. When there are many objects attached to the leaf L, the leaf’s bba
would be equal to the average of the different basic belief assignments
relative to these objects:

_ ijeL m®{I;}(C)

me{L}(C) 7

(4.22)

In the conjunctive approach

Using the conjunctive approach for the development of the attribute selection
measure, the leaf’s bba will be defined as follows:

1. When only one object belongs to the leaf L, the leaf’s bba would be
equal to this object’s bba defined in the training set.

2. When there are many objects attached to the leaf L, the leaf’s bba
would be equal the result of the combination of these objects’ bba by
using the conjunctive rule:

m{L} = Qp,er m{L} (4.23)
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4.4 Conclusion

In this chapter, we have proposed the definition of the basic parameters use-
ful for ensuring the construction and the classification procedures with the
belief decision tree.

In fact, we have developed two attribute selection measures using the be-
lief function formalism. Such parameter is considered as fundamental in the
algorithm of the construction of belief decision trees . Then, we have defined
the partitioning strategy and the stopping criteria regarding the structure of
our training set. Finally, we have presented the structure of leaves in the
belief decision tree, representing a major difference over the traditional deci-
sion tree.

In the next chapter, we present the construction of a belief decision tree
where we detail the algorithm for building a decision tree in an uncertain
case. Then, we develop the inference task ensuring the classification of new
instances characterized basically by uncertain attribute values.
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Chapter 5

Belief decision tree procedures

5.1 Introduction

Like the standard decision tree, the belief decision tree is composed of two
principal procedures: the building or the construction of the tree from uncer-
tain data and the classification of new instances that may be characterized
by uncertain or even missing attribute values.

In the first part of this chapter, we are interested to the building pro-
cedure. In fact, the construction of a belief decision tree is based on the
parameters defined in the previous chapter which are the attribute selection
measure, the partitioning strategy, the stopping criteria and the structure of
leaves.

Regarding these parameters, we present the procedure ensuring the con-
struction of the belief decision tree. Examples explaining the unfolding of
this procedure will be described.

In the second part of this chapter, we detail the classification procedure
using belief decision trees. We develop three classification schema: 1) when
all instances to classify have certain attribute values, 2) when some objects
have disjunctive attribute values, and 3) the general case when the attribute
values of the instances to classify are characterized by a belief function.

The different results found in this chapter are also detailed in (Elouedi
et al., 2000a, 2001a).

99
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5.2 Building procedure

5.2.1 Introduction

The building procedure is also called the induction task. It allows to in-
duce a belief decision tree in order to use it for the classification task.

Even in an uncertain context, the building of belief decision trees requires
a top down approach based on the conquer and divide principle.

5.2.2 Description

As mentioned, the algorithm to construct a decision tree (and consequently a
belief decision tree) is based on four major parameters: the attribute selection
measure, the partitioning strategy, the stopping criteria and the structure of
leaves. These parameters must take into account the uncertainty encoun-
tered in the training set.

In fact, a belief decision is constructed from a training set of objects based
on successive refinements. These refinements based on both the attribute
selection measure and a partitioning strategy lead to small training subsets.
The process is repeated until leaves are encountered. Such nodes have to
satisfy at least one of the stopping criteria. Finally, for each leaf we have to
compute its corresponding bba.

5.2.3 Algorithm of building a belief decision tree

Let T be a training set composed by objects I; (j = 1,...,p) character-
ized by m symbolic attributes (A, As, ..., Ap) and that belong to the set
of classes © = {C,Cy, ... ,C,}. For each object I; of the training set will
correspond a basic belief assignment m®{I;} expressing the belief about the
value of C'(I;), the actual class of the object I; .

Our algorithm which uses a Top Down Induction of Decision Trees ap-
proach, will have the same skeleton as an ID3 and C4.5 algorithms (Quinlan,
1986, 1993). Besides, our algorithm is considered as generic since it provides
two possibilities for selecting the attributes by using either the averaging ap-
proach or the conjunctive one.
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Note that while using the averaging approach, we can use either the infor-
mation gain or the gain ratio in an uncertain context. We will use the second
criterion since it represents an improvement over the information gain selec-
tion measure. For the conjunctive approach, the diff ratio will be used.

The different steps of our algorithm leading to the construction of a belief
decision tree are described as follows:

1. Generate the root node of the belief decision tree including all the
objects of the training set 7'.

2. Choose which approaches will be applied: either the averaging approach
or the conjunctive one.

3. Verify if this node satisfies or not at least one of the stopping criteria
(see Section 4.3.3):

e [f yes, declare it as a leaf node and compute its corresponding bba
according to the chosen approach (see Section 4.3.4).

e If not, look for the attribute having the highest attribute selection
measure (see Section 4.3.1). This attribute will be designed as the
root of the belief decision tree related to the whole training set.

4. Apply the partitioning strategy (see Section 4.3.2) by developing an
edge for each value of the chosen attribute as a root. This partition
leads to several training subsets.

5. Create a root node relative to each training subset.

6. Repeat the same process for each training subset from the step 3, while
verifying the stopping criteria.

7. Stop when all the nodes of the latter level of the tree are leaves.

Example 5.1 Let’s continue with the examples proposed in Chapter 4 (see
Ezxample 4.1 and Ezample 4.2). Our objective is to generate the two belief
decision trees relative respectively to the average approach and the conjunctive
approach.
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e Averaging approach: As computed in the Example 4.1, we have found

that:

Guain Ratio(T, Income) = 0.361;

Guain Ratio(T, Property) = 0.276;
Gain Ratio(T,Unpaid_credit) = 0.004;

We choose the income attribute as the root of the belief decision tree
relative to the training set T, since it presents the highest gain ratio.

Therefore, a branch is created below this root for each possible value
(High, Average, Low, No) of the income attribute.

We get the following belief decision tree (see Figure 5.1):

Income
High oW, No Average
Income . Income . Income . Income .
THz'gh ' TLow : TNo : TAverage :
Ila I37 I’T I5 [6 [27 [47 IS

Figure 5.1: First generated belief decision tree

We notice that each of the training subsets Tincome and TIeo™e con-
tains only one object. Hence, one of the stopping criteria is fulfilled
for these subsets. As a consequence, the nodes relative to Tim™e qnd
Tincome qre declared as leaves and their corresponding bba’s will be re-

spectively equal to m®{Is} and m®{Is}.

For the training subsets T{ﬁgﬁme and Tjﬁgﬁgﬁ, we apply the same pro-

cess as we did for the training set T' until at least one of the stopping
criteria holds.
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The final belief decision tree induced by our algorithm using the aver-
aging approach is given by (see Figure 5.2):

Income
High oW No Average
Unpaid _credit m®{Is} m®{Is} Unpaid_credit
Yes No Yes No
m®{I3} m®{I;} Property m®{I,}

Greater Less
m®{l;}  m®{Ig}
Figure 5.2: Final belief decision tree: Averaging approach

where m®{ I3} is the average bba relative to the objects {I,} and {I3}.
So, we get (see Equation 4.22):

m®{I3}(Cy) = 0.65;
m®{115}(0) = 0.35;
e Conjunctive approach:  As computed in the Ezample 4.2, we have
found that:
Diff Ratio(T, Income) = 5.882;
Diff Ratio(T, Property) = 5.707;
Diff Ratio(T, Unpaid_credit) = 4.279;

As noted, the income attribute presents the highest value of the Diff
Ratio(T, Ay) where Ay € {Income, Property, Unpaid_credit}. Hence,
it would be chosen as the root of the belief decision tree (like with the
averaging approach).
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By applying the same process to the induced training subsets, the final
belief decision is (see Figure 5.3):

Income
High Low No Average
Unpaid_credit m®{I;} m®{Is} Unpaid_credit
Yes No Yes No
m®{I3} m®{I;} Property m®{L}

Greater Less

m@{I4} mg{fg}

Figure 5.3: Final belief decision tree: Conjunctive approach

where m®{I3} is defined as follows (see Equation 4.23):
m®{I3} = m®{I,}Qm®{I}.

So, we get:

m®{I;3}(C}) = 0.88;

m®{113}(©) = 0.12;

Remark:

For this example, we get the same belief decision tree by using either the
averaging approach or the conjunctive one (but some bba’s leaves are differ-
ent). This may not usually happen since these are two different approaches.

In fact, the induced belief decision trees may be identical or different
according to the data composing the training set. In other words, it depends
on the training instances and their corresponding classes’ bba’s.
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5.3 Classification procedure

5.3.1 Introduction

Once the belief decision tree is constructed, the following procedure will be
the classification of unseen instances referring to as new objects. Such task
is also named the inference task.

As we deal with an uncertain environment, several cases regarding the
knowledge of the attribute values have been studied in order to ensure clas-
sification using a belief decision tree.

5.3.2 Standard classification

Our method is able to ensure the standard classification where each attribute
value (of the new instance to classify) is assumed to be exact and certain.

As in an ordinary tree, it consists in starting from the root node and
repeating to test the attribute at each node by taking into account the at-
tribute value until reaching a leaf.

Contrary to the classical decision tree where a unique class is attached to
the leaf, in our belief decision tree, the new instance’s class will be defined by
a basic belief assignment related to the reached leaf. This bba defined on the
set of classes, represents beliefs on the different subsets of classes (singletons
and disjunctions) of the new instance to classify.

In order to make a decision and to get the probability of each singular
class, we propose to apply the pignistic transformation.

Example 5.2 Let’s continue with the Example 5.1 (we use the results pro-
vided by the averaging approach') and assume a new object to classify is
characterized by the following values:

e Income = High;

e Property = Greater;

e Unpaid_credit = Yes;

! The same process can be obviously applied to the conjunctive approach.
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By tracing out the path from the root to one of its leaves of our generated
belief decision tree (see Figure 5.2), the new instance will belong to the leaf
labeled by m® {13} as a bba defined as follows:

m®{I3}(C) = 0.65;

Hence, the part of belief that this new instance belongs to the class C is
0.65, whereas the part of belief that it belongs to the class Cy or Cy or Cs is
0.35.

To make a decision, we have to apply the pignistic transformation, we
get:

BetP®{I,3}(C}) = 0.76;

BetP®{I3}(Cy) = 0.12;

BetPG{Ilg}(Cg) = 012,

Therefore, the probabilities that this instance belongs to Cy, Cy and Cy are
respectively equal to 0.76, 0.12 and 0.12. As a consequence, the new instance
has more chances to belong to the class Cy. In other words, this client will
be considered as a good client and the bank may accept to give him the whole
asked loan.

5.3.3 Disjunctive case

As we deal with an uncertain context, we propose, in our method, the clas-
sification of new instances characterized by uncertainty in the values of their
attributes.

In this case, we assume new objects to classify are not only described
by certain attribute values, but may also be described by the means of dis-
junctive values for some attributes. They may even have attributes with
unknown values (missing values).

The idea to classify such objects is to look for the leaves that the given
instance may belong to by tracing out all the possible paths induced by the
different attribute values of the object to classify.

As a consequence, the new instance may belong to many leaves where
each one is characterized by a basic belief assignment. These bba’s must be
combined in order to get beliefs on the instance’s classes. The disjunctive
rule of combination developed by Smets (see Equation 1.46) seems offering
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a suitable context since it supposes at least one path is true (but we do not
know which path).

When a decision has to be made, the induced bba from the disjunctive
rule is transformed into a probability function by applying the pignistic trans-
formation. This allows knowing the probability of the new instance to belong
to each singular class related to the given problem.

Remark:

As mentioned, this case deals also with the total ignorance of some attribute
values. When we handle unknown attribute values, all the branches relative
to the considered attribute will be taken into account. Then, the same process
(as in the case of the disjunctive values) will be applied.

Example 5.3 Let’s continue with the Example 5.1 and suppose the client I
to classify is characterized by an average income, an unknown value regard-
ing the property attribute and an unpaid credit.

Since the value of the unpaid_credit attribute is unknown, then we have
two possible paths to explore:

1. (Income = Average, Property = Greater, Unpaid_credit = Yes),

2. (Income = Average, Property = Less, Unpaid_credit = Yes).

By using our induced belief decision tree (see Figure 5.2), the first path
leads to the leaf characterized by m®{I,}, whereas the second path leads to
the one characterized by m®{Ig} as a bba.

Let m®{I} be the bba defining beliefs on the classes of this client I to
classify. The bba m®{I} is the result of the application of the disjunctive
rule combining m®{Iy} and m®{Ig}. So, we get:

mO{I} = m®{1,}Om®{Is)
where

m®P{I}(Cy) = 0.24;

m®{I}(Cs) = 0.12;

me{f}(CQ U 03) = 036,

m®{I}(0) = 0.28;
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By applying the pignistic transformation, we get:
BetP®{I}(C,) = 0.1;

BetP®{I}(Cy) = 0.51;

BetP®{I}(C3) = 0.39;

We notice that this instance I has the most probability to belong to the
class Cy which is equal to 0.51. So, this client may be considered by the bank
as a moderate client and it is more probable that he will receive only a part
of the asked loan.

5.3.4 General case

The uncertainty characterizing the new instances to classify is not necessar-
ily presented by disjunctive values or missing values (total ignorance), but
it may also be more complicated especially when the attribute values are
described by several experts. Therefore, it would be interesting to extend
our classification procedure based on a belief decision tree in order to handle
more uncertainty.

The uncertainty about the value of the attribute can be defined by a bba,
on the set of all the possible values of the attribute. Such bba can be given
by one expert or resulted from the combination (using the conjunctive rule)
of several bba’s, relative to many experts, on the attribute values. Let:

e m“% be the bba representing the part of belief committed exactly to
the different values of the attribute Ay of the new instance to classify.
This bba is defined on the frame of discernment © 4, including all the
possible values of the attribute Aj.

e O, be the global frame of discernment relative to all the attributes
belonging to the set of attributes A. It is equal to the cross product of
the different ©4,. We denote by:

O4 = Xg=1,...mO4, (5.1)

Since an instance is described by a set of combination of values where
each one is relative to an attribute, we have firstly to find the bba expressing
beliefs on both the different attributes’ values of the new instance to classify.
In other words, we have to look for the joint bba representing beliefs on all
the instance’s attributes.
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To ensure this objective, we have to apply the following steps:

1. Extend the different bba’s m“* to the global frame of attributes © 4.
As a result, we get the different bba’s mA%4,

2. Combine the different extended bba’s by applying the conjunctive rule
of combination.

m* = @, ™ (5.2)

Thus, we get a joint bba m” representing beliefs on the different combi-
nations of the attributes characterizing the given instance. Should there be
some ‘correlation’ between the bba’s, the procedure could be adapted, but
in any case the end product is a bba on © 4.

We then, consider individually the focal elements of the bba m*. Let
x be such a focal element. The next step in our classification task is to
compute the belief functions bel®[x], where © is the set of possible classes.
The computation of this function depends on the subset x and more exactly
on the focal elements of the bba m:

1. If the treated focal element x is a singleton (only one value for each
attribute), then bel®|[x] is equal to the belief function corresponding to
the leaf to which this focal element is attached.

2. If the focal element x is not a singleton (some attributes have more
than one value), that is it contains a disjunction in some attribute
values. Then, we have to explore all the possible paths relative to this
combination of values. Two cases are possible:

e If these paths lead to one leaf, then bel®[z] is equal to this leaf’s
belief function.

e If these paths lead to distinct leaves, then bel®[z] is equal to the
result of the disjunctive combination of each leaf’s belief function
by applying the disjunctive rule.

Finally, the belief functions computed with each focal element x are av-
eraged using the m*:

bel®[m*)(C) = Y m?(z)bel®[z](C) for C C O (5.3)

zCO 4
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bel®[m] represents total beliefs on the classes (subsets of classes) that the
new instance may to belong.

To make a decision, this belief function is transformed to a probability
function on singular classes via the pignistic transformation.

Remark:

Note that the cases of certain or disjunctive attribute values are included
within this generalized case of classification of instances. These cases are
easily expressed within the belief function framework.

For the standard case of certain attribute values, we get certain bba’s,
whereas for the case of missing values, the attribute is simply expressed by a
vacuous bba. The attribute characterized by disjunctive values is represented
by a categorical bba having only one focal element which is the disjunction
of values.

Example 5.4 In order to illustrate our generalized case, suppose we would
classify a client characterized by certain and exact values for its income and
unpaid_credit attributes which are respectively average and yes. However,
there is some uncertainty in the value of the property attribute.

The values of this client’s attributes are defined as follows:

e Income = Average which is equivalent to a certain bba m ™™ having
only the value average as a focal element: mI"™({ Average}) = 1;

e Unpaid_credit = Yes which is equivalent to a certain bba mUnreid-credit

having only the value yes as a focal element: mUnpid-credit(y egl) — 1;

e However, the value relative to the property attribute is uncertain and
described by the bba mPPe such that: mPmorer®y({Greater}) = 0.4;
mProperty({Less}) — 037 mProperty(@Pmperty) — 037

Let’s remind that:

O rncome = {High, Average, Low, No}
O property = {Greater, Less}
@Unpaid_credit = {Y@S, NO}

Let @A - @Income X @Property X @Unpaid_credit
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So, ©4 = { (High, Greater, Yes), (High, Greater, No), (High, Less,
Yes),(High, Less, No), (Average, Greater, Yes), (Average, Greater, No),
(Average, Less, Yes), (Average, Less, No), (Low, Greater, Yes), (Low, Greater,
No), (Low, Less, Yes), (Low, Less, No), (No, Greater, Yes), (No, Greater,
No), (No, Less, Yes), (No, Less, No) }

The extension of the different bba’s to © 4, the frame of discernment rel-
ative to the set of attributes A, gives as a result:

IncometA (

e m {AUGT&QG} X ®Property X @Unpaid_credit) = 17'

L mUnpaidicreditTA(@Income X @Property X {Y&S‘}) = 1;'

L4 mPropertyTA(@Income X {Greater} X @Unpaid_credit) = 04;
P tytA _ .
m:oPer a (@Income X {L€SS} X ®Unpaid_credit) - 037
mPropertyTA(@A) — 03,

Once the attributes’ bba’s are extended to ©,, then we can apply the
conjunctive rule. The result of this combination will be a joint bba on singular
instances or subsets of instances. So, we get:

mA — mIncomeTA@mPropertyTA@mUnpaid_creditTA such that:

mA({(Average, Greater,Yes)}) = 0.4;

mA({(Average, Less,Yes)}) = 0.3;

m? ({Average} X Oproperty x {Yes}) = 0.3;

Nezt, we have to find beliefs on classes (defined on ©) given the values of
the attributes characterizing the new instance to classify. In fact, three belief
functions have to be defined where for each one, we take into account one
focal element of m*.

According to the belief decision tree generated (see Figure 5.2), we get:
bel®[{(Average, Greater,Y es)}] = bely;

bel®[{(Average, Less, Yes)}] = belg;

belg[{Average} X @Property X {Yes}] - b€l4©b€lg;

Table 5.1: Beliefs on classes given the attributes’ values

Ci| Cy | O3 |CLUCy, | CLUCs | CoUCs | O

bely 0] 06|03 0.6 0.3 0.9 1
bels 0] 04|04 0.4 0.4 0.8 1
bely@belg | 0 | 0.24 | 0.12 0.24 0.12 0.72 1
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Hence, these belief functions will be averaged (see Equation 5.2), we get:
bel®mA)(C1) = 0.4%0+0.3%0+0.3%0=0;

bel®[mA)(Cy) = 0.4 % 0.6 + 0.3 % 0.4 + 0.3 % 0.24 = 0.43;
bel®mA](Cs) = 0.4% 0.3 +0.3% 0.4+ 0.3 % 0.12 = 0.28;
bel®mA])(Cy U Cy) = 0.4% 0.6 + 0.3 % 0.4 + 0.3 % 0.24 = 0.43;
bel®[mA)(C1 UC3) =0.4%0.3+0.3%0.4+0.3%0.12 =0.28;
bel@[mA](02u03)_04*09+03*08+03*072_082-
bel®[m*)(©) =

Hence, we get:

m®m](C1) = 0;

m®[m*](Cy) = 0.43;

m®[m*](Cs) = 0.28;

me[mA](C'l U 02) = 0,

me[mA](C'l U 03) = 0,

m®[mA](Cy U C3) = 0.11;

m®[m4](©) = 0.18;

FEach basic belief mass represents the part of belief that the given instance
may belong to such focal element.

Applying the pignistic transformation, the pignistic probability will be de-
fined as follows:

BetP(C4) = 0.06;

BetP(Cy) = 0.55;

BetP(C3) = 0.39;

We notice that the probabilities that this instance belongs respectively to
the classes C1, Cy and C3 are respectively 0.06, 0.55 and 0.39.

As a consequence, it is most probable that this new instance (characterized
by average income, an unpaid_credit, and uncertain value of the property
attribute) will belong to the class Cy. In other words, this client may be
considered, by the bank, as a moderate client and just a part of his asked loan
will be given to him.
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5.4 Conclusion

In this chapter, we have presented the two major procedures related to the
belief decision tree technique. We have described the different steps of the
procedure allowing the construction of the tree from uncertain data.

Next, we have detailed the inference task ensuring the classification of
new instances using the constructed belief decision tree. Several cases, that
depend on the nature of the attribute values, are analyzed in order to induce
classification even with uncertain values.

The construction and the classification procedures are explained by an
example dealing with the classification of clients in a bank in order to al-
low the bank to plan its loan policy. Another example relative to strategic
problems will be presented in Appendix A. It will handle the classification
of scenarios in the agriculture field in an uncertain context using the belief
decision tree approach (Elouedi et al., 2000a).

In the next chapter, we will deal with the implementation of belief deci-
sion trees with both averaging and conjunctive approaches and their use for
classification. Simulations will be performed in order to show the feasibility
of our proposed methods.
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Chapter 6

Implementation and simulation

6.1 Introduction

Implementing our belief decision tree approaches seems imperative since it
allows us to have an idea concerning the feasibility of our proposed methods.

Hence, at first building belief decision trees in both averaging and con-
junctive approaches will be ensured, then classification of new objects with
both induced trees will be implemented.

Different results will be presented namely the different nodes of the tree,
the number of decision nodes, leaves, and the different values of the criteria
reflecting the classification results.

Once the different programs are implemented, for checking the feasibility
of our approaches regarding belief decision trees and judging their qualities,
we have performed several tests and simulations on data sets.

In fact, this chapter is composed of two parts:

e The first part deals with the implementation of belief decision trees
where the major variables and programs are explained, then the im-
portant algorithms are detailed.

e The second one is interested to the simulation phase, the different pa-
rameters used in simulation are defined. Then, results over data from
a real world problem are presented with an analysis of them. Note that
the objective of simulation remains basically to show the well unfolding
of our belief decision tree algorithms and not on comparison.

115
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6.2 Implementation

6.2.1 The framework

In order to test our two approaches (averaging and conjunctive), we have de-
veloped programs in Matlab V6.0, implementing basically the building phase
(according to the two approaches), then the classification phase taking into
account the induced belief decision trees.

As detailed in the previous chapters, these programs are developed to
handle symbolic attributes.

These programs have as input data sets with objects having certain at-
tribute values but uncertain classes represented by basic belief assignments.

When there is no uncertainty in the training instances’ classes, we can
also apply the classical C4.5 algorithm of Quinlan which is then a particu-
lar case of our belief decision tree algorithm based on the averaging approach.

The outputs of our programs are basically:

1. The belief decision trees induced from the two approaches (averaging
and conjunctive), and in particular some characteristics of these trees
like the number of leaves and the number of decision nodes.

2. Results from the classification phase applied to the testing set (and
even to the training set), namely the Percent of Correct Classification,
denoted PCC, the kappa and the distance criterion, denoted dist_crit,
considered as criteria (that will be detailed in the following sections) to
assess classification of objects according to the induced belief decision
tree.

6.2.2 Major variables

In this section, we present the list of the major variables that are used in our
developed algorithms (it is not an exhaustive list):

e training_set includes the attribute values of all the training instances,
the beliefs on their classes and also their real classes (this latter value
is useful to build the corresponding bba’s on the training instances’
classes).
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e number_attributes is the number of attributes relative to the given
classification problem.

e number_classes is the number of classes relative to the given classifica-
tion problem.

o number_value_attributes is a vector representing the number of possible
values of each attribute.

e number_training_instances is the number of instances in the training
set.

e node (either a leaf or decision node) is composed of:

— .type which may be a ‘leaf’ or an ‘attribute’.

— .cases which contains the remaining instances belonging to this
node. Obviously, in the case of leaves, it represents the different
objects belonging to such a leaf.

— .beliefs is equal to 0 when it is an attribute, otherwise (when it is a
leaf) computed as an average bba or as a joint bba of the instances
belonging to the leaf (according to the applied approach).

— .name is equal to 0 when it is a leaf, otherwise (when it is an
attribute) contains the name of the attribute (its position).

— .forks is equal to 0 when it is a leaf, otherwise (when it is an at-
tribute), it contains the number of possible values of this attribute
(in other words, the number of its branches).

— .level is the level of the node in the belief decision tree.

.path_attributes represents the attributes leading to this node.

— .path_values represents the values of the attributes leading to this
node.

o belief _classes represents beliefs on classes relative to the training in-
stances.

o set_attribute_values is the set of the different values of the attributes
relative to the training instances.

o remaining_attributes is the list of the remaining attributes to be se-
lected.

o remaining_instances is the list of the remaining instances to be treated.
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belief _decision_tree_ave is the belief decision tree induced from the ap-
plication of the averaging approach. It is composed by nodes (decision
nodes and leaves).

belief _decision_tree_conj is the belief decision tree induced from the
application of the conjunctive approach. It is composed by nodes (de-
cision nodes and leaves).

number_non_empty_leaves presents the number of non empty leaves in
the induced belief decision tree.

number_empty_leaves presents the number of empty leaves in the in-
duced belief decision tree.

number _decision_nodes presents the number of attribute nodes in the
induced belief decision tree.

testing _set includes the attribute values of all the testing instances, the
beliefs on their classes (which will not be used, but it is mentioned just
to have the same structure as the variable training set) and also their
real classes that will be compared with the classes given by the induced
belief decision tree.

class_truth represents the real class of the instances to classify.

instance_to_classify is a matrix describing in each of its rows the value
of each attribute of one instance to classify (from the testing set).

PCC is the percent of correct classification of the instances to classify.

kappa is the kappa criterion usually used to assess the classification of
the instances to classify.

dist_crit is the value of the distance criterion that we have developed
to assess the classification of the instances to classify. It it is based on
the computation of the distance between the pignistic probability given
by the induced belief decision tree and the real class of each object to
classify.



Chapter 6: Implementation and simulation 119

6.2.3 Belief decision tree programs
Introduction

We present the different programs that we have developed in order to build
the belief decision trees using our two approaches, namely the averaging ap-
proach and the conjunctive approach. Then, the programs permitting to use
the induced trees.

These developed programs can be regrouped according to their use. These
groups of programs are described in the following subsections.

Ezxecution

It includes programs ensuring the execution of the software allowing to get
results of both approaches: the averaging and the conjunctive approaches.

e Test: allows to build a belief decision tree according to the averaging
and conjunctive approaches on a data set, then it presents the classi-
fication results on the testing set for both approaches (averaging and
conjunctive).

e Test_Quinlan: allows to build a belief decision tree, relative to a data
set, in the certain case according to the Quinlan algorithm C4.5. Such
algorithm represents a particular case of our averaging method with
the belief decision tree approach. Once the tree is built, Test_Quinlan
presents the classification results on the testing set.

In both programs, we can also present classification results on the training
set.

Data creation

To create data that will be used to build belief decision trees, the idea is
to deal with an existing database characterized by certain attributes’ values
and a certain and unique class for each one of its training instances, then we
have to create bba’s relative to the classes of the training instances.

These databases have to be divided into two parts: the training set and
the testing set representing generally, respectively 90% and 10% from the
whole generated database!.

! These percentages may change according to the number of objects in the database,
it may be for example 50% for each one of training and testing sets.
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For creating data, Two kinds of programs have been developed:

e Get_simulated_data: generates training instances and testing in-
stances relative to a database, then we create, artificially, bba’s on
their classes.

¢ Get_simulated_data_Quinlan: generates training instances and test-
ing instances relative to a database that will be applied to the certain
case. S0, the bba’s on classes are certain bba’s, i.e., each one has only
one focal element which is a singleton.

Definition of the training set

In this subsection, there are two procedures allowing to define the two parts
of the training set in a belief decision tree, namely the attribute values of
training instances and their classes’ beliefs. Such programs are useful for
getting more specific data from a training set to ensure the building of the
tree.

e Getting_attribute_values: allows to get the different attribute values
relative to training instances.

e Getting belief classes: allows to get beliefs on classes relative to
training instances.

Buzilding

The building phase is considered as an important phase, as in the averaging
approach and in the conjunctive one, ensuring the building of belief decision
trees. For the programs that we have developed, there are specific programs
for each approach, and others common for both approaches.

1. Averaging approach

e Build _averaging: is the principle program to build a belief deci-
sion tree according to the averaging approach. Besides, it presents
the number of empty and non empty leaves, and the number of
decision nodes relative to the induced tree.

e Build _bdt_averaging: is a recursive function allowing to build
a belief decision tree according to the averaging approach.

e Best_attribute_averaging: allows to choose the best attribute
according to the averaging approach and to fix its position. The
chosen attribute is the one having the highest gain ratio.
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Eval_gain_ratio: allows to evaluate the gain ratio of each at-
tribute belonging to the list of remaining attributes (the non se-
lected attributes).

Compute_gain_ratio: allows to compute the gain ratio of an
attribute.

Info: computes the Info value relative to a given training (sub)
set (before partition). Such value represents the entropy of the
treated training (sub) set.

InfoS: computes the InfoS value of a given attribute relative to
a given training (sub) set (after partition). The induced value
from the procedure InfoS is considered as the weighted sum of the
different Info values where each one is relative to a subset of one
of the attribute values.

Average_bet: computes the average pignistic probability BetP
relative to a given matrix (representing generally bba’s on some
training instances’ classes).

Average_bba: computes the average bba relative to a given
matrix (representing generally bba’s on some training instances’
classes).

2. Conjunctive approach

Build_conjunctive: is the principle program to build belief de-
cision tree according to the conjunctive approach. Besides, it
presents the number of empty and non empty leaves, and the
number of decision nodes relative to the induced tree.

Build_bdt_conjunctive: is a recursive function allowing to build
a belief decision tree according to the conjunctive approach.

Best_attribute_conjunctive: allows to choose the best attribute
according to the conjunctive approach and to fix its position. The
chosen attribute is the one having the highest diff ratio (the de-
veloped attribute selection measure according to the conjunctive
approach).

Eval_diff_ratio: allows to evaluate the diff ratio of each attribute
belonging to the list of remaining attributes (the non selected
attributes).

Compute_diff_ratio: allows to compute the diff ratio of an at-
tribute.
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SumD: computes the sum of distances between the training in-
stances (before partition). It represents the intra-group distance
in the given (sub) training set.

SumD_attribute: computes the SumD,, value of a given at-
tribute A, (after partition). The value induced by the procedure
SumD _attribute is considered as the weighted sum of the different
SumD (values) where each one is relative to a subset on one of the
attribute values.

Dist: computes the distance between two commonality functions
relative to one instance and a training subset.

Conjunctive: computes the conjunctive bba relative to a given
matrix (representing generally bba’s on training instances’ classes).

3. Common procedures for both approaches

These procedures are useful in both averaging and conjunctive ap-
proaches.

SplitInfo: computes the split info value of a given attribute. This
quantity describes the information content of the attribute itself.

Partition: returns the class attribute values regrouping instances
according to the values of the attribute.

Freq_attribute_values: computes the number of instances for
each attribute value.

Reset_freq: initializes the number of instances for each attribute
value with 0.

Find_remaining_attributes: allows to find the non selected at-
tributes.

Find_remaining_instances: allows to find the remaining in-
stances to be treated once the attribute is selected.

Classification

This set of procedures ensures the classification of testing instances?. These
procedures are the following ones:

e Classification_results: computes the PC'C, the kappa and the dis-
tance criterion (dist_crit) enhanced from the classification of testing
instances (or even training instances).

2 Even training instances, if we would evaluate the classification on these instances.
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e Best_class: allows to give the most probable class of the instances to
classify and its corresponding pignistic probability.

e Classify: is used to classify an instance according to the induced tree.
It gives its corresponding basic belief assignment and pignistic prob-
ability. Note that the objects to classify are characterized by certain
attribute values since they can be either training or testing instances.
So, all objects in the database have the same structure.

6.2.4 Belief decision tree algorithms

In this section, we present the major algorithms relative to both the belief
decision tree approaches. Two phases will be considered: the building phase,
then the classification phase.

Building phase
Averaging approach

Algorithm Building_averaging

Input: training_set, number_attributes, number_classes, number_value_attributes,
number_training_instances

Output: belief decision_tree_ave, number_non_empty_leaves, number_empty_ leaves,
number_decision_nodes

1. begin
(x Getting beliefs on classes relative to the training instances x)

3.  Dbelief _classes < Getting_belief_classes(training_set, number_attributes,
number_classes, number_training_instances);

5. (% Getting the different attribute values relative to the training instances x)
6. set_attribute_values < Getting_attribute_values(training set,
number_attributes, number_training_instances);

(x Getting the lists of instances and attributes in the whole training set x)
9. list_instances < [l:number_training instances];
10. list_attributes < [l:number_attributes];

11.
12.  (* Initialization of useful variables x)
13. level « 0;

14. belief_decision_tree_ave < [ |;
15. path_attributes < [ |;
16. path_values + [ |;
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18.
19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
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(x Applying the recursive program build_belief_bdt_averaging *)
belief_decision_tree_ave +— Build_bdt_averaging(belief_decision_tree_ave,
number_classes, belief_classes, set_attribute_values, list_attributes,
list_instances, number_value_attributes, level, path_attributes, path_values);

(* Finding the variables number_non_empty_leaves, number_empty_leaves, num-
ber_decision_nodes *)
number_non_empty_leaves < 0;
number_empty_leaves < 0;
number_decision_nodes < 0;
teta «— 2number-classes;
for i < 1 to length(belief_decision_tree_ave)
do if stremp(belief_decision_tree_ave(i).type, ”leaf”)
then if belief_decision_tree_ave(i).beliefs(teta) = 1
then number_empty_leaves <— number_empty_leaves + 1;
else number_non_empty_leaves <— number_non_empty_
leaves + 1;
end if
else number_decision_nodes <— number_decision_nodes + 1;
end if
end for
end

Algorithm Build_bdt_averaging
Input: belief_decision_tree_ave, number_classes, belief_classes, set_attribute_values,

remaining_attributes, remaining_instances, number_value_attributes, level,
path_attributes, path_values

Output: belief_decision_tree_ave

A ol

®© N

10.
11.
12.
13.
14.

begin
(x Updating the level x)
1 < level + 1;

(* Defining the number of instances and attributes to be treated *)
[number_instances_to_be_treated, number_attributes_to_be_treated] < size(set_
attribute_values(remaining_instances, remaining_attributes));

(x First test to know if the node is a leaf or not *)

if number_instances_to_be_treated < 1 or

number_attributes_to_be_treated = 0

then node.type < 7leaf”;

node.cases ¢<— remaining_instances’;
node.beliefs < Average_bba(belief_classes(remaining_instances,:));
node.name < 0;
node.forks « 0;
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15. node.level + I;

16. node.path_attributes < path_attributes;

17. node.path_values < path_values;

18. belief_decision_tree_ave <+ [belief_decision_tree_ave node];

19.

20. (% Position and gain ratio of the best_gain_ratio attribute according
to the averaging approach *)

21. else [best_gain_ ratio, position] < Best_attribute_averaging(belief_classes,

set_attribute_values, remaining_attributes, remaining_instances,
number_classes, number_value_attributes);

22.

23. (x Second test to know if the node is a leaf or not *)

24. if best_gain ratio < 0

25. then node.type < "leaf”;

26. node.cases < remaining_instances’;

27. node.beliefs <— Average_bba(belief_classes(remaining_instan-
ces,:));

28. node.name <« 0;

29. node.forks < 0;

30. node.level + I;

31. node.path_attributes < path_attributes;

32. node.path_values + path_values;

33. belief_decision_tree_ave < [belief_decision_tree_ave node];

34.

35. (x Partitioning *)

36. else attribute_values «+ set_attribute_values(:, position);

37. sub_remaining attributes < Find_remaining_attributes
(remaining_attributes, position);

38. remaining attributes < sub_remaining_ attributes;

39. instances_before_for < remaining_instances;

40. path_values_before_for < path_values;

41. number_branches <— number_value_attributes(position);

42.

43. (* Defining elements of the node, in this case it is an at-
tribute *)

44, node.type < "attribute”;

45. node.cases < remaining_instances’;

46. node.beliefs < 0;

47. node.name < position;

48. node.forks <— number_value_attributes(position);

49. node.level + I;

50. node.path_attributes < path_attributes;

ol. node.path_values < path_values;
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52. belief_decision_tree_ave < [belief_decision_tree_ave node];

53.

o4. (x Update the variable path_attributes x)

55. path_attributes < [path_attributes, position];

56.

o7. (x Treatment of each selected attribute value x)

58. for v < 1 to number_branches

99. do sub_remaining instances - Find_remaining_inst-
ances(attribute_values, v, remaining_instances);

60. remaining_instances < sub_remaining instances;

61. path_values « [path_values, v];

62.

63. (x Applying a recursive program Build_bdt_averaging

for each training subset relative to the value v of the
selected attribute *)

64. belief_decision_tree_ave <~ Build_bdt_averaging
(belief_decision_tree_ave, number_classes, belief_classes,
set_attribute_values, remaining_attributes,
remaining_instances, number_value_attributes, 1,
path_attributes, path_values);

65. if v < number_branches

66. then remaining_instances < instances_before_for;

67. path_values < path_values_before_for;

68. end if

69. end for

70. end if

71. end if

72. end

Congunctive approach

Algorithm Building_conjunctive

Input: training_set, number_attributes, number_classes, number_value_attributes,
number_training_instances

Output: belief_decision_tree_conj, number_non_empty_leaves, number_empty_ leaves,
number_decision_nodes

1. begin

2. (x Getting beliefs on classes relative to the training instances x)

3. Dbelief_classes + Getting_belief_classes(training_set, number_attributes,
number_classes, number_training_instances);

o

(x Getting the different attribute values relative to the training instances *)
6. set_attribute_values < Getting_attribute_values(training set,
number_attributes, number_training_instances);
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20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

(x Getting the lists of instances and attributes in the whole training set x)
list_instances <— [l:number_training_instances];
list_attributes < [1:number_attributes];

(x Initialization of useful variables x)
level < 0;

belief_decision_tree_conj «+ | |;
path_attributes < [ |;

path_values < [ [;

(x Applying the recursive program build_belief_bdt_conjunctive x)
belief_decision_tree_conj +— Build_bdt_conjunctive(belief_decision_tree_conj,
number_classes, belief_classes, set_attribute_values, list_attributes,
list_instances, number_value_attributes, level, path_attributes, path_values);

(x Finding the variables number_non_empty_leaves, number_empty_leaves, num-
ber_decision_nodes *)
number_non_empty_leaves < 0;
number_empty_leaves < 0;
number_decision_nodes < 0;
teta «— 2number-classes;
for i < 1 to length(belief_decision_tree_conj)
do if stremp(belief_decision_tree_conj(i).type, ”leaf”)
then if belief_decision_tree_conj(i).beliefs(teta) = 1
then number_empty_leaves <— number_empty_leaves + 1;
else number_non_empty_leaves <— number_non_empty_
leaves + 1;
end if
else number_decision_nodes < number_decision_nodes + 1;
end if
end for
end

Algorithm Build_bdt_conjunctive
Input: belief_decision_tree_conj, number_classes, belief_classes, set_attribute_values,

remaining_attributes, remaining_instances, number_value_attributes, level,
path_attributes, path_values

Output: belief_decision_tree_conj

1.

2
3.
4

begin
(x Update the level *)
1 + level + 1;
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

22.
23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
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(* Defining the number of instances and attributes to be treated x)
[number_instances_to_be_treated, number_attributes_to_be_treated] «— size(set_
attribute_values(remaining_instances, remaining_attributes));

(x First test to know if the node is a leaf or not x)
if number_instances_to_be_treated < 1 or
number_attributes_to_be_treated = 0

then node.type + "leaf”;

else

node.cases < remaining_instances’;

node.beliefs <+~ Conjunctive(belief_classes(remaining_instances,:));
node.name <+ 0;

node.forks < 0;

node.level + 1;

node.path_attributes < path_attributes;

node.path_values < path_values;

belief_decision_tree_conj < [belief_decision_tree_conj node];

(x Position and gain ratio of the best_diff_ratio attribute according to
the congunctive approach x)

[best_diff_ratio, position| «+— Best_attribute_conjunctive(belief_clas-
ses, set_attribute_values, remaining_attributes, remaining_instances,
number_classes, number_value_attributes);

(x Second test to know if the node is a leaf or not *)
if best_diff ratio < 0
then node.type < "leaf”;

node.cases ¢<— remaining_instances’;
node.beliefs «+— Conjunctive(belief_classes(remaining_insta-
nces,:));
node.name < 0;
node.forks <+ 0;
node.level + 1;
node.path_attributes < path_attributes;
node.path_values + path_values;
belief_decision_tree_conj < [belief_decision_tree_conj node];

(x Partitioning *)

else attribute_values < set_attribute_values(:,position);
sub_remaining_attributes < Find_remaining attributes
(remaining_attributes, position);
remaining_attributes <— sub_remaining_attributes;
instances_before_for +— remaining_instances;
path_values_before_for +— path_values;
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41. number_branches < number_value_attributes(position);

42.

43. (* Defining elements of the node, in this case it is an at-
tribute *)

44. node.type < "attribute”;

45. node.cases < remaining instances’;

46. node.beliefs < 0;

47. node.name < position;

48. node.forks <— number_value_attributes(position);

49. node.level + I;

50. node.path_attributes < path_attributes;

ol. node.path_values < path_values;

52. belief_decision_tree_conj < [belief_decision_tree_conj node];

53.

54. (x Update the variable path_attributes x)

55. path_attributes < [path_attributes, position];

56.

5T7. (x Treatment of each selected attribute value )

8. for v < 1 to number_branches

59. do sub_remaining_instances <— Find_remaining_inst-

ances (attribute_values, v, remaining_instances);

60. remaining_instances < sub_remaining_instances;

61. path_values < [path_values, v];

62.

63. (x Applying a recursive program Build_bdt_conjunctive

for each training subset relative to the value v of the
selected attribute x)

64. belief_decision_tree_conj <— Build_bdt_conjunctive
(belief_decision_tree_conj, number_classes, belief_classes,
set_attribute_values, remaining_attributes, remaining_
instances, number_value_attributes, 1, path_attributes,
path_values);

65. if v < number_branches

66. then remaining instances < instances_before_for;

67. path_values < path_values_before_for;

68. end if

69. end for

70. end if

71. end if

72. end
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Classtification phase

In the Classification results algorithm, the different classification results
are computed on the testing set with both averaging and conjunctive ap-
proaches. If necessary, we can also compute them for the training set.

Algorithm Classification_results
Input: class_truth, instance_to_classify, number_classes, belief_decision_tree
Output: PCC, kappa, dist_crit

1. begin

2. (x Initialization x)

3. n_cases < size(instance_to_classify,1);

4. truth_prediction < zeros(number_classes, number_classes+1);

5. dist_class < zeros(n_cases,1);

6.

7. (x Treatment x)

for i < 1 to n_cases

8. do [class_result(i), class_result_probab(i,:)] +- Best_class(instance_to_clas-
sify(i,:), number_classes, belief_decision_tree);

9. truth_prediction(class_truth(i), class_result(i)) < truth_prediction
(class_truth(i), class_result(i)) + 1;

10. if class_result(i) < number_classes

11. then dist_class(i) < sum(power(class_result_probab(i,:),2));

12. dist_class(i) < dist_class(i) - power(class_result_probab (i,class_

truth(i)),2) + power(1-class_result_probab(i,class_truth(i)),2);
13. end if
14. end for
15.
16. (x Computing PCC )
17. ttrace « trace(truth_prediction);
18. n_classed_cases < n_cases - sum(truth_prediction(:,number_classes+1));
19. PCC « ttrace / n_classed_cases;
20.
21. (x Computing kappa *)
22. ssum < sum( sum (truth_prediction(:,1:number_classes)).*
23. sum(truth_prediction(:,1:number_classes)’))/n_classed_cases;
24. kappa « (ttrace -ssum )/(n_classed_cases - ssum);
25.
26. (x Computing the distance criterion x)
27. dist_crit + sum(dist_class)/n_classed_cases;
28. end
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6.3 Simulation and results

6.3.1 Experimental setup

For checking the feasibility of our approaches regarding belief decision trees
and judging their qualities, we have performed several tests and simulations.

We have made experiments on real databases that already exist, for which
we have created an artificial bba for each one of its training instances in or-
der to get the same structure of the training set needed in building belief
decision trees. In other words, we will get a training set where each one of
its objects is characterized by exact attribute values but its corresponding
class is described by a basic belief assignment.

For simulation, we have used a modified Wisconsin breast cancer database
inspired by the Wisconsin breast cancer database®, but modified in order to
satisfy the prerequisites of our methods: symbolic attributes and uncertain
classes.

6.3.2 Performance indicators

The evaluation of classification efficiency is not obvious in an uncertain con-
text. Several indicators may be used to assess performance.

We present two major kinds of results related to simulations. One is di-
rectly relative to the building procedure of the belief decision tree in both
approaches. It consists in finding the complexity or the size of the induced
tree characterized by the number of leaves (non empty leaves) and also the
number of decision nodes (including test attributes). These values are not
interesting unless the pruning of the tree is applied but they allow to give an
idea about the induced trees.

The second kind of results concerns the classification phase in both ap-
proaches. The performance of a classification method can be measured in
terms of classification accuracy on new instances. In such a case, three types
of results will be presented:

3 See http://www.ics.uci.edu/~mlearn/MLRepository.html
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e The Percent of Correct Classification: PCC

It consists in computing the percent of correct classification, denoted
PCC, of the instances belonging to the testing set which are classified
according to the induced tree.

Instead of the PC'C criterion, some researchers use the error rate, which
is exactly equivalent to the PC'C, i.e., the proportion of incorrect pre-

dictions that the decision tree makes on the testing set. So, it is equal
tol — PCC.

In the framework of belief decision trees, leaves are characterized by
bba’s. For each testing instance, we determine its corresponding leaf.
Once it is found, we look for the most probable class corresponding to
this leaf using the pignistic probability computed from the leaf’s bba. If
more than one class have the highest probability, one of them is chosen
randomly. The obtained class is considered as the class of the testing
instance.

Hence, the PC'C relative to the whole testing set is computed by mak-
ing comparison, for each testing instance, between its real class (known
by us) and the class obtained by the tree.

number of well classified instances
P _ 1
ce number of classified instances (6.1)

where the number of well classified instances is computed as the sum
of testing instances for which the class obtained by the belief decision
tree (the most probable class) is the same as their real class. The de-
nominator represents only the number of classified instances since some
testing instances may not be classified by the tree (belong to an empty
leaf).

Obviously a PCC' equals to 100% qualifies the belief decision tree as
an excellent classifier, whereas the minimal value of PCC' is 0% corre-
sponds to ‘a null’ classifier.

In order to avoid confusion, in the different formulas using PCC', we
consider its values between 0 and 1. However, for making interpreta-
tions and illustrating representations (tables and figures), we use the
corresponding values in percent (between 0% and 100%).
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e The kappa criterion: kappa

The kappa degree of agreement is a quantitative measurement to assess
the quality of the classification.

Contrary to the PC'C' criterion which only focalizes on the equality of
the real class and the one obtained by the tree, the kappa criterion
tries to consider all the factors in the confusion matrix by penalizing
the PC'C' by the percent of objects that could be correctly classified by
chance (Rosner, 1995), (Siegel & Castellan, 1988).

PCC — proportion correctly classified by chance

kappa = (6.2)

1 — proportion correctly classified by chance

Note that if the prediction agrees perfectly with the supervision, then
the value of kappa = 1, whereas when kappa = 0 it means that this
agreement is obtained by chance (Latinne, Debeir, & Decaestecker,
2000). When kappa < 0, it is the case where the agreement is worse
than the one obtained by chance.

e The distance criterion: dist_crit

We have developed a criterion allowing to take into account all the be-
liefs characterizing the leaf’s bba. More exactly, we propose to compare
the pignistic probability induced from the testing instance’s bba and
its real class.

The distance criterion for a testing instance I; belonging to a leaf L
(its bba is m®{L}) is defined as follows:

dist_crit(I;) = Distance(BetP®{L}, C(I;))

where the real class of the testing instance I; is C'(I;), and §;; = 1 if
C(I;) = C; and 0 otherwise.
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This distance verifies the following property:

0 < dist_crit(l;) <2 (6.4)

Next, we have to compute the average total distance relative to all the
classified testing instances denoted dist_crit. So, we get:

dist_crit(1;)

number of classified instances

zlje classified instances

dist_crit = (6.5)
All these criteria (PCC, kappa, and dist_crit) measure the accuracy of
the results induced from classification based on the belief decision trees.

Remarks:

1. These three criteria are generally applied to testing sets in order to
judge the efficiency of the belief decision trees. Besides, we can apply
them to training sets which may give us some ideas about the behaviour
of the induced belief decision trees according to the two approaches:
averaging and conjunctive.

2. We sometimes deal with another criterion for judging a tree. It is re-
lated to the understandability. In fact, one of the major advantages and
characteristics of decision trees is their possibility to represent knowl-
edge in an explicitly manner easily understood by users. However, there
is a general agreement that deeper trees are less comprehensible.

The understandability of a decision tree, and consequently a belief de-
cision tree, remains difficult to quantify. The number of leaves and the
number of nodes are generally used for this purpose (especially when
pruning is applied).

6.3.3 Constructing uncertainty in training set

In classification problems, training sets are generally composed with train-
ing objects described by known attribute values and classes. Instances with
partially known classes are usually eliminated from the databases, probably
because the users were in pain to know what to do with these ‘messy’ objects.
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As described before, the belief decision trees are essentially built to han-
dle uncertain classes where their uncertainty is represented by a bba given

on the set of possible classes. So, the question is how will we construct these
bba’s?

These bba’s are created artificially. They take into account three basic
parameters:

e The real classes of the training instances.
e A probability P used to build the focal elements of each bba.

e The number N of simple support functions (ssf) composing the bba on
instance’s class.

The idea is to try to ‘disturb’ the certainty of the classes of the training
instances while keeping the true class in the focal elements of the created bba.

For each object, we randomly generate a subset 6 of © such that the
actual class of the object under consideration belongs to 6, and every of the
other class belongs to # with probability P. We then build a simple support
function with @ its focal element, its weight being a uniformly distributed
random number in [0,1]. We build N simple support functions and combine
them conjunctively. The resulting bba is the bba describing our belief about
the value of the actual class to which the object belongs.

In the simple case where the frame is binary, the focal set of each ssf
is either the actual class or the whole frame. The former case occurs with
a probability 1 — P and the latter with a probability P. Furthermore, the
latter case results in a vacuous belief function.

So for a given object, the final bba on its class is the result of the combi-
nation of n € [0, N| ssf which all focus on the actual value. The number n
is 0 with probability PV, 1 with probability (1 — P)PY~!, etc ... The final
ssf is thus also a ssf which weight is the product of n uniformly distributed
random number in [0,1].

The larger P, the smaller n, thus the smaller the weight given to the
actual value, thus the larger the uncertainty on the class.
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6.3.4 Defining the training and the testing set: Cross
validation

The construction of a belief decision tree requires a training set for building
it and a testing set for evaluating its performance. In our study, the data set
is composed of objects described by the value of each one of its attributes
followed by a bba on its classes, then its real class.

The data set is divided into 10 parts. Nine parts are used as the train-
ing set, the last is used as the testing set. The procedure is repeated ten
times, each time using another part as the testing set. This method, called
a cross-validation permits an unbiased estimation of the PCC' (and the
other criteria) even when the data set is small.

6.3.5 Simulation on the modified Wisconsin breast can-
cer database

Introduction

We have used the so-called ‘modified Wisconsin breast cancer’ database (see
Appendix B) which is composed of symbolic attributes and a unique class
relative to each one of its objects. Then, we have introduced uncertainty in
these classes (see Appendix C).

The characteristics of the modified Wisconsin breast cancer database are
presented in Table 6.1:

Table 6.1: The modified Wisconsin breast cancer database parameters

Parameters Value
Total number of instances 690
Number of training instances 621
Number of testing instances 69
Number of classes 2
Number of attributes 8
Number of values for each attribute | [2 3 14 8 2 2 2 3]
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Results

Our simulations are divided into two parts:

e The first one tests the efficiency of Quinlan algorithm which is obtained
by applying the averaging approach, of our belief decision tree, when
there is no uncertainty in classes.

e The second one tests the feasibility of our belief decision tree algorithms
in both averaging and conjunctive approaches. Several cases will be
handled according to the value of the probability P (used in the ‘the
class destruction’) which will vary from 0 to 0.9. The number of ssf
will be the same for all these cases.

Quinlan case: Certainty case

Our averaging approach for building belief decision trees is equivalent to
Quinlan algorithm when there is no uncertainty in the classes of the training
instances. Our first experiment is to apply our belief decision tree algorithm
to such a situation.

Table 6.2: Quinlan case: Decision nodes and leaves
Parameters Value

Mean number of decision nodes 96.8
Mean number of non empty leaves | 165.5

Without applying a mechanism of pruning, the belief decision trees in-
duced from the averaging approach in the case of total certainty present on
the average 96.8 decision nodes and 165.5 leaves.

Next, Table 6.3 presents the values of PCC, kappa and dist_crit. We
also present these data for the training set. We mention them just to show
that the belief decision tree classifies correctly its training instances.

Table 6.3: Quinlan case: Classification results
Parameters | Testing set | Training set

Mean (%) PCC 83.6 94.3
Mean kappa 0.66 0.89
Mean dist_crit 0.28 0.07
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As noted in Table 6.3, the mean values of PC'C' and kappa in the testing
set are high (respectively 83.6% and 0.66). These results are confirmed by
the value of the dist_crit which is small (0.28). The values given by the
training set shows the same behavior as with the testing set.

Uncertainty case

We have applied our belief decision tree algorithm to both averaging and
conjunctive approaches. The cross validation is applied for different values
of the probability P which varies from 0 to 0.9.

Table 6.4 presents the mean number of non empty leaves (N. L.) and
decision nodes (N. DN.) relative to each approach: averaging (ave) and con-
junctive (conj).

Tables 6.5 to 6.7 present, respectively, the PC'C, the kappa and the
dist_crit in the testing set (TS) and training set (TR) when using the aver-

aging (ave) and conjunctive (conj) approaches.

1. Decision nodes and leaves:

Table 6.4: Decision nodes and leaves

P N. DN. ave | N. DN. conj | N. L. ave | N. L. conj
0 259.3 274.2 337.2 336.2
0.1 253.6 277.0 316.2 316.1
0.2 243.0 264.2 295.7 295.7
0.3 229.7 240.1 269.0 268.9
0.4 234.9 246.8 246.0 245.9
0.5 208.5 217.5 222.4 2224
0.6 207.8 225.0 225.0 225.0
0.7 183.0 186.9 146.1 146.1
0.8 160.6 170.9 109.8 109.8
0.9 114.1 114.0 63.4 63.4
Mean 209.5 221.7 220.2 220.1
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Figure 6.1: Decision nodes in averaging and conjunctive approaches
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Figure 6.2: Leaves in averaging and conjunctive approaches



140 Chapter 6: Implementation and simulation

As shown in Table 6.4, Figure 6.1 and Figure 6.2, the mean numbers of
decision nodes in both averaging and conjunctive approaches are respectively
209.5 and 221.7 and those of leaves in both averaging and conjunctive ap-
proaches are respectively 220.2 and 220.1.

Note that these numbers are approximately the same for either the aver-
aging or conjunctive approach especially for the number of leaves. However,
for the decision nodes, their mean number is a little bit larger within the
conjunctive approach than with the averaging one.

It is interesting to notice that the larger the value of the probability P,
in other words the larger the uncertainty in the training instances’ bba’s, the
smaller the number of leaves and decision nodes. For example for the prob-
ability P = 0.9, the mean number of leaves for both approaches is 63.4 and
the one relative to decision nodes for averaging and conjunctive approaches
is respectively 114.1 and 114.

This may be explained by the fact that increasing uncertainty augments
the chance for getting negative values for the gain ratios and the diff ratios
for the remaining attributes, which leads to the declaration of leaves after
only few levels, and consequently the diminution of number of leaves and
decision nodes. In that case, nodes are declared leaves earlier during the tree
construction.

2. PCC criterion:

Table 6.5: Classification results: PCC

P PCC TS ave | PCC TS conj | PCC TR ave | PCC TR conj
(%) (%) (%) (%)
0 84.4 83.3 94.2 94.2
0.1 83.1 82.1 94.1 94.0
0.2 84.8 83.9 94.0 94.0
0.3 86.9 86.3 93.6 93.6
0.4 83.9 83.3 92.4 92.2
0.5 87.0 85.9 93.0 93.1
0.6 83.0 82.5 91.8 91.8
0.7 85.6 86.9 92.9 92.9
0.8 81.3 81.5 90.9 90.9
0.9 80.4 81.2 88.2 88.2
Mean (%) 84.0 83.7 92.5 92.5
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Figure 6.3: PCC of the testing set in averaging and conjunctive
approaches

The mean PCC' relative to the testing set for both approaches is equal
to 84.0% for the averaging approach and 83.7% for the conjunctive one. The
difference between the two approaches in terms of PCC'is almost non exist-
ing.

In fact, we notice that in general the PCC of the averaging approach
is just a little bit better than the conjunctive one when the probability P
is less or equal than 0.6, whereas from P equals to 0.7 until 0.9, the PCC
of the conjunctive approach becomes a little bit better than the one of the
averaging approach.

It is interesting to note that for the different values of the probability P,
the PCC for both approaches remains high (between 80.4% and 87.0% for
the averaging approach and between 81.2% and 86.9% for the conjunctive
approach).

Furthermore, we have to note that the minimal value of PCC' for both
approaches remains also high even when P is high, i.e, when it is equal to
0.8 and 0.9.
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Figure 6.4: PCC of the training set in averaging and conjunctive
approaches

As mentioned before, the PCC' (as well as the kappa and dist_crit cri-
teria) relative to the training set has not the same importance as the one
relative to the testing set.

Nevertheless, it may confirm the results produced by the testing set. With
the modified Wisconsin breast cancer database, the mean PCC' relative to
the training set is 92.5% for the averaging approach and also for the conjunc-
tive approach.

As with the testing set, the values of PC'C relative to the training set are
high for all the values of P, and its minimal values are for the values of P
equal to 0.8 and 0.9, but these latter PCC’s remain high (90.9% and 88.2%
for both approaches).
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3. kappa criterion:

Table 6.6: Classification results: kappa

P kappa TS ave | kappa TS conj | kappa TR ave | kappa TR conj
0 0.68 0.66 0.88 0.88
0.1 0.66 0.64 0.88 0.88
0.2 0.69 0.67 0.88 0.88
0.3 0.73 0.72 0.87 0.87
0.4 0.66 0.66 0.85 0.84
0.5 0.74 0.71 0.86 0.86
0.6 0.65 0.64 0.83 0.83
0.7 0.7 0.72 0.86 0.86
0.8 0.61 0.62 0.82 0.81
0.9 0.60 0.62 0.77 0.77
Mean 0.67 0.66 0.85 0.85
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Figure 6.5: kappa of the testing set in averaging and conjunctive
approaches



144 Chapter 6: Implementation and simulation

The second criterion for judging classification is the kappa one. In the
testing set, the mean kappa value is almost the same for both approaches
(0.67 and 0.66 for respectively the averaging approach and the conjunctive
one).

Using this criterion, the values of kappa in both approaches for every
value of P are high, and their minimal values, as with the PC'C, are for P
equals to 0.8 and 0.9, respectively 0.61 and 0.60 for the averaging approach
and 0.62 (for P = 0.8 and P = 0.9) for the conjunctive approach.
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Figure 6.6: kappa of the training set in averaging and conjunctive
approaches

The graph of the kappa criterion relative to the training set (see Figure
6.6) shows that for the different values of the probability P, the kappa values
for both approaches are quasi identical.

Therefore and as noted in Table 6.6, the mean kappa value in the testing
set, for both the averaging and the conjunctive approach is the same and
equals to 0.85 .
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4. Distance criterion (dist_crit): As explained in Section 6.3.2, accord-
ing to the distance criterion, the smaller the dist_crit value, the better the
classifier.

Table 6.7: Classification results: dist_crit

P dist_crit TS | dist_erit TS | dist_crit TR | dist_crit TR
ave conj ave conj
0 0.38 0.31 0.32 0.22
0.1 0.38 0.33 0.33 0.22
0.2 0.38 0.31 0.34 0.23
0.3 0.38 0.31 0.35 0.25
0.4 0.40 0.33 0.37 0.26
0.5 0.39 0.32 0.37 0.26
0.6 0.42 0.35 0.39 0.29
0.7 0.42 0.33 0.40 0.28
0.8 0.44 0.38 0.41 0.32
0.9 0.45 0.39 0.42 0.36
Mean 0.40 0.84 0.37 0.27
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Figure 6.7: dist_crit of the testing set in averaging and conjunctive
approaches
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Contrary to the PCC and the kappa criteria, the mean value of the dis-
tance criterion (dist_crit) for the testing set obtained with the averaging
approach is greater (0.40) than the one obtained with the conjunctive ap-
proach (0.34).

The difference is not enormous but it denotes that the belief decision tree
obtained with the conjunctive approach presents a ‘better’ classifier than the
one obtained with the averaging approach and this holds for every value of P.

In such a context, the conjunctive approach seems better than the aver-
aging one. This can be explained by the fact that the conjunctive rule of
combination produces bba’s that give more support to the best supported
hypothesis than the averaging approach.

The conjunctive approach is ‘bolder’ than the averaging approach, and as
far as they have about the same and high PCC', the distance can be expected
to be smaller with the conjunctive approach.
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Figure 6.8: dist_crit of the training set in averaging and conjunctive
approaches

The results of the dist_crit obtained with the training set can be inter-
preted as the same manner as those of the testing set.



Chapter 6: Implementation and simulation

147

Finally, let’s sum up the different results of simulation in the following

table:

Table 6.8: Summary of the results obtained from the testing sets

6.4 Conclusion

PCC(%) kappa dist_crit
Quinlan 84.0 0.66 0.28
Averaging | 80.4 - 87.0 | 0.60 - 0.74 | 0.38 - 0.45
Conjunctive | 81.2 - 86.9 | 0.62 - 0.72 | 0.31 - 0.39

In this chapter, we have outlined our proposed method to build belief deci-
sion trees for both the averaging and the conjunctive approaches. Thus, we

have basically detailed the major variables and also the main programs.

Next, we have shown results obtained from experiments and simulations
of our developed approaches: the averaging and the conjunctive approaches.

The next part will deal with the improvements than can be added to belief
decision trees. It focalizes on uncertainty pervaded in the training set. Hence
beliefs on classes of training objects will be assessed. Besides, uncertainty in
attributes in the training set will be handled.
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In the third part of this thesis, we present some improvements useful for
handling uncertainty in the training set. Such set is the basis leading to the
construction of a belief decision tree.

This part is composed of two chapters:

e Chapter 7 presents methods to assess objectively the beliefs on the
classes of the objects in the training set. Knowledge about the classes
are obtained from one or several experts. The idea consists in assessing
the reliability of each expert.

Two methods are proposed:

— The first method produces the reliability of an expert when con-
sidered alone.

— The second method considers a set of experts, and weights each
of them so that together they produce the best predictor.

e Chapter 8 handles the case where there is some uncertainty not only in
the classes of the objects of the training set, but also in their attributes.

We redefine the basic parameters that must be adapted when con-
structing belief decision trees in such context. They are the attribute
selection measure, the partitioning strategy, the stopping criteria and
the leaf structure.
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Chapter 7

Assessing beliefs in the training
set

7.1 Introduction

In belief decision trees, knowledge about the actual class of each training
instance is described by a basic belief assignment (bba) defined on the set of
possible classes. Each training instance’s bba, generally given by an expert
(or several experts), represents the opinions-beliefs of this expert (or these
experts) about the actual value of the class for each object in the training set.

Experts are usually not fully reliable and do not have the same level of
expertise. Therefore, we must assess the reliability of each expert before
using its opinions (Cooke, 1991). In the TBM, the partial reliability of an
expert is handled by the discounting operation (see Section 1.6).

This chapter addresses basically the problem of assessing the discounting
factors to be applied to the beliefs on training instances’ classes generated
by experts in the context of belief decision trees.

In the first part of this chapter, we present the role of the experts and
why they may present different levels of expertise. Next, two major cases
will be treated:

1. First, we develop a method for the evaluation of the reliability of an
expert when considered alone. The method is based on finding the
discounting factor that minimizes the distance between the pignistic
probabilities computed from the discounted beliefs and the actual value
of the class.
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2. Next, we develop a method for assessing the reliability of several experts
that are supposed to work together and their reports are aggregated.
The discounting factors are computed on the basis of minimizing the
distance between the pignistic probabilities computed from the com-
bined discounted belief functions and the actual value of the class.

Particular cases related to experts will be treated by the two proposed
methods.

All these results are summarized in (Elouedi, Mellouli, & Smets, 2001c,
2002).

7.2 Role of experts

The value of the classes of the instances in the training set is an essential
component for building belief decision trees. They are usually assessed by
one or several experts. These assessments can be represented by bba’s.

In this thesis, an expert means anyone with special knowledge about an
uncertain event related to the treated problem. So, it can be a human expert,
a sensor, or any information source.

Several cases regarding the experts defining our structure of the training
set can be analyzed:

1. One expert for all the training objects:
There is only one expert which will give his belief about the actual class
of each instance in the training set. Hence, all bba’s are produced by
only one expert.

2. Sewveral experts for each training object:
For each training object, we get the opinion of several experts on its
actual class. Thus, each training object’s bba will be equal to the
combination of the different experts’ bba’s (on this object) obtained by
using the conjunctive rule of combination (see Section 1.4).

3. Several experts for different training objects:
Each expert provides his belief about the actual class of some train-
ing instances, and different experts do not have to consider the same
instances.

In this chapter, we suppose the attributes are fixed and their values are
known with full precision and certainty.
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7.3 Levels of expertise

Experts differ in their levels of expertise, some of them are more reliable than
others due to their better knowledge, training, experience, intelligence, ...
To express their opinions, experts may use different background, method-
ology and even knowledge. Hence, the necessity to consider the experts’
reliability when receiving their opinions, and consequently their judgments
must be appropriately ‘discounted’.

Similarly, sensors do not have the same degree of reliability. This may
be due not only to the same reasons as mentioned for experts, but also to
other factors more specific to sensors. For instance, the measurements can
differ in their nature, completeness, precision and certainty. Furthermore,
working environment can also affect the reliability of sensors since some of
them could be better adapted to the conditions encountered in the consid-
ered environment than other sensors.

This shows that many factors can induce differences between expert reli-
abilities. Thus, it is necessary to consider the reliability factor to weight the
bba’s.

7.4 Evaluation of the expert’s reliability

7.4.1 Introduction

Usually the discounting factor applicable to an expert is unknown and users
would like to find objective ways to assess it. The user’s opinion might be
useful, but in practice, users prefer to base their opinions on objective facts,
not on ‘hunches’ and ‘whims’.

In fact, finding an ’automatic’ method to assess the expert’s reliability
relative to a given problem requires information regarding the judgments
given previously by the expert concerning ‘past’ events (related to the same
kind of problem) for which the truth is known by us and not by the expert.
Then, a comparison between the truth and the expert’s judgments allows to
derive the reliability of the expert.
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In practice, one domain where we can get this kind of information is rep-
resented by classification problems where objects will be presented to the
expert in order to identify their classes, and the expert’s report is compared
to the reality.

In such problems, we can easily get the expert’s opinions on the classes to
which an object belongs to, a class otherwise well known by us. For example,
we can use an old training set relative to the same problem where training
instances’ classes are known with certainty.

Several classification methods have been developed using belief function
basics (Denceux, 1995, 1997, 2000), (Zouhal, 1997; Zouhal & Denceux, 1998),
(De Smet, 1998), (Smets, 1998a) (Elouedi et al., 2000a, 2001a), (Delmotte
& Smets, 2002a, 2002b), ... In the following subsections, we focus on clas-
sification problems especially those based on the belief decision trees. The
method can be easily adapted to other domains, the underlying schema being
quite general.

7.4.2 The framework

Our objective is to get a training set reflecting as much as possible the truth.
Hence, in order to find the reliability factor to assign to the expert, the idea
is to present to the considered expert a kind of training set 7 (used for exam-
ple in the past) presenting the same characteristics (attributes and classes)
as the one that will be used for building the belief decision tree. This set
T contains objects such that their classes are known by us and not by the
expert.

So, let 7 be a set composed of s objects denoted by I; (j = 1,2, ..., ).
Each object has to belong to one of the possible classes relative to the given
problem. The set of possible classes is defined by © = {C, Cs, ..., C,, }.

For each object I;, we know its class, denoted C(/;) with C'(I;) € ©, and
the expert produces a bba, denoted m®{I;} on ©, that represents its opinion

on the actual value of C'(;) taking into account the different attribute values
of IJ

We emphasize that the expert does know not the real classes of the ob-
jects.
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7.4.3 Evaluation of the discounting factor

Our first method for assessing the discounting factor considers one expert
alone. Finding the expert’s discounting factor is achieved by comparing the
bba’s me{lj} produced by the expert about the class of each of the s objects
in Tand their real classes.

Assume the discounting factor « relative to this expert is known, then
its bba should be discounted taking into account the discounting factor a.
So, we get the discounted bba m®*{I;} by using Equations (1.53) and (1.54).

In order to make a decision about the class to which the object belongs
to, we apply the pignistic transformation to the bba m®*{I;}. So, we get
the pignistic probability, denoted BetP®*{I;} presenting the probability of
the object I; to belong to each singular class. This probability function has
then to be compared with the actual class C(/;) of the object I;.

Let the indicator function ¢ be defined as: ¢, = 1 if C(f;) = C; and 0
otherwise (¢ is already defined in Chapter 6 for the dist_crit). The idea is to
compute the distance between the pignistic probability computed from the
discounted expert’s bba and the indicator function ¢. This distance is used
as a measure of the reliability of the expert for what concerns the object I;
and it is defined as follows:

Distance(I;, o) = Distance(BetP®*{I;}, C(I;))
= (BetPO*{I;}(C;) — 6;,)° (7.1)
i=1

This distance verifies the following property:
0 < Distance(I;, ) < 2 (7.2)

When the expert is correct with certainty 1 and o = 0 (no discount-
ing), the corresponding distance Distance(l;,0) = 0. In the case where the
expert supports a wrong class with certainty and o = 0 (no discounting),
Distance(I;,0) = 2.

Judging the reliability of an expert by taking into account only one object
is not sufficient, so the next step consists in computing the distance between
the pignistic probability of each object I; in 7 and its corresponding 6. The
sum of these distances, denoted T'otal Distance, reflects well the overall ex-
pert’s reliability.
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TotalDistance is defined as follows:

Total Distance = Z Distance(I;, )

i=1

=" > (BetPO{L;HC) — 65,) (7.3)

j=1 i=1

We then estimate the discounting factor as the coefficient o € [0,1]
that minimizes TotalDistance. In other words, o that makes the values
of BetP®*{I;} as close as possible to the truth represented by 47, i.

7.4.4 The case of normalized belief functions

In the special but common case, beliefs produced by experts are presented
by normalized bba’s, i.e., m(()) = 0. In such a case, it is possible to explicit
the value of o that minimizes Total Distance.

So, let BetP®{I;} be the pignistic probability function computed from
m®{I;}, before discounting. The explicited value of the factor « is defined
in the following theorem:

Theorem 7.1 Let a set of normalized bba’s m®{I;} defined on the set of
classes © = {C1,Cy, ... ,Cyn} for objects 1;,j = 1,...,s. Let the indicator
function 6;; = 1 if C(I;) = C; (C(I;) is the actual class of the object I;) and
0 otherwise. Let BetPe’a{Tj} be the pignistic probability function computed
from the discounted bba me’a{fj}. The discounting factor a that minimizes:

Total Distance = Z Z(Betpe’a{fj}(ci) — 5j,i)2
j=1 =1
s given by:

> 5o Yoim (055 — Bet PO{I;}(Ci)) Bet PO {I;}(C;)
s/n— 351 Yie1 BetPO{I;}(C;)?

) (7.4)

a = min(1, max(0,

Proof. Given the bba m®{I;}, its a-discounted bba is:

0,a (1= a)m®P{L;}(O) O cCco
mHO) = { (1_Oé)m®{[j}(@)—|—oz ifC =06
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Hence, the pignistic probability BetP®*{I;} computed from the dis-
counted bba m®*{I;} can be defined as a function of the pignistic probability
BetP®{I;} which is computed directly from the initial bba m®{I;}. We get:

BetPo(1)(C) = Y AL

I
BetPOe{I,}(C;) = Z %
—Z (1 —a)m {I}( )+a/n

= (1 — a)BetPe{]j}(C’) +a/n

Let P;; = BetP®{I;}(C;). The value of Total Distance to be minimized
becomes:

Total Distance = Z Z BetPGO‘{I HCY) = 654)°

ylzl

—Z Z )Py + a/n — 6;,;)?

j=1 =1
Its extremum is reached when its derivative is null, hence when:

d Total Distance

_22 VPij +a/n—08;;)(—Pij +1/n)

x Z (1—a)P; —as/n+ Zéj,iPZ-j +(1—a)s/n+as/n—s/n

st

_Z 1—0[P2—048/7’L—|—Z(5j,ipij
Jst
Thus,

(80— )P
P 2],2( s .7)2 J (75)
s/n— Zj,ip"

In order that « € [0, 1], we get the limit constraints. O
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Hence, in the case of normalized bba’s, we may easily find the discounting
factor of an expert. The results can be used to discount the future opinions of
this expert (on the real training set) or to order several experts according to
their reliabilities. This latter case is useful when we have to choose only one
expert for giving his opinions concerning the classes of the training instances
that will be used to build the belief decision tree.

7.4.5 The simplified equivalent

A discounting factor of 0.7 is better than one of 0.8, but what represents in-
tuitively an ae = 0.7 value. To get a hunch of what a particular « represents,
we imagine a highly simplified schema with only two objects and two classes.
Both objects belong to the class Cf.

The first object is classified correctly with certainty 1. The second object
is classified as belonging to the class C} with a probability 7 and to the class
C5 with a probability 1 — . Given a value «, we can determine the value of
7 that would produce the same discounting factor by the above procedure.
The value 7 corresponds to a probability, and is thus easier to interpret than
the o discounting factor.

The link between 7 and « is given by:

_3—204—\/1+4a—4042

4 — 4o

T , for a € 0, 1] (7.6)

Proof. Let’s remind the Equation (7.5):
_ Zj,i((sj,i - Pi')Pz"
s/n— Z]z P73

Taking into account the probabilities given by the expert regarding the
classes of the two objects, we get:

(1—m)r+ (r—1)(1 —m)

2/2—1—-7m2—-(1-m)?
B —2n2 4+ 37 -1
o242 —1

o =
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So, expressing the probability 7 in terms of « is given via the following
steps:

(=2 + 21 — Da= 27> - 31— 1

(2—2a)m*+(2a—3)r+1—-a=0
So, the discriminative A is equal to:
A=(2a—3)*-4(2—-2a)(1 —a)
= —4a* +4a+1

For o € [0, 1], the value A is strictly positive. Since the value 7 has to
belong to [0, 1], then only one solution will be retained which is:
3—2a—+v1+4a —4a?

T= 1 ia , for a € [0, 1]

Note that 7 varies from 0 to .5 when « varies from 1 to 0.

Example 7.1 Our example is already presented in previous chapters (see
Ezxample 2.1). It concerns the classification of clients asking for loans. As
described before, three attributes characterize these clients namely the income
of the client, the value of his property over the amount of the asked loan, and
if he has or not unpaid credits.

Let’s remind the possible client’s classes defined by the bank for whom
asking for loans:

e () including good clients, i.e., reliable clients, for whom the bank ac-
cepts to give the whole loan.

e (5 to which belongs moderate clients, for whom the bank accepts to give
a part of the loan.

e (3 regrouping ‘bad’ clients for whom the bank refuses to give the loan.
@ == {Cla 027 C3}

Assume two experts Fy and Fy are applied to present their opinions con-
cerning the class of some clients. The objective is to find the reliability factor
to assign to each expert in order to choose the more reliable one to present his
opinions on the real training set that will be used to build the belief decision
tree.
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The judgments of experts on the classes are expressed by the bba’s detailed
in Table 7.1 where we consider a set T containing 4 clients which classes are
known by us but not by the two experts.

At the first row of the table, we have the actual class of each client, then
the bba’s produced by the two experts about the classes of the four objects.

Table 7.1: The bba’s produced by two experts about the classes to

which belong four clients
‘ Truth ‘Cl‘CQ‘Cl‘Cg‘

E, L | L | I | I

0 0o]o0o]O0]oO

C, 0|l 0|01 0

Cy 0 105(04] 0

Cs 05(021 0 | 0

Cy U Cy 0|l 0|01 0
Ci U Cs 0| 0 (0606
Cy U Cy 03] 0 | 0 |04
CLUC,UC;102[03] 0] 0
E, L | L | I | I

0 olo|]o]oO

C, 0 103[02] 0

Cs 0|l 0|01 0

Cs 0|l 0|01 0

C, U C, 07104 0 | 0
C, U C; 0|l 0|01 0
Cy U Cy 00061
Co,uUC,UC;103[03[02] 0

Let oy be the discounting factor applicable to expert Ey. We discount the
bba’s produced by E; relative to the clients I, I, I3 and I,. We get:

mp {1}(Cs)  =0.5(1 — ay)
mg;al {Il}(CQ U 03):03(1 — Oél)
my ™ {1,}(8) =0.2 + 0.8a;
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mEl 1{]2}(02) :05(1 - Oél)
mEl 1{]2}(03) :02(1 - Oél)
mE1 I} O) =0.3 + 0.7
mg;al{jg}(CQ) :04(1 - Oél)
mp* {iz}(Cy U C3)=0.6(1 — o)
mp ™ {15}(0) =

1{14}(01 UC3)=0.6(1 — ay)

1{14}(02 UC3)=0.4(1 — ay)
mp {1,}(0) =

The corresponding BetP’s are presented in Table 7.2:
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Table 7.2: BetP’s computed from the four discounted bba’s pro-

duced by E,
Ey I I I3 I
C; 1 0.0640.26a; | 0.1 +0.24c; | 0.3+ 0.03c; | 0.3 + 0.03
Cy 1 0.2240.12aq | 0.6 — 0.27c¢; | 0.4 — 0.06c; | 0.2 + 0.13
Cs5 1 0.72—-0.38; | 0.3+ 0.03c; | 0.3+ 0.03c; | 0.5 — 0.1604

Using the different values of BetP'’s, the whole distance relative to the

expert By will be equal to:

Hence,

TotalDistance = Z Z BetPG LG —

j=1 =1

0;)°

Total Distance = 0.41a% — 0.54c; + 2.83

Minimizing Total Distance under the constraint 0 < a; < 1 gives as a
result oy = 0.66.
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Therefore, the discounting factor to be given to the expert Ey by taking
into account its opinions on the classes of the objects I;, 7 = 1,2,3,4, is
equal to 0.66.

Applying the same procedure for the reports produced by the expert Ey, we
get the discounting factor ay = 0.52.

Thus, the expert FEy is (a little) better than the expert Ey, in other words,
it is (a little) more reliable than E;.

Just to get an idea about what represents the two discounting factors (see
Section 7.4.5), their equivalent in the highly simplified schema of 2 objects
produce © values of 0.22 and 0.28, respectively, what can be understood as
‘the experts are really not good, and the second is just a little better than the
first’. This is indeed what the data also show.

So, if we had to choose one from the two experts it will be the second one
Es.

7.4.6 Categorical imprecise experts

Experts are qualified as categorical when there is only one focal element, so
there is a 7; C © with m®{[;}(r;) = 1 for all objects I; belonging to T.
Categorical experts are precise if |7;| = 1 for all ;.

We say that an expert is blind if the class 7; is selected without regard
of the object I;. It means that it allocates the object to a class at random,
using the same distribution of every object. It is unbiased if the distribution
gives equal probability for each class. An expert is worth using if its results
are better than those that a blind expert would achieve.

We consider the case of an imprecise but categorical expert i.e., an ex-
pert such that for all object I;, there is a 7; C © with m®{[;}(r;) = 1 and
|7;] > 1, with a strict inequality for some objects. This is probably one of
the most frequent cases to be encountered in real life when trying to as-
sess an expert reliability. Thanks to the simplified structure of the data, it
is possible to derive the value of the discounting factor to assign to the expert.



Chapter 7: Assessing beliefs in the training set 165

Let a be the discounting factor to determine. The pignistic probabilities
after discounting are given by:

BetP®*{[;}(C;) =

where r = |7;| and n = [0)|.
The distance denoted Distance(I;, ) becomes:

e If C'(I;) € 7; (possibly exact classification):

1—a? a?

Distance(I;, o) = — +1—— (7.7)
r n
Proof.
Distance(Iy, a) =(% + -—% — 1)+ (r = (2 + 1222 4 (n—r)(2)?
istance(I;, o) =(— — r—1)(= n—r)(—
7 n n r n
a l—-a, a 1l-«o Q.
—r(2 DY G S | ) (=
(e 0 @ Y (@)
2 1-— 1—a)? 1-—
& g0tz (ma) e ploa
n? nor 72 n r
a? o?
+_—T—2
n n
1— 2 1— 2
U RN
n r n
2 1 — 2
__ > _ITe
n r
O
o If C'(I;) ¢ 7; (wrong classification):
1 — 2 2
Distance(I;, o) = d=o) +1-L (7.8)

r n
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Proof.

L s - DEP (-1
St (S -2

a al—a (1-a)? o o
_l’_

Distance(I;, o) =r(

=r(

Let s be the total number of classified objects. Let s; ¢ be the number of
instances which class C'(I;) is C; and classified as in C' by the expert:
sic = |{7: C;) = Ci, 7 = C}

n
Let s ¢ = Zi:l sic and s; = che §i,0

The overall distance becomes:

n

’ —(1—-a? 1—a)’
Total Distance = Z( Z Si,CiUCﬁ - Z Si’c%) +

=1 cca; cCo;
2
(1= n n (7.9)
==Y EE T Y
=1 CCC; =1 cCC;
2
s(1- =) (7.10)

Define

BetPP{L}(C) = ¥ MT(C‘CIY) _ y #GU0)

C;eCCoO cce

The term BetP®{I;}(C;) is the probability with which you would bet
correctly if the object is a C; object, thus the analogous of the Percent of
Correct Classification PCC' (scaled in [0,1]) for the C; objects.
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This reflects the idea that:

e all objects with C(I;) = 7; are correctly classified,

e half of those with C(I;) € 7; for |7;| = 2 are correctly classified,
e 1/m of those with C(I;) € 7; for |7;| = m are correctly classified.

A global PCC' can be defined in this context of imprecise data:

rcc=%" %BetPe{Ij}(C’i) (7.11)
i=1
Define:
: 1 Si,c 1 s.c SN
S(i) = o Z il S = 5 Z o] = . S(7) (7.12)
b g£cce P£CCO i=1

Using the same arguments as for the PCC', S can be seen as the maximal
number the objects that we can expect to classify correctly when data are
imprecise.

Then,

2
Total Distance/s = —(1 — o*)PCC + (1 — a)*(S — PCC) + (1 — %) (7.13)

The value of a in [0,1] that minimizes TotalDistance is obtained by
finding the value that makes the derivate null, and satisfies the domain con-
straints.

T Dz 2
d TotalDistance = 2asPCC —2(1 — a)s(S — PCC) — o5 0
do n
Hence
. S — PCC
o = mln(l, m) (714)

where the 1/n can be seen as the expected number of objects correctly clas-
sified by a blind unbiased expert. The only case when the domain constraint
is used, is when PCC < 1/n, thus when the expert is worse than a blind
expert that allocates objects on pure chance.
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When o < 1, the expert is worth using. When a = 1, all bba’s produced
by the classifier are so discounted that they become vacuous, in which case
why to bother with such a expert.

When the classifier is categorical and precise, i.e., when |7;| = 1 for all
objects I;, then S =1 and

1-PCC

1) (7.15)

a = min(1,

7.4.7 Comparing o and kappa

A classical criteria for evaluating a classifier quality is the kappa coefficient.
It is normally defined for categorical and precise classifiers. It is then defined
as follows:

PCC — proportion correctly classified by chance

kappa =
bp max possible PC'C' — proportion correctly classified by chance

_ D iy Siy ; i1 5.Ci5i/8 (7.16)
§ =iy 5.,C:5i,/$

Of course ‘maz possible PCC’ is 1 (100%) in the classical context.

Consider the following experts:

e Suppose the expert is categorical, precise and worth using. Further,
suppose the expert allocated the same number of objects in each class.
Then 1 — a = kappa. This illustrates the link between the two coeffi-
cients.

e Suppose the expert is categorical, imprecise and worth using. The
proportion correctly classified by chance becomes S, what fits indeed
with the explanation given for Relation (7.12).

e Suppose the expert is not categorical and worth using, then the equa-
tion is the generalization of the previous adapted kappa coefficients to
the non categorical cases.

In order to better understand what means the discounting factor a, we
can propose another link that might help. For categorical and precise ex-
perts, the PC'C' can be seen as the expected utility obtained from the use of
the expert when utilities are 1 for a correct decision (C'(I;) = 7;), and 0 for
a wrong decision.
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For the categorical imprecise expert, use utilities 1/|r;| when C(I;) € 7,
thus when the expert is not wrong, and 0 when it is wrong. The coefficient
fits nicely with the natural idea that if for instance all we know is 7; =
{C1, Cy, C5}, then such a decision is worth 1/3 as on the average one can
expect that 1/3 of those objects classified as 7; are correctly classified and
2/3 are wrongly classified. Relation (7.4) could be seen as generalizing this
idea to non categorical experts.

7.4.8 Uncertainty about the truth

Suppose the actual classes of the objects used to assess the discounting factor
are not exactly known, but we only have a bba m${I;} that expresses what
we know about the true class of the object I;. The adaptation of the distance
is immediate. Let p;; be the value of the pignistic probability induced from
the m${I;} with p; = BetP(class of I; is C). If we knew that the class
of I; was C}, we would compute:
Distance(I;, o) = z:(BetPe ULYCh) = §54)
i=1

according to Equation (7.1), where §;; = 1 if C'(I;) = C; (C(I;) is the actual
class of the object I;) and 0 otherwise. The probability that the class of I;
was C}, is pjx, so we weight this distance by p;, and compute its expectation
taken over k.

Distance(I;, o) ijkz (BetP®*{I;}(C;) — 6;,)* (7.17)

We then proceed as prev10usly (see Section 7.4.3).

7.4.9 Unclassified data

Suppose an object I; has not been classified by the expert, and still we add it
to the database to assess the discounting factor. It seems that the presence of
this case should not interfere with the assessment of ae. And so, is it indeed.
In that case, BetP®*{I;}(C;) = 1/n whatever . Equation (7.17) becomes:

Distance(I;, ) Zp]kz 1/n— (7.18)

which does not depend on « and therefore the evaluation of a will not be
affected by the inclusion of those instances unclassified by the expert. This
property results from the fact that the discounting of a vacuous bba is the
vacuous bba itself.
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7.5 Assessing the discounting factors of sev-
eral experts used jointly

7.5.1 Assessing the discounting factors

This second method developed in this chapter permits the evaluation of the
discounting factors when there are several experts and their opinions are
aggregated in order to get a joint bba relative to the class of each training
instance of 7.

Pooling all the experts’ opinions together is done in order to derive a bet-
ter predictor. This pooling is achieved conjunctively by combining the bba’s
produced by each expert. Before combining them, they must be discounted
appropriately in order to take into account their individual reliability.

Let m$ {I;} be the bba collected from the expert E, about the actual
value of the class of the object I;. In order to get the optimal set of discount-
ing factors, the following steps are applied:

e For each bba m$ _{I;}, discount it by its discounting factor c. given

to the expert E,. We get mgj‘e

expert and for each object.

{I;}. This process is applied for each

e For each object I; (j =1,...,s), apply the conjunctive combination rule
in order to compute the overall bba m®®{I;} about the class to which
I; belongs (the @ enhances its dependence on the «,’s).

m® L} = mp{L}@ ... Omy {1} (7.19)

The bba m®®{I;} is the bba representing the result of the aggregation
of the individual bba’s produced by the various experts relative to the
classes of the object I;.

e Compute the corresponding Bet P®*{I;} (relative to the bba m®*{I;})
representing the pignistic probability on the class of the object I;.

e For each object I;, compute the distance between BetP®®{I;} and the
real class of I;. This distance is defined by:

Distance(I;, @) = Z(BetPG’a{Tj}(Ci) —0;4)?

=1

where 0,, = 1 if C'(I;) = C; and 0 otherwise.
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e Compute Total Distance as follows:

Total Distance = Z Distance(I;,@) (7.20)

J=1

Total Distance is expressed on the terms of the experts’ discounting
factors aq, as, ..., ap.

e In order to find the optimal discounting factors, we minimize TotalD-
istance on the a’s under the constraints 0 < a, <1, Ye € {1,... ,h}

Example 7.2 Let’s consider the same data in the Example 7.1 (see Table
7.1) but assume the two experts’ beliefs will be taken into account together.
So, let’s apply our second method to the two experts’ opinions in order to get
their merged judgment.

Once E;’bba’s and Fy’bba’s are discounted, we get respectively mgial{lj}
and mgf@{]j} where j = 1,2, 3,4, which are linear functions of the discount-
ing factors.

For each client I;, we compute the joint bba m®*{I;}:
o @,Oq @,az
m® NI} = mg " {;}@mg;"* {1}

where the terms containing the o,s are at worst of the form [[,_, , o where
h is the number of experts (h = 2 in the present case).

The corresponding discounted BetP’s relative to the these bba’s are also
linear functions of the same product terms. The value of Distance(I;, @) rel-
ative to the objects, as well as Total Distance are quadratic functions of the
previous product terms.

So its minimization on the «, is simple and can be achieved by any min-
imization program. FEven when we work with more than two experts, any
minimaization program can give the different values of a,’s.

In the present case, oy = 0.28 and oy = 0.12. It should be enhanced
that the discounting factors computed in this second method should not be
assimilated to those computed with the first one. Here we want the a.’s so
that the expert pooling itself is ‘optimal’, whereas in the first method, we
compute the o ’s in order to evaluate the quality of the individual experts.
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7.5.2 Experts observing different data sets

Suppose an object I; in 7 has not been classified by the expert F.. This is
equivalent to using a vacuous bba for m2 {I;}. As before, this instance does
not interfere with the assessment of the a’s. The term m®®{I;} encountered
in Equation (7.19) is not changed as m%;%{[j} is vacuous. The same holds
for BetP®*{I;}, Distance(I;,@) and Total Distance. Hence, the a,’s will

be the same.

The only problematic case would be if E, had not observed any data, and
produced only vacuous bba’s. In that case Total Distance becomes indepen-
dent of a,, and any value would be as good as any other, as it should be
indeed.

How could we assess the quality of an expert that does not tell anything.
The fact that the assessment of a,’s does not depend on the addition of any
vacuous bba implies that we can apply the previous method to the case where
the data sets observed by each expert differ from experts to experts. One
just considers all possible cases, adds (fictitiously) vacuous bba’s for all the
missing bba’s, and proceeds as before.

7.6 Remarks

1. When the experts are considered alone or jointly, the found reliability
factor will be used to update the real training set used to build the
belief decision tree.

In such a case, the knowledge about the training instance’s class is
generally uncertain and represented by a bba.

2. for the case where there are many experts where each one is interested
to a disjoint part of the training set leading to the construction of the
belief decision tree, the first method will be applied. In other words,
we will look for the reliability factor of each expert independently.
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7.7 Conclusion

In this chapter, we have presented two methods for assessing the reliability
factors of non ideal experts.

In the TBM, the expert’s reliability is represented by a discounting factor
that transforms the basic belief assignment produced by the expert into an-
other bba that is less ‘bold’ than the original one. We describe two methods
for assessing the discounting factors.

The first method treats the case where each expert is considered alone
and consists in finding the discounting factor that will make his opinions as
close as possible from the reality.

The second method treats the case where we have several experts that
must be used jointly. We assess the discounting factors that will make the
combined opinions as close as possible from the reality.

These methods can be adapted to handle partially known data, that is
data for which we are not sure about the actual values and we can only pro-
duce a belief function to express our opinion about this value.

In our two methods, we have dealt within a classification framework where
we dispose of a set of objects for which the classes are perfectly known by us
and not by the experts. Hence, bba’s on classes of the training set allowing
the construction of the belief decision tree will be updated according to the
reliability factor(s) found for the expert(s).

These methods can be easily extended to other problems of prediction
once we know the truth for some case (as in supervised learning) and we
can define a ‘distance’ between the expert’s reports and the reality. The
technique consists in finding the discounting factors that will minimize this
distance.

In the next chapter, we present briefly another kind of improvement that
can be studied in belief decision trees related to uncertainty that may occur
in the attributes of training instances.
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Chapter 8

Uncertainty in attributes in the
training set

8.1 Introduction

In the previous chapters, we have dealt with training sets characterized by
uncertainty in classes of training objects while their attribute values are sup-
posed to be known with certainty.

However, uncertainty may not only appear in classes but also in attributes
of instances belonging to the training set and that will be used to ensure the
building of the belief decision tree.

Hence, in order to make improvements in our belief decision tree ap-
proach, we deal, in this chapter, with the uncertainty that may occur in
attribute values of training instances.

Therefore, in the training set uncertainty is encountered in both the
classes of the training instances and also in their attribute values.

In this chapter, we start by presenting the difficulties of handling uncer-
tainty in attributes of training instances. Next, we define the ‘new’ structure
of the training set and the different parameters leading to the construction
of belief decision trees in such a case.

175
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8.2 Difficulties

Dealing with uncertainty, represented by belief functions, in attributes in the
training set, leads to two major problems:

1. Regarding the attribute selection measure, how will we choose the best
attribute in each induced (sub) belief decision tree either in the av-
eraging or the conjunctive approach. In other words, which attribute
selection measures will we use?

2. Regarding the sub-node allocation, in other words, once the best at-
tribute is chosen, in which node the remaining objects that may be
characterized by uncertain attribute values will be put in order to de-
fine the next attribute or the leaf?

Therefore, in such a context, the major parameters useful for building a
belief decision tree have to be defined. These parameters are basically the
attribute selection measure, the partitioning strategy, the stopping criteria,
and the structure of leaves (more precisely the leaves’ bba’s).

Note that some of these parameters may be defined exactly as the same
manner as with the case of only uncertainty in the classes of training instances
(see Chapter 4).

8.3 Uncertainty related to the attributes in
the training set

In this section, we develop a method for constructing a belief decision tree
from a training set characterized by uncertainty in the attribute values,
whereas training instances’ classes may be either certain or uncertain.

As described in previous chapters, classes of training instances are pre-
sented through bba’s. Thus, in the case of total certainty in classes we deal
with certain bba’s.

8.3.1 Structure of the training set

Contrary to the classical structure of the training set where attribute values
and training instances’ classes are perfectly known, in this case, uncertainty
is introduced in both the values of attributes of training instances and also
their classes.
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This latter representation is considered as the general case of uncertainty
in a training set. A particular case can be considered if only attribute values
in the training set are uncertain and when classes of training objects are
supposed to be known with certainty. The other particular case is the one
treated all over this thesis consisting in having uncertainty in classes of the
training instances, whereas the attributes values are certain.

Example 8.1 Let’s reconsider the Fxample 3.1 presented in Chapter 3 re-
lated to the classification of clients in a bank. Let’s remind that the training
set instances are characterized by three symbolic attributes defined as:

e Income with possible values { No, Low, Average, High},
e Property with possible values { Less, Greater}
o unpaid_credit with possible values {Yes, No}.

Three classes may be assigned to clients (© = {Cy, Cy, C3}):

e () including good clients, i.e., reliable clients, for whom the bank ac-
cepts to give the whole loan.

e (5 to which belongs moderate clients, for whom the bank accepts to give
a part of the loan.

e (5 regrouping ‘bad’ clients for whom the bank refuses to give the loan.

The new structure of the training set for this example can be represented
as follows (see Table 8.1):

Table 8.1: New structure of training set: Uncertainty in attributes

and classes
Income Property | Unpaid_credit | Class

Income{[l} mProperty{[l} mUnpaid_credit{[l} m@{ll}
Income{[Z} mProperty{[Q} mUnpaid_credit{[Q} m@{[Q}
Income{[g} mProperty{Ia} mUnpaid_credit{Ia} m@{ja}
Income{[4} mProperty{I4} mUnpaid_credit{I4} m@{]4}
Income{]’s} mProperty{[5} mUnpaid_credit{[5} m@{[5}
Income{[ﬁ} mProperty{[G} mUnpaid_credit{[G} me{[(;}
Income{[7} mProperty{[7} mUnpaid_credit{[7} m@{[7}
Income{[g} mProperty{[g} mUnpaid_credit{Ig} m@{]g}

33333333
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where © rpeome, O Propertys ANAd Ounpaid_credit are the frames of discernment of
respectively the income, property and unpaid_credit attributes.

Hence, as described above with the values of these attributes, these frames
of discernment are defined as follows:

O rncome = {No, Low, Average, High}
O property = {Less, Greater}

®Unpaid_credit = {Yes, NO}

Besides, mlncome{[j}’ mProperty{[j}’ and mUnpaid_credit{[j} (fO’f’j — 1, e
8) are the bba’s defined on respectively Orneome; © Propertys and © property and
relative to the attributes of the instance I; in which its corresponding values
may be uncertain.

Finally, m®{I;} (for j = 1,2,...,8) is the bba expressing the beliefs on
the classes of the instance I;.

As noted, such structure of the training set can be easily transformed to
the ‘old’ structure of the training set that we have handled in all over this
thesis dealing with only uncertainty in classes. Such case is ensured when
all the attributes’ bba’s of all the training instances are certain bba’s, which
means that all the attribute values of training instances are known with cer-
tainty.

If all the bba’s on the classes relative to the training instances are also
certain bba’s, we get the classical structure of training sets used in decision
trees where no uncertainty is handled.

Furthermore, we can get only uncertainty in attributes if all classes are
known with certainty. We can also get training instances with disjunctive
values in attributes and also in classes.

As a conclusion, this ‘new’ structure of the training set presents a more
general framework for dealing with uncertainty in attributes and classes in
order to induce belief decision trees.
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8.3.2 Attribute selection measure
Introduction

In the case of uncertainty present only in the classes of the training instances,
we have proposed, as an attribute selection measure, two solutions namely
the averaging approach and the conjunctive one (see Section 4.3.1). By
analogy, handling uncertain attribute values in the training set will also be
solved by these two approaches that will be adapted to this ‘new’ context of
uncertainty.

Averaging approach

Its steps are similar to those defined in Chapter 4 with only uncertainty in
classes of training instances.

These steps can also be applied to either training sets with uncertainty
in both attributes and classes or uncertainty only in attributes.

1. Compute the pignistic probability (relative to classes) of each instance
I; belonging to the training set:
1 m®{L}O)
BetP®{I;}(C;) = — d , VC; € 0 (8.1)
! 2. O 1= m®{L;}(0)

C;eCCO

2. Compute the average pignistic probability function BetP®{S} taken
over the set of objects S in order to get the average probability on each
class.

BetPO{S}(C}) = ﬁ SO BetPO{I}C)  (82)

where pf is the probability of the object I; to belong to the node (sub-
set) S. The probability pf is the product of the different probabilities
(pignistic probabilities) of the values of the attributes' relative to the
object I;, allowing I; to belong to the subset S.

3. Compute the entropy of the average pignistic probabilities in S. This
value Info(S) is equal to:

Info(S) = — z": BetP®{S}(Cy)logy Bet P°{S}(C;) (8.3)

1 We assume the attributes are independent, the value of one attribute does not affect
the value of another attribute.
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Select an attribute A and for each corresponding value v, collect the
subset S:'* made with the objects having v as a value for the attribute
Ap. Since the A values may be uncertain, S will contain objects I;
such that their pignsitic probability relative to the value v is as follows:

BetP*{I;}(v) # 0. (8.4)

Compute the weighted average pignistic probability for those objects in

the subset S:'*. Let the result be denoted BetP€{S;'*} for v € D(A}),
A, € A. Tt will be equal to:

BetP@{Sf’“}(Ci):;W > pff’“BetP@{Ij}(ci) (8.5)

v
. A
resie Pi rest

A
where pf“k is the probability of the object I; to belong to the subset
SAr having v as the value of the attribute A4, (its computation is done
as the same manner as the computation of pf)

Compute Infoa,(S) using the same definition as suggested by Quinlan
(1986), but using the pignistic probabilities instead of the proportions.
We get:
S| A

Infor (S)=" ) “eInfo(S") (8.6)

where Info(S2*) is computed from the Equation (8.3) using Bet P®{ S}
A

and we define |S| :leesp]s and |S| =3 o

A .
;ES,* p;

The term Infos, (S) is equal to the weighed sum of the different
Info(S:') relative to the considered attribute. These Info(S:'*) are
weighted by the ‘proportion’ of objects in S,

Compute the information gain provided by the attribute Ay in the set
of objects S such that:

Gain(S, Ag) = Info(S) — Infoy, (S) (8.7)

Using the Split Info, compute the gain ratio relative to the attribute
Aki

. . Gain(S, A
Gain Ratio(S, Ay) = Split In(fo(Skz‘lk) (8.8)
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Let’s remind that the Split Info value is defined as follows:
|Sotel, 1S3

Split Info(S, Ax) = — Z 5] logs 5] (8.9)
vED(Ag)
A
Besides, let’s remind that |S| = leespf and |Sk| = leesf’“ pf“k.

9. Repeat for every attribute Ay € A and choose the one that maximizes
the gain ratio.

Example 8.2 Let’s illustrate our averaging approach for handling uncertain
attributes with a simple example. In fact, let’s deal with the same example of
classification of clients.

In order to simplify the computation, let’s illustrate our method with a
simple case where uncertainty involved only one attribute (for example the
property attribute) and with uncertainty in training instances’ classes, the
structure of the training set T can be defined as follows (see Table 8.2):

Table 8.2: Training set -Uncertainty in one attribute-

Income | Property | Unpaid_credit | Class
High | mProrertv (]} Yes m®{I}
Average | mfrorerty{[,} No m®{I,}
High | mProrertv{[;} Yes m®{I;}
Average | mProrerty{,} Yes m®{I,}
Low mProrerty L 1.3 Yes m®{Is}
No mErorerty L[y No m®{Is}
High | mProrertv ([} No m®{I;}
Average | mProrerty{ g} Yes m®{Ig}
where
mg{ll}(C'l):OZ mg{ll}(@) :03,
mG{IQ}(CQ):05, mg{lg}(Cl U 02) :04, ’ITLG{IQ}(@):OI,
m®{I;}(Cy)=0.6; m®{I;}(O) =0.4;
m®{I,}(Cy)=0.6; m®{I,}(Cs) =0.3;  m®{[,}(©)=0.1;
me{l5}(C'3):0’7, me{[5}(02 UCg) :02, me{f5}(@):01,
’ITLG{IG}(C:),):O 95, mg{lg}(@) =0. 05,
’ITLG{I7}(C'1):0 95, m9{17}(@) =0. 05,
m®{I}(Cy)=0.4; m®{I}(Cs) =0.4; m®{L}(©)=0.2;



182 Chapter 8: Uncertainty in attributes in the training set

and

mProrerty L[4 (Greater) =0.6; mProrerty{[,}(Less) =0.1;
mPrOperty{Il}(@Property) =0.3;

mProrerty L [, (Greater) =1

mProperty{Ig}(Less) — 1’.

mProrerty L [, (Greater) =0.7, mPPrY{L YO property) =0.3
mProrerty L[4 (Less) = 0.5, mProrerwl Y (Greater U Less) = 0.2;
mPrOperty{I5}(@Property) = 0.3;

mProperty{IG}(Less) — 1’.

mProperty{I7}(l€SS) — 04’ mproperty{IY}(GProperty) = 0. 6,’
mProrerty L [} (Greater U Less)= 1;

For the whole training set T, the proportions relative to the three possible
classes Cy, Cy and C5 are respectively 0.36, 0.28 and 0.36.

Hence,

Info(T) = —0.36 % 10g20.36 — 0.28 * [0g20.28 — 0.28 * [0g50.28
— 1.575;

The next steps consists in computing the gain ratios relative to the three
attributes (income, property and unpaid_credit) in order to choose the one
presenting the highest gain ratio.

For the income and unpaid_credit attributes, the computation of the gain
ratios has been already done in Chapter 4 (see Example 4.1), since these
attributes have kept the same values for their training instances), so we get:

Gain ratio(T, Income) = 0.361;

Gain Ratio(T, unpaid_credit) = 0.004;

For the property attribute and due to the uncertainty in its values, we
have started by computing the pignistic probabilities relative to the property
attribute of training objects (see Table 8.3):
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Table 8.3: Pignistic probability relative to the property attribute
Greater | Less
Betprroverty[ [ 1 0.75 0.25
BetPProrerty[[,} 1 0

BetPProrerty [ [} 0 1

BetPProrerty [} 0.85 0.15
BetPProrerty [ [} 0.25 0.75

BetPProrerty [ [y 0 1

BetPProrerty [T} 0.3 0.7

Betprroverty[ [\ 0.5 0.5
Total 3.65 4.35

Next, let’s compute the pignistic probability for each value of the property
attribute (BetPO{TL™PWY and BetP®{T) %"} ). The following compu-
tations are based on the pignistic probability relative to the classes already

computed in Table 4.4 (see Chapter 4) and on respectively the probabilities

Property Property
p _Greater and p] Less

j
At this level, we look for the probabilities of each object to have respec-

tively greater and less as values of the property attribute in the training set
Property
T (we do not care about the values of the other attributes). So, pjTG”“t” }

= BetP"" P { [;}(Greater) and p;
(forj=1,...,8).

The computations of (BetPO{TL "\ and BetP®{T} P"™}) give the
following results:

Propert
T P Yy

Less (Less) = BetPPmrerw{[.}(Less)

1
B tP@ TProperty O — 075 08
e { Greater }( 1) 0.75+1 +0+085+025+0—|—03—|—05( * +

1%0.2340%0.74+0.85%0.04 +0.25 % 0.04 4+ 0 x 0.02 +

0.3 % 0.96 + 0.5 % 0.06)

1
= ——(1.192
3.65( )

= 0.33;

1
BetP®{TLI P (Cy) = 355 (0755 0.1+ 15 0.73+ 0 013+ 0.85 % 0.63 +

0.25%0.13 +0%0.024 0.3 * 0.02 + 0.5 % 0.47)
= 0.44;
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1
Bet PO{T "W (Cy) = %(0.75 %0.1+1%0.04+0%0.13+0.85%0.33 +

0.25%0.83 +0%0.96 + 0.3 % 0.02 + 0.5 * 0.47)
= 0.23;

Following the same process, we get the results relative to BetP®{T} 7"}
(see Table 8.4):

Table 8.4: Computation of BetP®{T o P<Y\ and BetP®{ T} P}

ater Less
C, | Gy | Gy
BetPP{TLr"™} 10.33 ] 0.44 | 0.23
BetPP{T}™"""} 10.39 | 0.14 | 0.47

Let’s compute the values of Info(Ter ") and Info(TL ™)

Info(TLIP) = —0.33 % 10g20.33 — 0.44 % [0g,0.44 — 0.23 * l0g,0.23
= 1.536;

Info(TLTP™) = —0.39 % 10g,0.39 — 0.14  [0g0.14 — 0.47 * 10g,0.47

= 1.441,
Hence,
3.65 4.35
I?"LfOProperty (T) = T[nfo(TéD::fti:ty) + 2 [nfO(TlIz"s(;perty)
= 1.484;

The computation of Split Info for the property attribute gives the following
value:

3.65 3.60 4.35 4.35

Split Info(T, Property) = — 3 log, s "3 logo 3

= 0.994;

Therefore,

Gain Ratio(T, Property) = 0.091;
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Hence, the gain ratios relative to these three attributes are summarized in
the following table (see Table 8.5):

Table 8.5: Gain Ratio values of the attributes
Attribute | Income | Property | Unpaid_credit

Gain Ratio | 0.361 0.091 0.004

Therefore, the income attribute is the best one since it has the highest
gain ratio.

Conjunctive approach

Under the conjunctive approach, the attribute selection measure used to build
a belief decision tree, in the case of uncertain attribute values and uncertain
classes in the training set, is made of the following steps:

1. For each object in the training set, compute:
k2{L;}(C) = —Ing®{[;}(C) VC C © (8.10)
from the bba m®{I;}.

2. For each attribute value v of an attribute Ay, compute the joint £®{S4*}
defined on © by:

KOS} = Z P RO} (8.11)

rjes)k

A
where pf”k is the probability of the object I; to belong to the node
A
(subset) SAk. The probability pf"’lc is computed as the same manner

as defined in the averaging approach.

3. Hence for each attribute value, the intra-group distance SumD(S2*) is
defined as follows:

SumD(S,") = Ak > ij (2 {I;}(X) ~ Ak KOS H(X))? (8.12)
S |I SAk XC@ |S |
where S| = ZI csi Py a
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4. Once the different SumD(S2*) are calculated, for each attribute A4, €
A, compute SumD 4, (S) representing the weighted sum of the different
SumD(S:'*) relative to each value v of the attribute Ay:

Ay,
SumDy, (S) = |S§ |5umD(s;;‘k) (8.13)
’UGD(A]C) | |

5. We compute Dif f(S, Ax) defined as the difference between SumD(S)
and SumDy, (S):

Dif f(S, Ax) = SumD(S) — SumD 4, (S) (8.14)
where
SumD(S) = = Z S O S (815

where pf is the probability of the object I; to belong to the node
(subset) S.

6. Using the split info (see Equation 8.9), compute the diff ratio relative
to the attribute Ay:

Dif f(S, Ay)

Dif f Ratio(S, Ay) = Split Info(S, Ay

(8.16)

7. Repeat for every attribute A, € A and choose the one that maximizes
the diff ratio.

Example 8.3 Let’s treat data presented in the Example 8.2 with the conjunc-
tive approach in order to choose the best attribute according to this approach.

So, we have, at first, to compute the values of diff ratio relative to the
three attributes (income, property, and unpaid_credit).

The diff ratios relative to the income and unpaid_credit have been already
computed in Chapter 4 (see Example 4.2) and their values are:

Diff Ratio(T, Income) = 5.882;

Dif f Ratio(T, Unpaid_credit) = 4.279;

Then, we have to compute the diff ratio relative to the property attribute
which values are characterized by uncertain values.
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After computations, we get:
SumD(SLIPTY = 3.781;

reater,

SumD(T; ™) = 6.851;

Less

Hence,
|TProperty| P . |TProperty| P .
SumDproperty(T) = G]?Ter SumD(Tgyeqper) + Le|8781| SumD(Ty,7"™)
= 5.451;

So, Dif f(T, Property) = 7.986, then
Diff Ratio(T, Property) = 8.034;

The diff ratios relative to the three attributes are summarized in the fol-
lowing table (see Table 8.6):

Table 8.6: Diff Ratio values of the attributes
Attribute | Income | Property | Unpaid_credit

Diff Ratio | 5.882 8.034 4.279

The property value represents the highest value of diff ratio. Hence, it
will be chosen as the best attribute.

8.3.3 Partitioning strategy

As in the case of only uncertainty in the classes of training instances, it con-
sists in creating an edge for each attribute value chosen as a decision node.

However, the difficulty is to define the instances belonging to each of the
several training subsets relative to each branch. Due to uncertainty in at-
tributes, after partition each training instance may belong to more than one
training subset. Hence, it will be assigned to each subset with a probability
(of belonging to this subset) computed according to the pignstic probability
of the values of its attributes.

Note that when the pignstic probability of the chosen attribute value is
null for an object, the considered object will not belong to the subset induced
from the branch corresponding to this value.
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Example 8.4 Let’s continue with the Example 8.3. The property attribute
15 chosen as the best attribute, and the instance belonging to the subsets

Property Property
TGreater ’ and TLess

1ties.

are summarized in this Table 8.7 with their probabil-

Table 8.7: Probabilities of instances in TEr°Pe™™ and Trroperty

Greater

Instance Tgﬁf;ﬂigﬁy T f:s)sp et
7, 0.75 0.25
I 1 0
I, 0 1
I, 0.85 0.15
I 0.25 0.75
I 0 1
I. 0.3 0.7
A 0.5 0.5

Less

For instances having probabilities equal to 0, they can be obviously ez-
cluded from the training subset.

8.3.4 Stopping criteria

They will be the same stopping criteria that we have defined in Chapter 4
(see Section 4.3.3).

However, it is interesting to note that the stopping criterion permitting
to declare the node as a leaf if the treated node includes only one instance,
rarely occurs due to the uncertainty in the values of the attributes of training
instances. Therefore, each leaf may contain several objects but generally with
probabilities less than 1.

8.3.5 Structure of leaves

In belief decision trees, leaves are represented by bba’s. Nevertheless, we
have also to take into account the probability of instances belonging to these
leaves. Since we can use either the averaging or the conjunctive approch,
thus we get two formulas of a leaf’s bba according to the used approach:
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In the averaging approach

Using the averaging approach in the selection attribute measure, the bba
relative to the leaf L is defined as follows:

m®{L}(C) =Y pym®{L}(C (8.17)

Z[GL ] I;eL

where pJL is the probability of the instance I; to belong to the leaf L.

In the conjunctive approach

The idea is to consider for each bba m®{I;}, the probability p]L as a reliabil-
ity factor.

So, for each instance belonging to the considered leaf L, its corresponding
bba should be weighted by its probability of belonging to this leaf, denoted

Y.

Next, the leaf’s bba will be equal to the conjunctive combination of the
discounted bba’s relative to its instances.

Therefore, using the attribute selection measure based on the conjunctive
approach, the leaf’s bba will be defined as following:

m®{L}(C @1 e Pym®{IL;} for C C © (8.18)

mP{L}(©) =1-Y m°{L}(C (8.19)

cco

Example 8.5 Once the different parameters of building belief decision trees
are defined, such trees can be easily built according to the same process as
defined in Chapter 5 (see Section 5.2.3).
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Thus, using the averaging approach, the induced belief decision tree is
represented in the Figure 8.1:

Income
High Average
Low No

Unpaid_credit m®{TF} mO {15} Unpaid_credit

Yes No Yes No

Property m®{Ik} Property m® {1k}
Greater Less Greater Less
mO{I{*} mO{I{? mO{I} mO{Ig}

Figure 8.1: Belief decision tree: Averaging approach (Uncertain
attributes)

where the leaves’ bba’s are defined as follows:

m®{I}*}(Cy) = 0.7;
m®{I" }(©) = 0.3;

m®{I2}(Cy) = 0.62;
m®P{I2}(0) = 0.38;

m®{I*}(Cy) = 0.95;
m®{I}(0) = 0.05;

m®{I5*}(Cs) = 0.7;
m®{I*}(C, U Cs) = 0.2
m{I5*}(8) = 0.1;

m®{1}5}(C3) = 0.95;
m®{I5}(0) = 0.05;
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mP {1} (Cy) = 0.53;
m®{I;¢}(C3) = 0.34;
m®{I$}(0) =0.13;

mP{I;{}(Cy) = 0.45;
m®{IK}(Cs5) = 0.38;
m®{I7}(0) =0.17;

mO{L;*}(Cz) = 0

.0;
mO{I;*}(C1 U Cy) = 0.4;
m{1,*}(©) = 0.1;

Using the conjunctive approach, we have an another induced belief deci-
sion tree (see Figure 8.2):

Propert
Unpaid_credit Unpaid_credit
YW) YW)
Income Income Income Income

High_~"Low “\ Average HWVerage High_~"Low “\ Average Hiwo

mO (I} m® {12} mO {15y mO{IFy m®{IE5) m® {1k} m®{IE") mO {15} mO{IFy m®{IF)

Figure 8.2: Belief decision tree: Conjunctive approach (Uncertain
attributes)

where the leaves’ bba’s are defined according to the Equations (8.18) and (8.19)
as follows:

m®{I"}(C)) = 0.53
mP{I["'}(0) = 0.47;

m®{I5*}(C5) = 0.18;
m®{I}*}(Cy U Cs) = 0.05;
m®{I}*}(0) = 0.83;
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mO{I}(0) =
mO{LgH(Cs) =
m®{Ig}(Cs) = 0.2
m®{I$}(0) =

m®{IF*}(C}) = 0.29;
m®{I}(0) = 0.71;

m®{I5}(Cy) = 0.5
mP{IF*}(CLUCy) = 0.4
m®{I;7}(©) = 0.1;

m®{I}(Cy) = 0.67;
m®P {1} () = 0.33;

m®{I3"}(Cs) = 0.53;
m®{IF}(Cy U C3) = 0.15;
mP{IF"}(0) = 0.32;

m®{I}(0)
mO{Ig}(Cy)
)
)

mO{Lg}(Cs

0.0
0.2
0.2
m®{I§}(©) = 0.5

m®{I7*}(Cy) = 0.67;
m®P{I}(0) = 0.33;

m®{I5*}(C5) = 0.95;
m®{I}(0) = 0.03;

Note that for simplifying the representation, we have not presented empty
leaves in the induced tree.
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Remarks:

As noted, for building a belief decision tree in the case of uncertain attribute
values, we use the same algorithm applied for constructing a tree when the
uncertainty is only occurred in classes of training instances (see Section 5.2.3).
What changes is the parameters composing this algorithm.

Regarding the classification, what we have developed in Chapter 5 (see
Section 5.3), is directly applied to this situation. This is due to the fact that
we have kept the same structure (representation) of the induced tree.

Thus, it would be possible to classify instances characterized by:
e only certain attribute values,
e or disjunctive or missing values for some (or all) attributes,

e or uncertain values for some (or all) attributes, where uncertainty is
represented through bba’s.

8.4 Conclusion

In this chapter, we have shown that our approach for building belief decision
trees can be extended and applied to handle the case of uncertain attribute
values in the training set.

Note that in this chapter, we have presented briefly how to handle uncer-
tainty, described by belief functions, in attribute values of training instances.
However, simulations, particular cases and other improvements related to
this method are not studied in this thesis.
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Conclusion

In this thesis, we have defined the belief decision tree which is a new approach
associating the decision tree method to the belief function theory in order to
handle uncertainty that can exist in classification problem parameters.

We consider the case where the knowledge about the class of each instance
in the training set is represented by a basic belief assignment over the set
of the possible classes, whereas the values of its attributes are known with
certainty.

Based on this ‘new’ structure of the training set characterized by un-
certainty in the classes of the training instances, we present two attribute
selection measures using the belief function formalism, one parallel to Quin-
lan’s measure based on the entropy (the averaging approach), the other close
in spirit to the transferable belief model (the conjunctive approach).

In fact, the first measure is the extension of the gain ratio criterion to the
uncertain context, using essentially an averaging rule. The second attribute
selection measure is based on the minimization of the intra-group distance,
and consequently the maximization of the inter-group one. This developed
distance between instances in the training set mainly uses the conjunctive
rule of combination.

Partitioning strategy and stopping criteria are then provided, and the
meaning of the data in leaves is detailed. Indeed, due to the uncertainty
in the classes of the training objects, leaves will not be labeled by unique
classes as in the standard decision trees. They will be characterized by bba’s
expressing beliefs on classes of objects belonging to the considered leaf. The
computation of the leaves’ bba’s is done according to the approach used for
selecting attributes.
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Next, we present the different steps of the procedure allowing the con-
struction of the tree in an uncertain context based on the parameters defined
above.

After the construction procedure, we detail the inference task ensuring
the classification of new instances using the constructed belief decision tree.
We consider the case where the knowledge about the value of some attributes
is represented by a bba, and show how to use the belief decision tree. All
the leaves compatible with the knowledge are considered and their individual
conclusions are combined by the disjunctive rule of combination. Classifica-
tion is then based on the pignistic probabilities derived from the global bba.

This inference procedure includes different cases: it classifies instances
with certain attributes values, those with disjunctive attribute values, and
the more general case where the value of each attribute is represented by a
bba. This latter case regroups the two first cases and also the case where the
values of some attributes of the object to classify are missing.

The different developments leading to the construction of a belief decision
tree and also the different cases of classification are illustrated with examples
dealing with the classification of clients relative to a bank’s loan policy.

In order to judge the feasibility of our method, implementation and sim-
ulation are performed. In fact, the two approaches allowing the construction
of a belief decision tree namely the averaging approach and the conjunctive
one are implemented. Then, several simulations are executed changing each
time the degree of uncertainty encountered in the bba’s relative to the classes
of the training objects. This allows us to show that both approaches are fea-
sible and that the standard case with total certainty in classes can be easily
treated as a particular case of the averaging approach.

Evaluating classification is based on two known criteria usually used by
classification methods namely the Percent of Correct Classification, denoted
PCC, and the kappa criterion. We have developed an additional criterion,
named dist_crit, which is based on the computation of the distance between
the pignistic probability given by the induced belief decision tree for each
object to classify and the real class of this instance.
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Then, we have proposed some improvements to our belief decision tree
approach related basically to uncertainty in the training set.

At first, we have been interested to the assessment of beliefs in the train-
ing set. These beliefs are given by one or several experts on the classes of the
training objects. Hence, it would be useful to weight these different bba’s by
taking into account the experts’ reliabilities.

Indeed, we have developed two methods for assessing reliabilities. These
methods are based on training sets having the same structure as the one used
for building the belief decision tree, but where the classes of their objects are
perfectly known by us, and not by the expert(s).

The first method deals with each expert independently. Since the relia-
bility of an expert is represented by a discounting factor, this latter is cho-
sen such that it minimizes the distance between the pignistic probabilities
computed from the discounted beliefs given by the expert and the indicator
function of the actual class of the considered objects.

The second method treats experts jointly when their opinions are merged
in order to reach an aggregated opinion. They are computed so that together
they minimize the same distance as above.

Once the reliability factors are found, they will be used to update the
bba’s in the ‘real’ training set.

Note that particular cases of opinions presented by experts are handled
in order to simplify formulas of the computation of reliability factors.

These proposed methods are presented for assessing beliefs in the training
set used to build belief decision trees, but can be easily applied to any kind
of classification problem or even to other prediction problems. Hence, what
is required is a training set and a distance between the prediction and the
actual values.

Another improvement of our belief decision tree approach is related to un-
certainty in attributes in the training set. In addition to the uncertainty that
pervades the classes of the training objects, we also handle the uncertainty
that may occur in the attributes of these objects and that is represented by
bba’s.
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We have presented how to deal with this ‘new’ uncertainty in attribute
values of training instances. So, we have defined the parameters allowing
the construction of belief decision trees in such a case, namely the attribute
selection measure (the averaging and the conjunctive approaches), the par-
titioning strategy, the stopping criteria and the leaves bba’s.

Thus, several developments and adaptations have been proposed in order
to handle the case of uncertainty in attributes in the training set.

Obviously, our research relative to belief decision trees is to be pursued,
and contributions could be done in several contexts relative to this classifi-
cation technique under uncertainty.

In fact, our proposed method provides a practical and useful tool to cope
with uncertainty in classification parameters. So, handling problems ignored
in the past, due to uncertain data, becomes now possible within our method.
Several fields, where uncertainty is encountered, can be concerned. We no-
tably think to management problems.

Moreover, the development relative to uncertainty in attributes in the
training set can be more detailed and simulations can be performed for test-
ing the feasibility of the proposed method.

Besides, pruning belief decision trees is an important aspect that should
be developed either with uncertainty only in classes in the training set or
with uncertainty in both attributes and classes of training objects. Pruning
should be adapted to the uncertain context, in order to get less complex
belief decision trees with a small size facilitating their comprehension.

As mentioned before, two kinds of pruning can be applied to decision
trees, and consequently to belief decision trees:

- Pre-pruning methods consisting in controlling the decision tree during its
growth.

- Post-pruning methods allowing to reduce the size of the tree once its growth
is finished.

We can also combine together the pre-pruning and the post-pruning.
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Several researches relative to pruning, especially the post one, of belief
decision trees could be developed. We suggest to study the different prun-
ing methods developed for classical decision trees like the error-complexity
pruning (Breiman et al., 1984), the critical value pruning (Mingers, 1989b),
the reduced error pruning (Quinlan, 1993), etc. Then, trying to adapt them
to the uncertain context.

We may also try to develop pruning methods relative to belief decision
trees, but which are more specific to the transferable belief model. Further-
more, pre-pruning methods for belief decision trees should be studied while
improving stopping criteria declaring decision nodes as leaves.

In addition to these improvements, it would be interesting to extend our
approach of belief decision tree to handle the continuous attributes. Indeed,
all over this thesis, we have dealt with only symbolic attributes. Hence, it
would be useful to develop the construction of belief decision trees and also
the classification task based on continuous attributes.

Finally, we should mention that since decision trees under uncertainty
using the belief function theory is considered as a ‘new’ approach, several
extensions can be projected. In fact, it would be interesting to study im-
provements proposed for classical decision trees, and adapt them to belief
decision trees.
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Appendix A

Scenario method vs belief
decision tree approach

A.1 Introduction

A scenario is defined as a set of elementary hypotheses aiming at analyzing
future events and anticipating what may happen. The task of classifying
scenarios is one of the major preoccupation facing decision makers since its
capability to assign similar scenarios to the same class, this will help finding
the best strategic planning regarding a given problem.

Due to the uncertainty that may occur either in the configurations of
scenario’s hypotheses or even in the classes of the training scenarios, the
classification task becomes more and more difficult. Ignoring this uncer-
tainty or mistreating it, may lead to erroneous results.

In this appendix, we propose a method based on belief decision trees in
order to ensure the classification of scenarios in an uncertain context. The
results of this appendix are detailed in (Elouedi & Mellouli, 2000).

The belief decision tree approach offers a suitable framework to deal with
the classification of scenarios in an uncertain environment. The use of the
belief function theory as understood in the transferable belief model, allows
a better representation of uncertainty characterizing the scenarios, especially
the uncertainty expressed by experts.
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A.2 Scenarios

A scenario describes a future situation. It allows to elicit and to anticipate
about what may happen. Indeed, it is composed of a set of hypotheses re-
lated to the components of the given problem (field). Each hypothesis could
take one or several configurations. Hence, a scenario is considered as a com-
bination of these configurations.

These hypotheses and their configurations are defined through interviews
and different questions given to experts and actors implicated in the given
problem. To ensure this objective, several methods are proposed in the lit-
erature, the most used is the Delphi technique (Godet, 1991).

Two types of scenarios are defined:

e The exploratory scenarios based on past and present trends in order to
elicit future. They are equivalent to the classical forecasting.

e The anticipatory scenarios built on the basis of different visions of fu-
ture desired or redoubted. In fact, we have to fix the future objectives
and try to find how to ensure them.

The scenario method plays an important role especially in decision prob-
lems given its capability to deal with various fields and consequently help
decision makers to find the appropriate strategic planning.

The scenario method is mainly based on experts’ opinions (Godet, 1991;
Godet & Roubelat, 1996), (Mellouli & Elouedi, 1997), (Elouedi & Mellouli,
1998a, 1998b). It includes different steps, the major ones dealing with sce-
narios are their assessment and their classification.

The latter step related to the classification of scenarios allows to group
scenarios sharing similar characteristics in the same class. By taking into
account the class of the scenario, more reliable decisions could be taken.

A.3 Belief decision trees and scenarios

A.3.1 Scenarios vs training Set

A scenario is seen as a combination of hypotheses’ configurations where each
one is relative to a hypothesis Hy.
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To represent scenarios within a belief decision tree, we consider the hy-
potheses as being the attributes, whereas the configurations corresponding
to each hypothesis are assimilated to the attribute values.

As treated in the major part of this thesis (see Part 2), assume we have a
training set of scenarios characterized by certain hypotheses’ configurations,
however there may be some uncertainty in their classes defined for each
scenario by a bba on the set of classes. These bba’s are given by experts.

Example A.1 Let’s consider a simple example presenting scenarios reqard-
ing the agriculture field. For simplicity sake, we define only three elementary
hypotheses composing these scenarios:

- Hy: the rainfall which can be high or weak.

- Hy: the temperature which can be hot, mild, cold.

- H;: the wind with values strong or weak.

A possible scenario is for example having a high rainfall, with hot tem-
perature and weak wind. In fact, there are twelve possible scenarios.

There are three classes to which the scenarios, related to this problem,
may belong to:

- C1: regrouping the favorable scenarios for the agriculture field.

- Cy: regrouping the neutral scenarios for the agriculture field.

- C3: regrouping the disastrous scenarios for the agriculture field.

We have an expert’s beliefs about the classes of scenarios that have oc-
curred over the last siz years, we get the following results:

Table A.1: Training set T

S; | Rainfall | Temperature | Wind Class

Sy | High Mild Weak | m®{S;}
S, | High Cold Strong | m®{S,y}
S3 | High Hot Weak | m®{S;}
Sy | Weak Hot Weak | m®{S,}
Ss | High Mild Weak | m®{Ss}
Se | Weak Hot Strong | m®{Ss}




204 Appendix A: Scenario method vs belief decision tree approach

where

m®{S}(C}) =0.8; m®{S,}(O) =0.2;

me{SQ}(Cl U CQ)—O.g,' me{Sz}(@) =0. 1

m@{S;),}( ) :02, m9{53}(03) = 0. 4, 9{53}(01 U CQ) :02,
m®{S;}(0) =0.2;

mO{S,HCs)  =0.6; mC{S}(CrUCy)=0.2; m®{S:}(O) = 0.2
m®{Ss}(C}) =0.9; m®{S5}(©) = 0.1;

mP{Ss}(Cs)  =0.9; m®{S}(O) = 0.1;

As noted, there is some uncertainty concerning the classes of these train-
ing scenarios. It is difficult for experts to assure if these scenarios were
favorable, neutral or disastrous for agriculture.

For example, 0.8 is the part of belief committed to the scenario Sy to be-
long to the class of scenarios favorable for the agriculture, where 0.2 is the
part of belief committed to the whole frame © (ignorance).

However, for the scenario Sg, 0.9 is the part of belief committed to the
scenario Sy showing that it is disastrous. The remaining belief equals to 0.1
is committed to © (ignorance).

This training set allows us to build the corresponding belief decision tree
representing a learning taking into account these siz training scenarios.

A.3.2 Construction procedure using scenarios

In order to construct a belief decision tree based on scenarios, we have to
adapt the parameters used in the construction algorithm of a belief decision
tree to the case handling scenarios instead of ordinary objects.

Therefore, the idea is to build a tree taking into account the scenarios
belonging to the training set characterized by uncertain classes. In fact, the
belief decision tree relative to the training scenarios will be built by employing
a recursive divide and conquer strategy. Its steps are the same as defined in
Section 5.2.3 and they can be summarized as follows:

e By using the gain ratio measure or the diff ratio measure (see Section
4.3.1), a hypothesis (the one having the highest attribute selection mea-
sure) will be chosen in order to partition the training set of scenarios.
Therefore, the chosen hypothesis is selected as the root node of the
current tree.
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e Based on a partitioning strategy (see Section 4.3.2), the current training
set will be divided into training subsets by taking into account the
configurations of the selected hypothesis.

e When one of the the stopping criteria is satisfied (see Section 4.3.3),
the training subset will be declared as a leaf.

As noted, the building of this kind of belief decision trees can be ensured
using either the averaging or the conjunctive approach. Therefore, once the
tree is built, this allows to classify new scenarios.

Example A.2 Let’s continue with the Example A.1, we will build the belief
decision tree relative to the training set T using the averaging approach (the
same process can be done for the conjunctive one).

In order to find the root of the belief decision tree relative to the training
set T, we have to compute the information gain of each hypothesis.

We start by computing Info(T):
Info(T) = — 3.2 BetP®{T}(C;)log,BetP®{T}(C;)
To compute the average pignistic probability BetP{T}, we have at first to

calculate the different BetP{S;} where j € {1,2,...,6} (see Table A.2):

Table A.2: Average BetP’s

S1 0.86 0.07 0.07
So 0.48 0.48 0.04
S3 0.17 0.37 0.46
Sy 0.07 0.17 0.76
S 0.94 0.03 0.03
Se 0.03 0.03 0.94

BetP®{T} the average pignistic probability taking over the whole training
set T, is defined as follows:

BetP®{T}(C)) = é % (0.86 4 0.48 + 0.17 + 0.07 4+ 0.94 + 0.03) = 0.43;

BetP®{T}(Cy) = 0.19;

BetP®{T}(C3) = 0.38;

Hence, Info(T) = 1.512;



206 Appendix A: Scenario method vs belief decision tree approach

Then, we have to compute the information gain relative to each hypothesis
related to the agriculture filed, we get:

Gain(T, Rainfall) = 1.512 — 1.140 = 0.372;

Gain(T, Temperature) = 1.512 — 0.938 = 0.574;

Gain(T, Wind) = 1.512 — 1.469 = 0.043;

Computing the split info for each attribute, we finally get as gain ratio
values:

Gain Ratio(T, Rainfall) = 0.405;

Gain Ratio(T, Temperature) = 0.393;

Gain Ratio(T, Wind) = 0.047;

The rainfall hypothesis presents the highest gain ratio. Thus, it will be
chosen as the root relative to the training set T'.

So, we get the following decision tree (see Figure A.1):

Rainfall
High Weak
Rainfall Rai il
Tl Ty
Sla 527 537 55 547 SG

Figure A.1: Belief decision tree (First step)

Now, we have to apply the same process to the two training subsets:
eIl i cluding the scenarios characterized by high rainfall and Tantolt
including those characterized by weak rainfall.

This process will be halt when the stopping criterion is fulfilled for all the
training subsets.

For the problem related to the agriculture field, the final belief decision
tree is presented in Figure A.2:
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Rainfall
High Weak
Temperature Wind
Mild ~Cold Hot Strong Weak

m9{515}m®{52} me{S;),} me{SG} m9{54}

Figure A.2: Belief decision tree representing training scenarios

where m®{S;5} is the average bba of the subset including the scenarios
Si and Ss. So, we get: m®{S;5}(C}) = 0.85; m®{S5}(0©) = 0.15.

A.3.3 Classification of new scenarios

This phase is very important since it allows to classify scenarios characterized
by uncertain hypothesis configurations. This classification will be ensured by
taking into account the constructed belief decision tree.

In fact, training scenarios (and their classes) represented by the means of
a belief decision tree constitutes a convenient framework to classify new sce-
narios. As described in Chapter 5 (see Section 5.3), our classification method
allows to handle not only uncertain hypotheses’ configurations (described by
basic belief assignments) but includes also hypotheses with certain or dis-
junctive or even unknown configurations.

The classification of a new scenario that may happen, provides a good ca-
pability to decision makers to fix the appropriate strategic planning according
to beliefs assigned to the classes to which this scenario may belong.

Example A.3 Let’s continue with the Fxample A.2, we would like to clas-
sify the scenario S lying on the agriculture field that may occur in the future.

Let’s define by: H = {Rainfall, Temperature, Wind}
@Rainfall = {ngh, Weak}

Oremperature = {Hot, Mild, Cold}

Owing = {Strong, Weak}

and GH - GRainfall X GTemperature X GWind
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The expert is not sure about the ‘future’ configurations of some of the three
elementary hypotheses related to the scenario S (to classify). He presents his
opinions as follows:

mRainfall({High}) — 06, mRamfa”(@Rainfall) — 04,

mTemperature({MZ'ld}) — 1;

mV " Oying) = 1;

In other words, the scenario S to classify is characterized by some un-
certainty regarding the rainfall hypothesis, a mild temperature and a total
ignorance concerning the wind hypothesis (presented by a vacuous bba).

So what will be the class of this ‘uncertain’ scenario S?

We start by extending the different hypotheses’ bba’s to Oy, we get:
mRainfallTH({High} X @Temperature X @Wmd) - 067

Rai lITH _ .
ain fallt (@Rainfall X @Temperature X @Wmd) - 047

m
mTemperatureTH(@Ramfa” X {MZld} X GWmd) = 1;
m

WindtH _ 1.
indt (@Rainfall X @Temperature X GWmd) - 1’

In order to get the beliefs committed to the possible scenarios that may
happen in the future, we have to combine these extended bba’s by using the
conjunctive rule of combination. We get:

mH — mRainfallTH@mTemperatureTH®mWindTH such that:

m™ ({(High, Mild, Strong), (High, Mild, Weak)}) = 0.6;

m™ ({(High, Mild, Strong), (High, Mild, Weak), (W eak, Mild, Strong),

(Weak, Mild,Weak)}) = 0.4;

We note that there are two focal elements with basic belief masses equal
respectively to 0.6 and 0.4.

Then, we have to find beliefs on classes (defined on ©) given the con-
figurations of the hypotheses characterizing the new scenario S to classify.
These beliefs have to take into account the two focal elements. According to
the belief decision tree induced in the Example A.2 (see Figure A.2), we get:

bel®[{(High, Mild, Strong), (High, Mild, Weak)}] = bel®{Si5};

bel®[{(High, Mild, Strong), (High, Mild, Weak), (W eak, Mild, Strong),

(Weak, Mild, Weak)}] = bel®{S15}0bel®{Ss}Obel®{S¢}

Let bely = bel®{S15} and bely = bel®{ S5} Obel®{ S, }Obel®{Ss}
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The values (see Table A.3) of bely are induced from the bba m®{S;s},
whereas those of bely are computed from the combination of bel®{Si5}, bel®{S4}
and bel®{Ss} using the disjunctive rule.

Table A.3: Beliefs on classes given the hypotheses’ configurations
C, |Cy | C5 | CLUCy | CLUCs | CoUCs | ©
bely | 085 0 | O 0.85 0.85 0 1
bely | 0 010 0 0.46 0 1

Hence, these two belief functions will be averaged (using the values of the
bba m™ ), we get:

bel®[m7](Cy) = 0.6 % 0.85 + 0.4 % 0 = 0.51;
bel®[m™)(Cy) = 0;

bel®[m™)(Cy) = 0;

bel®[m7|(Cy U Cy) = 0.6  0.85 = 0.51;

bel®[m™](C, U C5) = 0.6 % 0.85 + 0.4 % 0.46 = 0.69;
bele[ H](CQ U 03) = 0

bel®[m™)(©) =

Applying the pignistic transformation' gives us the probability on each
singular class, the pignistic probability will be defined as follows:

BetP®(C}) = 0.70;

BetP®(Cy) = 0.11;

BetP®(C3) = 0.19;

Hence, the probability that the scenario S belongs respectively to the classes
Ci, Cy and C3 are respectively 0.70, 0.11 and 0.19. So, it seems that the
scenario S has more chances (0.70) to be favorable for the agriculture field.

A.4 Conclusion

In this appendix, we have presented a method for classifying scenarios using
belief decision trees. The illustrative example is related to the scenarios re-
garding the agriculture field.

! From the different values of bel®[m], we can easily deduce the corresponding basic
belief masses and then apply the pignistic transformation
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Our proposed method has the advantage to handle the uncertainty that
may characterize either the classes of the training scenarios ensuring the con-
struction of the belief decision tree or the configurations of the hypotheses
making up the scenario to classify.

The result of the classification of scenarios provides a significant help to
decision makers to conceive their strategic policy. Besides, it shows that
belief decision trees can be applied to diverse fields in particular strategic
problems.



Appendix B

Data used for simulation

B.1 Introduction

In this appendix, we present the modified Wisconsin breast cancer database
that we have used for making simulation. This base is inspired by the Wiscon-
sin breast cancer database!, but modified in order to satisfy the prerequisites
of our methods: symbolic attributes and uncertain classes.

It is composed of 690 instances characterized by 8 symbolic attributes
and which can belong to two possible classes.

B.2 The modified Wisconsin breast cancer da-
tabase

In Table B.1, we present the modified Wisconsin breast cancer database in
the certain context. Let’s denote by:

e j: the index of the object [, it varies from 1 to 690.

e A; the attribute where k varies from 1 to 8, the column corresponding
to each Ay represents the Aj’s value taken by each instance. For sake
of simplification in the following table each A, will be denoted by k (so
1 for Ay, 2 for Ay, ... ).

e (; the class to assign to the object I; in this data set. Its values are
either 1 or 2.

! see http://www.ics.uci.edu/~mlearn/MLRepository.html
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i

4 5 6 7 8

1

1 12 4

1

2

2 12 4

1

1

1 12 4

2

1

2 12 4

1

69

71

82

90

i

4 5 6 7 8

1

2 12 4

1

Table B.1: The modified Wisconsin breast cancer database
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Table B.1: The modified Wisconsin breast cancer database (continue)
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Table B.1: The modified Wisconsin breast cancer database (continue)
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Table B.1: The modified Wisconsin breast cancer database (continue)
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Table B.1: The modified Wisconsin breast cancer database (continue)
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Table B.1: The modified Wisconsin breast cancer database (continue)
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Table B.1: The modified Wisconsin breast cancer database (continue)
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Table B.1: The modified Wisconsin breast cancer database (continue)

J 1 2 3 4 5 6 7 8|C;j| jJ 1 2 3 4 5 6 7 8|C;
631 11 2 13 3 2 1 1 1| 2 |661(1 2 10 1 2 2 2 1| 2
63211 1 5 5 1 1 2 1| 16622 1 5 1 1 1 1 2|1
63312 1 9 1 2 1 2 2| 2 |663|1 2 4 1 2 2 2 1| 2
63411 1 9 1 1 2 2 1|1 |664(2 1 4 1 2 1 2 1| 2
63511 1 12 4 1 1 2 1|1 (665(1 1 7 1 1 1 2 1|1
63611 2 1 1 2 2 2 1|1 |6661 2 5 1 1 1 1 1] 1
6371 1 2 1 1 1 2 1|1 |667 1 2 2 5 1 1 2 1] 1
6381 1 5 3 1 1 1 1|1 (6682 1 12 4 2 1 2 1] 1
63911 1 v 1 1 1 1 1] 11(669(2 1 2 1 1 1 1 1|1
64011 1 4 1 2 1 2 2|2 |670(1 1 2 1 1 1 2 2|1
64111 1 12 4 1 1 2 1|1 |671(2 1 6 1 2 1 1 1| 2
64212 2 6 3 2 2 1 1| 2 |672(1 2 2 3 2 1 2 1| 2
6431 1 8 3 2 2 1 1|2 |673]2 1 12 4 1 1 2 1] 1
6441 1 2 1 1 1 2 2|1 |674(1 1 6 3 2 1 1 1| 2
64511 1 6 1 2 2 2 1| 16752 1 2 3 2 1 1 1| 2
6461 1 v 3 1 1 1 2|1 |676(1 2 1 3 1 1 1 1|1
64712 1 2 1 2 2 1 1|1 (6772 1 4 1 1 1 2 1] 1
6481 1 10 1 1 1 2 1|1 (6781 1 11 1 2 1 1 2|1
6491 2 2 1 2 1 1 1|1 (6791 2 2 1 1 1 1 1] 1
66011 1 6 3 2 2 2 1| 2 6801 2 1 1 2 2 2 1| 2
6611 1 6 1 2 1 1 1|2 (6811 1 2 1 1 1 1 2|1
66211 2 1 1 1 2 1 1|1 (6821 2 2 1 2 1 2 1] 1
6631 1 13 7 1 1 1 1|1 6832 1 10 1 2 1 2 1| 2
66411 1 2 3 2 2 1 1| 2 (6842 1 5 8 1 1 2 1] 1
65011 1 7 1 2 1 1 2| 1 (681 2 10 3 2 2 2 1| 2
66 |2 1 v 1 1 1 1 1|1 (6861 1 & 1 2 1 2 1| 2
65711 2 8 1 2 2 1 1|2 ({6871 1 2 1 1 1 2 1|1
6801 1 2 1 1 1 2 1|1 682 1 4 1 2 1 2 1| 2
65912 2 3 4 1 1 2 1|1 |68(2 1 8 3 2 2 2 1| 2
660 11 1 2 1 1 1 2 1| 2 (691 1 13 1 1 2 2 2| 2

B.3 Conclusion

In this appendix, we have presented the data used for simulation namely the
modified Wisconsin breast cancer database. Note that for each simulation,
90% from the modified Wisconsin breast cancer database and its correspond-
ing bba’s (see Appendix C) will be chosen as the training set, the remaining
instances will be used as testing objects. This operation is then repeated ten
times where in each trial we change the 10% given to the testing set.

In the next appendix, we give an example of bba’s created for the objects
of this data set and presenting beliefs on their classes.
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Appendix C

Artificial bba’s

C.1 Introduction

In this appendix, we present one set of bba’s given to the classes of the
instances of the modified Wisconsin breast cancer database and which are
created artificially as described in Chapter 6 in the part 2 of this thesis.

C.2 Artificial bba’s

In Table C.1, we present the bba created for the class of each object of the
modified Wisconsin breast cancer database. These bba’s created artificially
based on a probability P = 0.2 (used in the ‘the class destruction’).

For each instance in the modified Wisconsin breast cancer database, we
present bbm’s on the different possible classes of the power set of ©.

Let © = {01,02}
where C and () are denoted respectively by 1 and 2 in Appendix B.

SO, 26 = {@, Cl, 02, @}

Let’s remind that j represents the index of the object I;, it varies from 1
to 690.
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Table C.1: Artificial bba’s

j|0 Ci Cs €] j |0 C1 Cs (€]

1 10 0.39222 0 0.60778 | 46 | O 0 0.084403 0.9156
2 | 0 0.050737 0 0.94926 | 47 | O 0.11867 0 0.88133
3 10 0.32977 0 0.67023 | 48 | O 0 0.46353  0.53647
4 10 0 0.22607 0.77393 | 49 | 0 0 0 1
510 0 0.39091  0.60909 | 50 | O 0 0.17461 0.82539
6 |0 0 0.057531 0.94247 | 51 | O 0.24932 0 0.75068
710 0 0 1 5210 0.42423 0 0.57577
8 |0 0 0 1 5310 0 0 1

9 | 0 0.32893 0 0.67107 | 54 | 0 0.073999 0 0.926
100 0 0 1 551 0 0.13112 0 0.86888
1110 0 0 1 5 | 0 0 0.26904  0.73096
1210 0 0.43695 0.56305 | 57 | O 0 0.30744  0.69256
1310 0 0 1 58 | 0 0.45192 0 0.54808
14 (0 0 0.015643 0.98436 | 59 | O 0 0.39548  0.60452
151 0 0.42087 0 0.57913 | 60 | O 0 0 1

16 | O 0 0.31665 0.68335 | 61 | O 0.41501 0 0.58499
1710 0 0.2112 0.7888 | 62 | 0 0.11284 0 0.88716
1810 0 0.27189 0.72811 | 63 | O 0 0.27685 0.72315
191 0 0.26393 0 0.73607 | 64 | O 0.24714 0 0.75286
201 0 0 0 1 65| 0 0 0.16897 0.83103
211 0 0.10549 0 0.89451 | 66 | O 0 0.36364 0.63636
22 10 0.12414 0 0.87586 | 67 | 0 0.38051 0 0.61949
23 10 0.23966 0 0.76034 | 68 | O 0.12477 0 0.87523
24 | 0 0.22423 0 0.77577 1 69 | 0 0.087605 0 0.9124
2510 0.38958 0 0.61042 | 70 | O 0 0.38982  0.61018
26 | O 0 0.47579 052421 | 71| O 0 0 1
271 0 0 0 1 7210 0.21763 0 0.78237
28 | 0O 0 0 1 7310 0.22759 0 0.77241
29 {0 0 0.47764 0.52236 | 74 | O 0 0 1
3010 0 0.21587 0.78413 | 75| 0 0 0.38621 0.61379
3110 0 0.24071 0.75929 | 76 | O 0 0 1
3210 0 0 1 7710 0.49969 0 0.50031
3310 0.47712 0 0.52288 | 78 | 0 0.10545 0 0.89455
340 0 0.27806 0.72194 | 79 | O 0.4911 0 0.5089
3510 0.15528 0 0.84472 | 80 | O 0 0.16001  0.83999
36 | 0 0.039658 0 0.96034 | 81 | O 0 0 1
3710 0 0.23437 0.76563 | 82 | O 0.16508 0 0.83492
3810 0 0.38999 0.61001 | 83 | 0 0.073789 0 0.92621
3910 0 0.40482 0.59518 | 84 | 0 0.0039525 0 0.99605
40 | 0 0 0 1 8 | 0 0.43965 0 0.56035
41 | 0 0 0.016606 0.98339 | 86 | O 0 0.15445 0.84555
42 | 0 0 0 1 8710 0 0 1
43 | 0 0 0.023255 0.97675 | 88 | 0 0 0 1
44 | 0 0 0 1 89 | 0 0 0 1
45 | 0 0.20755 0 0.79245 | 90 | O 0.26494 0 0.73506
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Table C.1: Artificial bba’

s (continue)
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j @ Cl 02 Q] ] @ Cl 02 Q)

91 | O 0 0 1 136 | 0 0 0 1

92 | 0 0.20904 0 0.79096 | 137 | 0  0.4294 0 0.5706
93 | 0 0 0 1 138 | 0 0 0 1

94 |0 0 0.28962 0.71038 | 139 | O 0 0 1

95 | 0 0.32415 0 0.67585 | 140 | O 0 0.089261 0.91074
9 | 0 0 0.4832 0.5168 | 141 | 0 0.35035 0 0.64965
97 | 0 0.30171 0 0.69829 | 142 | O 0 0 1

98 | 0 0.22459 0 0.77541 | 143 | 0  0.46903 0 0.53097
99 | 0 0.20248 0 0.79752 | 144 | O 0 0.45832  0.54168
100 | O 0 0 1 145 1 0 0.33784 0 0.66216
101 | 0 0.30248 0 0.69752 | 146 | O 0 0 1
102 | O 0 0.38875 0.61125 | 147 | O 0 0.43844  0.56156
103 | O 0 0.12487 0.87513 | 148 | O 0 0 1
104 | O 0 0 1 149 | 0 0.27567 0 0.72433
105 | 0 0.40355 0 0.59645 | 150 | O 0 0.058592 0.94141
106 | O 0 0.00033529 0.99966 | 151 | O 0 0.13652  0.86348
107 | O 0 0.12333 0.87667 | 152 | 0 0 0 1
108 | 0  0.1938 0 0.8062 | 153 | 0 0.32652 0 0.67348
109 | O 0 0.28287 0.71713 | 154 | O 0 0 1
110 | 0 0.1922 0 0.8078 | 155 | O 0 0.053004  0.947
111 | 0 0.17976 0 0.82024 | 156 | O 0 0 1
112 | 0 0.16318 0 0.83682 | 157 | O 0 0.016854 0.98315
113 | 0 0.18462 0 0.81538 | 158 | 0O  0.10709 0 0.89291
114 | O 0 0.36076 0.63924 | 159 | O 0 0.33934  0.66066
115 | 0 0 0 1 160 | 0 0.066463 0 0.93354
116 | O 0 0.43431 0.56569 | 161 | 0  0.40931 0 0.59069
117 1 0 0 0 1 162 | 0 0.27933 0 0.72067
118 | 0 0 0 1 163 | 0 0 0.4073 0.5927
119 | 0 0 0.43069 0.56931 | 164 | O 0 0.098269 0.90173
120 | O 0 0.28859 0.71141 | 165 | O  0.11932 0 0.88068
121 | 0 0 0.4645 0.5355 | 166 | 0 0.030854 0 0.96915
122 | 0 0.31695 0 0.68305 | 167 | 0  0.3522 0 0.6478
123 | 0 0.21869 0 0.78131 | 168 | 0 0 0.38855 0.61145
124 | 0 0 0.012017  0.98798 | 169 | 0  0.45604 0 0.54396
125 | 0 0 0.096707  0.90329 | 170 | 0  0.12446 0 0.87554
126 | 0 0.3693 0 0.6307 | 171 | 0 0.088901 0 0.9111
127 1 0 0 0.04103 0.95897 | 172 | O 0 0.45371  0.54629
128 | 0 0.088118 0 0.91188 | 173 | 0  0.2837 0 0.7163
129 | 0 0 0.3711 0.6289 | 174 | 0  0.24857 0 0.75143
130 | O 0 0.3247 0.6753 | 175 | O 0 0.36554  0.63446
131 |0 0 0.39945 0.60055 | 176 | O  0.23337 0 0.76663
132 | 0 0.11527 0 0.88473 | 177 | O 0 0 1
133 | 0 0.087778 0 0.91222 | 178 | 0 0.084831 0 0.91517
134 | 0 0.27812 0 0.72188 | 179 | O 0 0.19127  0.80873
135 | 0 0.23934 0 0.76066 | 180 | O 0 0.13574  0.86426
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Table C.1: Artificial bba’s (continue)

i |0 Cy [ Q) 7 |0 [ Cs e)

181 [0 0.42018 0 0.57982 | 226 | 0 0.45316 0 0.54684
182 [ 0 0 0 1 227 | 0 0.14429 0 0.85571
183 | 0 0 0.22856  0.77144 | 228 | 0 0 0 1

184 | 0 0 0.12709  0.87291 | 229 | 0 0 0.45595  0.54405
185 | 0 0 0.31808 0.68192 | 230 | 0 0 0.38116 0.61884
186 | 0 0.45917 0 0.54083 | 231 | 0 0 0.37512  0.62488
187 | 0 0.43996 0 0.56004 | 232 | 0 0.16676 0 0.83324
188 | 0 0.21022 0 0.78978 | 233 | 0 0.29722 0 0.70278
189 | 0 0.083944 0 0.91606 | 234 | 0 0 0 1

190 | 0 0.18058 0 0.81942 | 235 | 0 0 0.46521  0.53479
191 | 0 0.071885 0 0.92812 | 236 | 0 0 0 1

192 | 0 0 0.19582 0.80418 | 237 | 0 0.13056 0 0.86944
193 | 0 0.44787 0 0.55213 | 238 | 0 0.12998 0 0.87002
194 | 0 0.23291 0 0.76709 | 239 | 0 0.15564 0 0.84436
195 |0 0.23605 0 0.76395 | 240 | 0 0 0.16149 0.83851
196 | 0 0 0.031831 0.96817 | 241 | 0 0 0.38977 0.61023
197 | 0 0 0.34498  0.65502 | 242 | 0 0 0 1

198 | 0 0 0 1 243 | 0 0 0.41518 (.58482
199 | 0 0.12536 0 0.87464 | 244 | 0 0.074053 0 0.92595
200 | 0 0.49357 0 0.50643 | 245 | 0 0.28632 0 0.71368
201 | 0 0 0.3166  0.6834 | 246 | 0  0.30223 0 0.69777
202 | 0 0.22764 0 0.77236 | 247 | 0 0.13483 0 0.86517
203 | 0 0 0.46193  0.53807 | 248 | 0 0 0.16061 0.83939
204 | 0 0 0 1 249 | 0 0 0.13825 0.86175
205 | 0 0 0.05446  0.94554 | 250 | 0 0 0.30404  0.69596
206 | 0 0 0.046559 0.95344 | 251 | 0 0.28064 0 0.71936
207 | 0 0.43782 0 0.56218 | 252 | 0 0 0 1

208 | 0 0.045798 0 0.9542 | 253 | 0 0 0.38692 0.61308
209 | 0 0.10404 0 0.89596 | 254 | 0 0.032364 0 0.96764
210 | 0 0 0 1 255 | 0 0 0 1

211 | 0 0 0.38047  0.61953 | 256 | 0 0 0.24604  0.75396
212 | 0 0 0.20833 0.79167 | 257 | 0 0 0.04996  0.95004
213 | 0 0.32907 0 0.67093 | 258 | 0 0 0.38892 0.61108
214 | 0 0 0 1 259 | 0 0.092182 0 0.90782
215 | 0 0 0 1 260 | 0 0.25232 0 0.74768
216 | 0 0 0 1 261 | 0 0.42127 0 0.57873
217 | 0 0.024254 0 0.97575 | 262 | 0 0 0.23279 0.76721
218 | 0 0.23255 0 0.76745 | 263 | 0 0 0 1

219 | 0 0 0 1 264 | 0 0 0.11914  0.88086
220 | 0 0 0.25385  0.74615 | 265 | 0 0 0.30737  0.69263
221 | 0 0 0 1 266 | 0 0.30803 0 0.69197
222 | 0 0.11698 0 0.88302 | 267 | 0 0.37291 0 0.62709
223 | 0 0 0.015643 0.98436 | 268 | 0 0 0.42246 0.57754
224 | 0 0 0 1 269 | 0 0.07262 0 0.92738
225 | 0 0 0 1 270 | 0 0.27606 0 0.72394




Appendix C: Artificial bba’s 225

Table C.1: Artificial bba’s (continue)

j 0 Cl 02 Q] ] @ Cl 02 Q)
271 | 0 0.28331 0 0.71669 | 316 | O 0.4204 0 0.5796
272 | 0 0 0.16819 0.83181 | 317 | 0  0.20501 0 0.79499
273 1 0 0 0 1 318 | O 0 0.39353  0.60647
274 1 0 0 0.093914 0.90609 | 319 | 0  0.04813 0 0.95187
275 | 0 0 0.048991 0.95101 | 320 | O 0 0.3056 0.6944
276 | 0 0 0 1 321 | O 0 0.18557  0.81443
277 | 0 0 0 1 322 1 0 0 0.33965  0.66035
278 | 0 0 0 1 323 |1 0 0 0 1
279 1 0 0 0.16983 0.83017 | 324 | O 0 0.20042  0.79958
280 | O 0 0.07309 0.92691 | 325 | O 0 0.37343  0.62657
281 | 0 0.016147 0 0.98385 | 326 | O 0 0.26528  0.73472
282 | 0 0.025993 0 0.97401 | 327 | O 0 0 1
283 | 0 0.18847 0 0.81153 | 328 | 0  0.40287 0 0.59713
284 | 0 0 0 1 329 | 0 0.4873 0 0.5127
285 | 0 0.2702 0 0.7298 | 330 | 0  0.047147 0 0.95285
286 | 0 0 0.028351 0.97165 | 331 | O 0 0 1
287 | 0 0 0 1 332 | 0 0 0.35366  0.64634
288 | 0 0 0.44275 0.55725 | 333 | O 0 0 1
280 | 0 0.12391 0 0.87609 | 334 | 0  0.25982 0 0.74018
290 | 0 0.42363 0 0.57637 | 335 | 0  0.0049808 0 0.99502
291 | 0 0.14452 0 0.85548 | 336 | 0  0.19176 0 0.80824
292 | 0 0 0 1 337 1 0 0 0.14852  0.85148
293 | 0 0 0.043314 0.95669 | 338 | 0 0.32591 0 0.67409
294 1 0 0 0.091194 0.90881 | 339 | O 0 0.47097  0.52903
295 | 0 0 0.49189 0.50811 | 340 | O 0.3248 0 0.6752
296 | 0 0.081709 0 0.91829 | 341 | 0 0 0 1
297 | 0 0.12215 0 0.87785 | 342 | 0  0.39135 0 0.60865
298 | 0 0.45486 0 0.54514 | 343 | O 0 0 1
299 | 0 0 0.13114 0.86886 | 344 | O 0 0 1
300 | 0 0.068733 0 0.93127 | 345 | 0 0 0 1
301 | 0 0 0.018467 0.98153 | 346 | O 0 0 1
302 | 0 0 0 1 347 | 0 0 0.32942  0.67058
303 | 0 0.023578 0 0.97642 | 348 | O 0 0.049205 0.95079
304 | 0 0 0 1 349 | 0 0 0.35444  0.64556
305 | 0 0.10115 0 0.89885 | 350 | O  0.03709 0 0.96291
306 | O 0 0.30959  0.69041 | 351 | O 0 0.4036 0.5964
307 | 0 0 0 1 352 | 0 0 0 1
308 | 0 0 0.45647 0.54353 | 353 | O 0 0.016046 0.98395
309 | 0 0 0 1 354 | 0 0.19247 0 0.80753
310 | O 0 0 1 355 | 0 0.062149 0 0.93785
311 | 0 0 0 1 356 | 0 0.35917 0 0.64083
312 | 0 0.45627 0 0.54373 | 357 | O 0.2895 0 0.7105
313 | 0 0.070902 0 0.9291 | 358 | O 0 0 1
314 | 0 0 0 1 359 | 0 0 0.43548  0.56452
3151 0 0 0.06358  0.93642 | 360 | 0  0.42898 0 0.57102
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Table C.1: Artificial bba’s (continue)

j @ Cl 02 Q) ] @ Cl 02 C)
361 | O 0 0.26172  0.73828 | 406 | O 0 0.41232  0.58768
362 | 0 0 0.12621  0.87379 | 407 | O 0 0.33642  0.66358
363 | 0 0 0 1 408 | 0 0.34139 0 0.65861
364 | 0 0.3086 0 0.6914 | 409 | O 0 0.24904  0.75096
365 | 0 0.48352 0 0.51648 | 410 | O 0 0 1
366 | 0 0.22402 0 0.77598 | 411 | 0 0.078872 0 0.92113
367 | 0 0 0 1 412 | 0 0.25798 0 0.74202
368 | 0 0 0.3925 0.6075 | 413 | O 0 0.4854 0.5146
369 | O 0 0 1 414 1 0 0 0.46546  0.53454
370 | 0 0 0 1 41510 0 0.34073  0.65927
371 1 0 0 0.14775  0.85225 | 416 | 0  0.47258 0 0.52742
372 1 0 0.48071 0 0.51929 | 417 | O 0 0 1
373 1 0 0.31755 0 0.68245 | 418 | 0 0 0.39584 0.60416
37410 0 0 1 4191 0 0 0 1
3751 0 0 0 1 420 | 0 0 0.26423  0.73577
376 | 0 0 0.33262 0.66738 | 421 | O 0 0 1
377 1 0 0 0 1 422 1 0 0 0.4321 0.5679
378 | 0 0.37778 0 0.62222 | 423 | 0  0.24422 0 0.75578
379 | 0 0.39878 0 0.60122 | 424 | O 0 0.18497  0.81503
380 | O 0 0.14469 0.85531 | 425 | 0  0.45646 0 0.54354
381 | 0 0 0.40877 0.59123 | 426 | 0 0.12054 0 0.87946
382 | 0 0.14869 0 0.85131 | 427 | O 0 0.31401  0.68599
383 | 0 0.41139 0 0.58861 | 428 | 0  0.41231 0 0.58769
384 | 0 0 0 1 429 | 0 0.071138 0 0.92886
385 | 0 0 0.18998 0.81002 | 430 | 0  0.25638 0 0.74362
386 | 0 0 0.32904 0.67096 | 431 | O 0 0.42092  0.57908
387 | 0 0.48803 0 0.51197 | 432 | O 0 0 1
388 | 0 0 0.4015 0.5985 | 433 | 0 0.044507 0 0.95549
389 | 0 0 0.44776  0.55224 | 434 | O 0 0.33185  0.66815
390 | O 0 0.30144 0.69856 | 435 | 0 0.019734 0 0.98027
391 | O 0 0.32337 0.67663 | 436 | O 0 0.42937  0.57063
392 | 0 0.059526 0 0.94047 | 437 | O 0 0 1
393 | 0 0.067756 0 0.93224 | 438 | O 0 0.18215  0.81785
394 | 0 0 0.088842 0.91116 | 439 | O 0 0.35173  0.64827
39 | 0 0 0.20641 0.79359 | 440 | O 0 0 1
396 | 0 0.22992 0 0.77008 | 441 | O 0 0.3898 0.6102
397 | 0 0.0744 0 0.9256 | 442 | 0 0.091924 0 0.90808
398 | 0 0.33279 0 0.66721 | 443 | 0 0.094819 0 0.90518
399 | 0 0 0 1 444 1 0 0 0.42137  0.57863
400 | 0 0.17445 0 0.82555 | 445 | 0 0.064288 0 0.93571
401 | 0 0.026915 0 0.97309 | 446 | O 0 0.044142  0.95586
402 | 0 0 0.12069 0.87931 | 447 | O 0 0.36595  0.63405
403 | 0 0.032516 0 0.96748 | 448 | O 0 0 1
404 | 0 0.080649 0 0.91935 | 449 | 0  0.44152 0 0.55848
405 | 0 0.12441 0 0.87559 | 450 | 0  0.13409 0 0.86591
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Table C.1: Artificial bba’s (continue)

j |0 Cy Cs C) j |0 Ci Cs ©

451 | 0 0.14816 0 0.85184 | 496 | 0 0 0.46841 0.53159
452 | 0 0.059309 0 0.94069 | 497 | O 0 0 1

453 | 0 0 0.19722  0.80278 | 498 | O 0 0 1

454 | 0 0 0 1 499 | 0 0 0.15032  0.84968
455 | 0 0.17179 0 0.82821 | 500 | O 0 0.47472  0.52528
456 | 0 0.27883 0 0.72117 | 501 | O 0 0.36194  0.63806
457 | 0 0 0.21804 0.78196 | 502 | 0  0.070085 0 0.92991
458 | 0 0 0.18288 0.81712 | 503 | O 0 0.44966 0.55034
459 | 0 0 0 1 504 | O 0 0.3608  0.6392
460 | 0 0 0.12367 0.87633 | 505 | O 0 0 1

461 | 0 0.0064721 0 0.99353 | 506 | O 0 0.46015 0.53985
462 | 0 0 0.18547 0.81453 | 507 | 0 0.35682 0 0.64318
463 | 0 0.40613 0 0.59387 | 508 | 0 0.35679 0 0.64321
464 | 0 0 0.068199 0.9318 | 509 | 0  0.29209 0 0.70791
465 | 0 0 0 1 510 | 0 0.063427 0 0.93657
466 | 0 0 0.47889  0.52111 | 511 | 0 0.0027626 0 0.99724
467 | 0 0 0 1 512 | 0 0.36175 0 0.63825
468 | 0 0.12365 0 0.87635 | 513 | 0 0 0 1

469 | 0 0 0.018593 0.98141 | 514 | O 0 0.38298 0.61702
470 | 0 0.46513 0 0.53487 | 515 | O 0 0 1

471 |1 0 0 0.11242  0.88758 | 516 | 0  0.15952 0 0.84048
472 |1 0 0 0.049602 0.9504 | 517 | O 0 0.37456  0.62544
473 | 0 0 0 1 518 | 0 0 0.13045 0.86955
474 | 0 0 0 1 519 | 0 0 0.42239 0.57761
475 | 0 0.36858 0 0.63142 | 520 | 0  0.44076 0 0.55924
476 | 0 0 0 1 521 1 0 0 0.48933 0.51067
4771 0 0.28238 0 0.71762 | 522 | 0 0.47958 0 0.52042
478 1 0 0.15381 0 0.84619 | 523 | 0  0.089666 0 0.91033
479 1 0 0 0.33859 0.66141 | 524 | O 0 0.26998  0.73002
480 | 0 0.16273 0 0.83727 | 525 | O 0 0.48222 0.51778
481 | 0 0 0.031696  0.9683 | 526 | 0  0.091649 0 0.90835
482 | 0 0 0 1 927 1 0 0 0.49549 0.50451
483 | 0 0.13143 0 0.86857 | 528 | 0 0 0 1

484 | 0 0.48207 0 0.51793 | 529 | 0 0.23947 0 0.76053
485 | 0 0 0.18343  0.81657 | 530 | 0  0.095585 0 0.90442
486 | 0 0 0.36393  0.63607 | 531 | 0  0.12809 0 0.87191
487 | 0 0 0.11255 0.88745 | 532 | 0 0.43592 0 0.56408
488 | 0 0 0.023577 0.97642 | 533 | 0  0.034413 0 0.96559
489 | 0 0 0.41981 0.58019 | 534 | O 0 0 1

490 | 0 0 0 1 935 | 0 0 0 1

491 | 0 0 0.44745 0.55255 | 536 | O 0 0.43592  0.56408
492 | 0 0 0.041084 0.95892 | 537 | 0 0.36974 0 0.63026
493 | 0 0.41525 0 0.58475 | 538 | 0 0 0.12289 0.87711
494 | 0 0.24102 0 0.75898 | 539 | 0 0 0.12905 0.87095
495 | 0 0.13241 0 0.86759 | 540 | O 0 0.29904 0.70096
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Table C.1: Artificial bba’s (continue)

j |0 Cy Cs ¢} 7 [0 C Cs e)

541 | 0 0.42892 0 0.57108 | 586 | 0 0 0.4345 0.5655
542 | 0 0.47648 0 0.52352 | 587 | 0 0.059733 0 0.94027
543 | 0 0 0.41995  0.58005 | 588 | 0 0 0.039853  0.96015
544 | 0 0 0 1 589 | 0 0 0.10594  0.89406
545 | 0 0 0 1 590 | 0 0.14099 0 0.85901
546 | 0 0.12013 0 0.87987 | 591 | 0 0 0 1

547 | 0 0.12429 0 0.87571 | 592 | 0 0 0.19128  0.80872
548 | 0 0.43024 0 0.56976 | 593 | 0 0.25201 0 0.74799
549 | 0 0.16795 0 0.83205 | 594 | 0 0 0.23152  0.76848
550 | 0 0.029464 0 0.97054 | 595 | 0 0.047396 0 0.9526
551 | 0 0 0 1 596 | 0 0 0 1

552 | 0 0 0.48069  0.51931 | 597 | 0 0 0.15746  0.84254
553 | 0 0.08093 0 0.91907 | 598 | 0 0 0.38062  0.61938
554 | 0 0.0725 0 0.9275 | 599 | 0 0 0 1

555 | 0 0.22623 0 0.77377 | 600 | 0 0 0.45547  0.54453
556 | 0 0.1321 0 0.8679 | 601 | 0  0.48343 0 0.51657
557 | 0 0.15305 0 0.84695 | 602 | 0 0 0.22925  0.77075
558 | 0 0 0 1 603 | 0 0 0.15894  0.84106
559 | 0 0 0 1 604 | 0 0 0.34056  0.65944
560 | 0 0 0.48224  0.51776 | 605 | 0 0 0.44733  0.55267
561 | 0 0.33058 0 0.66942 | 606 | 0  0.48563 0 0.51437
562 | 0 0 0.40404  0.59596 | 607 | 0 0.051277 0 0.94872
563 | 0 0.10791 0 0.89209 | 608 | 0 0 0.18953  0.81047
564 | 0 0.30123 0 0.69877 | 609 | 0 0.47623 0 0.52377
565 | 0 0 0.03029  0.96971 | 610 | 0 0 0.047619  0.95238
566 | 0 0 0.00025522 0.99974 | 611 | 0 0 0 1

567 | 0 0 0.2276 0.7724 | 612 | 0 0.22025 0 0.77975
568 | 0 0 0 1 613 | 0 0 0 1

569 | 0 0.11591 0 0.88409 | 614 | 0 0.24055 0 0.75945
570 | 0 0.25322 0 0.74678 | 615 | 0 0 0.14661  0.85339
571 | 0 0.25589 0 0.74411 | 616 | 0 0 0.0019404  0.99806
572 | 0 0.3621 0 0.6379 | 617 | 0 0.41687 0 0.58313
573 | 0 0 0.097985  0.90202 | 618 | 0 0 0 1

574 | 0 0.28907 0 0.71093 | 619 | 0 0 0 1

575 | 0 0 0.13852  0.86148 | 620 | 0 0 0.22727  0.77273
576 | 0 0 0.17664  0.82336 | 621 | 0 0.021485 0 0.97851
577 | 0 0.13498 0 0.86502 | 622 | 0 0 0.41116  0.58884
578 | 0 0.35614 0 0.64386 | 623 | 0 0 0.407 0.593
579 | 0 0.32659 0 0.67341 | 624 | 0 0.1103 0 0.8897
580 | 0 0 0 1 625 | 0 0 0 1

581 | 0 0.33225 0 0.66775 | 626 | 0 0.45919 0 0.54081
582 | 0 0 0.11957  0.88043 | 627 | 0 0.26326 0 0.73674
583 | 0 0 0.43323  0.56677 | 628 | 0 0.161 0 0.839
584 | 0 0 0.37475  0.62525 | 629 | 0 0.020484 0 0.97952
585 | 0 0.18137 0 0.81863 | 630 | 0 0.2155 0 0.7845
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J |0 Cy Cs ¢} 7 [0 [ Cs 0
631 | O 0 0.45345 0.54655 | 661 | O 0 0.049759 0.95024
632 | 0 0.16123 0 0.83877 | 662 | 0 0.49905 0 0.50095
633 | 0 0 0.17179 0.82821 | 663 | O 0 0.064157 0.93584
634 | O 0 0 1 664 | O 0 0.29198  0.70802
635 | 0 0.47622 0 0.52378 | 665 | O 0.42954 0 0.57046
636 | O 0 0 1 666 | 0 0.087466 0 0.91253
637 | 0 0.040406 0 0.95959 | 667 | 0 0.058504 0 0.9415
638 | 0 0.46007 0 0.53993 | 668 | 0 0.35039 0 0.64961
639 | 0 0.16708 0 0.83292 | 669 | O 0 0 1
640 | O 0 0.34709 0.65291 | 670 | O 0.12734 0 0.87266
641 | 0O 0.41861 0 0.58139 | 671 | O 0 0.089757 0.91024
642 | O 0 0.40357 0.59643 | 672 | O 0 0 1
643 | O 0 0 1 673 | 0 0.3247 0 0.6753
644 | O 0.3462 0 0.6538 | 674 | O 0 0.051594 0.94841
645 | O 0.1599 0 0.8401 | 675 | 0 0 0.076136 0.92386
646 | 0 0.35979 0 0.64021 | 676 | O 0.31746 0 0.68254
647 | 0 0.11887 0 0.88113 | 677 | O 0.20413 0 0.79587
648 | 0 0.12032 0 0.87968 | 678 | 0 0.08175 0 0.91825
649 | 0 0.27261 0 0.72739 | 679 | O 0 0 1
650 | O 0 0.46008 0.53992 | 680 | O 0 0.026377 0.97362
651 | 0 0 0.37272 0.62728 | 681 | 0 0.075249 0 0.92475
652 | 0 0.39567 0 0.60433 | 682 | O 0.2671 0 0.7329
653 | 0 0.49911 0 0.50089 | 683 | O 0 0.41465 0.58535
654 | O 0 0.26081 0.73919 | 684 | 0 0.0054822 0 0.99452
655 | 0 0.496 0 0.504 685 | 0 0 0.21526 0.78474
656 | O 0 0 1 686 | O 0 0.072293 0.92771
657 | O 0 0.40901 0.59099 | 687 | O 0.31798 0 0.68202
658 | O 0.4989 0 0.5011 | 688 | O 0 0.4681 0.5319
659 | 0 0.19302 0 0.80698 | 689 | 0 0 0.49911  0.50089
660 | O 0 0.35489 0.64511 | 690 | O 0 0.10381 0.89619

C.3 Conclusion

In this appendix, we have detailed one set of bba’s assigned to the classes of
the instances of the modified Wisconsin breast cancer database that we have

used for making simulation.

The set of bba’s illustrated in this appendix is relative to the value of the
probability P equals to 0.2. Obviously for performing simulations presented
in Chapter 6, we have developed a set of 690 bba’s, for each value of the
probability P (from 0 to 0.9).
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