
 TUNISIAN REPUBLIC
 MINISTER OF HIGHER EDUCATION
 AND SCIENTIFIC RESEARCH

Master Thesis

Submitted in order to obtain the Research Master Degree in:

Business Intelligence

“Informatique Décisionnelle et Intelligence Appliquée à la Gestion”

Presented by

Dhouha JEMAL

Supervised by

 Pr. Rim FAIZ Pr. Ladjel BELLATRECHE

Academic Year 2013-2014

Queries placement problem

Queries placement problem

Dhouha Jemal

Abstracts

Data is the most precious asset of companies. Speci�c to their business sector either appropriate to

their own customers or competitors, the data can be mainspring of competitiveness and innovation.

This explains the importance granted to the selectivity of data processing tools.

With the data volume which does not stop growing and the multitude of sources which led

to of structures diversity, the classic tools of data management became unsuitable for processing.

Hence the rapid development and change of the databases world, the evolution of data management

solutions and the imposition of the Big date in our technological landscape which re�ects both the

data explosion and the recent capacity to handle it. This data management systems diversity

presents a di�culty in choosing the best solution to interpret, protect and manage data according

to the user's needs while preserving data availability.

In this work, we propose two contributions: The �rst is an implementation and a re�nement

of a cost model for MapReduce paradigm; Then, we propose an hybrid approach between two

main categories of data management systems: classic DBMSs and NoSQL DBMSs. The idea is

to integrate the ORDBMS PostgreSQL and MapReduce to perform OLAP queries in a goal of

minimizing Input/Output costs in terms of the amount of data to manipulate, reading and writing

throughout the execution process.

In order to evaluate our proposed approach performance, we start by assess the Input/Output

costs calculated by the re�ned MapReduce process cost model compared real Input/Output costs.

Then, we valid the proposed approach through experiments showing the signi�cant gain of the cost

saved up compared to executing OLAP queries independently on MapReduce and PostgreSQL.

Key words : MapReduce, RDBMS, NoSQL, integration, hybrid, cost, performance, OLAP .

Dedications

Believing that nothing impossible as long as Allah is on our side,

I dedicate this thesis to my beloved parents,

my brothers and sisters for believing in me and encouraging me during all of my
years of study.

I also dedicate it to all of my dear friends for their support.

Dhouha

Acknowledgments

My sincere gratitude goes to Pr. Rim FAIZ, my master thesis supervisor for

her encouragement and guidance that truly helped the progression of my research

internship. I am also thankful for her availability, supervision, constructive criticism

and valuable advices, allowing me achieving and improving this work.

The special thank also goes to Pr. Ladjel BELLATRECHE, the co-supervisor

of this master thesis at University of Poitiers, for accepting me among the team

and inspiring me throughout this research. I also thank him for his uninterrupted

encouragement, time, and e�orts.

I would like to thank Ahcene BOKORCA, for his good advice and friendship.
He has been invaluable on both an academic and a personal level, for which I am
extremely grateful.

With immense honor, I thank all of the LARODEC Tunis and LIAS Poitiers

members for their help during my internship.

Finally, it is with gratitude that I thank all the jury members for agreeing to

evaluate my work and all the professors for the knowledge and skills they gave me

during all my years of study.

Contents

Introduction 1

1 Data management: between classic DBMSs and Big Data solutions 5

1.1 Introduction . 5

1.2 Big Data era: de�nition, caracteristics and applications 5

1.3 Data-warehouses: foundation of a decision support system 8

1.4 NoSQL DBMSs . 9

1.4.1 HDFS: Hadoop Distributed File System 12

1.4.2 MapReduce process . 14

1.5 Classic DBMSs . 18

1.5.1 RDBMSs . 18

1.5.2 ODBMSs . 19

1.5.3 ORDBMSs . 19

1.6 Conclusion . 20

2 Problem description and state of the art 21

2.1 Introduction . 21

2.2 Big Data challenges . 22

2.3 Problem description . 24

2.4 Related works . 27

2.5 Conclusion . 32

3 MapReduce cost analysis: proposed model and suggested re�ne-

ment 33

3.1 Introduction . 33

3.2 Cost models: de�nition and parameters 33

3.2.1 Cost model: de�nition . 34

3.2.2 Cost model: parameters . 34

i

3.3 MapReduce process: an overview . 36

3.4 MapReduce process: Input/Ouput cost model 37

3.4.1 Input/Output cost model assumptions 39

3.4.2 Input/Output cost analysis of the Map phase 39

3.4.3 Input/Output cost analysis of the Reduce phase 44

3.5 Conclusion . 47

4 The proposed approah: OLAP over Big Data 48

4.1 Introduction . 48

4.2 Context and contribution . 48

4.3 Pushed analysis of a query's execution 50

4.4 Queries cost estimation . 53

4.4.1 Cost estimation on PostgreSQL 53

4.4.2 Cost estimation on Hadoop MapReduce 55

4.5 Discussion . 56

4.6 Conclusion . 57

5 Experiments and results 58

5.1 Introduction . 58

5.2 Experimental environment . 58

5.3 Results presentation . 63

5.3.1 MapReduce re�ned Input/Output Cost model results 63

5.3.2 Proposed approach results . 64

5.4 Conclusion . 66

Conclusion 67

Appendix 69

References 75

List of Figures

1.1 Types of NoSQL DBMSs . 11

1.2 Hadoop Distributed File System . 13

1.3 MapReduce job process . 16

1.4 MapReduce job example . 16

3.1 MapReduce process overview . 36

3.2 Map phase data �ow with a single map task 40

3.3 Map phase data �ow with a single map task 43

3.4 Reduce phase data �ow with a single reduce task 45

5.1 Fact table: Lineorder . 60

5.2 Dimension table: Dates . 61

5.3 Dimension table: Part . 61

5.4 Dimension table: Supplier . 62

5.5 Dimension table: Customer . 62

5.6 Comparative results . 65

ii

List of Tables

1.1 Databases Vs Datawarehouses . 9

3.1 The parameters of the logical schema 35

3.2 Platform main parameters for Map task 41

3.3 Platform main parameters for Reduce task 45

5.1 Platform parameters for the Map task 59

5.2 Platform parameters for the Reduce task 59

5.3 Experimentation �les . 59

5.4 Data warehouse's caracteristics . 60

5.5 Input/Output cost model results . 63

5.6 proposed approach result . 64

iii

Acronym

BI Business Intelligence

DB DataBase

DBMS DataBase Management System

ETL Extract-Transform-Load

Hadoop High-availability distributed object-oriented platform

HDFS Hadoop Distributed File System

IS Information System

IT Information Technologie

MR MapReduce

NoSQL Not Only SQL

OLAP OnLine Analytical Processing

OLTP OnLine Transaction Processing

OODBMS Object-Oriented DataBase Management System

ORDBMS Object Relational DataBase Management System

RDBMS Relational DataBase Management System

RID Row IDenti�er

SQL Structured Query Language

Introduction

The data is currently in the middle of themes, and it is growing at an alarming speed

in both volume and structure. The data explosion is not a new phenomenon. It is

just accelerated in an incredible way and has an exponential number of technical and

application challenges.

It's not easy to measure the total volume of data generation and processing. Data

generation is estimated of 2.5 trillion bytes of data every day1. This impressive �gure

masks even more important evolutions. First, unstructured data will grow faster than

structured data. Moreover, beyond the storage, challenges will focus on the capacity

to process the data and make it available to users. As described in (Ordonez, 2013),

with the worldwide volume of data which does not stop growing, the classical tools

for data management have become unsuitable for processing. New technologies such

as (Furtado, 2009; McClean et al ., 2013) are necessary to answer the explosion of

the volume of data that it is a question of storing but also of making accessible and

of analyzing.

Taking into account new treatment needs proposed in (Cuzzocrea et al., 2013), the

database world has been evolved. Then it is continuously required to �nd up a way

to escape the limitations of data process such as lack of performance, resource limits,

and fault tolerance, and open issues and challenges are raised on data processing

tools. This explains the fast evolution of the data management systems and the

1http://www-01.ibm.com/software/fr/data/bigdata/ September 2014

1

Introduction

orientation towards the parallel architectures (Furtado, 2009; Stonebraker et al .,

2010; DeWitt and Gray, 1992) with the aim of achieving the highest number of

transactions in a smaller possible time in order to cope with the explosion in the

volume of data.

The implications of the rise of data generation challenge the needs of data process-

ing, as presented in (Besse et al ., 2014). But the impact of data abundance extends

well beyond volume. With the exponential generation, sources of data changes pro-

ducing new types of data and content which gave rise to a new challenge in the treat-

ment of unstructured data. In this context, a new technological �eld has emerged:

the Big Data (Narasimhan and Bhuvaneshwari, 2014). In this age of explosion in

the volume of information and structures diversity, Big Data aims to provide an

alternative to traditional solutions database and analysis.

With the new challenges in data processing described in (Cuzzocrea et al., 2013)

and the emergence of big data, the production environment for analytical data man-

agement applications is changing. This will have an impact on companies which, as

proposed in (Furtado, 2009), augment their existing data management capabilities

with technology that enables new analytic capabilities to improve the health of the

business . The main objective of companies is to have a general view of the activity

treated, anticipates the actions, be in tune with the expectations of its customers

and can thus adapt the right strategies, and facilitate decision-making and decision

analysis leaders for informed management of the company. This explains the in-

creasing strategic importance which companies grant to tools to interpret, protect

and manage data according to their strategic value and its sensitivity degree while

preserving their availability.

The question is how organizations should prepare for these developments in the

2

Introduction

big data ecosystem, how to use information and supporting, what technology to use

for data analysis in such an environment, and what are best practices in managing

enterprise for best performance and optimize costs.

Therefore, it is important to bene�t the diversity of the solutions proposed for

the data analysis. This diversity of technologies can be classi�ed into two main

categories (Mchome, 2011): The �rst is the classical tools of data management with

its subcategories such as relational and object-oriented system management or even

a combination of both, which present several optimization modes such as indexes

and materialized views. The second category is the new model of data management

called NoSQL (Not Only SQL) DataBase Management System (DBMS) presented

in (Strauch et al ., 2011), which is gaining signi�cant attention given its capacity for

processing unstructured data.

The aim of this work is to integrate the two categories of data management sys-

tems. Within the �rst category of the classic data management systems, we appoint

the sub category of the ORDBMS represented by the tool PostgreSQL (Douglas and

Douglas, 2003; Matthew and Stones, 2005). The category of the NoSQL DBMS

will be represented by the Hadoop MapReduce platform proposed in (Dean and

Ghemawat, 2008), the paradigm which met a big success for the applications that

process large amounts of data. The main idea of integration leans on the compar-

ison of query execution costs by both paradigms with the aim of the minimizing

the Input/Output costs. In this study, we propose di�erent contributions related to

the objective of integration. We o�er a re�nement of a proposed cost model for a

MapReduce process. Then we suggest an approach to optimize the OLAP queries

Input/Output execution cost.

3

Introduction

Document organization

This document is organized as follows:

� Chapter 1 reviews the background of Big Data and DBMSs as the framework

for this work.

� Chapter 2 describes the motivations and aims of this work and presents the

essential work of the state of the art in order to solve problems related to this

issue.

� Chapter 3 presents a proposed re�nement of a Input/Output cost model for

Hadoop MapReduce process.

� Chapter 4 describes the mechanism of the proposed approach.

� Chapter 5 validates the proposed approach through experiments and presents

the results of experimental evaluations.

We �nish by concluding the research work proposed, giving guidelines for future

work, and opening questions recently emerging in these areas.

4

Chapter 1

Data management: between classic
DBMSs and Big Data solutions

1.1 Introduction

The migration of a computer application is the passage of an information system

(IS) or an application to a new platform. Among the migration types, we �nd the

data migration. This corresponds to the transfer of data from one persistent system

to another, in order to reap the bene�ts of technological and functional evolution of

the database management systems.

Previously, we mentioned some details of our problem and contributions. Be-

fore going into deep details, we introduce in this chapter a general overview of the

framework.

This chapter is organized as follows: section 1.2 presents the Big Data �eld.

Section 1.3 de�nes the Datawarehouses. Sections 1.4 and 1.5 describe two DBMS's

main categories NoSQL and classic DBMSs.

1.2 Big Data era: de�nition, caracteristics and applications

The term Big Data, explained by (Narasimhan and Bhuvaneshwari, 2014), was raised

5

Chapter 1: Data management: between classic DBMSs and Big Data solutions

the �rst time by the Gartner o�ce1 in 2008. It refers to the explosion of data volume

and new technological capabilities o�ered to answer it. Big data can be de�ned as �a

new generation of technologies and architectures, designed to economically extract

value from very large volumes of a wide variety of data, by enabling high-velocity

capture, discovery, and/or analysis� 2.

A strong interest towards the term �Big Data� is arising in the literature actually.

Though scalable data management has been a vision for more than three decades and

much research has focussed on large scale data management in traditional enterprise

setting, Big Data brings its own set of novel challenges that must be addressed

to ensure the success of data management solutions. This �eld has received much

attention from across the computing and research community, and a lot of work has

been done in this context such as (Dean and Ghemawat, 2008; Cohen et al., 2009;

Agrawal et al., 2011; Wang and Chan, 2013). The goals of the big data solutions

are to meet the new challenges of treating very important volume of structured and

unstructured data, located on various terminals.

As presented in (Cuzzocrea et al ., 2013) Big Data repositories have two intrinsic

factors: (i) size, which becomes really explosive in such data sets; (ii) complexity

which can be very high in such data sets. Every day, the amount of data created and

manipulated is increasing. all the sectors of activity are a�ected by this phenomenon.

This exponential growth is due to several factors such as trends in the number of

users of IT (Information Technology) solutions and data generation by machines.

These masses of data bring larger and �ner opportunities for analyzes as well as new

uses of the information. Data today comes from multiple sources such as business

transactions and social networks, and in all types of formats: Structured numeric

data in traditional databases, and unstructured such as text documents, email, video,

1http://www.gartner.com/technology/home.jsp August 2014
2http://idc-cema.com/eng/events/54792-idc-big-data-and-business-analytics-

forum-2014 September 2014

6

Chapter 1: Data management: between classic DBMSs and Big Data solutions

audio and �nancial transactions. Managing, merging and governing both explosing

amount and di�erent varieties of data is something many organizations still grapple

with.

The web and social networks, whether they are open to all or developed in a

professional context, provide kind of opportunities for big data. As described in

(Sagiroglu and Sinanc, 2013), McKinsey Global Institute in (Manyika et al ., 2011)

speci�ed the potential of big data in �ve main topics:

� Healthcare (clinical decision support systems, analyze disease patterns, improve

public health).

� Public sector (discover needs, decision making with automated systems to de-

crease risks, innovating new products and services).

� Retail (in store behavior analysis, variety and price optimization, product place-

ment design, web based markets).

� Manufacturing (developed production operations, supply chain planning).

� Personal location data (smart routing, geo targeted advertising or emergency

response).

In this context, Big Data approach aims to provide an alternative to traditional

solutions database and analysis. Big data solutions add some features to classics

DBMSs in order to satisfy new data management needs in a new ecosystem of explo-

sive volume of structured and unstructured data. Actual research trends in the �eld

of Data Warehousing and OLAP over Big Data are rising, such as (Cuzzocrea et al.,

2013). The next section presents the general architecture of a data-warehouse.

7

Chapter 1: Data management: between classic DBMSs and Big Data solutions

1.3 Data-warehouses: foundation of a decision support system

as proposed in (Furtado, 2009), data warehouses (DW) are at the core of such sys-

tems. In this context, we explain in this section the general architecture of a data-

warehouse to di�erentiate it from traditional databases.

The data-warehouse is a database that collects information from various enterprise

information systems, for analysis and reporting activities. According to the de�nition

of Bill Inmon (Inmon, 2005) we show the characteristics of a data-warehouse as

described by(Gangarski and Doucet, 2001; Franco, 1997) as follows:

� Subject-oriented: the data collected must be oriented "business ". So, they are

organized by theme rather than by application.

� Integrated: to ensure consistency of information, data from various sources must

be integrated before storage in the data warehouse.

� Nonvolatile: data, unlike those of traditional databases, should be ongoing.

Thus, a refresh of the data warehouse should be able to add new data without

modifying or lose existing ones.

� Historized: it is essential that the data will be dated to consider their evolution

in decision-making and policy analysis since they are based on the entire history

of past trends to predict future ones planned.

The data-warehouse is the foundation of a decision support system for an orga-

nization. Unlike a taditional database supporting transactional queries like OLTP

(On-Line Transaction Processing), a data warehouse is designed to support multidi-

mensional OLAP queries (On-Line Analytical Processing). The table 1.1 illustrates

well this di�erence.

8

Chapter 1: Data management: between classic DBMSs and Big Data solutions

Table 1.1: Databases Vs Datawarehouses

Operating systems Data Warehouses
Design Application oriented Subject oriented

Design principle Relational design Multidimensional design
Goal Management & Production Planning & Analysis

Data type Recent, Detailed Historised, Aggregated
user interaction Interrogation, Update Interrogation

Queries Simple, Predetermined Complexe, Ad-hoc
Transaction Short, Real-time Long

Size Several Gigabytes Several Terabytes

As mentioned in (Cuzzocrea et al., 2013), several research problems arise when

computing OLAP data cubes over Big Data. On the other hand, as proposed by

(Ramakrishnan et al., 2013), it is often di�cult to attach schema, or meaning, to

the data beforehand and the schema and meta-data tends to evolve over time, data-

stores need to accommodate real-time changes to the structure of the data while

making the data searchable on any attribute. Thus, applications are increasingly

using schema-less data-stores also referred to NoSQL databases which are presented

in the next section.

1.4 NoSQL DBMSs

NoSQL (Not only SQL) Database management system, as presented in (Strauch

et al ., 2011), appoints a category of DBMSs based on non-relational distributing

architecture.

One of the main strengths points of the NoSQL database is its performance

(Nance et al., 2013). It explains that many Web giants like Facebook3, Twitter4

and LinkedIn5 chose to migrate their data on it. The advantages of NoSQL are

at least three: Coherence (visibility by all nodes in a system of the identical data

3www.facebook.com October 2014
4www.twitter.com October 2014
5www.Linkedin.com October 2014

9

Chapter 1: Data management: between classic DBMSs and Big Data solutions

at the moment T); data availability even in case of failure; ability to partition dis-

tributed system. NoSQL databases are increasingly used in big data and real-time

web applications.

There are currently many NoSQL solutions such as Hadoop6, HBase (Carstoiu,

2010; George, 2011) and Neo4j (Eifrem, 2009). This diversity presents a di�culty

in choosing the best solution, especially for the deployment of a database and data

processing. There are four main families of NoSQL DBMS, each brings a di�erent

data representation, has speci�cities and simpli�es the manipulation of some data

type.

� Key-value oriented: The simplest representation, means a single correspondence

between a key and a value such as Redis7.

� Document oriented: Based on the key value-oriented family, except that the

value is represented in the form of a document such as XML or JSON such as

MongoDB8 (Sabharwal et al ., 2014).

� Columns oriented: Another evolution of key-value model, it allows to have a

large number of values in a line, so allowing storing the relation one-to-many

type. Unlike the key-value model which allows querying by value such as HBase

(Carstoiu, 2010).

� Graph oriented: Allows modeling, storage and manipulation of complex data

connected by non-trivial or variables relations such as Neo4j (Eifrem, 2009).

The �gure 1.1 illustrates these di�erent representations.

6http://hadoop.apache.org/ April 2014
7http://redis.io/ April 2014
8http://www.mongodb.org/ April 2014

10

Chapter 1: Data management: between classic DBMSs and Big Data solutions

Figure 1.1: Types of NoSQL DBMSs

In this context, MapReduce (MR) paradigm met a big success for applications

that process large amounts of data. It was initially proposed by Google to facilitate

the development of web search applications on a large number of machines. In the

next section, we present this framework as described by (Dean and Ghemawat, 2008).

The era of Big Data recently has arrived due to the explosion in the volume

of data. To keep up with the times, Hadoop (High-availability distributed object-

oriented platform) and its various related projects presented in (Narasimhan and

Bhuvaneshwari, 2014) have emerged as a solution for e�cient analysis and processing

of Big Data (Shvachko et al ., 2010). Handling with distributed data in a cluster

requires parallel computing techniques; the most known technique is MapReduce the

new paradigm presented in (Deann and Ghemawat, 2008). This involves dividing

the data to be processed in independent partitions, treat these partitions in parallel

11

Chapter 1: Data management: between classic DBMSs and Big Data solutions

and �nally combining the results of these treatments.

Hadoop9 is the Apache Software Foundation open source and Java-based im-

plementation of the MapReduce framework. MapReduce is a programming model

introduced by Google for processing very large data-sets. One who works in the

world of databases and NoSQL, he certainly heard of MapReduce the powerful tool

characterized by its performance for heavy processing to be performed on a large

volume of data that it can be a solution to have the best performance hence makes it

very popular with companies that have large data processing centers such as Amazon

and Facebook10.

Although the MapReduce framework has found great success in analyzing and

processing large amounts of data on large clusters, its implementation in Google

unfortunately is not free. While Hadoop MapReduce as mentioned in (White, 2009),

is a Java open source implementation of MapReduce in HDFS (Hadoop Distributed

File System) that will be presented in the next section.

1.4.1 HDFS: Hadoop Distributed File System

Hadoop is designed to scale up from single servers to thousands of machines, each

o�ering local computation and storage. As described in (White, 2009), it proposes

a distributed storage system, Written in Java, via its �le system HDFS (Hadoop

Distributed File System). MapReduce o�ciates the �le system HDFS to perform

processing on large data volumes.

The distributed storage infrastructure store very large volumes of data on a large

number of machines, and manipulate a distributed �le system as if it were a single

hard drive. The Hadoop MapReduce framework may be run in a cluster of large

number of machines which follows a master/slave architecture. When the data is

9http ://hadoop.apache.org April 2014
10www.facebook.com

12

Chapter 1: Data management: between classic DBMSs and Big Data solutions

loaded on the cluster, it is distributed to all the nodes of the cluster. A single

node, called NameNode constitutes the master server that manages the �le system

namespace, It maintains the �le-system tree and meta-data for all directories and

�les and manage the access to �les. The rest of the nodes are the slaves, called

DataNodes stores data locally on the machine they run on with a periodic report

back to the NameNode with the storage state.

Figure 1.2: Hadoop Distributed File System

As illustrated in the �gure 1.2, HDFS deals with data in blocks. When an input

�le is loaded on the cluster, it is split into one or more blocks according to a prede�ned

size (64 MB by default) and the NameNode will be responsible for allocating blocks

within Datanodes. In order to prevent data loss, each block will be replicated across

several machines to overcome a possible problem of a single machine failure. In

addition, HDFS follows data locality optimization strategy. This strategy aims to

prevent unnecessary network transfers through the NameNode which tries to assign

13

Chapter 1: Data management: between classic DBMSs and Big Data solutions

the processing of each block to the DataNode on which the data block is actually

stored.

1.4.2 MapReduce process

In this section we describe the MapReduce process as presented in (Dean and Ghe-

mawat, 2008; Lee et al ., 2011; Lammel, 2008). MapReduce is a programming model

for processing large data sets with a parallel, distributed algorithm on a cluster. It

was created by Google in 2003, in order to simplify parallel processing and distributed

data on a large number of machines with an abstraction that hides the details of the

hardware layer to programmers. The MapReduce model consists of two primitive

functions: Map and Reduce. Two main components manage the Map/Reduce pro-

cess:

� Job tracker: assigns tasks to the Tasktrackers to be performed.

� Task tracker: accepts tasks (map and reduce) from the job tracker.

The Reduce phase: The reduce tasks are then run over the resulting data, to combine

the outcome of the Map Results. During each reduce phase, the reducer the workers

that implement the reducers, retrieve the intermediate data from the mappers. In

details, each reducer fetches the corresponding partition from For reasons of data

locality optimizing the NameNode and JobTracker are co-located in the same node

that is the Master and the same for the DataNode and task tracker constituting a

Slave also known as Worker. Each worker on the cluster may be assigned the role

of a mapper or a reducer according to the job that executes. The map and reduce

functions are de�ned by the user, and will be implemented by the mapper and the

reducer correspondingly.

14

Chapter 1: Data management: between classic DBMSs and Big Data solutions

The Map phase: During each map phase, the mapper reads the input block and

converts each record into a Key/Value pair. The user de�ned map function trans-

forms each pair into a new Key/Value pair based on the user's implementation. The

subsequent phase consists of partitioning/grouping and sorting the map function's

outputs.

The Reduce phase: The reduce tasks are then run over the resulting data, to

combine the outcome of the Map Results. During each reduce phase, the reducer

the workers that implement the reducers, retrieve the intermediate data from the

mappers. In details, each reducer fetches the corresponding partition from each

mapper. Each set of partitions will be merged constructing pairs of Key/List(Values)

based on the same key. The new intermediate pairs of Key/List(Values) are combined

based on the user's de�ne function to return a new key/value pair. The output pairs

are stored on the HDFS in the output �le.

We will explain the process of a MapReduce job and the concepts of map and

reduce through the example of words counter frequently used:

15

Chapter 1: Data management: between classic DBMSs and Big Data solutions

Figure 1.3: MapReduce job process

In the example, we are going to unwind one job MapReduce to count the number

of words contained in the �rst line shown in bold face. The user wishes to count all

the words with the exception of the word 'is'.

Figure 1.4: MapReduce job example

Map: The map function is written as follows: map (key1, value1) � List (key2,

16

Chapter 1: Data management: between classic DBMSs and Big Data solutions

value2). Using a key-value pair, the map function returns a set of new key-value

pairs. First it cut the line in several words and returns a list of key-value pairs,

where each key is the word, and each value is "1". During this phase, the user can

�lter words considered little interesting, as 'is'. In our example, the input key is the

line number in the �le and the value is �the car of her she is the�. The result of the

map function is given below.

Before presenting the reduce function, two intermediate transactions must be

performed to prepare the value of its input argument. The �rst operation called

shu�e allows grouping the values the key of which is common. The second operation

called sort allows sorting by key. Thus, after performing the duties shu�e and sort

the result of the example is as follows.

Reduce: the reduce function is written as follows: reduce (key2, List (value2)) �

List (value2). It performs the user de�ned function, which in this example is to add

the values of the same key. The result for reduce is the following.

17

Chapter 1: Data management: between classic DBMSs and Big Data solutions

1.5 Classic DBMSs

DBMS stands for Database Management System. It is a software system that used

to store and to manage data. It also de�nes rules to validate and manipulate this

data. By managing user requests, it receives instruction and accordingly instructs

the system to make the necessary changes to let users create and access data in a

database. Such systems support SQL (Structured Query Language) language and

use the relational data model, with some variety to support distributed applications.

DBMSs present many di�erent types.

1.5.1 RDBMSs

RDBMS stands for Relational Database Management System. RDBMS is the basis

for SQL, and is a type of database management system (DBMS) that is based on the

relational model that stores data in the form of related tables. So that, an important

feature of relational systems is that a single database can be spread across several

tables. RDBMSs have become a predominant powerful choice for the storage of infor-

mation in new databases because they are easier to understand and use. It is based

on relation between data what makes it powerful because the possibility of view-

ing the database in many di�erent ways since the RDBMS require few assumptions

about how data is related or how it will be extracted from the database.

18

Chapter 1: Data management: between classic DBMSs and Big Data solutions

1.5.2 ODBMSs

OODBMS stands for Object-Oriented Database Management System (sometimes

shortened to ODBMS for Object Database Management System). As presented in

(Ketabchi et al ., 1990), it has been considered since the early 1980s, is the result from

integration of database capabilities with object programming language capabilities,

so that is a database management system (DBMS) that supports the modeling and

creation of data as objects and information is represented in the form of objects as

used in object-oriented programming. Some object-oriented databases are designed

to work well with object-oriented programming languages, others have their own

programming languages.

1.5.3 ORDBMSs

ORDBMS (Object Relational Database Management System) is the result from

merge of RDBMS and ODBMS. As described by (Brown, 2000), it provides a mid-

dle ground between relational databases and object-oriented databases, extends the

relational model and puts an object oriented front end on a relational database

(RDBMS). So that this system supports objects, classes and inheritance in database

schema and query language. In addition, in an ORDBMS data is manipulated using

queries in a query language. Object-Relational Database Management Systems grew

out of research that occurred in the early 1990s.

The basic goal presented in (Sabàu, 2007) for the Object-relational database is

to bridge the gap between relational databases and the object-oriented modeling

techniques used in programming languages. The most notable research project in

this �eld is Postgres (Berkeley University, Californie); Illustra and PostgreSQL are

the two products tracing this research11.

11http://en.wikipedia.org/wiki/Object-relational_database July 2014

19

Chapter 1: Data management: between classic DBMSs and Big Data solutions

1.6 Conclusion

In this chapter, we presented brie�y the background related to our research frame-

work. This included Big Data, Data warehouses and DBMSs. We mentioned how

important became this area and how the research topic is very highlighted. This

domain faces several challenges which we will discuss in the next chapter.

20

Chapter 2

Problem description and state of the
art

2.1 Introduction

Day after day, zillions of data is generated all over the universe. Many factors con-

tribute to the increase in data volume. The implications of the rise of data generation

challenge the needs of data processing, which explains the technological development

and diversity of the proposed data management solutions and and explosive growth,

both in the number of products and services o�ered and in the adoption of data

analysis technologies in the past two decades.

Information is the heart of business. Companies are constantly based on the

data in their systems for decision-making. More accurate analyzes may lead to

more con�dent decision making. And better decisions can mean greater operational

e�ciencies, cost reductions and reduced risk.In a highly competitive world where

innovation makes the di�erence, a better management of its data and solutions is

the best guarantee for businesses. This explains the priority role for technology

selectivity to bene�t of the solutions proposed for the data analysis and to satisfy

the needs of data processing.

In this context, we are going to detail in this chapter challenges of the Big Data

�eld, then the main problems about diversity of data management solutions. And we

21

Chapter 2: Problem description and state of the art

�nish by giving some previous works who attempted to deal with these bottlenecks.

2.2 Big Data challenges

Nowadays, Big data and its analysis are at the center of modern science and business.

It requires a revolutionary step forward from traditional data analysis. As mentioned

in (Sagiroglu and Sinanc, 2013), the term Big Data is for massive data sets having

large, more varied and complex structure with the di�culties of storing, analyzing

and visualizing for further processes or results.

Big Data, as presented in (Sagiroglu and Sinanc, 2013), is characterized by three

main components, the 3 V's: Volume, Velocity and Variety.

1. Volume. It is the �rst feature brought by the term "big". The size, which can

become a real bottleneck from practical applications, refers to the vast amounts

of data generated every second. The volume of data stored today is booming.

This amount of data that is being collected daily presents immediate challenges

for businesses. we can Just think of social media messages going viral in seconds,

the speed at which credit card transactions are checked for fraudulent activities,

or the milliseconds it takes trading systems to analyze social media networks to

pick up signals that trigger decisions to buy or sell shares.

2. Velocity. Speed of data in and out; describes the frequency at which data are

generated, captured and shared. Growing �ows of data must be analyzed in real

time to meet the needs of chrono-sensitive processes. Reacting fast enough and

analyzing the streaming data is troubling to businesses, with speeds and peak

periods often inconsistent. Bid Data approach opens the possibility to integrate

data streams and generate results or data visualization in (almost) real time.

22

Chapter 2: Problem description and state of the art

3. Variety. The volume of Big Data puts data centers in front a challenge: the

variety of data. It's not traditional relational data, this data is raw, semi-

structured or unstructured. In fact, 80% of the world's data is now unstruc-

tured1, and therefore can't easily be put into tables (think of photos, video

sequences or social media updates). Big Data is in the form of structured

and unstructured data. The structured data types are ready for insertion into a

database, while unstructured types have an implicit and irregular structure, and

not a �xed pattern (non-relational). With big data technology we can now har-

ness di�ered types of data (structured and unstructured) including messages,

social media conversations, photos, video or voice recordings and bring them

together with more traditional, structured data.

In (Narasimhan and Bhuvaneshwari, 2014), we consider two additional dimensions

when thinking about big data:

1. Veracity. Accuracy of collected data is a key feature. As mentioned in (Cuz-

zocrea et al., 2011) very often, data sources, storing data of interest for the

target analytic processes, such as web and social networks are strongly hetero-

geneous and incongruent. Big Data becomes bigger and the multiple sources of

big data are ever increasing. So, build con�dence in the Big Data represents a

signi�cant challenge due to the possibility of inconsistency and abnormality in

the Data. Very large data volumes and multiple heterogeneous sources amplify

the need for rigor in the collection and crossing data to remove data uncertainty

to build con�dence and ensure the security and integrity of data.

2. Value. Big Data is gradually transforming organizations around the valuation

1https://www.linkedin.com/today/post/article/20140306073407-64875646-big-
data-the-5-vs-everyone-must-know October 2014

23

Chapter 2: Problem description and state of the art

of information. Big Data approach is designed to achieve the strategic objectives

of value creation for the company.With the Big Data approach, the data which

have not big interest when it are taken isolation, can take a meaning when

considered globally. A big data strategy gives businesses the capability to better

analyze data with a goal of accelerating pro�table growth. Having access to big

data, companies generate value from data.

Big data and its analysis are at the center of modern science and business. In-

spired by this main motivation, (Cuzzocrea et al ., 2011) present a number of open

problems and actual research trends related to big data analytics, such as: The data

Source Heterogeneity and Incongruence, Filtering-Out Uncorrelated Data, Strongly

Unstructured Nature of Data Sources, High Scalability. In this context, a main chal-

lenge that has interested the research community and has been the subject of several

works such as (Abouzeid et al ., 2009; Gruska and Martin, 2010) is: Combining the

Bene�ts of RDBMS and NoSQL Database Systems. It is one of the more relevant

features to be achieved by big data analytic systems. As discussed in (Cattell, 2011),

it is necessary to combine the bene�ts of traditional RDBMS database systems and

those of the new generation of NoSQL database systems in order to obtain the crit-

ical �exibility feature which refers to the property of covering a large collection of

analytic scenarios over the same big data partition.

The question is not any more " can Big Data become a relevant competitive

advantage? ", but "How can we exploit the opportunities o�ered by these solutions

to optimize our analysis and decision making process? ".

2.3 Problem description

In a global market where the systems, people and processes are interconnected, data

24

Chapter 2: Problem description and state of the art

is a valuable and strategic asset. This explains the importance attributed to the

storage and analysis of these data and the selectivity of management techniques.

Taking into account new treatment needs, the databases world has evolved and

proposed new technologies and solutions for data management. These new systems

fall into two main categories: the �rst is the classics database management systems;

The second consists in the solutions proposed by the big data approach.

As presented in (Pavlo et al ., 2009), for a long time the DBMSs have been the

standard technology for data warehousing, especially with the advent of parallel

DBMSs that are a robust, high-performance platform based on the relational model

and provides SQL as standard query language.

Faced with the massive growth in the volume of data, despite their evolution,

relational databases, which have been proven for over 40 years, have reached their

limits. These limits are mainly caused by the constraints ACID (atomicity, con-

sistency, isolation and durability) associated with the relational model, these con-

straints which represented the strength of this model, cripple response times when

the database is distributed over a cluster of several machines to handle larger volumes

of data. Relational database systems and decision support tools were not originally

designed to handle such an amount and richness of data, and it can quickly become

complicated and unproductive for companies to access these masses data with clas-

sics tools.Therefore, this new problem has led database management systems called

"NoSQL" (Not Only SQL), which have added some features to classics DBMSs in

favor of simplicity, performance.

According to (Ordonez et al ., 2010), distributed �le systems and MapReduce

present a new technology for such applications. They showed their performance to

manage large amounts of data where DBMSs present limits. This new platform

massively parallel of data processing is considered in (Stonebraker et al ., 2010) as

25

Chapter 2: Problem description and state of the art

the best candidate for complex applications data analysis, because these applica-

tions require complex data stream. MapReduce does not require preliminary data

schema and works well on unstructured data and rarely-modi�ed, while a DBMS is

suitable for transactional queries and data sets that are structured, standardized and

continuously modi�ed.

In the context of data migration, which corresponds to the data transfer from one

system to another in order to bene�t of the technological and functional evolution of

the database management systems (DBMS), the designer responsible for establishing

migration is often faced with the problem of choice the target technology. In this

environment of data explosion and diversity the question is what technology to use

for data analysis, how to bene�t the data management systems diversity? The most

important question in evaluating the needs of an application and whether to use

NoSQL databases or relational databases depends on the type of application being

written, the type of queries that are expected, and the regularity vs. variability of

the data's structure.

As discussed in (Nance et al., 2013), large public and content-centric applications

will tend to be best served by NoSQL databases. In contrast, internal line of business

applications that are supporting business operations will very often be best served

by relational databases and may even be served exclusively by relational databases.

It is important to pick the right database technology for the task at hand. The

relational database model and the NoSQL database model are each good for speci�c

applications. Depending on what problem the organization is trying to solve, it will

determine if a NoSQL database model should be used or if a relational database

model should be used.

Several comparative studies have been conducted between MapReduce and RDBMSs

such as (Mchome et al ., 2011; Ordonez et al ., 2010; Pavlo et al ., 2009; Stonebraker

26

Chapter 2: Problem description and state of the art

et al ., 2010). MapReduce has been presented as a replacement for the Parallel

Database Management Systems. However, as proposed in (Stonebraker et al ., 2010),

MapReduce can be seen as a complement to a RDBMS for analytical applications,

because di�erent problems require complex analysis capabilities provided by both

technologies. Many applications will fall in the middle of that spectrum that may

choose to use both relational databases and NoSQL databases or pick one or the

other depending on the application.

In this context, the question is how organizations should prepare for these devel-

opments in the big data ecosystem, how to bene�t from the diversity of available

proposed technologies, what technology to use for data analysis in such an environ-

ment?

2.4 Related works

A strong interest towards the term �Big Data� is arising in the literature actually.

Many research works focuse on this actual research trends in the �eld. In this con-

text, (Sagiroglu and Sinanc, 2013) presents an overview of big data's content, scope,

samples, methods, advantages and challenges, details big data's main components

and discusses privacy concern on it. Then, (Narasimhan and Bhuvaneshwari, 2014)

provides a brief of the buzz-�eld called Big Data and cover the components of big

data from a Hadoop perspective. This study aims to highlight the �eld's caracteris-

tics with two additional dimensions, and to provide a thorough understanding of big

data and its various components in the Hadoop framework.

In (Cuzzocrea et al., 2011), open problems and actual research trends are high-

lighted with the aim of providing an overview of state-of-the-art research issues and

achievements in the �eld of analytics over big data, and extend the discussion to

analytics over big multidimensional data. This work presents several novel research

27

Chapter 2: Problem description and state of the art

directions arising in this �eld, which plays a leading role in next-generation Data

Warehousing and OLAP research. In (Cuzzocrea et al., 2013), open problems in the

�eld of Data Warehousing and OLAP over Big Data are highlighted. This work aims

to present challenges to adopt Data Warehousing and OLAP methodologies with the

goal of collecting, extracting, transforming, loading, warehousing and OLAPing such

kinds of data sets, by adding signi�cant add-ons supporting analytic over Big Data.

Big data and its analysis are at the center of modern science and business. Since

Google researchers proposed the Map/Reduce programming model for data-analysis

and compute-intensive environments in (Dean and Ghemawat, 2008), a lot of re-

search is focused on this new paradigm in order of evaluation and integration. In

this context, in (Palla, 2009) an insight into the MapReduce framework in terms of

Input/Output cost is provided. This work aimed to exploit the open source Hadoop

implementation of the Map/Reduce framework in order to develop a theoretical cost

model evaluate the Input/Output cost induced on each node during the execution of

a task, and a thorough analysis of three join implementations under the Map/Reduce

data-�ow on the other hand.

The survey presented in (Lee et al ., 2011) intends to assist the database and open

source communities in understanding various technical aspects of the MapReduce

framework. In this survey, the MapReduce framework is characterized and its in-

herent pros and cons are discussed. It introduce its optimization strategies reported

in the recent literature and discuss the open issues and challenges raised on parallel

data analysis with MapReduce.

On the other hand, many research works aim to apply the ideas from multi-query

optimization to optimize the processing of multiple jobs on the MapReduce paradigm

by avoiding redundant computation in the MapReduce framework. In this direction,

MRShare (Nykiel et al., 2010) has proposed two sharing techniques for a batch of jobs.

28

Chapter 2: Problem description and state of the art

The key idea behind this work is a grouping technique to merge multiple jobs that can

bene�t from the sharing opportunities into a single job. However, MRShare incurs

a higher sorting cost compared to the naive technique. In (Wang and Chan, 2013)

two new job sharing techniques are proposed: The generalized grouping technique

(GGT) that relaxes MRShare's requirement for sharing map output. The second

technique is a materialization technique (MT) that partially materializes the map

output of jobs in the map and reduce phase.

The Pig project at Yahoo (Olston et al., 2008), the SCOPE project at Microsoft

(Chaiken et al., 2008), and the open source Hive project2 introduce SQL-style declar-

ative languages over the standard MapReduce model, aim to integrate declarative

query constructs from the database community into MapReduce to allow greater

data independence.

The survey presented in (Ordonez, 2013) explains important research that has

enabled analytics on large databases inside a DBMS in order to negate that DBMS

is not a good technology to analyze big data, going beyond SQL queries, acting just

as a reliable and fast data repository. It argue DBMSs cannot compete with parallel

systems like MapReduce to analyze web-scale text data. Therefore, each technology

will keep in�uencing each other. In addition, it proposes long-term research issues,

considering the big data analytics trend.

On the other hand, a lot of work has been done to compare the MapReduce

model with parallel relational databases and there has been some recent work on

bringing together ideas from MapReduce and database systems. In (McClean et

al ., 2013), broader themes of the paradigms are considered rather than the speci�c

implementations of MapReduce and Parallel DBMS. It will discuss MapReduce and

Parallel Database Management Systems as competing and complimentary paradigms

2http://hadoop.apache.org/hive/. April 2014

29

Chapter 2: Problem description and state of the art

with the aim of providing a high-level comparison between MapReduce and Parallel

DBMS, in order to provide a selection of criteria which can be used to choose between

MapReduce and Parallel DBMS for a particular enterprise application.

In (Nance et al., 2013), the pros/cons of NoSQL are discussed, and NoSQL data

modeling techniques are presented. This work propose that the SQL and NoSQL

models both have their own set of pros and cons that each business has to identify,

and then decide which one is better for their company; or if they should use a

combination of both SQL and NoSQL.

In (Stonebraker et al ., 2010), the di�erences in the architectural decisions of

MapReduce systems and database systems are discussed in order to provide insight

into how the systems should complement one another. This work argues that MapRe-

duce is more like an extract-transform-load (ETL) system than a DBMS, as it quickly

loads and processes large amounts of data in an ad-hoc manner. As such, it com-

plements DBMS technology rather than competes with it, since databases are not

designed to be good at ETL tasks. Then, it describes what is the ideal use of MR

technology and highlights the di�erent MapReduce and parallel DMBS markets.

Several research works have been conducted between MapReduce and RDBMSs

in the goal of integration. In (Gruska and Martin, 2010), the two systems RDBMSs

and MapReduce considered as complimentary and not competitors.In this work, a

taxonomy is provided to characterize several existing integration methods. It propose

a classi�cation and characterization of current MapReduce and RDBMS integration

technologies and argues the need for interoperability between a RDBMS and MapRe-

duce system.

In (Yui and Kojima, 2013) a database-Hadoop hybrid approach to scalable ma-

chine learning is proposed. In this approach, batch-learning is performed on the

30

Chapter 2: Problem description and state of the art

Hadoop platform, while incremental-learning is performed on PostgreSQL. The train-

ing speed is considered as the main metric for evaluating this work.

The work presented in (Abouzeid et al ., 2009) attempted to bridge the gap be-

tween the two technologies, that is, parallel databases and Map/Reduce model, sug-

gesting a hybrid system that combines the best features from both. But this work

evaluated the model having as a metric the computation time and e�ciency.

In (Pavlo et al ., 2009), experiments are conducted to evaluate both parallel DBMS

and the MapReduce model in terms of performance and development complexity.

This work showed that the MapReduce model outperformed in scalability and fault

tolerance, but at the same time underlined the performance limitations of the model,

in terms of computation time. This lack was explained by the fact that the model

was not originally designed to perform structured data analysis.

Big Data has become a very important area and the research topic is very high-

lighted in this �eld. Its analysis and its proposed solutions are at the center of

business and actual research works. The main subjects and available works present

a survey on the Big Data in order to provide an overview of big data's methods, ad-

vantages and challenges and detailing big data's main components. The second part

of research works aims to optimize the treatment of data processing on the MapRe-

duce paradigm by applying the ideas of multi-query optimization to avoid redundant

calculation or introducing SQL-style declarative languages over the standard MapRe-

duce model. In addition, the third part is presented by research works which have

been conducted between MapReduce and RDBMSs in the goal of integration.

Our proposed work is at the level of the current MapReduce and RDBMS integra-

tion technologies, and it aims to minimize the Input/Output cost for data processing.

It evaluates the model having as a metric the implicated Input/Output cost.

31

Chapter 2: Problem description and state of the art

2.5 Conclusion

In this chapter, we described the di�erent problems faced in managing data and

database systems. We also gave the di�erent approaches and studs proposed in the

literature in order to solve these problems.

In the next chapters, we detail our work which includes a re�nement of a pro-

posed cost model for MapReduce process and an approach to integrate MapReduce

paradigm with an RDBMS.

32

Chapter 3

MapReduce cost analysis: proposed
model and suggested re�nement

3.1 Introduction

Organizations look to choose the technology to be used to analyze the huge quantity

of data. The question is about the selection criteria to be considered in processing the

data while meeting the objectives of the organization. The decision support methods

not only provide information but also to choose among several options, depending

on criteria. The decision support tools help the decision maker to make a choice in a

more transparent and more robust. For this purpose several analytical cost models

were developed. A comparison of the cost of data analysis on di�erent technologies

can support the decision making process for processing data while minimizing costs.

In this context, we present in this chapter the concept of cost models, then an

overview on the MapReduce process to propose �nally a re�nement of a proposed

MapReduce cost model.

3.2 Cost models: de�nition and parameters

Cost models play a key role in the performance evaluation. they are necessary to

measure the costs and bene�ts of optimization structures in order to choose the

33

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

optimum con�guration of structures and systems.

3.2.1 Cost model: de�nition

A cost model can be de�ned as a mathematical function for estimating the cost of

performance according to the assigned resources (Gardarin, 2003). In the �eld of

databases, the cost models are mathematical algorithms to estimate the query exe-

cution time. These solutions were used in the �rst time in the context of optimizing

execution. The DBMS vendors have implemented approaches based on cost models

(cost-based approach) to design their query optimizers. These approaches take into

setting an execution plan for a query and return an estimate of its running time, al-

lowing comparing di�erent execution plans for a given query and selecting the best.

A second use of cost models is at the physical design phase in order to select the best

structures optimization (materialized views, indexes, partitioning).

Cost models help to �gure out the cost for certain activities and processes, which

aims to: Choose the best con�guration, Tend to maximize performance, Solutions

selectivity. It is today the most widely applied methodology for measuring execution

cost. The models results are typically necessary to obtain approval to proceed. But

the major disadvantage of a cost model lies in the simplifying assumptions that may

di�er the cost obtained from reality (an overestimated or underestimated cost).

Models typically function through the input of parameters that describe the at-

tributes of the product or project in question and possibly physical resource require-

ments, and provide as output various resources requirements in cost and time.

3.2.2 Cost model: parameters

The parameters considered by the cost models are generally associated with the

logical schema of the database and query loads. In what follows we detail these two

34

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

parameters.

� Logical schema parameters: We consider a logic schema LS consists of n tables

T = {T1,T2, . . . ,Tn}. Two parameters are important for each data table

: The number of n-tuple denoted || Ti || and the actual table size measured

in bytes, denoted |Ti|. The table 3.1 summarizes the parameters of the logical

schema. The size of the logical schema is denoted ||LS||, it is equal to the sum

of the sizes of the set of tables T.

||LS|| =
n∑

i=0

||Ti|| (3.2.1)

Table 3.1: The parameters of the logical schema

Parameter Description

Ti Dimension table T
n Number of tables of the logical schema

||T|| The size of a table T
|T| The size of a table T in bytes (the number of pages storing T)
||LS|| The size of the logical schema

� Queries parameters: The cost of query execution depends on two di�erent costs:

the cost of Input/Output and the cost of processing by the processor.As ex-

plained in (Boukhalfa, 2009), Most existing models of cost do not include the

CPU cost since it is well below the Input/Output cost. The only parameters

related to requests to consider are the operations performed by these queries

such as selecting, join or aggregation.

The performance of the cost model is based on its dependence on various factors

35

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

of the platform used. The cost model, being based on the simulation of the operation

of the system we will study carefully MapReduce process.

3.3 MapReduce process: an overview

As presented in (Zaharia et al., 2008) MapReduce is emerging as an important pro-

gramming model for large-scale data-parallel applications such as web indexing, data

mining, and scienti�c simulation. In (Lammel, 2008), it is proposed that MapReduce

serves for processing large data sets in a massively parallel manner. The �gure 3.3.1

shows an overview of a process of execution MapReduce.

Figure 3.1: MapReduce process overview

The Map/reduce process consists of a sequence of actions/steps that are described
as follows:

36

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

� When the input data is loaded on the cluster, it is split into N blocks according

to a prede�ned size. The set of blocks is distributed across the nodes. In

addition, the framework starts a block replication across several machines to

prevent data loss.

� There will be M map tasks that equals to the blocks number. The single node

that constitutes the master schedules the map task distribution among the work-

ers following the data locality optimization approach.

� Each worker assigned with a map task reads the records from the corresponding

input split. This corresponds to the reading phase of a map task. The mapper

converts each record into a Key/Value pair, does the desired transformation

based on the user's de�ned map function and outputs a set of intermediate

key-value pairs which will be stored in memory corresponding to the bu�ering

phase.

� When the bu�er exceeds a threshold, the intermediate outputs bu�ered in mem-

ory, are periodically spilled to local disk in sorted partitions.

� There will be as many as reduce tasks than partition. Each worker assigned

with a reduce task fetches the right partition of data from each map output and

writes it in memory.

� The fetched partitions are merged constructing pairs of Key/List(Values) based

on the same key.

� The new intermediate pairs of Key/List(Values) are combined based on the

user's de�ne reduce function to result a new key/value pair. The output of the

reducers is written and stored in the HDFS.

In order to analyze the Input/Output cost of MapReduce process, a study of the

architecture of the framework and consider every intermediate step carefully is re-

quired. the MapReduce Input/Output cost model is presented in the next section.

3.4 MapReduce process: Input/Ouput cost model

MapReduce is a programming model for performing parallel computations on large

37

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

data sets. In the fashion of integrating this paradigm with a RDBMS, we opt to

calculate the cost of performing each of these paradigms. In this context, and for

the MapReduce framework, we are inspired from (Palla, 2009) which provides an

insight into the Map/Reduce framework in terms of Input/Output cost, presents

a thorough analysis of the map and reduce tasks and introduces a cost model for

each one. Exploiting the open source Hadoop implementation of the MapReduce

framework, having the partitioning over the key space and the grouping based on

the same key as main components of the standard MapReduce data �ow, this model

develops a theoretical cost model to evaluate the Input/Output cost induced on each

node during the execution of a task. It studied the data-�ow of a map and reduce

task and extracted a cost model that evaluates the Input/Output cost related to

each task. Based on this model, we used it to develop our theoretical cost model in

order to evaluate and compute the total cost of each job for a MapReduce process.

We implement a MapReduce cost model, and we propose a re�nement.

Performance cost model is based on its dependence on various factors. Thus,

in terms of parameters, the MapReduce cost model also depends on the input �le

to be processed. A MapReduce process takes an input �le. This �le is based on

many parameters: the �rst is the �le type , and then we focus on the ability of the

framework to handle multiple �le types compared with traditional DBMSs which

handles only tables; Then, the �le size; the number of records in the �le and the

number of attributes per record; The origin of the input �le that can be given or

resulting from other operations. Thus, from the standpoint of system the �le is

implemented as a table, hence the presence of a Row Identi�er (RID). For physical

parameters, it includes the number of nodes forming process execution cluster, the

number of map and reduce tasks that can run simultaneously on a single node, the

cost of data transfer and the size of the Row Identi�er.

38

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

3.4.1 Input/Output cost model assumptions

The proposal of a mathematical model of cost is generally based on simplifying

assumptions to simplify the development of mathematical functions of di�erent query

execution costs. In our study we consider the following assumptions:

� The data are distributed uniformly and attributes are independent; these both

assumptions are widely used in estimating execution time queries in DBMSs.

� The CPU cost is negligible compared to the Input/Output cost.

� Join strategy is Repartition join.

� All nodes have the same physical characteristics and the bu�er size of each node

is large enough to hold the data.

Based on these assumptions we will detail in the following sections the Input/Output

cost analysis of the two main phases of a MapReduce process.

3.4.2 Input/Output cost analysis of the Map phase

An input �le in a MapReduce process will be split into one or more blocks in a size

already prede�ned and con�gurable. The con�guration of this parameter depends on

the size of the input, and depends on the performance of resources allocated. This

prede�ned size of a block is a performance criterion since it in�uences the number

of Map tasks, the time data loading and the execution time of tasks. Then, each

block is replicated across several machines to prevent data loss is case of a single

machine failure. The number of map task to perform will be equal to the number of

blocks. The �gure 3.2 shows the steps involved in performing a map task during a

MapReduce process.

39

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

Figure 3.2: Map phase data �ow with a single map task

For each map task, the triggered map process read the input and writes the

relevant output to disk. In addition, the process includes sorting and partitioning

stages where writes to bu�er and spills to disk take place.

The performance of the tasks map as well as the estimation of the cost of execution

of every task depends of a set of con�gurable parameters related to the platform.

The table 3.2 outlines the main parameters involved in the cost model for the Map

task.

40

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

Table 3.2: Platform main parameters for Map task

Parameter Description

Dfs.blocksize Default block size.
Io.sort.mb The total amount of bu�er memory to use while

sorting �lesss.
Io.sort.record.percent The percentage of io.sort.mb dedicated to tracking

record boundaries.
Io.sort.spill.percent The soft limit in either the bu�er or record collection

bu�ers.
Io.�le.bu�er.size The size of bu�er for use in sequence �les. (should sbe

a multiple of hardware page size). It determines how
much data is bu�ered during read and write operations.

Io.sort.factor The number of streams to merge at once while sorting
�les. This determines the number of open �le handles.

Each map task can be divided into three phases: reading phase, bu�ering phase

and the writing phase.

3.4.2.1 Reading phase

During reading phase, each map task reads the input which is called split. The

Master, using knowledge of the �le system, tries to assign the processing of each

block to the Worker on which the data block is actually stored. Each mapper reads

the input record by record and converts it into a Key/Value pairs. Based on the user-

de�ned map function, the propagated key/Value pairs are transformed on a new set

of Key/Value pairs, which is pushed to the subsequent phase. Since the input is

directly fetched from the HDFS, the Input/Output cost of this phase equals to zero.

3.4.2.2 Bu�ering phase

During bu�ering phase, the map output (set of Key/Value pairs) is serialized and

written to a circular bu�er. Thus, three procedures take place: partitioning, sorting

and spilling to disk.

41

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

The con�guration property �io.sort.mb� de�nes the available bu�er size. In details,

there is a main bu�er called serialization bu�er which is dedicated to collect the

output; and the accounting bu�ers: two additional bu�ers which maintain location

of key and value for records in order to facilitate the sorting procedure. The value

of the con�guration property �Io.sort.record.percent� de�nes the percentage of the

bu�er size dedicated to storing meta-data:

� Meta-data bu�er size:

buffmtdt = (io.sort.mb) ∗ (io.sort.record.percent) (3.4.1)

� Serialization bu�er size:

buffserial = (io.sort.mb)− [(io.sort.mb) ∗ (io.sort.record.percent)] (3.4.2)

Each emitted record is serialized into the main bu�er and meta-data are stored into

accounting bu�ers. Since the con�guration property �Io.�le.bu�er.size� determines

the amount of data bu�ered during read and write operations, the maximum number

of records the bu�er can store will be equal to available bu�er size divided by the

size of records which can be obtained by dividing the split size by the number of

records contained in each block of input data. When either of the serialization or

the meta-data bu�er exceeds a threshold, the contents of the bu�ers will be sorted

and spilled to disk in the background. The spilling threshold is triggered according

to the percentage de�ned by the property con�guration �Io.sort.spill.percent� which

determines the soft limit in either of the serialization and meta-data bu�ers. In

most cases, the �Io.sort.record.percent� that determines the size of the meta-data

bu�er, is chosen low enough (0.05 by default); Consequently the spill threshold of

the accounting bu�ers is the �rst one to be reached. Once reached, a thread will

begin to spill the contents to disk in the background.

42

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

The Input/Output cost of the bu�ering phase equals to the cost of writing the

whole input split, divided in spills.

3.4.2.3 Writing phase

This last phase for the map task requires that the spill �les are merged in order

to end up with a single sorted output �le. To achieve this, a merging algorithm is

implemented and is repeated as many times as the number of the partitions deter-

mined by user. The spill �les consist the input of this phase which are stored on

the local disk. Each spill �le is divided in sorted partitions, then each iteration of

the algorithm merges the same partitions of each spilled �le. The �gure shows an

example of running the merging algorithm.

Figure 3.3: Map phase data �ow with a single map task

That is, as illustrated in the example presented in the �gure 3.3, for 4 sorted

partitions in each spill �le,P1 P2 P3 and P4 the merging algorithm will be repeated

4 times and during each iteration the spill �les contribute the same partition; the

�rst iteration will merge the P1 partitions of each spill �le, the second will merge

43

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

the P2 partitions, the third for merging the P3 partitions and the fourth for the

P4 partitions. The set of the same partitions being merged during each iteration is

called set of segments where each segment is a set of records that belong to the same

partition and to the same spill �le.

3.4.2.4 Map task total cost

The total cost of the map task includes the cost of reading the whole input split,

the cost of writing the spill �les and �nally the cost of merging. It is the sum of the

costs induced by the reading, bu�ering and writing phases.

CostMap = Costread + Costbuff + Costwrite (3.4.3)

3.4.3 Input/Output cost analysis of the Reduce phase

The high degree of parallelization and the overlap in the operations of the reduce

task have made the complication of the reduce phase. The reduce task includes three

phases: the shu�e/copy, sort and reduce phases which are depicted in the �gure 3.3.

44

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

Figure 3.4: Reduce phase data �ow with a single reduce task

Same as every part of the MapReduce process, the reduce task and mainly its

Input/Output cost, highly depends on the con�guration properties that regulate the

setup of the cluster. The table 3.3 outlines the main parameters involved in the cost

model for the Reduce task.

Table 3.3: Platform main parameters for Reduce task

Parameter Description

Mapred.child.java.opts Heap size associated with each task.
Mapred.job.shu�e.input.bu�er.percent Percentage of memory to be allocated

from the maximum heap size to
sorting map outputs during the

shu�e.
Mapred.job.shu�e.merge.percent Percentage of the total memory

allocated to sorting in memory map
outputs.

Io.sort.factor The number of streams to merge at
once while sorting �les. This

determines the number of open �le
handles.

In every map-reduce job, there would be as many reduce tasks as the number of

partitions, and the Map output �les actually constitute the input of the reducers.

45

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

For simplicity, we still assume that all map outputs received by the reducer are of

approximately equal size.

3.4.3.1 Shu�e/Copy phase

During the copy phase each reduce task copies the map outputs locally. The property

�mapred.child.java.opts� provides a memory of a prespeci�ed size to each task. How-

ever, only a percentage �mapred.job.shu�e.input.bu�er.percent� of it can be used for

copying.

MaxMemoryshuff = (mapred.child.opts)∗(mapred.job.shuffle.input.buffer.percent)
(3.4.4)

A size of less than 25% of the MaxMemoryshu� will allow map output to be

written in memory, otherwise it is propagated to disk. When the in-memory bu�er

reaches a threshold size, the in-memory outputs are merged and spilled to disk cre-

ating a new local �le. this threshold is determined by the con�guration property

�mapred.job.shu�e.merge.percent�.

InMemorythreshold = (MaxMemoryshuff) ∗ (mapred.job.shuffle.merge.percent)
(3.4.5)

3.4.3.2 Sort phase

This second phase of the reduce task starts after all the map outputs have been

successful copied in memory and/or on disk. This phase is carried out in a way that

maintains the Map phase sort order.

46

Chapter 3: MapReduce cost analysis: proposed model and suggested re�nement

3.4.3.3 Reduce phase

During this last phase of the reduce task, the reduce function is invoked for every

pair of key/value. The output of this phase is written directly to the output �le

system in the HDFS. As no bytes are read or written locally, then it results in no

Input/Output cost.

3.4.3.4 Reduce task total cost

The total cost of the reduce task, is the following sum of the three involved phases:

copy/shu�e phase, sort phase and reduce phase.

CostRed = CostShuff + Costsort + Costred (3.4.6)

3.5 Conclusion

In this chapter, we presented brie�y a simpli�ed overview of a MapReduce In-

put/Output cost model in order to use it for the implementation of our proposed

approach.

In the next chapters, we detail this approach which propose to integrate MapRe-

duce paradigm with an RDBMS and we present the results of our work evaluation.

47

Chapter 4

The proposed approah: OLAP over
Big Data

4.1 Introduction

Data processing needs are changing with the ever increasing amounts of both struc-

tured and unstructured data. While the processing of structured data typically relies

on the well developed �eld of relational database management systems (RDBMSs),

MapReduce is a programming model developed to cope with processing immense

amounts of unstructured data.

In this context, we present in this chapter our approach for integrating the two

paradigms RDBMS and MapReduce with the aim of minimizing the Input/Output

cost. First, we present the general context and our contribution, then we detail our

approach implementation.

4.2 Context and contribution

Businesses are collecting more information than ever, and the amount of data being

kept is increasing dramatically. It has become essential to have powerful tools to

verify and analyze information in order to support the decision-making process and

to make the decision the most adapted at a given moment.In this context, Business

48

Chapter 4: The proposed approach: OLAP over Big Data

Intelligence (BI) is installed and the new methods such as OLAP and data ware-

housing are introduced. Thus, data warehouses, as presented in (Furtado, 2009), are

the basis of decision-support (OLAP OnLine Analytical Processing), which requires

complex decision-support queries and very time-consuming process because these

queries require star joins between the fact table and the dimension tables. Several

solutions are possible and used to improve the performance of these applications.

Nowadays, the database market has received much attention and is increasingly

growing. As proposed in (Abouzeid et al ., 2009), along with evolution data bases

world, increasing volume of data and the need of data management, there are two

popular schools of thought for performing large-scale data processing that does not

�t into memory. The one is classic DBMSs that are capable of e�ciently manag-

ing, updating and querying tables and structured data. The other school of thought

suggests analytical function into NoSQL Database management system, presented in

(Strauch et al ., 2011), that appoints a category of DBMSs based on non-relational

distributing architecture. For the �rst school of thought, we will look to ORDBMS

that present the result of merge of RDBMS and ODBMS; and speci�cally Post-

greSQL, presented in (Worsley and Drake, 2002), the most notable research project

in the �eld of ORDBMSs. For the second school, we will be interested in Hadoop

MapReduce, proposed in (Dean and Ghemawat, 2008), the simple programming

framework popularized by Google but yet powerful way to implement distributed

applications without having deeper knowledge of parallel programming. Thus, the

administrator must choose the optimal or near-optimal solution. The choice of the

optimal con�guration of structures is based on the evaluation of the quality of con-

�gurations generated, which can be done using cost models. In this context, we

propose, a database-Hadoop hybrid approach. We will discuss Hadoop MapReduce

and RDBMS as competing and complimentary paradigms in order to bene�t of both

approaches and overcome their limitations. The basic idea behind our approach is

49

Chapter 4: The proposed approach: OLAP over Big Data

based on the cost model to approve execution and selectivity of solutions based on

the estimated cost of execution. To support the decision making process for analyz-

ing data while minimizing costs, we proposed to compare the estimates of the costs

of running a query on Hadoop MapReduce compared to PostgreSQL to choose the

least costly technology. For a better control, we will proceed to a thorough query

analysis.

4.3 Pushed analysis of a query's execution

In this section we will detail the process of our proposed approach. To have a

better explanation, quite the stages of the process of the proposed approach will be

illustrated by examples of processing of the following OLAP query.

50

Chapter 4: The proposed approach: OLAP over Big Data

The detailed analysis of the queries execution costs showed a gap mattering be-

tween both paradigms. Hence the idea of the thorough analysis of the execution

process of each query and the implied cost. To better control the cost di�erence

between costs of Hadoop MapReduce versus PostgreSQL on each step of the query's

execution process, we propose to dissect each query for a set of operations that

demonstrates the process of executing the query. In this way we can check the im-

pact of the execution of each operation of a query on the overall cost and we can

control the total cost of the query by controlling the partial cost of each operation.

In this context, we are inspired from a work done in (Boukorca et al ., 2014) to

provide a detailed execution plan for OLAP queries. This execution plan zooms in

on the sequence of steps of the process of executing a query. It allows detailing

the various operations of the process highlighting the order of succession and depen-

dence. The presented execution plan below illustrates various execution phase of the

proposed sample query.

51

Chapter 4: The proposed approach: OLAP over Big Data

In addition to dissect the implementation process, the execution plan details for

each operation the amount of data by the accuracy of the number of records involved

and the dependence implemented in the succession of phases. These parameters will

be needed to calculate the cost involved in each operation. After distinguishing the

di�erent operations of the query, the next step is to calculate the unit cost of each

operation. As part of our approach we will learn on this work in order to dissect

each query and focus on each separate operation. That way we can control the

di�erent stages of the execution process of each query with the aim of calculate the

cost implied by each operation as well as its in�uence on the total cost of the query.

Therefore we can control the cost of each query to support the decision making

process and the selectivity of the proposed solutions based on the criterion of cost

minimization.

52

Chapter 4: The proposed approach: OLAP over Big Data

4.4 Queries cost estimation

Having identi�ed all operations performed during the query execution process the

next step is then to calculate the cost implied in each operation independently, in

both paradigms PostreSQL and Hadoop MapReduce with the aim of controlling

the estimated costs di�erence according to the operations as well as the total cost of

query execution. At this stage we consider each operation independently to calculate

an estimate of its cost execution on PostreSQL on one hand then on MapReduce on

the other hand.

4.4.1 Cost estimation on PostgreSQL

PostgreSQL is a free object-relational database management system. It runs on

various hardware platforms and under di�erent operating systems and it is widely

recognized for its stable behavior, and for its extensive programming possibilities

via PL/pgSQL. PostgreSQl provides the possibility of itemize each operation by an

incremental value of the Input/Output cost implied in each step. The �gure below

shows the detailed execution process of the query example, proposed on the previous

section, on PostgreSQL:

53

Chapter 4: The proposed approach: OLAP over Big Data

In PostgreSQl platform, the command �explain� show the execution plan of a

statement. This command displays the execution plan that the PostgreSQL planner

generates for the supplied statement. Besides the succession of the executed opera-

tions, the most critical part of the display is the estimated statement execution cost,

which is the planner's guess at how long it will take to run the statement (measured

in cost units that are arbitrary, but conventionally mean disk page fetches). It in-

clude information on the estimated start-up and total cost of each plan node, as well

as the estimated number of rows. Actually two numbers are shown: the start-up

cost before the �rst row can be returned, and the total cost to return all the rows.

Therefore for each operation, the cost should be the di�erence between these two

54

Chapter 4: The proposed approach: OLAP over Big Data

values.

4.4.2 Cost estimation on Hadoop MapReduce

In a MapReduce system, a query star join between F (fact table) and n dimension

tables, runs a number of phases, each phase corresponds to a MapReduce job. So,

for MapReduce paradigm we have �rst to extract the number of jobs that will be

run for executing the query. The MapReduce job number depends on the number of

joint and the presence or absence of aggregation and sorting data. There are three

cases of �gure: The request contains only n successive joint operations between

F and n dimension tables; Join operations are followed by a process of grouping

and aggregation on the results of the joint; Sort is applied to the results. In this

context, we propose to relie on the equation (4.4.1) presented bellow, and inspired

from (Brighen, 2012). This equation allows to determine the number of MapReduce

jobs implied in the execution of a given OLAP query. This number can be estimated

by the following formula:

Nbrjob(q) = n+ x (4.4.1)

The �n� refers to the number of dimension tables. The �x� can be equal to: 0, if

the query involves only join operations; 1, if the query contains grouping operations

and aggregation; 2, if the results are sorted. After identifying all the jobs of query

execution, the next step is to calculate the Input/Output cost implicated in each job.

In this stage, we relied on the mentioned work done by Ahcene Bokorca to extract

the amount of data and the number of records involved in each operation. These two

parameters will be used in the re�ned cost model presented in the previous chapter,

55

Chapter 4: The proposed approach: OLAP over Big Data

in order to calculate the Input/Output cost of each job.

4.5 Discussion

The analysis of the results of the estimated costs independently for each operation

showed the high cost of the �rst join operation executed on PostgreSQL, and a

noticeable di�erence for the Hadoop MapReduce paradigm. This can be explained

by the fact that in the case of data warehouses, the fact table is still the largest

table in terms of number of tuples, which explains the high cost of its analysis.

Hence our idea of performing the �rst joint operation that integrates fact table on

Hadoop MapReduce framework which proves competence for heavy processing to be

performed on a large volume of data. In this way we try to minimize the cost of

the query execution by minimizing the cost of the most expensive operation. Other

operations required by the query such as aggregation, sorting, in addition to other

join operations will be passed on PostgreSQL.

On the other hand, nowadays organizations are increasingly concerned about

data. This can be explained by the strategic role of data management for the enter-

prise.This same data contain very often con�dential and exclusive information such

as information relative to the customers or to the �nancial results, which explain

the importance of learning the best practice in quality control of the data and en-

sure its privacy and security, especially in the era of cloud computing presented in

(Vouk, 2008) and the remote storage and data analysis. Therefore we try to limit the

external data analysis in order to preserve the privacy of the data especially when

it comes to the dimension tables that contain data values from the fact table that

contains only foreign keys. Therefore, by moving only the �rst join operation on

Hadoop MapReduce we try to limit the external data analysis in order to preserve

the data privacy especially when it comes to the dimension tables that contain data

56

Chapter 4: The proposed approach: OLAP over Big Data

values versus the fact table that contains only foreign keys.

4.6 Conclusion

We detailed in this chapter the principles of our proposed approach: OLAP over Big

Data.

In order to evaluate the performance of our method, the next chapter will describe

the implementation of our system and the results generated by the framework besides

the evaluation of its e�ectiveness.

57

Chapter 5

Experiments and results

5.1 Introduction

In order to validate our approach presented in the previous chapter and prove its per-

formance, we present in this section the results of experiments conducted to evaluate

the proposed approach performance as well as gain cost compared with the cost re-

quired by each platform independently. This chapter presents the work environment

and used compares the results obtained by the approach.

5.2 Experimental environment

The experiments involve two DBMSs: an ORBMS PostgreSQL and a NoSQL DBMS

Hadoop MapReduce. To test and compare our theoretical expectations with the real

values, we set up a cluster consisting of one node and conducted a series of experi-

ments. For all the experiments, we use the version 9.3 of PostgreSQL. For Hadoop,

we used the version 2.0.0 with a single node as worker node hosting TaskTracker and

DataNode, and as the master node hosting JobTracker and NameNode. The tables

5.1 and 5.2 present the platform parameters for Hadoop MapReduce framework for

both phases Map and Reduce.

58

Chapter 5: Experiments and results

Table 5.1: Platform parameters for the Map task

Parameter Value
Dfs.blocksize 128 MB
Io.sort.mb 50

Io.sort.record.percent 0.05
Io.sort.spill.percent 0.80
Io.�le.bu�er.size 65536
Io.sort.factor 64

Table 5.2: Platform parameters for the Reduce task

Parameter Value
Mapred.child.java.opts 145171557 MB

Mapred.job.shu�e.input.bu�er.percent 0.70
Mapred.job.shu�e.merge.percent 0.66

Io.sort.factor 64

In addition, we implemented two jobs: the �rst (job 1) get the occurrence of a

record, and the second (job 2) search the not null rows. Then, we run each job on

two text �les of di�erent size and di�erent records number (presented in the table

5.3 below).

Table 5.3: Experimentation �les

Size Records Attributes
File 1 262 MB 36013069 1
File 2 228 MB 8946601 4

We worked on a workload of 30 queries OLAP (presented in the annexe). The

training data consisted of a data warehouse of 100GB of data with a fact table

(Lineorder) and 4 dimension tables (Dates, Part, Supplier, Customer) whose the

record's number per table and the instance size are shown in the table 5.4 below.

59

Chapter 5: Experiments and results

Table 5.4: Data warehouse's caracteristics

Table Record's number Size of an instance
Lineorder 600000000 84
Dates 2556 92
Part 1400000 84

Supplier 200000 85
Customer 3000000 95

Figure 5.1 details the attributes of the data warehouse's fact table. It shows the

table's attributes list and specify the type and constraints of each attribute.

Figure 5.1: Fact table: Lineorder

Figures 5.2, 5.3, 5.4 and 5.5 detail the attributes of the data warehouse's dimen-
sion tables respectively Dates, Part, Supplier and Customer. Each �gure details
the attributes of the corresponding table, and specify for each table the type and
constraints of each attribute contained in the attributes list.

60

Chapter 5: Experiments and results

Figure 5.2: Dimension table: Dates

Figure 5.3: Dimension table: Part

61

Chapter 5: Experiments and results

Figure 5.4: Dimension table: Supplier

Figure 5.5: Dimension table: Customer

After presenting the work environment, we will present and discuss the obtained

results.

62

Chapter 5: Experiments and results

5.3 Results presentation

Our approach proposes an hybrid model between ORDBMS and Hadoop MapRe-

duce, based on the comparison of Input/Output costs on the both paradigms. At

this stage, we will present the results of MapReduce re�ned Input/Output cost model

and the results of the implementation of the proposed approach.

5.3.1 MapReduce re�ned Input/Output Cost model results

The results returned by our MapReduce re�ned Input/Output cost model vary of

87-90% compared to the actual values of running jobs on MapReduce. The table 5.5

presents the results returned by the re�ned Input/Output cost model for running two

implemented jobs on both �les described in the previous section (Theoretical cost),

well as the real Input/Output costs of the same process on the Hadoop MapReduce

platform (MR cost).

Table 5.5: Input/Output cost model results

Job File Theoretical cost MR cost %

Job 1 File 1 2594790162 2320781012 89%
File 2 621699124 539670838 87%

Job 2 File 1 2594790162 2350781018 90%
File 2 621699124 539670844 87%

The theoretical cost is the same for the execution of both jobs on the �rst �le, and

even for the execution of both jobs on the second �le. This can be explained by the

fact that our re�ned Input/Output cost model take in parameters the �le size and

the number of records, but it is not sensitive to the nature of treatment implemented

in the job to run. We draw interesting conclusions by comparing the predicted values

with the real ones provided by the framework. Observing the values in table 5.5,

we conclude that our re�ned cost model provided a good approximation of the real

63

Chapter 5: Experiments and results

Hadoop MapReduce Input/Output cost. The estimated costs are only slightly over

predicted compared to the real values. Theoretical costs are from 87 to 90% of the

real Hadoop MapReduce costs.

We will use this Input/Output cost model to the implementation of our proposed

approach.

5.3.2 Proposed approach results

The results of the application of the proposed approach are presented in the table

5.6 below. It shows the total Input/Output cost of running the workload on Hadoop

MapReduce (Tot_cost_MR), the total Input/Output cost of running the workload

on ORDBMS PostgreSQL (Tot_cost_PG), the total Input/Output cost of the work-

load by applying our proposed approach (O.O.B.G), the total Input/Output cost of

the workload by choosing for each operation of each query the lowest cost between

Hadoop MapReduce and PostgreSQL (Best_Cost_MR_PG).

Table 5.6: proposed approach result

Tot_cost_MR Tot_cost_PG O.O.B.D Best_Cost_MR_PG
505579305,9 786297800,8 369473436,7 365360413

Observing the values presented in table 5.6 illustrate the di�erence of the cost

saved up by the application of the proposed approach. The total cost of running all

the workload under the proposed approach is only slightly over predicted compared

to the cost estimated cost to run the workload by choosing for each operation of each

query the lowest cost between the two proposed paradigm (Hadoop MapReduce and

PostgreSQL).

The histogram presented in the �gure 5.1 shows the gain of the Input/Output cost

by running the workload independently on Hadoop MapReduce and on postgreSQL.

64

Chapter 5: Experiments and results

In addition, it compare the Input/Output cost of the workload obtained by applying

our proposed approach to the Input/Output the cost obtained if we choose the lower

cost for each operation contained in the execution plan of each query.

Figure 5.6: Comparative results

The �gure 5.1 illustrates the notable di�erence of the Input/Output cost of run-

ning the workload by applying the proposed approach compared to the Input/Output

running cost on the two paradigms PostgreSQL and Hadoop MapReduce separately.

The gain estimated of the Input/Output cost saved up by running the workload

tanks to applying the proposed approach is of 27% compared to Hadoop MapReduce

and 53% compared to PostgreSQL. This percentage gain proves the performance of

our proposed approach. In addition, the cost returned by our proposed approach is

98.8% of the optimal cost obtained in the case of choosing for each operation of each

query the lowest cost between Hadoop MapReduce and PostgreSQL. Also, we have

to highlight the advantage of our proposed approach in the limitation of the external

data analysis in order to preserve its privacy, by moving only the �rst join operation

on Hadoop MapReduce. This way we try to preserve the data privacy contained in

65

Chapter 5: Experiments and results

the dimension tables that contain data values versus the fact table that contains only

foreign keys.

5.4 Conclusion

We exposed in this chapter our system implementation and its evaluation. The

comparison of our system with results of each paradigm separately proved the higher

performance of our search results con�rming our model's e�ectiveness.

66

Conclusion

Given the exploding data problem, the world of databases has evolved which aimed

to escape the limitations of data processing and analysis. There has been a signi�cant

amount of work during the last two decades related to the needs of new supporting

technology for data processing challenged by the rise of data generation to escape

the limitations of existing technologies for data analysis.

In order to achieve the goal of this, we went through several stages. We began

by gathering information and reading articles and student theses. Then we studied

the two approaches proposed by the research community and known to be good

methods for data process and analysis which are DBMSs and precisely the ORDBMSs

(PostgreSQL), and NoSQL DBMSs and precisely Hadoop MapReduce.

In this context, we propose a new approach to optimizing Input/Output cost.

At �rst, we introduce some notions about DBMSs and NoSQL. Then we dealt with

the recently introduced Google's programming model Map/Reduce and we presented

the cost model on which we based on implementation of our proposed approach of a

database-Hadoop hybrid model. We then presented the results of our experiments.

Our experiments show that our proposed approach is able to approach the per-

formance of MapReduce and PostgreSQL independently. The results revealed that

our proposed techniques outperform the PostgreSQL DBMS by up to 40%, and the

Hadoop MapReduce by up to 70%, compared to the Input/Output cost of OLAP

workload running.

67

Conclusion

Having discussed the conclusions drawn by our work, our attention can turn to

what else may be done in the future. Interesting perspectives emerge to further

strengthen the proposed approach. One interesting direction would be that of a

systems-level hybrid.

68

Appendix:

69

workload used for approach
evaluation

Q1: select sum(lo_extendedprice*lo_discount) as revenue from lineorder, dates
where lo_orderdate = d_datekey and d_year = 1993 and lo_discount >= 1 and
lo_discount <= 3 and lo_quantity < 25

Q2: select count(*) from lineorder, dates where lo_orderdate = d_datekey and
d_year = 1993 and lo_discount >= 1 and lo_discount <= 3 and lo_quantity < 25

Q3: select sum(lo_extendedprice*lo_discount) as revenue from lineorder, dates
where lo_orderdate = d_datekey and d_year = 1993

Q4: select count(*) from lineorder, dates where lo_orderdate = d_datekey and
d_year = 1993

Q5: select sum(lo_revenue), d_year from lineorder, dates, part, supplier where
lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey
and p_brand = 'MFGR#2221' and s_region = 'ASIA' group by d_year order by
d_year

Q6: select sum(lo_revenue) from lineorder, part where lo_partkey = p_partkey
and p_brand = 'MFGR#2221'

Q7: select avg(lo_revenue), d_year from lineorder, dates, part, supplier where
lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey
and p_brand = 'MFGR#2221' and s_region = 'ASIA' group by d_year order by
d_year

Q8: select sum(lo_revenue), d_year from lineorder, dates, part, supplier where
lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey

70

Appendix

and p_brand = 'MFGR#2221' and s_region = 'EUROPE' group by d_year, p_brand
order by d_year, p_brand

Q9: select sum(lo_revenue) from lineorder, part, supplier where lo_partkey =
p_partkey and lo_suppkey = s_suppkey and p_brand = 'MFGR#2221' and s_region
= 'EUROPE'

Q10: select count(*), d_year from lineorder, dates, part, supplier where lo_orderdate
= d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_brand
= 'MFGR#2221' and s_region = 'EUROPE' group by d_year order by d_year

Q11: select c_nation, s_nation, d_year, sum(lo_revenue) as revenue from line-
order,customer, supplier, dates where lo_custkey = c_custkey and lo_suppkey =
s_suppkey and lo_orderdate = d_datekey and c_region = 'ASIA' and s_region =
'ASIA' and d_year >= 1992 and d_year <= 1997 group by c_nation, s_nation,
d_year order by d_year asc, revenue desc

Q12: select s_nation, sum(lo_revenue) as revenue from lineorder, supplier where
lo_suppkey = s_suppkey and s_region = 'ASIA' group by s_nation order by revenue
desc

Q13: select s_nation, count(*) as revenue from lineorder, supplier where lo_suppkey
= s_suppkey and s_region = 'ASIA' group by s_nation order by revenue desc

Q14: select s_nation, d_year, sum(lo_revenue) as revenue from lineorder, supplier,
dates where lo_suppkey = s_suppkey and lo_orderdate = d_datekey and s_region
= 'ASIA' and d_year >= 1992 and d_year <= 1997 group by s_nation, d_year
order by d_year asc, revenue desc

Q15: select c_nation, s_nation, d_year, avg(lo_revenue) as avg_revenue from
lineorder,customer, supplier, dates where lo_custkey = c_custkey and lo_suppkey
= s_suppkey and lo_orderdate = d_datekey and c_region = 'ASIA' and s_region
= 'ASIA' and d_year >= 1992 and d_year <= 1997 group by c_nation, s_nation,
d_year order by d_year asc, avg_revenue desc

Q16: select c_nation, s_nation, d_year, count(*) from lineorder,customer, supplier,
dates where lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate

71

Appendix

= d_datekey and c_region = 'ASIA' and s_region = 'ASIA' and d_year >= 1992
and d_year <= 1997 group by c_nation, s_nation, d_year order by d_year asc

Q17: select c_city, s_city, d_year, sum(lo_revenue) as revenue from lineorder,customer,
supplier, dates where lo_custkey = c_custkey and lo_suppkey = s_suppkey and
lo_orderdate = d_datekey and c_nation = 'UNITED STATES' and s_nation =
'UNITED STATES' and d_year >= 1992 and d_year <= 1997 group by c_city,
s_city, d_year order by d_year asc, revenue desc

Q18: select s_city, sum(lo_revenue) as revenue from lineorder, supplier where
lo_suppkey = s_suppkey and s_nation = 'UNITED STATES' group by s_city
order by revenue desc

Q19: select s_city, avg(lo_revenue) as avg_revenue from lineorder, supplier where
lo_suppkey = s_suppkey and s_nation = 'UNITED STATES' group by s_city order
by avg_revenue desc

Q20: select c_city, s_city, count(*) from lineorder,customer, supplier where lo_custkey
= c_custkey and lo_suppkey = s_suppkey and c_nation = 'UNITED STATES' and
s_nation = 'UNITED STATES' group by c_city, s_city

Q21: select c_city, s_city, d_year, avg(lo_revenue) as avg_revenue from line-
order,customer, supplier, dates where lo_custkey = c_custkey and lo_suppkey =
s_suppkey and lo_orderdate = d_datekey and c_nation = 'UNITED STATES' and
s_nation = 'UNITED STATES' and d_year >= 1992 and d_year <= 1997 group
by c_city, s_city, d_year order by d_year asc, avg_revenue desc

Q22: select c_city, s_city, d_year, count(*) from lineorder,customer, supplier, dates
where lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate =
d_datekey and c_nation = 'UNITED STATES' and s_nation = 'UNITED STATES'
and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order
by d_year asc

Q23: select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as
pro�t from lineorder,dates, customer, supplier, part where lo_custkey = c_custkey
and lo_suppkey = s_suppkey and lo_partkey = p_partkey and lo_orderdate =
d_datekey and c_region = 'AMERICA' and s_region = 'AMERICA' and (d_year
= 1997 or d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
group by d_year, s_nation, p_category order by d_year, s_nation, p_category

72

Appendix

Q24: select d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as
pro�t from lineorder, dates, supplier, part where lo_suppkey = s_suppkey and
lo_partkey = p_partkey and lo_orderdate = d_datekey and s_region = 'AMER-
ICA' and (d_year = 1997 or d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr
= 'MFGR#2') group by d_year, s_nation, p_category order by d_year, s_nation,
p_category

Q25: select d_year, s_nation, p_category, avg(lo_revenue - lo_supplycost) as
avg_pro�t from lineorder, dates, customer, supplier, part where lo_custkey = c_custkey
and lo_suppkey = s_suppkey and lo_partkey = p_partkey and lo_orderdate =
d_datekey and c_region = 'AMERICA' and s_region = 'AMERICA' and (d_year
= 1997 or d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
group by d_year, s_nation, p_category order by d_year, s_nation, p_category

Q26: select d_year, s_nation, p_category, count(*) from lineorder, dates, customer,
supplier, part where lo_custkey = c_custkey and lo_suppkey = s_suppkey and
lo_partkey = p_partkey and lo_orderdate = d_datekey and c_region = 'AMER-
ICA' and s_region = 'AMERICA' and (d_year = 1997 or d_year = 1998) and
(p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, s_nation, p_category
order by d_year, s_nation, p_category

Q27: select d_year, s_nation, count(*) from lineorder,dates, supplier where lo_suppkey
= s_suppkey and lo_orderdate = d_datekey and s_region = 'AMERICA' and
(d_year = 1997 or d_year = 1998) group by d_year, s_nation order by d_year,
s_nation

Q28: select s_nation, count(*) from lineorder,supplier where lo_suppkey = s_suppkey
and s_region = 'AMERICA' group by s_nation order by s_nation

Q29: select d_year, s_nation, sum(lo_revenue) as revenue from lineorder,dates,
supplier where lo_suppkey = s_suppkey and lo_orderdate = d_datekey and s_region
= 'AMERICA' and (d_year = 1997 or d_year = 1998) group by d_year, s_nation
order by d_year, s_nation

Q30: select sum(lo_revenue), p_brand from lineorder, part, supplier where lo_partkey
= p_partkey and lo_suppkey = s_suppkey and p_brand = 'MFGR#2221' and
s_region = 'ASIA' group by p_brand order by p_brand

73

Main class of the MapReduce
Input/Output Cost model

public class MainClass {
public static void main(String[] args)
{
long Map;
long Red;
long tot;
NewMap newMap = new NewMap();
newMap.calculateTotalCost();
Map = newMap.CMapRSJ ;
NewRed newRed = new NewRed();
newRed.calculateTotalCost();
Red = newRed.CReduce ;
tot = Map + Red ;
}

}

74

References

Abouzeid A, Pawlikowski KB, Abadi DJ, Silberschatz A and Rasin A (2009).

Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for

analytical workloads. In Proceedings of the VLDB Endowment , 2(1), pp. 922-

933.

Agrawal D, Das S, and El Abbadi A (2011). Big Data and Cloud Computing:

Current State and Future Opportunities. In Proceedings of the 14th International

Conference on Extending Database Technology, pp. 530-533, ACM.

Besse P, Garivier A, Loubes JM (2014). Big Data Analytics � Retour vers le Futur

- 3 - De Statisticien à Data Scientist. In Revue des sciences et technologies de

l'information , vol. 1633, pp. 1311.

Boukhalfa K (2009). De la conception physique aux outils d'administration et de

tuning des entrepôts de données. In Doctoral dissertation, ISAE-ENSMA Ecole

Nationale Supérieure de Mécanique et d'Aérotechique-Poitiers .

Boukorca A, Faget Z and Bellatreche L (2014). What-if Physical Design for Multiple

Query Plan Generation. In Database and Expert Systems Applications. Springer

International Publishing, pp. 492-506.

Brighen A (2012). Conception de bases de donn´ees volumineuses sur le cloud. In

Doctoral dissertation, Université Abderrahmane Mira de Béjaia .

Brown PG (2000). Object-Relational Database Development: A Plumber's Guide.

Prentice Hall PTR, USA.

Carstoiu D, Lepadatu E and Gaspar M (2010). Hbase-non SQL Database, Perfor-

mances Evaluation. In Int. J. Adv. Comp. Techn. (International Journal of

Advanced Computer Technology), vol. 2, no 5, pp. 42-52.

75

References

Cattell R (2011). Scalable SQL and NoSQL Data Stores. In ACM SIGMOD Record,

vol. 39, no 4, pp. 12-27.

Chaiken R, Jenkins B, Larson PA, Ramsey B, Shakib D, Weaver S and Zhou J

(2008). Scope: Easy and e�cient parallel processing of massive data sets. In

Proceedings of the VLDB Endowment, vol. 1, no 2, pp. 1265-1276.

Cohen J, Dolan B, Dunlap M, Hellerstein JM, and Welton C (2009). MAD Skills:

New Analysis Practices for Big Data. In Proceedings of the VLDB Endowment ,

vol. 2, no 2, pp. 1481-1492.

Cuzzocrea A, Bellatreche L and Song IY (2013). Data Warehousing and OLAP over

Big Data: Current Challenges and Future Research Directions. In Proceedings

of the sixteenth international workshop on Data warehousing and OLAP , ACM,

pp. 67-70.

Cuzzocrea A, Song IY, Davis KC (2011). Analytics over Large-Scale Multidimen-

sional Data: The Big Data Revolution!. In Proceedings of the ACM 14th inter-

national workshop on Data Warehousing and OLAP , ACM, pp. 101-104.

Dean J and Ghemawat S (2008). Mapreduce : Simpli�ed data processing on large

clusters. In Communications of the ACM, vol. 51, no 1, pp. 107-113.

DeWitt DJ, Gray J (1992). Parallel Database Systems: The Future of High Per-

formance Database Processing. In Communications of the ACM, vol. 35, no 6,

pp. 85-98.

Douglas K and Douglas S (2003). PostgreSQL: A comprehensive guide to building,

programming, and administring PostreSQL databases. Sams Publishing , First

Edition.

Eifrem E (2009). Neo4j�the bene�ts of graph databases. In no : sql (east).

Franco JM (1997). Le Data warehouse le Data mining. In Informatiques magazine ,

Ed Eyrolles.

Furtado P (2009). A Survey on Parallel and Distri buted Data Warehouses. In

International Journal of Data Warehousing and Mining (IJDWM), vol. 5, no 2,

pp. 57-77.

76

References

Gangarski S and Doucet A (2001). Entrepôts de données et Bases de Données

Multidimensionnelles. Paris: Hermès�Lavoisier , Chapter 12 Bases de Données

et Internet Modèles langages et systèmes, vol. 12, pp. 367-394.

Gardarin G (2003). Base de données. Ed Eyrolles , 5th edition.

George L (2011). HBase: The De�nitive Guide. O'Reilly Media, Inc., First Edition.

Gruska N and Martin P (2010). Integrating MapReduce and RDBMSs. In Proceed-

ings of the 2010 Conference of the Center for Advanced Studies on Collaborative

Research , IBM Corp., pp. 212-223.

Inmon WH (2005). Building the Data Warehouse. John wiley & sons Publishing ,

Fourth Edition.

Ketabchi MA, Mathur S, Risch T and Chen J (1990). Comparative Analysis of

RDBMS and OODBMS: A Case Study. In Proceedings of Compcon IEEE Com-

puter Society International Conference , San Francisco, CA.

Lammel R (2008). Google's MapReduce programming model � Revisited. In

Science of Computer Programming , vol. 70, no 1, pp. 1-30.

Lee KH, Lee YJ, Choi H, Chung YD and Moon B (2012). Parallel Data Processing

with MapReduce: A Survey. In AcM sIGMoD Record, vol. 40, no 4, pp. 11-20.

Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C and Byers AH

(2011). Big data: The next frontier for innovation, competition, and productiv-

ity. McKinsey Global Institute .

Matthew N and Stones R (2005). Beginning Databases with PostgreSQL. Novice

to Professional , Second Edition.

McClean A, Conceição RC and O'Halloran M (2013). A Comparison of MapRe-

duce and Parallel Database Management Systems. In ICONS 2013, The Eighth

International Conference on Systems , pp. 64-68.

Mchome ML (2011). Comparison study between MapReduce (MR) and paral-

lel data management systems (DBMs) in large scale data anlysis. In Honors

Projects Macalester College , Paper 21.

77

References

Nance C, Losser T, Iype R and Harmon G (2013). NOSQL VS RDBMS - WHY

THERE IS ROOM FOR BOTH. In Proceedings of the Southern Association for

Information Systems Conference , Savannah, GA, USA, pp.111-116.

Narasimhan R and Bhuvaneshwari T (2014). Big Data � A Brief Study. In Inter-

national Journal of Scienti�c & Engineering Research , Vol. 5, Issue 9.

Nykiel T, Potamias M, Mishra C, Kollios G and Koudas N (2010). Mrshare: sharing

across multiple queries in mapreduce. In Proceedings of the VLDB Endowment ,

vol. 3, no 1-2, pp. 494-505.

Olston C, Reed B, Srivastava U, Kumar R and Tomkins A (2008). Pig latin: a

not-so-foreign language for data processing. In Proceedings of the 2008 ACM

SIGMOD international conference on Management of data , ACM, pp. 1099-

1110.

Ordonez C (2013). Can we analyze big data inside a DBMS?. In Proceedings of

the sixteenth international workshop on Data warehousing and OLAP, ACM, pp.

85-92.

Ordonez C, Song IY and Garcia-Alvarado C (2010). Relational versus non-relational

database systems for data warehousing. In Proceedings of the ACM 13th inter-

national workshop on Data warehousing and OLAP, ACM, pp. 67-68.

Palla K (2009). A Comparative Analysis of Join Algorithms Using the Hadoop

Map/Reduce Framework. In Master of science thesis. School of informatics,

University of Edinburgh.

Pavlo A, Rasin A, Madden S, Stonebraker M, DeWitt D, Paulson E, Shrinivas L

and Abadi DJ (2009). A comparison of approaches to large scale data anal-

ysis. In Proceedings of the 2009 ACM SIGMOD International Conference on

Management of data , ACM, pp. 165-178.

Ramakrishnan L, Mantha PK, Yao Y and Canon RS (2013). Evaluation of NoSQL

and Array Databases for Scienti�c Applications. In The International Confer-

ence for High Performance Computing, Networking, Storage and Analysis .

Sabàu G (2007). Comparison of RDBMS, OODBMS and ORDBMS. In Informatica

Economic .

78

References

Sabharwal N and Edward SG (2014). Big Data NoSQL Architecting MongoDB. In

CreateSpace Independent Publishing Platform , USA, First Edition.

Sagiroglu S and Sinanc D (2013). Big Data: A Review. In Collaboration Technolo-

gies and Systems (CTS), 2013 International Conference on. IEEE , pp. 42-47.

Shvachko K, Kuang H, Radia S and Chansler R (2010). The hadoop distributed �le

system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on. IEEE, pp. 1-10.

Strauch C, Sites ULS , Kriha W (2011). NoSQL Databases. In Lecture Notes,

Stuttgart Media University .

Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E, Pavlo A and Rasin A

(2010). Mapreduce and parallel dbmss : friends or foes ?. In Communications

of the ACM, vol. 53, no 1, pp. 64-71.

Vouk MA. Cloud Computing � Issues, Research and Implementations (2008). In

Journal of Computing and Information Technology , vol. 16, no 4, pp. 235-246.

Wang G and Chan CY (2013). Multi-Query Optimization in MapReduce Frame-

work. In Proceedings of the VLDB Endowment, 40th International Conference

on Very Large Data Bases , vol. 7, no 3.

White T (2009). Hadoop : The De�nitive Guide. O'Reilly Media Inc., First

Edition.

Worsley JC and Drake JD (2002). Practical PostgreSQL. O'Reilly and Associates

Inc.

Yui M and Kojima I. A Database-Hadoop Hybrid Approach to Scalable Machine

Learning (2013). In Big Data (BigData Congress), 2013 IEEE International

Congress on. IEEE, pp. 1-8.

Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I (2008). Improving MapRe-
duce Performance in Heterogeneous Environments. In Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation OSDI ,
Vol. 8. No. 4, pp.29-42.

79

Abstract

With the data volume which does not stop growing and the multitude of sources which led to of

structures diversity, the classic tools of data management became unsuitable for processing. Hence

the rapid development and change of the databases world, the evolution of data management

solutions and the imposition of the Big date in our technological landscape which reflects both the

data explosion and the recent capacity to handle it. This data management systems diversity presents

a difficulty in choosing the best solution to interpret, protect and manage data according to the user’s

needs while preserving data availability.
In this work, we propose two contributions: The first is an implementation and a refinement of a cost

model for MapReduce paradigm; Then, we propose an hybrid approach between two main categories

of data management systems: classic DBMSs and NoSQL DBMSs. The idea is to integrate the

ORDBMS PostgreSQL and MapReduce to perform OLAP queries in a goal of minimizing Input/Output

costs in terms of the amount of data to manipulate, reading and writing throughout the execution

process.

Keywords: MapReduce, RDBMS, NoSQL, integration, hybrid, cost, performance, OLAP.

Résumé

Avec le volume de données qui ne cesse de croître et la multitude de sources qui ont conduit à la

diversité des structures, les outils classiques de gestion des données sont devenues impropres à

satisfaire les nouveaux besoins. D'où le développement rapide et l'évolution du monde des bases de

données, l'évolution des solutions de gestion des données et l'imposition de la Big Data dans notre

paysage technologique qui reflète à la fois l'explosion des données et la capacité récente à les gérer.

Cette diversité des systèmes de gestion de données présente une difficulté dans le choix de la

meilleure solution d'interpréter, de protéger et de gérer les données en fonction des besoins de

l'utilisateur, tout en préservant la disponibilité des données.
Dans ce travail, nous proposons deux contributions: La première est une implémentation et un

raffinement d'un modèle de coût pour le paradigme MapReduce; Ensuite, nous proposons une

approche hybride entre deux grandes catégories de systèmes de gestion de données: les SGBD

classique et les SGBD NoSQL. L'idée est d'intégrer le SGBDR PostgreSQL et MapReduce pour

exécuter des requêtes OLAP dans un but de minimisation les coûts d'entrée/sortie en terme de

quantité de données à manipuler, lire et écrire tout au long du processus d'exécution.

Mots-clés: MapReduce, SGBDR, NoSQL, intégration, hybride, coût, performance, OLAP.

