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Introduction

Preferences are a common feature of everyday decision making generally used in collective de-
cision when multiple agents need to choose one out of a set of possible decisions. In fact, each
agent can express its preferences over the possible decisions, and a centralized system aggregates
such preferences to determine the winning decision.

A very similar aggregation problem has been studied for a long time in the framework of
voting theory. It consists in searching a ’reasonable’ mechanism, typically in the form of voting
rule, aggregating the opinions expressed by several voters on the candidates in an election, in
order to determine a winner or to rank all candidates.The diversity of voting systems actually
used in the world shows that this problem is still important. In the 1950s, the works of (Arrow,
1951; Black, Newing, McLean, McMillan, & Monroe, 1958; May, 1952) have initiated a huge
literature (Kelly, 1991) forming what is today called social choice theory, concerned with the
design and analysis of methods for collective decision making.

Results obtained in social choice theory are valuable for multicriteria decision aiding. Arrow
(Arrow & Raynaud, 1986) proposed to go from one to the other by replacing the words ’ac-
tion’, ’criterion’, ’partial preference’ and ’overall preference’ by ’candidate’, ’voter’, ’individual
preference’ and ’collective preference’. In other words, in social choice, each voter expresses
an individual preference ordering over the set of candidates, and an election is held to compute
the winner and obtain a collective decision. In this context, computational social choice appears
as an interdisciplinary field linking social choice theory and computer science, promoting an
exchange of ideas in both directions.

One of the most challenging topics in computational social choice is the study of strategic
voting known also as manipulation consisting for a given voter or coalition of voters, in ex-
pressing an insincere preference profile so as to give more chance to a preferred candidate to be
elected. For example, if an agent prefers Nader to Kerry to Bush, but knows that Nader has too
few other supporters to win, while Kerry and Bush are close to each other, the agent would be
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Introduction 2

better off by declaring Kerry as its top candidate. The cheating party who misreport their pref-
erences is called the manipulator while voters who reveal their true preferences are the honest
party.

Clearly, strategic voting problem has a strong impact on elections. It represents an unde-
sirable phenomenon because social choice schemes are tailored to aggregate preferences in a
socially desirable way, and if the agents reveal their preferences insincerely, a socially unde-
sirable candidate may be chosen. The issue of strategic voting has been studied extensively. A
seminal negative result stated by Gibbard and Satterthwaite (Gibbard, 1973; Satterthwaite, 1975)
show that voting rules that are not manipulable do not exist. A well known fact in strategic voting
is the knowledge holded by the manipulators on the preferences of the honest voters. Standard
approaches to manipulation in social choice theory as well as in computational social choice is
often confined to cases in which the manipulators have complete knowledge of the preferences of
sincere voters (Conitzer, Sandholm, & Lang, 2007; Gibbard, 1973; Bartholdi III, Tovey, & Trick,
1989; Satterthwaite, 1975). This assumption does not cope with real world situation where ma-
nipulators are generally uncertain about the votes of sincere voters or even completely ignorant
about their voters.

This work studies the connection between manipulation problem and vote elicitation. We
investigate unweighted coalitional manipulation problem in the setting where the manipulators
have identical preferences and are uncertain about the non-manipulators votes. In this context,
elicitation may reveal information about sincere voters’ votes allowing the manipulators to en-
sure the victory of their most preferred candidates. To this end, we propose to solve the problem
of uncertainty in manipulators knowledge, regarding the non-manipulators votes, using an ef-
ficient top-k elicitation process. Given an incomplete voters preferences, our first contribution
consists of a multi-round elicitation process aiming to determine the minimal amount of infor-
mation, with the minimal number of rounds; in order to predict the right outcome of the election.
Our second contribution is a new manipulation strategy with uncertain knowledge, where the
restricted knowledge of the manipulators is solved using the proposed multi-round elicitation
process. Using this approach, our goal is to determine an optimal manipulation strategy consists
of a successful manipulation with less damage on social welfare and to answer the question: How
many candidates, per sincere voter, are needed to be known for an optimal manipulation?

In order to deal with partial profile, two probabilistic models will be used, namely: Impartial
Culture (Guilbaud, 1952) and S P-IC. In order to test the effectiveness of our proposals, we use
two data sets namely: Sushi data (Kamishima, Kazawa, & Akaho, 2005) and Gen-Ran data.

This dissertation is organized as follows: Part I composed of two chapters presents the theo-
retical aspects of this report: Chapter 1 is an introduction to voting theory where it introduces the
main research topics in computational social choice, and the most important voting rules used.
Also, this chapter addresses the problem of strategic manipulation. Chapter 2 deals with uncer-
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tainty in preferences. It provides an overview of a number of models and techniques developed
to make decision with incomplete information about voter preferences. Part II is dedicated to
our contributions and is composed of two chapters: Chapter 3 describes our new manipulation
strategy with uncertain knowledge. In this chapter, we define our manipulation problem precisely
and we propose a multi-round elicitation process to deal with incomplete preferences in order to
solve the incomplete knowledge held by the manipulators. Finally, Chapter 4 is dedicated to the
experimental study.
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Part I presents the theoretical aspects of this report. It provides an 

overview of social choice theory.  Chapter 1 introduces voting 

theory and the most important voting rules used to select the winner 
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Chapter 1
Social choice and manipulation

1.1 Introduction

Social choice theory concerns the design and formal analysis of methods for aggregating the
preferences of multiple voters, that is, to make a socially desirable decision as to which a win-
ner is chosen from a set of candidates. In this context, voting rules are used to aggregate the
preferences of voters over a set of candidates standing for election to determine which candidate
should win the election. As an example of voting rule, majority rule selects candidates which
have a majority, that is, more than half the votes.

The first controversy regarding social choice rules was presented by Marquis de Condorcet
who noted that the concept of a social preference relation can be problematic. Thus, as proved
by the Condorcet paradox (de Caritat et al., 1785), the majority rule can result in cycles where
there are more than two candidates. For instance, if a majority of voters prefers a to b. Another
majority prefers b to c and yet another one c to a. Clearly, the pairwise majority relation is cyclic.
Hence, the majority rule does not constitute a social welfare function.

The best known incompatibility result is Arrow’s impossibility theorem (Arrow, 1951) show-
ing that this difficulty in the concept of social welfare is not specific to the majority rule. Arrow’s
impossibility theorem states that a set of axioms could not be simultaneously met when aggregat-
ing preferences whenever their are more than 2 candidates. In other words, Arrow’s impossibility
theorem shows that at least one of the required conditions has to be omitted or relaxed in order
to obtain a positive result. Given two candidates a and b, these axioms are defined as follows:

• Pareto: if all individuals prefer candidate a to b, so does the collectivity, i.e. a will be
ranked at least as high as b in the social preference relation.

5



Section 1.2 – Basic concepts and notations 6

• Independence of irrelevant alternatives (IIA): the social preference between a and b de-
pends on the individual preferences between a and b only.

• Non-dictatorship: there is no individual whose preference determines the social preference
between all pairs of candidates.

One of the most challenging topics in computational social choice is the study of manipula-
tion which refers to a coalition of one or more voters obtaining a more desirable outcome by
misreporting their preferences. A voter is said to vote strategically when it does not rank the
candidate according to its true preferences, but rather so to make the candidate most favorable to
itself. Manipulation controversy the social choice goal, since if the voters reveal their preferences
insincerely, a socially undesirable candidate may be chosen.

This chapter is organized as follows: Section 1.2 defines the basic notions of voting model
used in preference aggregation. Section 1.3 presents the most important voting rules which are
as important determinants of the voting outcomes as the individual opinions expressed in voting.
Section 1.4 introduces manipulation problem in social choice. Finally, Section 1.5 deals with
computational problems related to manipulation.

1.2 Basic concepts and notations

In this section we investigate social choice domain which represents the voting model used to
aggregate voters’ preferences into a collective decision. Formally, a voting model is defined by
an election E = (N, A,�N) where:

• N = {1, ..., n}, is the set of voters (agents),

• A = {a, b, ...}, is the set of candidates (alternatives) such that |A| = m, and

• �N= (�1, ...,�n), is the preference profile of voters in N

For each voter i ∈ N, let �i ∈ �
N denote the preference order (or vote) of voter i over A. When

a �i b for some a, b ∈ A, said that voter i prefers a to b.

Example 1.1. Let us consider a voting model with 3 candidates and 2 voters i.e. A = {a, b, c}
and N = 2. Table 1.1 represents the preference profile of the voters 1 and 2 where the preference
order of each voter is represented by a one column.

In this case, voter 1 prefers a to b to c, his preference order is represented as follows: a �1

b �1 c.
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Voter 1 Voter 2
a b
b c
c a

Table 1.1: Preference profile’s example

The use of voting rules to aggregate preferences has become a topic of intense study, and one
of great importance in ranking, recommender systems, resource allocation, and other applica-
tions of social choice to computational systems. Voting rule is a very common way of resolving
disagreements, determining common opinions and choosing public policies. It represents a pro-
cedure for making a choice from the set of candidates.

Formally, given an election E = (N, A,�N) as input, a voting rule f is a function f : E → S ,
outputs a non-empty subset S ⊆ A. The elements of S are called the winners of the election E
under f . If | f (E)| > 1 for any election E, the mapping f is called a voting correspondence.

In an election, the decision to choose which candidate to elect is no doubt important, but
so are the questions related to the way in which the vote is taken. In other words, the voting
procedure to be applied plays an important role as well. In fact, voting rules are as important
determinants of the voting outcomes as the individual opinions expressed in voting. Voting rules
can be classified in several ways generally:

• Positional scoring rules: Each voter ranks the candidates in order of preference. This
ballot is represented by a vector where the first candidate is the most preferred candidate;
the second one is the second preferred candidate and so on. e.g. IRV, Borda and plurality
with run-off.

• Condorcet rules: Based on pairwise comparisons of candidates. They are a class of ranked
voting systems that meet the Condorcet criterion. That is, the candidate who, when com-
pared in turn with each of the other candidates, is preferred over the other candidate is
always declared to be the winner, if such a candidate exists. e.g. copeland and maximin.

The following example will be used in the remaining to illustrate different voting rules.

Example 1.2. Let us consider a situation with five candidates A = {a, b, c, d, e} and N = 100
voters. Table 1.2 presents the preference profile of the N voters. Each column represents the
preference order of a subset of voters, where the 1st cell is the number of people who voted in
that order, and the following is the order of the vote. For example, 33 voters have the preference
order a � b � c � d � e.
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33 voters 16 voters 3 voters 8 voters 18 voters 22 voters
a b c c d e
b d d e e c
c c b b c b
d e a d b d
e a e a a a

Table 1.2: Preference profile’s example

1.2.1 Positional scoring rules

The plurality rule selects the candidate who was ranked first by the most of voters. Plurality is
the voting rule most often used in real-world elections, but note that it completely disregards all
the information provided by the voter preferences except for the top ranking. Under a positional
scoring rule, each time a candidate is ranked ith by some voter, it gets a particular score si . The
scores of each candidate are then added and the candidate with the highest cumulative score is
selected. Scoring rules are also known as ranked voting systems or preferential voting systems.
Formally, for a fixed number of candidates m, a positional scoring voting rule is defined by a
non-negative vector called a scoring vector s = (s1, ..., sm) ∈ <m such that s1 ≥ ... ≥ sm defines
a scoring rule over a set of candidates of size m. A candidate receives s j points from each voter
who ranks him in the jth position, and the score of a candidate is the total number of points he
receives from all voters. Three well known example of scoring rules are Borda rule, plurality
rule, and anti-plurality rule.

Borda’s rule: In the Borda voting rule, each voter gives (m − 1) points to the candidate she
ranked first, (m − 2) points to the candidate she ranked second, or in general (m − k) points to
the candidate she ranked kth. The score vector for the Borda rule is s = (m − 1,m − 2, ..., 1, 0).
The winner is the candidate who amasses the highest total number of points. Borda’s rule takes
a special place within the class of scoring rules as it chooses those candidates with the highest
average rank in individual rankings.

Example 1.3. Let us consider data in Example 1.3, then from Table 1.2, the Borda vector is
(4; 3; 2; 1; 0) and the Borda scores are computed as follows:

• s(a) = (33 × 4) + (16 × 0) + (3 × 1) + (8 × 0) + (18 × 0) + (22 × 0) = 135

• s(b) = (33 × 3) + (16 × 4) + (3 × 2) + (8 × 2) + (18 × 1) + (22 × 2) = 247

• s(c) = (33 × 2) + (16 × 2) + (3 × 4) + (8 × 4) + (18 × 2) + (22 × 3) = 244
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• s(d) = (33 × 1) + (16 × 3) + (3 × 3) + (8 × 1) + (18 × 4) + (22 × 1) = 192

• s(e) = (33 × 0) + (16 × 1) + (3 × 0) + (8 × 3) + (18 × 3) + (22 × 4) = 182

This means that the Borda winner is b, since he has the highest Borda score.

Plurality rule: In the plurality voting rule, each voter gives 1 point to the candidate she ranked
first, and the winner is the candidate who receives the highest total number of points. The score
vector for the plurality rule is s = (1, 0, ..., 0). Hence, the cumulative score of a candidate equals
the number of voters by which it is ranked first.

Example 1.4. The plurality winner is a, since she is the candidate ranked first most often (33
votes).

Anti-plurality rule: The anti-plurality rule selects the candidate who was ranked last by the
least number of voters. The score vector for the anti-plurality rule (which is sometimes also called
veto) is s = (1, ..., 1, 0). As a consequence, it chooses those candidates that are least-preferred by
the lowest number of voters.

Example 1.5. In this voting system, each voter would mark a vote against his or her fifth prefer-
ence. The anti-plurality vector is (1; 1; 1; 1; 0). The anti-plurality scores are computed as follows:

• s(a) = (33 × 1) + (16 × 0) + (3 × 1) + (8 × 0) + (18 × 0) + (22 × 0) = 36

• s(b) = (33 × 1) + (16 × 1) + (3 × 1) + (8 × 1) + (18 × 1) + (22 × 1) = 100

• s(c) = (33 × 1) + (16 × 1) + (3 × 1) + (8 × 1) + (18 × 1) + (22 × 1) = 100

• s(d) = (33 × 1) + (16 × 1) + (3 × 1) + (8 × 1) + (18 × 1) + (22 × 1) = 100

• s(e) = (33 × 0) + (16 × 1) + (3 × 0) + (8 × 1) + (18 × 1) + (22 × 1) = 42

This means that candidates a and e are eliminated, and their is a tie between b, c and d.

Due to their simplicity, scoring rules are among the most-used voting rules in the real world.
Borda rule is used in the National Assembly of Slovenia, and is similar to that used in the Euro-
vision song contest.
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1.2.2 Condorcet rules

This category of voting rules is based on pairwise comparisons of candidates that meet the Con-
dorcet criterion. The Condorcet winner, for a given preference profile, is the candidate who beats
every other candidate in pairwise elections. The Condorcet rule outputs the Condorcet winner if
it exists; otherwise, it outputs the set of all candidates. As already seen in the Condorcet Para-
dox, there are preference profiles that do not admit a Condorcet winner. However, whenever a
Condorcet winner does exist, it obviously has to be unique.

Many social choice theorists consider the existence of Condorcet winners to be of great sig-
nificance and therefore call any voting rule that picks a Condorcet winner whenever it exists a
Condorcet extension such as copeland and maximin. Under coplend rule, the winner is the candi-
date that wins the most pairwise contests (in a pairwise contest, a candidate wins if it is preferred
over the other candidate by more than half of the voters), the score for every candidate is 1 point
when it wins, −1 when it loses and 0 if the pairwise contest ends with a draw. The candidate with
the most points wins. Under the Maximin rule, every candidate is evaluated by its worst pairwise
defeat by another candidate; the winners are those who lose by the lowest margin in their worst
pairwise defeats. If no candidate is undefeated, the candidate that is defeated by the fewest votes
in its worst defeat, wins.

However, the voting rules presented above (positional scoring rules) thus far do not satisfy the
Condorcet criterion: every scoring rule fails to select the Condorcet winner for some preference
profile (Fishburn, 1973). This is shown by using one universal example given in Table 1.3.

Example 1.6. In Table 1.3, it is easily verified that candidate a is a Condorcet winner as 9 out of
17 voters prefer a to b and 10 out of 17 voters prefer a to c. Now, consider an arbitrary scoring
rule with score vector (s1, s2, s3). Candidate b is the winner under plurality rule with 8 voters
against 6 votes for a and 3 votes for c. Even with Borda rule, b is the winner with a score of 22
against 20 points for candidate a and 10 points for c. The score of candidate b always exceeds
that of candidates a and c. In other words, b is the unique winner in any scoring rule, even
though a is the Condorcet winner.

6 voters 3 voters 4 voters 4 voters
a c b b
b a a c
c b c a

Table 1.3: Example due to Fishburn

In order to gain more insight into the huge zoo of voting rules, various axioms that may or
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may not be satisfied by a voting rule have been put forward. Sometimes a certain set of axioms
completely characterizes a single voting rule or an interesting class of voting rules (such as the
class of scoring rules).

1.3 Vote manipulation in an election

A significant problem in social choice is that there is generally one or more voters that can
obtain a more desirable outcome by misreporting their preferences. This is called manipulation
or strategic voting. For example, consider a plurality election between three candidates, a, b, and
c. Consider voter i with preferences a �i b �i c. Moreover, suppose that voter i believes that
almost nobody else will rank a first, but it will be a close race between b and c. Then, i may be
best off casting a vote in which b is ranked first: he has little hope of getting a to win, so he may
be better off focusing on ensuring that at least b will win.

Manipulation is an undesirable phenomenon leading to fairness issues. Also, energy and re-
sources are wasted on determining how best to manipulate. It follows from the negative result of
Arrow’s impossibility theorem (Arrow, 1951), that of Gibbard-Satterthwaite theorem (Gibbard,
1973; Satterthwaite, 1975) which states that if there are three or more candidates, then in any
non-dictatorial voting scheme, there are preferences under which an agent is better off voting
strategically. Consequently, this theorem shows that a dictatorship is the only non-manipulable
voting mechanism. A voting rule that is strategy proof is also called non-manipulable where a
voter cannot improve the outcome by misreporting his preferences.

One possible escape from the Gibbard-Sattertwhaite theorem is to apply very specific re-
strictions on the class of allowed preferences. By relaxing the axiom of universal domain in
which all preferences are possible, this theorem does not hold any more. For example, one such
restriction is to single-peaked preferences (Black, 1948). Black’s median voter theorem implies
that if an odd number of voters have preferences that are single-peaked, then the median-voter
rule is strategy-proof. That is, if the distribution of preference orders is such that they are single
peaked, the Gibbard-Satterthwaite theorem does not apply and there is no chance for strategic
voting to succeed (Mackie, 2003). Suppose that there is some predetermined linear ordering of
the alternative set, a voter’s preference is single-peaked, with respect to this ordering; if he has
some special place that he likes best along that line, and his dislike for an alternative grows larger
as the alternative goes further away from that spot. That is, put an order on the candidates, ev-
ery voter has a most preferred candidate and likes a candidate less as he moves away from their
preferred candidate. It is possible to sort the most preferred candidates according to this order.
With single-peaked preferences, the median voter is the voter whose most preferred candidate is
the median in this order amongst the voters.
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Example 1.7. Lets us consider 5 candidates A = {a, b, c, d, e} and 3 voters having the following
preferences: a �1 b �1 c �1 d �1 e, b �2 c �2 d �2 a �2 e and c �3 b �3 a �3 d �3 e. These
preferences can be represented by Figure 1.1. On the vertical axis, some measure of the voters’
utility is graphed. Utility = 1 represents the most preferred candidate by the voter. Each of the
three plots shows one of the sets of individual preferences: In the plots, there is an oval for each
candidate, and its height corresponds to its position in the list. As drawn, the single peak in an
individual’s ranking emerges visually as a peak in the plot.

5 

4 

3 

2 

1 

a                                b                                c                               d                               e 

Voter’s 1 preference

5 

4 

3 

2 

1 

a                                b                                c                               d                               e 

Voter’s 2 preference

5 

4 

3 

2 

1 

a                                b                                c                               d                               e 

Voter’s 3 preference

Figure 1.1: Single peaked preferences

Applying the single peaked preference model to the three voters would identify b as the me-
dian individual favorite, and place it first in the group ranking (the sorted list of individual
favorites would be a, b, c and so the median is b). Once b is removed, three single-peaked rank-
ings on the candidates a, c, d and e remain. The individual favorites in this reduced set are a,
c, and c, so c is the new median individual favorite, and ranked second in the group ranking.
Proceeding in this way, the resulting group ranking is: b � c � a � d � e, and the winner is
candidate a.

1.3.1 Manipulation aspects

Manipulation can be characterized via three aspects:

Manipulators’ knowledge: The knowledge that the manipulators have about the non-manipulators
can differ according to these three situations:

• Complete information setting, the manipulators know the non-manipulators’ votes exactly.

• Incomplete information setting, the manipulators are uncertain about the non-manipulators’
votes.
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• No information setting, the manipulators are ignorant about the non-manipulators’ votes.

A well-known fact in social choice theory is that strategic voting, becomes harder when voters
know less about the preferences or votes of other voters. Standard approaches to manipulation in
social choice theory as well as in computational social choice (Bartholdi III et al., 1989) assume
that the manipulating voter or the manipulating coalition have complete information about the
other voters’ votes, i.e. they know perfectly how the other voters will vote. Some approaches
(Barbera, Bogomolnaia, & Van Der Stel, 1998) assume that voters have a probabilistic prior
belief on the outcome of the vote, which encompasses the case where each voter has a probability
distribution over the set of profiles. A recent paper (Conitzer, Walsh, & Xia, 2011) extends
coalitional manipulation to incomplete knowledge, by distinguishing manipulating from non-
manipulating voters and by considering that the manipulating coalition has, for each voter outside
the coalition, a set of possible votes encoded in the form of a partial order over candidates (top-k
favorite candidates). An extreme case of uncertainty is when a voter is completely ignorant about
other votes.

Manipulators’ number: Regarding this point, we can face two situations:

• Coalitional manipulation refers to a situation where a group of voters cast votes not ac-
cording to their true preferences, but rather to obtain some goal.

• Single manipulation refers to a situation where a single manipulator casts votes not accord-
ing to their true preferences, but rather to obtain some goal.

For any constant number of candidates, manipulation by an individual in the complete infor-
mation setting is computationally easy because the manipulator can enumerate and evaluate all
its possible votes (rankings of candidates) in polynomial time (Conitzer & Sandholm, 2002a).
For example, with Borda rule, it is polynomial for a single voter to compute how to manipulate
the result but NP-hard for two or more voters. In (Conitzer & Sandholm, 2002a), authors show
that hardness results for manipulation by coalitions in the complete information setting, imply
hardness of manipulation by individuals in the incomplete information setting.

Manipulators’ goal: Manipulators can have two different goals, namely:

• Constructive manipulation, where manipulators try to make a given candidate win,

• Destructive manipulation, where manipulators try to prevent one particular candidate from
winning.
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Destructive manipulation is easier to compute than constructive manipulation (Conitzer et al.,
2007). However, there are also rules where both destructive and constructive manipulation are in
the same complexity class (e.g., both constructive and destructive manipulation of plurality are
polynomial to compute, whilst both constructive and destructive manipulation of plurality with
runoff for weighted votes are both NP-hard (Conitzer et al., 2007)).

1.3.2 Manipulating an election

Formally, in a manipulation problem, the N voters are divided into two groups, the manipulators
and the non-manipulators known also as honest or sincere voters. For any voting rule f , an
instance I = (H,M, A,�H, p) is given by an election E = (N, A,�H) where:

• H = {1, ..., h}, is the set of sincere voters,

• M = {1, ..., (n − h)}, is the set of manipulators,

• A = {a, b, ...,m}, is the set of candidates where |A| = m, and

• �H= (�1, ...,�h), is the preference profile of voters in H

• a distinguished candidate p ∈ A

The goal is to answer whether the M manipulators, knowing the preferences of the H sincere
voters, can provide a preference such that p will be chosen by f . In other words, Is there a way
for the manipulators to cast their votes so that p wins?

Example 1.8. Let us consider an election E = (3, 4,�3) using the Borda voting rule with the
following preference profile: b �1 a �1 c �1 d, b �2 a �2 c �2 d and a �3 b �3 c �3 d.
Thus, Borda scores are: s(a) = 7, s(b) = 8, s(c) = 3, s(d) = 0. The Borda winner is b, beating
candidate a 8 points to 7.

However, if voter 3 wants to manipulate the election and make a wins, he will change his
vote and ranks candidate b last. The manipulation model will be as follows: I = (2, 1, 4,�2, a), 2
sincere voters, one manipulator how want to make candidate a wins. The new preference profile
is: b �1 a �1 c �1 d, b �2 a �2 c �2 d and a �3 c �3 d �3 b. New Borda scores are:
s(a) = 7, s(b) = 6, s(c) = 4, s(d) = 1. Candidate b’s score goes down to 6, and a (voter 3’s
favorite candidate) wins!
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1.4 Computational problem

The problem of manipulation is defined more strongly than the simple definition of manipulation.
The question that generally raised is not whether the manipulator can guarantee a victory of a
more preferred candidate, but whether he can guarantee the victory of a specific candidate by
misreporting his preferences and casting a false preference order. A greedy algorithm deciding
the problem under specific voting rules exists. This algorithm generates the preference of the
voter i (the manipulator) such that the candidate p will be declared the winner, or returns that this
is not possible. The algorithm does the following:

1. Rank p in 1st place

2. While there are candidates that were not ranked yet:

• If there exists a candidate that can be ranked in the next spot without preventing p
from winning, rank that candidate in the next spot,

• otherwise, declare that the desired preference does not exist.

Example 1.9. Let us consider the following example with 4 candidates A = {a, b, c, p} and
N = 3 voters. The Borda voting rule will be used. The preference order of sincere voters 1 and
2 is a � p � b � c. The 3rd voter is the manipulator who wants to make candidate p wins the
election. The result of the algorithm for the 3rd voter is:

1. Rank p in 1st place, and find that with the two other voters p has 7 points.

2. Notice that a can’t be ranked next, since he will end with 8 points. Rank b in 2nd place,
leaving him with 4 points.

3. Notice that a can’t be ranked next, since he’ll end with 7 points. Rank c in 3rd place,
leaving him with 1 point.

4. Rank a in 4th place, leaving him with 6 points.

According to f , p wins with 7 points (while a, b, and c have 6, 4, and 1 points respectively). The
preference order of the manipulator is: p � a � b � c.

It is obvious that if the algorithm found a preference resulting in p winning, the decision that the
manipulator can provide a preference such that p wins is correct. However, in some cases, the
algorithm could not find such a preference. Authors in (Bartholdi III et al., 1989; Bartholdi III
& Orlin, 1991), show that it can be computationally difficult to manipulate certain rules. For



Section 1.5 – Impact of manipulation on social welfare 16

example, with some rules like STV, it is NP-hard to compute how a single voter needs to vote
to manipulate the result. The possibility of manipulation depends on the voting protocol, the
number of manipulators and whether we are interested in constructive or destructive manipula-
tion. For example, authors in (Conitzer & Sandholm, 2002a) show that the plurality protocol is
easy to manipulate constructively and destructively for any number of candidates, however, the
Borda protocol becomes hard to manipulate constructively with 3 candidates already, but is easy
to manipulate destructively for any number of candidates.

1.5 Impact of manipulation on social welfare

Social welfare designs the degree of satisfaction of the society. It considers welfare across differ-
ent possible sets of individual preferences. Employing a voting rule to choose a more desirable
alternative by the society (optimal) leads to a possible gap between the social welfare of the
optimal alternative and the social welfare of the one that is ultimately elected using the voting
rule.

It is often natural to consider the utility that a voter derives from the choice or decision that
is made for the group as a whole. When it is related to the manipulation problem, social welfare
provides a different analysis of manipulability of various voting rules. While the probability
of manipulation can inform us on the chances given to manipulators to change the outcome of
the election, this does not tell the whole story, since alternatives with higher success probability
can have an undesirable impact on social welfare causing less societal dissatisfaction. Intuitively,
societal satisfaction is guaranteed when the more preferred alternative is to the sincere voters, the
more likely it is that manipulators can succeed in causing the alternative p to be selected. In other
word, if candidates that are ”closer to winning” are those that are generally ranked more highly
by a coalition of manipulators, this means that such candidates are generally more desirable by
the society. As a consequence, social welfare for alternative p chosen by the manipulators must
be close to that of the optimal (non-manipulated) alternative if p has a reasonable chance of
winning, which in turn means that the damage, or loss in social welfare, caused by manipulation
will itself be limited.

Characterizing the impact of a manipulating coalition’s action only in terms of its probability
of succeeding can sometimes be ambiguous. A deficiency of current manipulation analyses gains
prominence on success probability and ignoring the impact of manipulation on social welfare.
To the best of our knowledge, only one work considers the impact of social welfare under ma-
nipulation (Lu, Tang, Procaccia, & Boutilier, 2012). Authors shed light on the stark difference
between the loss in social welfare and the probability of manipulation by showing that even when
manipulation is likely, impact to social welfare is slight.
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1.6 Conclusion

In this chapter we have examined social choice theory, by introducing basic notions of voting
model used in preference aggregation. We have also presented the most important voting rules
to select the winner based on the voters’ preferences. Then, we have focused on manipulation
problem, where a coalition of manipulators want to guarantee the victory of a specific candidate
by misreporting their preferences; based on the knowledge held of sincere votes. Manipulation
becomes harder when the manipulators have partial information about the preferences of sincere
voters. In this case it may be worth having an idea of the possible outcomes without waiting for
the preferences to be completed. To this end, the next chapter introduces existing solutions to
determine the winners with partial information about voter preferences.



Chapter 2
Uncertainty in preferences

2.1 Introduction

Voting rules are used to aggregate the preferences of voters over a set of candidates standing for
election to determine which candidate should win the election. However, many voting schemes
make stringent assumptions about the preferences provided by voters. For instance, it is usually
assumed that each voter provides a complete preference ranking of all candidates under consid-
eration. In practice, however, voting systems often permit voters to declare a partial order over
a subset of the candidates. For example, in the 1992 General Election for Dublin West, 9 candi-
dates ran, but 29988 voters ranked only a median of 4 candidates over the set of candidates, and
only 12.7% of the voters cast a complete vote.

Partial voting can have a significant effect on elections (Emerson, 2013). For example, in
elections for the Tasmanian Parliament, voters are forced to rank a minimum number of candi-
dates to prevent certain types of strategic voting (for example, when three candidates are running,
voters must rank at least two candidates, whilst when four or more candidates are running, at
least three candidates must be ranked). Also, incomplete vote has a significant impact on com-
putational issues surrounding strategic voting, by modeling the uncertainty of the manipulators
about the preferences of sincere voters. A well-known fact in strategic voting, becomes harder
when voters know less about the preferences or votes of other voters. In this context, uncertainty
regarding the non-manipulators’ votes can be solved using different solution concepts used to
determine the winner with incomplete preferences.

This chapter is organized as follows: Section 2.2 presents different forms of partial vote
and probabilistic approaches to deal with incomplete profiles. Section 2.3 introduces solution
concepts to determine the winners with partial or stochastic information about voter preferences,
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this includes: possible and necessary winners, regret-based winner computation and probabilistic
models. Finally, Section 2.4 provides practical techniques to elicit voter’s preferences.

2.2 Incomplete preferences

Incomplete information about voter preferences represents a challenging problem in preference
aggregation while communicating voter preferences to the mechanism is probably the most criti-
cal communication in voting. Uncertainty appeals when the votes are incompletely specified. For
example during preference aggregation, it is possible to have an incomplete preference profile in
which some of the votes are incomplete orders.

2.2.1 Partial votes and profiles

An incomplete vote is defined by an election E′ = (N, A,Π) where:

• N = {1, ..., n}, the set of voters,

• A = {a, b, ...}, the set of candidates such that |A| = m, and

• Π = {π1, ..., πn}, the partial preference profile of voters in N.

Let πi denote the partial preference order of voter i. A partial vote πi can represent information
about voter i’s responses to queries. The most natural queries that can be represented as a partial
preference order are:

• Pairwise comparisons: Voter i is asked to state which of two alternatives, a or b, is pre-
ferred to the other.

• Top-k queries: Voter i provides the top-k (ranked) alternatives from �i for some 1 ≤ k ≤ m.

A completion of πi is any vote �i that extends πi. Let C(πi) denote the set of completions of πi ,
that is, the set of all complete votes �i that extend πi. Let C(Π) = C(π1)× ...×C(πn) be the set of
completions of Π.

Example 2.1. Let us consider three candidates c1, c2 and c3 with the three partial preference
orders illustrated in Figure 2.1. Let Π = {O1,O2,O3} be the partial preference profile, such that
in O1, the voter prefers c1 � c2 and c1 � c3, but their is no relation between candidates c2 and
c3. In this case, O1 (resp. O2, O3) can be completed by adding c2 � c3 (resp. c1 � c2, c1 � c2

and c1 � c3). As a result, C (πi) = {c2 � c3, c1 � c2, c1 � c2, c1 � c3}.
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Figure 2.1: Partial preference profile

2.2.2 Probabilistic preference models

If one is given partial information about the preferences of voters, but is forced to make a decision
and select the winner of an election; several styles of approach can be used, including worst-case
or probabilistic analyses. Probabilistic analysis requires the specification of some prior distribu-
tion over voter preferences or preference profiles, so we briefly review several key probabilistic
models.

Probabilistic analysis has been used primarily to study the likelihood that various phenomena
(e.g., Condorcet cycles, manipulability) occur in randomly drawn voter populations, than as a
basis for decision making or elicitation with incomplete information. Abstractly, a distribution
over preference order � can be viewed as a ”culture” indicating the probability that a random
voter will hold a particular preference ranking. By far, there are two widely adapted probability
models in the social choice literature which are used for sampling voters’ preferences.

• Impartial culture model (IC) (Guilbaud, 1952), in which each ranking is equally likely to
be a voter’s preference, and all voter’s preferences are independent. For totally ordered
m alternatives chosen by N voters, IC assumes that each voter independently selects her
preference ranking according to a uniform probability distribution over preference orders.

Example 2.2. Table 2.1 presents a preference profile over 3 candidates A = {a, b, c}. For
any preference order, the IC assumes that the probability of observing any preference order
is uniform.

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a
1
6

1
6

1
6

1
6

1
6

1
6

Table 2.1: Impartial culture model

• Impartial anonymous culture (IAC) (Kuga & Nagatani, 1974), which provides a uniform
distribution over all preference profiles. The IAC model relies also on an equiprobability
assumption, but this time without taking the identity of the voters into account. Hence,
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the preferences of the electorate are generated by using anonymous profiles in which the
names of the voters are neglected. IAC assumes that each anonymous profile is equally
likely.

Example 2.3. Table 2.2 presents a preference profile over 3 candidates A = {a, b, c}. The
IAC assumes that the probability of observing any distribution over preference orders is
equally likely. That is, any vector where X1 + X2 + X3 + X4 + X5 + X6 = 1.0

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a

X1 X2 X3 X4 X5 X6

Table 2.2: Impartial anonymous culture model

More realistic probabilistic models of preferences, or parametrized families of distributions over
rankings, have been proposed in statistics, econometrics and psychometrics. These models typ-
ically reflect some process by which people rank, judge or compare alternatives. A commonly
used model, adopted widely in voting theory is the Mallows φ-model (Mallows, 1957).

• Mallows φ model is parametrized by a modal or reference ranking σ and a dispersion
parameter φ ∈ (0, 1]; and for any ranking r: P (r;σ, φ) = 1

Zφ
d(r,σ) , where:

– d is the Kendall tau distance and

– Z =
∑

r′ φ
d(r,σ) = 1 × (1 + φ) ×

(
1 + φ + φ2

)
× ... ×

(
1 + + φm−1

)
is a normalization

constant.

When φ = 1 the uniform distribution over rankings is obtained (i.e., impartial culture).

Example 2.4. Let us consider the following preference orders presented in Table 2.3 over
3 candidates A = {a, b, c} and the corresponding Kendall tau distance.

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a

0 1 1 2 2 3

Table 2.3: Mallows model’s Kendall tau distance

– Let us consider the ranking r : a � b � c, and compute the probability of the
preferences ranking. The normalization constant is equal to: Z = 1 × (1 + φ) ×(
1 + φ + φ2

)
.
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– Let us consider the case where φ = 0.5. In this case, Z = 1 × (1 + 0.5) × (1 + 0.5 +

0.52) = 2.625. The probability of different preference ranking is shown in Table 2.4
and obtained as follows:

* P (a � b � c) = 1
Zφ

d(a�b�c,a�b�c) = 1
2.625 × 0.5(0) = 0.381

* P (a � c � b) = 1
Zφ

d(a�b�c,a�c�b) = 1
2.625 × 0.5(3−0) = 0.1905

* P (b � a � c) = 1
Zφ

d(a�b�c,b�a�c) = 1
2.625 × 0.5(1−0) = 0.1905

* P (b � c � a) = 1
Zφ

d(a�b�c,b�c�a) = 1
2.625 × 0.5(2−0) = 0.095

* P (c � a � b) = 1
Zφ

d(a�b�c,c�a�b) = 1
2.625 × 0.5(2−0) = 0.095

* P (c � b � a) = 1
Zφ

d(a�b�c,c�b�a) = 1
2.625 × 0.5(3−0) = 0.04762

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a

0.381 0.1905 0.1905 0.095 0.095 0.04762

Table 2.4: Mallows model’s probabilities

Among probabilistic analysis used in social choice, there is also an increasing focus on identify-
ing tractable special cases using tools like fixed parameter tractability (Hemaspaandra, Lavaee,
& Menton, 2013) and domain restrictions (Walsh, 2007). One of the most common domain
restrictions considered in social choice theory is that of single peaked preferences.

• Single peaked impartial culture (SP-IC) generates singled peaked votes uniformly from the
IC model. The model draws uniformly at random from the set of orders that are consistent
with a given social axis. In general, given m candidates at integer points on the axis choice
form 1 to m, there are 2m−1 different singled peaked votes. In (Walsh, 2015) discusses how
to generate singled peaked votes uniformly from the IC model. He shows that half of all
these single peaked votes end in m and are made up of all the single peaked votes from 1
to m − 1 augmented with m at their end. The other half of these single peaked votes end
in 1 and are made up of all the single peaked votes from 2 to m augmented with 1 at their
end.

Example 2.5. Let us consider the following preferences order over candidates in A =

{a, b, c}. If the social axis is a � b � c then positive probability is obtained only on the
2m−1 = 22 = 4 consistent orders with an uniform distribution of 1

4 on each order.

Table 2.5 shows the distribution of probabilities on consistent orders based on (Walsh,
2015). Given the social axis a � b � c, let us consider the half of all these single peaked
votes made up of all the single peaked votes containing candidates a and b, and augmented
with c at their end. This consideration concludes to two preferences order: a � b � c and
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b � a � c having a positive probability of 1
4 . Now, let us consider the other half of these

single peaked votes end in a and are made up of all the single peaked votes containing b
and c. The preferences order obtained are b � c � a and c � b � a with probability of 1

4 .

a � b � c a � c � b b � a � c b � c � a c � a � b c � b � a
1
4 0 1

4
1
4 0 1

4

Table 2.5: Single peaked impartial culture model

A variety of other models have been proposed that reflect different interpretations of the
ranking process (e.g., Plackett-Luce, Bradley-Terry, Thurstonian, etc.) and many of these have
found application in computer science, machine learning, and recommender systems.

2.3 Solution concepts with partial preferences

Two fundamental questions arise in voting situations related to incomplete preference profiles.
First, is the information provided sufficient to determine the winner (or have certain alternatives
have been ruled out as possible winners)? Second, if required to choose a winning alternative
under specific conditions, what are the right criteria for doing so? These questions are discussed
in this section.

2.3.1 Possible and necessary winners

Suppose it is given a voting rule f but have only a partial profile Π. This partial information may
or may not be sufficient to determine the true winner under f . However, if the winner cannot be
determined, Π may still contain enough information to rule out certain alternatives as potential
winners. (Konczak & Lang, 2005) introduce the notions of possible and necessary winners to
reflect these possibilities. A candidate is a possible winner if there exists a voting order such
that this candidate is a plurality winner over the cast votes. Similarly, a candidate is a necessary
winner if he is a plurality winner over the cast votes for each voting order. The possible and
necessary winner problems are interesting in their own right. In addition, they provide insight
into several related and interesting problems.

Example 2.6. In Figure 2.1, candidate c1 is a possible winner of Π with respect to plurality rule.
In the first place, O1 (resp. O2, O3) can be completed by adding c2 � c3 (resp. c1 � c2, c1 � c2

and c1 � c3); then, c1 is a necessary winner. Secondly, however, c1 is not the only winner, because
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we can complete O1 (resp. O2, O3) by adding c2 � c3 (resp. c2 � c1, c2 � c1 and c1 � c3); then,
c2 is the only winner.

The applications of these concepts are many. For instance, if a is a necessary winner under Π,
no further elicitation or assessment of voter preferences is needed to make a decision. Knowing
whether a is a possible winner is tightly related to the coalitional manipulation problem as well.
Assume a partial profile Π in which the votes of the non-manipulators are fully specified, while
no information is given for the manipulators: if a is not a possible winner with respect to Π, the
manipulating coalition cannot (constructively) manipulate the election to install a; conversely if
a is a possible winner, then a is susceptible to (constructive) manipulation.

2.3.2 Minimax regret

While possible and necessary winners are valuable concepts for providing constraints on the de-
cisions one might make given a partial profile, they do not provide a general means for selecting
winners given arbitrary partial profiles. In circumstances when one is required to make a deci-
sion without complete information the following questions remain: which of the possible winners
should one select? and is it reasonable to select an alternative that is not a possible winner?

In recent work, authors in (Lu & Boutilier, 2011a) proposed a solution using the notion of
minimax regret (MMR) to determine winners given partial profile, and also to guide elicitation.
Assume a voting rule f defined using some scoring function. Intuitively, one measures the quality
of a proposed winner a given Π by considering how far from optimal solution (true winner) could
be in the worst case, given any completion of Π. MMR is defined to be the difference between
the score of an alternative a and the score of the winner (i.e., alternative with the optimal score),
in the worst case given any completion of Π. The MMR optimal solution is any alternative that
is nearest to optimal in the worst case. This gives us a form of robustness in the face of vote
uncertainty.

2.3.3 Probabilistic preference models

Probabilistic analysis of partial profiles can be used to answer several important questions.
(Hazon, Aumann, Kraus, & Wooldridge, 2012) study the possibility of computing the probabil-
ity of a particular candidate winning an election, given incomplete information. The incomplete
preferences are represented in the form of a probability distribution over a set of preference order-
ings. Authors in (Hazon et al., 2012), proposed a model that allows to compute the probability of
candidate’s victory under a variety of voting rules. For example, given a constant bounded num-
ber of alternatives, they show that computing the probability of an alternative winning is polytime
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solvable for any voting rule with polytime winner determination. However, when the number of
candidates is not bounded, they prove that the problem becomes P-hard for the Plurality, Borda
and copeland voting rule.

Example 2.7. Let us consider the following probability distribution over a set of preference
order of 3 candidates A = {a, b, c} and 2 voters. Each voter i’s distribution is given in explicit
form; that is, a probability is specified for each possible ranking the voter may hold. The voters’
preferences are summarized in Table 2.6.

Voter 1 Voter 2
1
2 a 1

4 a
1
3 b 3

4 b
1
6 c

Table 2.6: Partial preference with a probability distribution

Table 2.7 is an example of how authors in (Hazon et al., 2012), builds the probability table
given a set of probability distribution over candidates. The first row represents a voting result
which is a vector of votes. For example vector 2, 0, 0 means that 2 votes are given to candidate a
and 0 vote for candidate b and c. The second column shows the probabilities for every possible
voting result with the two voters. Thus, the probability that candidate a is the winner, is: 1

2 .
1
4 +

1
2 .

(
1
3 .

1
4 + 1

2 .
3
4

)
+ 1

2 .
(

1
6 .

1
4

)
.

Voting results (a, b, c) Probability

2, 0, 0 1
2 .

1
4

1, 1, 0 1
3 .

1
4 + 1

2 .
3
4

1, 0, 1 1
6 .

1
4

0, 2, 0 1
3 .

3
4

0, 1, 1 1
6 .

3
4

0, 0, 2 0

Table 2.7: Probability table with probabilistic preferences

2.4 Preference elicitation

Preference elicitation refers to elicit a partial profile from voters with the minimal amount of
information to determine a winning outcome of high quality. In this context, one of the main
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reasons to implement a social choice function with partial profile, is to minimize the amount of
information needed to reach a group decision. Several natural forms of queries can be used to
communicate information about voter preferences:

• Full ranking queries: Voter i provides her entire ranked list of alternatives �i.

• Top-k queries: Voter i provides the top-k alternatives from �i for some 1 ≤ k ≤ m.

• Pairwise comparisons: Voter i is asked to state which of two alternatives, a or b, is pre-
ferred to the other.

• Set choice: Voter i is presented with a subset S ⊆ A, and asked which alternative in S is
most preferred.

In order to deal with preference elicitation, theoretical analyses that provide upper and lower
bounds of information elicited to determine the outcome of various voting rules have been studied
(Conitzer & Sandholm, 2005). Also, approaches to preference elicitation that are driven by
more practical considerations exist. These techniques use the different solution concepts (Section
2.3) to deal with partial profiles and consider different measures for the quality of the resulting
outcome selected such as winner quality, the amount of information elicited and the number of
rounds of elicitation.

To the best of our knowledge, (Kalech, Kraus, Kaminka, & Goldman, 2011) were among the
first to develop and evaluate a practical vote elicitation scheme that allowed the selection of win-
ners using partial profiles using scoring rules. Their technique dubbed greedy voting scheme uses
possible and necessary winners notion to determine a true winner and proceeds for a predeter-
mined number of rounds, asking each voter at each stage for fixed number of positional rankings
(e.g., the top-k candidates). Since termination is predetermined, necessary winners may not be
discovered; instead possible winners are returned. One especially attractive feature of this ap-
proach is that voters are only queried a fixed number of times, allowing to minimize interruption
and waiting time.

(Lu & Boutilier, 2011b) propose an elicitation scheme that exploits minimax regret solution
to determine winners given a partial profile. Two different forms of queries are considered:
simple pairwise comparisons (e.g., do you prefer a to b?), and top-k queries (e.g., who are your
top-k candidates?). (Lu & Boutilier, 2011b)’s approach proceeds in rounds, and simultaneously
reduce the amount of information elicited from voters and the number of rounds of elicitation.
Furthermore, their model is able to measure the quality of the approximate winner.

Eliciting only the pertinent information from voters, allows one to design mechanisms for
preference aggregation that have less stringent informational requirements; and more robust to
missing information.
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2.5 Conclusion

In this chapter we have relaxed the assumption that each voter provides a complete preference
ranking of all candidates under consideration, by dealing with incomplete preferences of voters
over a set of candidates. We have described the basic notations and the different models of partial
preferences. Then, we have introduced solution concepts for winner determination with uncertain
preferences. Finally, we have described techniques for eliciting the necessary preferences needed
to implement a voting rule. In this context, the main reason to implement social choice functions
with partial profiles, is to minimize the amount of information needed to reach a group decision.
In the next chapters, we will show how to use these techniques when considering a manipulation
problem.
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Chapter 3
New manipulation strategy with
uncertain knowledge

3.1 Introduction

Previous chapters introduce a number of interesting and challenging issues relative to manip-
ulation and the implementation of voting schemes with incomplete information, conceptually
and computationally. Analysis of manipulation usually assumed that the manipulators have full
knowledge of the votes of the non-manipulating voters. However, this assumption is unrealistic
in the real world setting where manipulators have rarely access to such information. To this end,
we relax this assumption by proposing a new manipulation strategy with uncertain knowledge,
in the setting in which manipulators have incomplete information about the non-manipulators
votes. In order to deal with uncertainty regarding the non-manipulators votes, a multi-round elic-
itation process, of sincere voters preferences, is derived that yields to an optimal manipulation
with minimal information elicited.

This chapter is organized as follows: Section 3.2 defines our manipulation problem precisely
by discussing its different dimensions and the reasons behind our choices. Section 3.3 discusses
deficiencies in preference elicitation and proposes a multi-round elicitation process to deal with
incomplete preferences. Section 3.4 describes the new manipulation strategy with uncertain
knowledge.

29
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3.2 Manipulation strategy under uncertainty

In this section, we define our manipulation problem precisely by detailing its different dimen-
sions. To this end, we try to summarize our manipulation strategy through a series of the most
important questions characterizing our problem:

1. Who is manipulating: an individual voter or a coalition of voters?
Both of these are important variants, but we focus on coalitional manipulation for the
following reason: In elections with many voters, it is very unlikely that an individual voter
can affect the outcome by misreporting his preferences even with unlimited computational
power. Indeed, a more significant problem is that of coalitional manipulation, where a
group of voters coordinates their actions in order to affect the election’s outcome.

2. Are the voters weighted or unweighted?
Weighted votes occur in a number of real-world settings (e.g., shareholder elections).
Weights are typically integers, and a voter with weight k counts as k voters voting identi-
cally. However, the unweighted version of the coalitional manipulation problem is more
natural in most election settings, where the manipulators’ votes are unweighted. For this
reason, this work focuses on unweighted coalitional manipulation.

3. What is the goal of manipulation?
In constructive manipulation, a coalition attempts to cause a single preferred candidate to
win. Destructive manipulation, attempts to prevent a specific candidate from winning. In
this work, we focus on constructive manipulation variation.

4. Do manipulators have identical preferences or different preferences?
If all the manipulators have identical preferences, this is exactly the problem that they
want to be able to solve. Manipulators would try to ensure their most preferred candidate’s
victory. In the case where manipulators do not have identical preferences, they may still
work together, but it is much less clear which candidate they should try to promote. While
they may all agree that they would prefer a different winner than the truthful one, however,
deciding which candidate to support is a whole new game that they need to play among
themselves. To push the scenario to the limit, this work considers a situation where all
manipulators have identical preferences.

5. What information do the manipulators have about the non-manipulators’ votes?
In this work we focus on the incomplete information held by the manipulators for the fol-
lowing reasons: Much work in social choice assumes that manipulators know perfectly
how the other voters will vote (Narodytska & Walsh, 2014; Conitzer, Lang, & Sandholm,
2003; Conitzer et al., 2007; Gibbard, 1973; Bartholdi III et al., 1989; Satterthwaite, 1975).
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Analysis of the impact of manipulation under more realistic incomplete knowledge as-
sumptions has been sparse, but is clearly of vital importance. Recently, there has been
some work relaxing this assumption. For example, (Ditmarsch, Lang, & Saffidine, 2013;
Lu et al., 2012) extends coalitional manipulation to incomplete knowledge. Still, the study
of strategic voting under incompleteness or uncertainty regarding the votes of sincere vot-
ers has received little attention.

6. Which solution concept is considered with partial preferences?
Several solution concepts discussed in Chapter 2 deal with partial preferences such as:
possible and necessary winners, minimax regret and probabilistic preference models. To
deal with uncertainty in preferences, this work uses probabilistic information about voter
preferences. Notice that possible and necessary winners do not prescribe a general method
for choosing winners under partial profiles. Also, minimax regret quantifies the lack of
information using a worst-case analysis, ignoring the probability of specific completions.
By contrast, at least in cases where probabilistic preference models are available, a more
refined analysis of the likelihood of various completions can be used to make decisions.

7. Which voting rule is considered?
While plurality is considered as the most voting rule used in real-world elections, but it
completely disregards all the information provided by the voter preferences except for
the top ranking. Under positional scoring rules like Borda, a scoring vector is provided,
ranking the candidate set from the highest cumulative score to the lowest one. Also these
category of rules seems especially robust to evaluate the impact of manipulation on so-
cial welfare. For this reason, our work considers positional scoring rules to evaluate the
outcome of the election.

In summary, this work focuses on manipulation problem when manipulators may declare
preferences that are not their true ones, with the aim of obtaining a better outcome for themselves.
In this context, the goal is to study unweighted constructive coalitional manipulation problem in
the setting in which all manipulators have identical preferences and they are uncertain about the
non-manipulators’ votes. This uncertainty is represented by a top-k most preferred candidates
over the sincere voters’ votes. To deal with partial knowledge, probabilistic preference models
are adopted. The scoring rule considered in this work is the Borda rule.

Manipulation analysis gains prominence on success probability and ignoring the impact of
manipulation on social welfare (see Section 1.5). However, characterizing the impact of a ma-
nipulating coalition’s action only in terms of its probability of succeeding can sometimes be
ambiguous. Formally, we refer to S W (s, s∗) as the difference between the true score s∗ and the
approximate score s associated to a set of candidates under a given scoring rule and we propose
analyzing rules in this light. In this study, we will consider both the probability of manipula-
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tion and its impact on social welfare, by computing the loss in welfare under the manipulation
strategy where maximizing social welfare is the main objective.

3.3 Multi-round elicitation process

Effective elicitation concerns eliciting intelligently pertinent preference information from the
voter because determining and expressing preferences can be arduous. Authors in (Conitzer &
Sandholm, 2002b) show that eliciting partial order preferences from the voters can allow the vot-
ing protocol to determine the outcome well before all of the preferences have been elicited. The
requirement of eliciting only the pertinent preferences is desirable for any of several reasons:
First, it can be costly for an agent to determine its own full preferences. Second, in practice,
voters may wish to rank candidates only as necessary, in cases where there are many available
options or it will be time-consuming than the complete ranking. Third, bandwidth and commu-
nications can introduces overhead (e.g. network traffic) and make it impractical to send the entire
set of preferences at once to the voting center if the candidate set is large. Finally, less preference
revelation is desirable due to privacy reasons.

In this context, much work has mainly focused on theoretical analyses of preference elic-
itation, reporting the upper and lower bounds of the required communication with the voters
(Conitzer & Sandholm, 2005). While these analyses provide the limits of what is possible and
are efficient to determine the right outcome, but theoretical approaches that minimize the amount
of information may sometimes elicit more preferences than necessary in practice which con-
troversy the effective elicitation goal. Therefore, preference elicitation that are driven by more
practical considerations are required. However, to the best of our knowledge, only two stud-
ies propose practical algorithms for effective preference elicitation (Kalech et al., 2011; Lu &
Boutilier, 2011b).

• (Kalech et al., 2011) assume that each voter holds a predefined decreasing order of the
preferences in the initial call for votes, then the voters are requested to submit their highest
preferences in an iterative process. Requiring the users to predefine their preferences can
be inconvenient to the users for the several reasons mentioned above. Therefore, we require
voters to respond and rate a specific preference only when necessary.

• In the second study (Lu & Boutilier, 2011b), a practical elicitation process is proposed
for the Borda voting protocol. Authors develop an approach to vote elicitation that ex-
ploits partial preference order over voter preferences. The iterative process simultaneously
reduce the amount of information elicited from voters and the number of rounds. How-
ever, in the underlying process, one round vote elicitation protocols was analyzed. It will
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be interesting to generate practical results for optimal multi-round instantiations which
will allow to further reduce the amount of information elicited with an optimal number of
rounds.

In order to overcome these weaknesses, we propose a practical multi-round elicitation pro-
cess that yields to approximate the winner of the election with high quality, based on the partial
information elicited from voters in multiple rounds. The key idea is that the voters incremen-
tally send their preferences in rounds, one preference each round, in a decreasing order of their
preferred candidates. After each round, the voters wait for the voting center to decide whether
sufficient information has been received to determine a winner, or additional voters’ preferred
candidates need to be sent in the next round. In each round the response query of each voter is
added to all his previous votes and the center evaluates the outcome of the election using a spe-
cific voting rule and based on the available information. The multi-round process stop eliciting
preferences once the approximate winner is determiner with high probability, and from that point
the voters no longer send preference values.

Example 3.1. For instance, if the full preference order of the voter is a � b � c � d, initially,
in the first round he will send only his most preferred candidate a, then the voting center will
evaluate the quality of the winner using the Borda rule. If the quality of the approximate winner
is far from the true one, then the second preferred candidate of the voter is required at the second
round. The vote sent to the voting center will be a � b and so on, until a high quality of the winner
is detected.

Now, let us introduce our multi-round elicitation process formally. Given a set of voters
N = {1, ..., n}, a set of candidates |A| = m, and a partial preference profile Π = {π1, ..., πn} of voters
in N (see Section 2.2). In this context, a query refers to a single request for information from a
voter. Type of query is in the form of top-k most preferred candidates (e.g., who is your top-k
preferred candidate?). The elicitation of top-k preferences is simulated for k ∈ {1, ..., (m − 1)}.
The voter is required to rank only m−1 candidates in the worst case. The complete order ranking
is not considered, since the goal is to minimize the amount of information elicited from voters.
Given a particular class of queries Q, informally, a multi-round voting protocol selects, at each
round, a subset of voters, and one query per selected voter. The voter response query at round t
is added to all his previous responses.

Formally, let It−1 be the information set available at round t. It−1 represents the voters’ re-
sponses to queries for rounds t ∈ {1, ..., (t − 1)} allowing them to rank k = m − 1 candidates in
the worst case. This information set is represented as a partial profile πt−1 of a top-k preferred
candidates for each voter. Then, we propose a protocol based on three functions:

1. Querying function ψ, represents a sequence of mappings ψt : Π 7−→ (N 7−→ Q), selecting
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for each voter a single query at stage t given the current information set It−1.

2. Completion function C : Π 7−→ V , given a partial profile Π, C (Π) is the set of consistent
extensions of Π to obtain a full ranking profile. The output of C, is a complete ranking
preference profile V over the set of candidates given the partial preference profile Π. Prob-
abilistic models are used to deal with uncertainty regarding the voter preference and to
complete the profile.

3. Winner selection function ω : V 7−→ A, where ω (V) denotes the approximate winner under
a given complete profile V . Borda scoring rule is used to evaluate the outcome given the
voters’ votes V and to determine the approximate winner over the set of candidates A.
If the approximate winner is far from the true one, the protocol proceeds to round t + 1,
otherwise the protocol terminates with the chosen winner at round t.

Given a protocol Ω = (ψ,C, ω), in order to evaluate the effectiveness of our multi-round
elicitation process in our experimental study presented in Chapter 4; we propose to use three
properties, namely:

• Quality of the winner: Determine the quality of the approximate winner of the election,
using partial information elicited in each round. While the Borda rule is used, the output of
Ω is a scoring vector over the set of candidates in a decreasing order. The most preferred
candidate have the highest score. The approximate winner is evaluated by considering how
far from the true winner (given the complete preferences) could be.

• Amount of elicited information: Determine the necessary amount of information elicited
from voters in each round in order to predict the outcome of the election. The amount
of information will be measured by counting the number of k preference elicited in each
round.

• Number of rounds: Determine the number of rounds needed, in order to obtain a high
quality of the winner.

Clearly, the proposed metrics are traded off against one another. At one extreme, higher
quality outcomes and fewer rounds of elicitation can usually be achieved at the cost of addi-
tional preference information where we have to ask each voter for full rankings. At the other
extreme, minimizing elicited information can be constructed by eliciting one query per voter in
each round, at a dramatic cost in terms of number of rounds. In this work, our goal is to find the
optimal protocol which will allow us to reduce the number of rounds, as well as the amount of
information elicited in each round; in order to reach a high quality of approximate winner. We
answer the question: How many candidates are needed to be elicited with the minimal number of



Section 3.3 – Multi-round elicitation process 35

interactions, in order to determine the true winner ? Uncertainty regarding the voter preferences
is facilitated by using probabilistic preference models such as IC and S P-IC to complete the
voters’ votes.

Algorithm 3.1 Multi-round elicitation process

Input: N voters, m candidates, Top-k votes:
(
π1

k, ..., πn
k
)

Output: ω (V) (approximate winner)
Initialization: t=1, k=1, It= ∅, ω∗ (true winner)

1: while ( (ω (V) , ω∗) OR (t < m) ) do
2: for i ∈ N do
3: ψt.add

(
πi

k
)

4: end for
5: It.add (ψt)
6: V ← C (It)
7: if (ω (V) , ω∗) then
8: t = t + 1
9: k = k + 1

10: else
return ω (V)

11: end if
12: end while

Algorithm 3.1 presents our multi-round elicitation process. The querying function is per-
formed in lines (1-5) where ψt contains the partial profile elicited from voters in each round.
This profile is a mapping of preference orders in πi

k which denotes the top-k ranking of voter i
over a set of m candidates. The response query of each voter is added to all his previous votes in
It. The completion function is presented in line 6 where the partial profile is extended to a com-
plete one V . Then, the winner selection function is introduced in lines (7-10) where the Borda
rule is applied. The approximate winner ω (V), obtained with the predicted profile, is compared
to the true one; by considering the complete ranking. If the predicted winner is far from the
true one, the algorithm proceeds to the next round (line 8) by eliciting the next most preferred
candidates of each voter (line 9); otherwise, the approximate winner is declared the winner of
the election (line 10).

Example 3.2. Let us consider the following example to illustrate the application of the multi-
round elicitation process. We use 5 candidates and 20 voters i.e. m = 5 and N = 20, having the
following preference profile: 6 voters: 1 � 2 � 3 � 4 � 5, 3 voters: 2 � 4 � 3 � 5 � 1, 4 voters:
3 � 4 � 2 � 1 � 5, 4 voters: 5 � 3 � 2 � 4 � 1, 3 voters: 4 � 5 � 3 � 2 � 1.

Applying the Borda rule (see Section 1.2) on this profile, will determine the scores of each
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candidate as follows: s(1) = 28, s(2) = 49, s(3) = 52, s(4) = 43, s(5) = 28; and the true winner
ω∗ is candidate 3. Now let us apply the multi-round elicitation process on this profile, which will
be performed in three steps:

• Querying function: we consider at the beginning t = 1 and k = 1 i.e. in the first round the
process will elicit top-1 queries of each voter over the set of candidates, πi

1; which will
be added to the querying function ψ1, that is, ψ1 = {1, 2, 3, 5, 4} and the information set
I1 = {1; 2; 3; 5; 4}.

• Completion function: the partial preference profile in I1 will be completed using the IC
probabilistic model (C(I1)); the output of this step is the following predicted preference
profile V: 6 voters: 1 � 2 � 3 � 4 � 5, 3 voters: 2 � 4 � 5 � 3 � 1, 4 voters:
3 � 1 � 5 � 4 � 2, 4 voters: 5 � 2 � 4 � 1 � 3, 3 voters: 4 � 1 � 5 � 2 � 3.

• Winner selection function: Borda rule is applied to determine the approximate winner
ω(V) of the election given the predicted complete profile V. Borda scores are: s(1) = 49,
s(2) = 45, s(3) = 31, s(4) = 39, s(5) = 36 and the approximate winner is ω(V) = 1
which is different from the true one ω∗ = 3. In this case, top-1 queries are not sufficient to
determine the right outcome, therefor, the process proceeds to round 2.

In the second round, the 3 functions are performed as follows:

• Querying function: in the second round (t = 2), the process will elicit top-2 queries of
each voter over the set of candidates, πi

2; which will be added to the querying function ψ2,
that is, ψ2 = {2, 4, 4, 3, 5} and the information set I2 = {1, 2; 2, 4; 3, 4; 5, 3; 4, 5}, where the
response query of each voter is added to all his previous votes from t = 1 (separated by ;)

• Completion function: the partial preferences order in I2 will be completed using the IC
probabilistic model (C(I2)); the output of this step is the following predicted preference
profile V: 6 voters: 1 � 2 � 4 � 3 � 5, 3 voters: 2 � 4 � 5 � 3 � 1, 4 voters:
3 � 4 � 1 � 5 � 2, 4 voters: 5 � 3 � 2 � 1 � 4, 3 voters: 4 � 5 � 2 � 1 � 3.

• Winner selection function: Borda rule is applied to determine the approximate winner
ω(V) of the second round given the predicted complete profile V. Borda scores are: s(1) =

39, s(2) = 44, s(3) = 37, s(4) = 45, s(5) = 35 and the approximate winner is ω(V) = 4
which is also different from the true oneω∗ = 3. In this case, top-2 queries are not sufficient
to determine the right outcome, and the process proceeds to round 3.

In the third round, the 3 functions are performed as follows:
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• Querying function: in the third round (t = 3), the process will elicit top-3 queries of each
voter over the set of candidates, πi

3; which will be added to the querying function ψ3,
that is, ψ3 = {3, 3, 2, 2, 3} and the information set I3 = {1, 2, 3; 2, 4, 3; 3, 4, 2; 5, 3, 2; 4, 5, 3},
where the response query of each voter is added to all his previous votes from t = 1 and
t = 2.

• Completion function: the partial preferences order in I3 will be completed using the IC
probabilistic model (C(I3)); the output of this step is the following preference profile V: 6
voters: 1 � 2 � 3 � 4 � 5, 3 voters: 2 � 4 � 3 � 1 � 5, 4 voters: 3 � 4 � 2 � 1 � 5, 4
voters: 5 � 3 � 2 � 4 � 1, 3 voters: 4 � 5 � 3 � 1 � 2.

• Winner selection function: Borda rule is applied to determine the approximate winner
ω(V) of the third round given the predicted complete profile V. Borda scores are: s(1) =

34, s(2) = 46, s(3) = 52, s(4) = 43, s(5) = 25 and the approximate winner is ω(V) = 3
which is the true one ω∗ = 3. In this case, top-3 queries are sufficient to determine the
right outcome, and the process stop eliciting preferences from voters.

To conclude, in this example, eliciting top-3 queries from voters in 3 rounds will allow us to
determine the correct winner of the election with the minimal amount of information elicited.

3.4 New manipulation strategy with uncertain knowledge

In this section, we propose to study the connection between strategic voting and preference
elicitation. Elicitation may reveal information about honest voters’ votes to a manipulator,
which allows him to vote strategically. To this end, we introduce a new manipulation strat-
egy with uncertain knowledge, to solve restricted manipulators’ knowledge, regarding the non-
manipulators votes (see Section 3.2), using our proposed multi-round elicitation process (see
Section 3.3). In this context, the multi-round elicitation process will elicit the top-k prefer-
ences of non-manipulators. This amount of information elicited will represent the manipulators’
knowledge, which will allow them to ensure the victory of their most desired candidate with the
minimal amount of information. Using this new approach, we aim to:

• Determine the minimal value of k needed to be known by the manipulators to achieve their
goal, with the minimal number of rounds.

• Decide when to stop eliciting sincere voters’ preferences, as an optimal manipulation is
guaranteed with less damage on social welfare (see Section 3.2).
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While manipulation and elicitation are two closely related fields, unfortunately, previous in-
vestigations have mainly focused on each field separately. To the best of our knowledge, only
two studies introduce the connection between them, but no practical process has been proposed.

1. (Conitzer & Sandholm, 2002b) show that elicitation introduces additional opportunities
for strategic manipulation of the election by the voters. They consider manipulation as an
undesirable problem that must be avoided by curtailing the space of elicitation schemes
so that no such additional strategic issues arise. However, no framework was proposed to
emphasize this view.

2. (Walsh, 2008) studies the connection between the complexity of manipulation and the
termination of eliciting preferences. He shows that the complexity of manipulation by a
coalition of agents is closely related to the complexity of deciding if preference elicitation
can be terminated, which may create a tension since we want it to be computationally hard
to manipulate an election but computationally easy to decide when to terminate elicitation.
However, strategic issues that may be introduced into a voting protocol by an elicitation
process were not studied.

Our new manipulation strategy with uncertain knowledge will allow us to overcome existing
weaknesses. This new approach uses the three defined functions in the multi-round elicitation
process, namely: querying function, completion function and winner selection function; in order
to elicit preferences from sincere voters and to determine the outcome of the election by consid-
ering the vote of manipulators. The whole process is illustrated in Figure 3.1 and proceeds as
follows:

• In the first round (t=1), the querying function will elicit top-1 sincere voters’ preferences.
Each sincere voter expresses his most preferred candidate over the available set of candi-
dates.

• The information set elicited is sent to the manipulators, which constitutes their knowledge
at the first round. Based on these incomplete preferences, the manipulators will cast a vote
that makes their preferred candidate p wins the election.

• In order to complete the sincere votes, we consider an internal process where the com-
pletion function is performed. In this step, sincere votes are extended using probabilistic
models. A complete preference profile V over the whole set of candidates is provided in
output.

• Given the complete predicted profile V and the manipulators desired candidate p, gathered
on the new data set; the winner selection function is performed, where a scoring rule is
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applied. The output of this step is an approximate winner ω (V) which will be compared to
the true one in order to evaluate the impact of manipulation i.e. verify if the manipulators
have succeeded to change the outcome of the election to their favor.

• In order to evaluate the performance of the protocol to elicit the minimal value of k from the
sincere voters, we measure both, the probability of manipulation and its impact on social
welfare. If no optimal manipulation is found, the process proceeds to the next round by
eliciting the next most preferred candidate of the sincere voters, until an optimal strategy is
detected. We refer to optimal manipulation by a successful manipulation with less damage
on social welfare.

  

Sincere voters 

New data set 

Manipulators 

Querying function 

 Incomplete profile 

of sincere voters 

Completion function 

Complete profile 

of sincere voters  

Manipulators’ 

preferred candidate 

 

Winner selection 
function 

 Final score vector 

Figure 3.1: New manipulation strategy with uncertain knowledge

The use of the multi-round elicitation process on the new manipulation strategy, will allow us
to investigate the relation between the amount of information revealed by sincere voters and the
probability of manipulation; by studying how a reduction or increase in uncertainty may change
a strategic vote. To this end, our goal is to answer the question: How many candidates, per
sincere voter, are needed to be known for an optimal manipulation?

Example 3.3. Let us consider the following example to illustrate the application of our new ma-
nipulation strategy with uncertain knowledge. In this example, we use 20 sincere voters having
the same preference profile as in Example 3.2 and 2 manipulators having a desired candidate,
candidate 4, which they want to ensure his victory, i.e. H=20, M=2 and p=4 (see Section 1.3).
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The preference profile will be as follows: 6 H: 1 � 2 � 3 � 4 � 5, 3 H: 2 � 4 � 3 � 5 � 1, 4 H:
3 � 4 � 2 � 1 � 5, 4 H: 5 � 3 � 2 � 4 � 1, 3 H: 4 � 5 � 3 � 2 � 1 and 2 M: 4.

In the first round, the 3 functions used in the new manipulation strategy (Figure 3.1), are
performed as follows:

• The querying function and the completion function are performed in the same way as in
Example 3.2 in the first round (t=1). The process will elicit top-1 queries of each sincere
voter over the set of candidates and I1 represents the partial manipulators’ knowledge in
the first round. The output V of the completion function, represents the complete predicted
profile obtained by applying IC probabilistic model (C(I1)) on the sincere voters’ votes.

• Winner selection function: given the predicted complete profile V of sincere voters in the
first round, the manipulators will cast their vote i.e. p = candidate 4, and the Borda rule
is applied to determine the approximate winner ω(V) of the election by considering the
manipulators’ vote. In this context, Borda scores are: s(1) = 49, s(2) = 45, s(3) = 31,
s(4) = 47, s(5) = 36 and the approximate winner, with manipulation is, ω(V) = 1. While
the approximate winner is different from the desired one i.e. candidate 4, however, the
manipulators succeeded in raising the chances of their preferred candidate by ranking him
in the second place i.e. candidate 4 has the second highest score. If we want to determine
a higher quality of approximate winner i.e. candidate 4 in the first place, we proceed to the
second round by increasing the manipulators knowledge i.e. elicit top-2 queries of sincere
voters.

In the second round, the 3 functions are performed as follows:

• The querying function and the completion function are performed in the same way as in
Example 3.2 in the second round (t=2). The process will elicit top-2 queries of each sincere
voter over the set of candidates and I2 represents the partial manipulators’ knowledge
in the second round. The output V of the completion function, represents the complete
predicted profile obtained by applying IC probabilistic model (C(I2)).

• Winner selection function: given the predicted complete profile V of sincere voters in the
second round, the manipulators will cast their vote, and the Borda rule is applied to deter-
mine the approximate winner ω(V) of the election by considering the manipulators’ vote.
In this context, Borda scores are: s(1) = 39, s(2) = 44, s(3) = 37, s(4) = 53, s(5) = 35 and
the approximate winner, with manipulation is, ω(V) = 4, which represents the desired can-
didate of the manipulators. In this case, the manipulators succeeded to ensure the victory
of their preferred candidate by knowing only top-2 queries of sincere voters’ votes.
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To conclude, this example shows the effectiveness of our new manipulation approach, where
eliciting only top-2 queries of sincere votes, in two rounds, are sufficient to allow the manipula-
tors to achieve their goal.

3.5 Conclusion

In this chapter we have studied the connection between vote elicitation and manipulation prob-
lem. To this end, we have addressed the problem of coalitional manipulation using an efficient
top-k elicitation process. Our first contribution is a multi-round elicitation process for choosing
the ideal threshold k with the minimal number of rounds, in order to obtain a high quality of ap-
proximate winner. Then, our second contribution consists of a new manipulation strategy under
candidate uncertainty, using the proposed multi-round elicitation process. This new approach
aims to determine the minimal amount of information needed to be known by the manipula-
tors for an optimal manipulation. The next chapter is dedicated to test the effectiveness of our
proposals.



Chapter 4
Experimental study

4.1 Introduction

In this chapter, we run several experiments with top-k preference distributions, as well as real
voting data, to test the effectiveness of our multi-round elicitation process and the new manipu-
lation strategy proposed. In this study, we are interested in:

• Evaluate the effectiveness of our multi-round elicitation process for determining the opti-
mal top-k needed to make a high quality decision with minimal number of rounds.

• Evaluate the performance of our new manipulation strategy for determining the minimal
number of candidates needed to be known by manipulators for an optimal manipulation,
by measuring both the probability of manipulation and its impact on social welfare.

To this end, we will use two data sets, Sushi data and Gen-Ran data, to perform the experiments.
We use Python programming language to implement the two proposed approaches. To complete
profiles, we will consider two probabilistic models IC and S P-IC (see Section 2.2).

This chapter is organized as follows: Section 4.2 describes the data sets used to perform the
different experiments. Section 4.3 is dedicated to investigate the performance of the multi-round
elicitation process. Section 4.4 deals with manipulation strategy, where we will test the effective-
ness of the new manipulation strategy with uncertain knowledge, by measuring the probability
of manipulation and its impact on social welfare.

42
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4.2 Data sets description

In this study, two data sets are used:

• Sushi data (Kamishima et al., 2005) from Preflib1 (Mattei & Walsh, 2013). This data set
contains the results of a series of surveys asking 5000 individuals for their preferences
about various kinds of sushi. This work considers Sushi experiments with 5000 voters,
where each voter has a complete preference order over a set of 10 alternatives.

• Since Sushi data is not a single peaked data (see Section 1.3), we have randomly generated
a data set so called Gen-Ran data with 10 alternatives and 1000 voters having a single
peaked preferences.

The preference data presented in Preflib are expressed in an easily accessible and readable
format. Figure 4.1, presents an example of Sushi data format with 4 kinds of sushi and 9 in-
dividuals, i.e. A = {ebi, anago,maguro, ika} and N = 9. The first line presents the number of
alternatives. The different kind of Sushi are presented in the four next lines. The fifth line which
contains ’9,9,3’, indicates: the number of individuals, sum of vote count and number of unique
orders, respectively. Finally, the remaining lines, present the preference order of the different
individuals; where the first number of each line illustrates the number of voters who has this
specific preference order.

 
4 
1,ebi (shrimp) 
2, anago(seaeel) 
3, maguro(tuna) 
4, ika(squid) 
9, 9, 3 
3, 8, 5, 6, 2, 1, 3, 9, 4, 10, 7 
3, 2, 5, 6, 8, 3, 1, 9, 7, 10, 4 
3, 8, 3, 6, 5, 9, 2, 1, 4, 10, 7 

 
Figure 4.1: Sushi data format

1http://www.preflib.org/
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4.3 Multi-round elicitation experiments

The multi-round elicitation process aims to minimize the amount of information elicited from
voters, as well as the number of rounds. To this end, we run a suit of experiments using Sushi
data and Gen-Ran data.

4.3.1 Sushi data experiments

In order to evaluate the performance of our proposed multi-round elicitation process, our first
set of experiments uses Sushi data by drawing 10 preference profiles each with 5000 voters.
Each profile contains top-k preference order k ∈ {1, ..., 9} with 5000 rankings. We simulate the
elicitation of top-k preferences and measure both margin of victory of partial preferences under
IC and S P-IC models for k ∈ {1, ..., 9} comparing with the complete profile (k=10); and the
winner quality by measuring the probability of deviation from the true winner. Borda rule is
used in order to evaluate the outcome.

Figure 4.2 (resp. Figure 4.3), shows histograms using Sushi data with S P-IC (resp. IC)
model. That is, in each collection of histograms, as defined by a particular top-k queries k ∈
{1, ..., 10}, we generated 10 profiles over a set of 10 alternatives. For each profile and each k,
we compute the margin between the scores of different alternatives in each profile, and the true
scores by considering the case of complete profile. We use Borda scoring to evaluate the scores
in each profile. In each histogram, the horizontal axis corresponds to the different alternatives in
a partial profile and the vertical axis represents their scores. The bins of each partial profile in
the histogram (blue bins), are compared with those of the complete one (red bins).

Let us start by analyzing Figure 4.2. Clearly, the margin is always zero when k=9-10. Also,
with top-k queries, where k ∈ {8, 7, 6, 5}, the winner is always determined with a slight difference
in the scores of the other alternative. While our goal is not only to predict the true winner, but
to minimize the impact on social welfare by predicting the correct ranks of the largest number
of alternatives; our approach succeeds to achieve this goal. For instance the true ranking of the
alternatives with k=10 is: 8, 3, 1, 6, 2, 5, 4, 9, 7, 10; with top-k queries k ∈ {7, 8} (resp. k ∈ {5, 6}),
the approximate ranking ranks 9 alternatives among 10 (resp. 6 among 10 alternatives) in the
correct position. Now, let us consider a small number of k ∈ {1, 2, 3, 4}; eliciting top-1 queries
from voters are not sufficient to determine the true winner. Starting from k ∈ {2, 3, 4}, the true
winner is always predicted, with 4 correct ranking among 10. To conclude, results with Sushi
data using the S P-IC model, show that eliciting information from voters in 2 rounds (top-2) is
always sufficient to predict the correct winner. Results with 3 rounds (top-3), are a very good
approximate for the largest number of correct ranking.
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Results with Sushi data in Figure 4.3, show that our multi-round elicitation process performs
better using IC model than the first model. That is, the true winner is always predicted with all
values of k ∈ {1, ..., 9} i.e. the predicted winner is always alternative 8 which represents the true
winner. This is also shown by the slight difference in the scores of different alternatives in the
histograms. Results with 2 rounds (top-2), are a very good approximate for the largest number
of correct ranking.

Figure 4.4 summarizes the above experiments performed with Sushi data, by showing, in plot
(a) (resp. (b)), the margin of victory of the 10 preference profiles, by increasing the number k
of alternatives elicited k ∈ {1, ..., 9} in each profile, using IC model (resp. S P-IC). The peaks in
each preference profile, in a decreasing order, present the order of the winners using the Borda
rule. Clearly, under IC model, the shape of the different curves is the same, which means that
even with partial preferences, the scoring rule ranks the alternatives, almost, in the same order
i.e. top-4 queries are usually sufficient to rank all alternatives in the same order comparing with
the true ranking (k=10). More interestingly, in order to evaluate the impact on social welfare,
eliciting preferences from voters in 2 rounds (top-2), guarantee not only a correct outcome, but
also a correct ranking of 4/10 alternatives. Sushi results, with IC model, show that it is always
possible to determine the winner with incomplete information, even with k = 1 i.e. alternative 8
has the highest score with different values of k which represents the true winner. Sushi’s results
with S P-IC model (plot b) show that the margin of victory is sparse. For small value of k = 1,
the approximate winner deviate from the true one i.e. with k=1, the approximate winner is
alternative 5 while the true winner is alternative 8. Results with S P-IC model, suggest that, with
top-3 queries, one can usually find the true winner; but top-2 queries are usually enough to obtain
the desired outcome.

To conclude, the IC model performs well with Sushi data with small values of k = 1, 2, this
is shown in the 3rd plot where the probability of deviation of the true ranking is of 27% under
IC model against 34% under S P-IC model. With top-3 queries, the true ranking is determined
in the most cases with a slight deviation of 17%. Intuitively, while increasing the values of k, the
process converges to the correct prediction, and is near perfect with top-3 under the two models
(deviation of 15%).
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Figure 4.2: Sushi data histograms with S P-IC model
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Figure 4.3: Sushi data histograms with IC model.
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Figure 4.4: (a) Summary of Sushi results with IC model, (b) Summary of Sushi results with
S P-IC, (c) Probability of the approximate winner quality.
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4.3.2 Gen-Ran data experiments

Recall that preferences are single peaked if there is some way of lining up all the alternatives, so
that the graph of every voters preferences has a single local maximum. To this end, we run a suit
of experiments with Gen-Ran data, in order to test the ability of a single peaked data to predict the
correct outcome using two models IC and S P-IC. With Gen-Ran data, we drew 10 profiles each
with: N= 1000 voters and with top-k preferences order k ∈ {1, ..., 10}. We simulate the elicitation
of top-k preferences and measure both the margin of victory of partial preferences using the two
models for k ∈ {1, ..., 9} comparing with the complete profile (k=10); and the winner quality by
measuring the probability of deviation from the true ranking.

Figure 4.5 (resp. Figure 4.6), shows histograms using Gen-Ran data with IC (resp. S P-
IC) model. That is, in each collection of histograms, as defined by a particular top-k queries
k ∈ {1, ..., 10}, we generated 10 profiles over a set of 10 alternatives, each with N=1000 voters.
For each profile and each k, we compute the margin between the scores of different alternatives
in each profile, and the true scores by considering the case of complete profile (k=10). Similarly
to the above experiments, we use Borda rule to evaluate the scores in each profile. In each
histogram with a specific value k, the horizontal axis corresponds to the different alternatives in
a partial profile and the vertical axis represents their scores. The bins of each partial profile in
the histogram (blue bins), are compared with those of the complete one (red bins).

Interesting results are shown when analyzing Gen-Ran data using IC model (Figure 4.5),
where the margin is almost near to zero when k ∈ {3, 4, 5, 6, 7, 8, 9}. Since, not only the true
winner is determined, but also the model ranks the alternatives in the correct ranking with a
slight difference in the scores. Considering a small values of k ∈ {1, 2}, both the correct winner
and the correct ranking are predicted, however the bins of partial profiles are not close enough
which is due to the lack of information with top-1 and top-2 queries. Results with S P-IC are
even more illuminating, where the margin between the bins with all values of k is slight and
near to zero. That is, S P-IC model performs well with Gen-Ran data which represents a single
peaked data set. Clearly, top-1 query, with only one round, is always sufficient to determine the
true winner with the lowest loss in social welfare.

Figure 4.7 summarizes experiments performed on Gen-Ran data. Clearly, with IC model
(plot (a)), the curves’ shape, with different values of k, is almost the same; except with k = 1, 2 the
true winner is not determined and the vector score deviates from the true one; but an additional
alternative (top-3 queries) is sufficient to determine the true winner with approximately the same
score vector. A very good approximate winners are obtained with top-4 queries. Results in plot
(c) show that the probability of deviation from true ranking is evaluated to 30% with top-1 and
decreases by increasing the number of queries. A very good results are obtained using S P-IC
where the shape of the curve is the same with all values of k. This is, with only one round
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of elicitation, and with top-1 preferences revealed by voters; the correct outcome is determiner
with a correct ranking over the set of alternatives i.e. a negligible impact on social welfare. The
probability of deviation from the true ranking is showed clearly in (plot (c)), which is evaluated
to 15% with all the incomplete preferences k ∈ {1, ...7}.

Let us turn our attention to the normal form of the distribution generated by Ran-Gen data,
constituted of single peaked preferences. Our results suggest that using IC and S P-IC models, to
complete an original single peaked data, generate always a single peaked vote able to determine
the correct ranking of alternatives in almost all cases (except k=1-2 with IC model). For instance,
plots (a) and (b), present a local maximum on alternative 4 i.e. alternatives graphed along the
horizontal axis have one peak on alternative 4 which represents the winner with higher score,
and then the curve goes down with the other alternatives in a decreasing order.
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Figure 4.5: Gen-Ran data histograms with IC model
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Figure 4.6: Gen-Ran data histograms with S P-IC model
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Figure 4.7: (a) Gen-Ran data with IC model, (b) Gen-Ran data results with S P-IC, (c) Probabil-
ity of the approximate winner quality.
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4.4 New manipulation strategy experiments

In order to test the effectiveness of our manipulation approach, we measure both the probabil-
ity of manipulation and its impact on social welfare. To this end, we use Sushi data to test the
manipulators’ strategy. Our choice to this specific data set, and not Gen-Ran data; is due to the
Black’s median voter theorem (Black, 1948) which implies that Gibbard-Satterthwaite’s nega-
tive conclusions regarding preference aggregation (Gibbard, 1973; Satterthwaite, 1975) i.e. any
voting rule with at least three alternatives, that is non-dictatorial is manipulable; disappear if one
assumes that the alternatives can be ordered along a social axis so that every individual’s prefer-
ence over the alternatives is single-peaked (see Section 1.3). In other word, when we consider
single peaked preferences, such as Gen-Ran data, the manipulation is not possible.

In this context, we consider Sushi data by drawing 10 profiles such that, each of them contains
top-k preferences order k ∈ {1, ..., 10}. We vary the number of manipulators M ∈ {500, 750, 1000}
with N= 5000 voters in each profile, where M= 500 manipulators (resp. 750, 1000), represents
10% (resp. 15% and 20%) of the total number of voters. We use the IC model (see Section
2.2) to complete non-manipulators votes, since its effectiveness performed with Sushi data in the
above experiments. Since manipulability varies greatly with the preferred alternative chosen by
the manipulators, we show results for the alternatives whose expected ranks in different profile
are second, third, and fourth i.e. P=2, P=3, P=4.

Figure 4.8 shows results of three different manipulators strategies with M=750. In plot (a)
(resp. plot (b), plot (c)), the manipulators preferred alternative is the one whose expected rank
in different profiles is second, P=2 (resp. P=3, P=4). In the horizontal axis, we represent the 10
preference profiles by varying the value of k ∈ {1, ..., 5} in each profile. For instance, in plot (a),
K=2 means that the manipulators know only top-2 preferences of sincere voters; based on these
incomplete information, their aim is to ensure the victory of the alternative whose expected rank
is second (P=2), that is, to make him in the first rank. In order to evaluate the effectiveness of
different manipulators’ strategies under candidate uncertainty; in each plot, ’opt’ refers to the true
ranking of alternatives, with complete preferences and without manipulation, which is: 8, 3, 1,
6, 2, 5, 4, 9, 7, 10. The different ranks are presented by the peaks in the graph. Interesting results
are presented with top-1 queries, where, with different manipulation strategies and knowing only
one preference of non-manipulators votes, the manipulators can ensure the victory of their most
preferred alternative. However, an additional knowledge about the non-manipulators votes (top-2
queries), allows the manipulators to only increase their chances of winning, by raising their most
preferred alternative to the second rank. For instance, when the manipulators strategy is P=3, i.e.
manipulators desired alternative is 1; with top-1 queries, the winner is alternative 1; however,
with top-2, top-3 and top-4 queries, the winner is always the alternative 8, while alternative 1 is
ranked second. In summary, our results with M=750 manipulators, suggest that the manipulators
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goal can be achieved only if the manipulators know top-1 queries of the non-manipulators votes.

Let us now consider a larger number of manipulators when M=1000, presented in Figure
4.9. Results show that, when the manipulators preferred alternative is in the second expected
rank (P=2), the manipulators are always able to ensure their victory. For instance, in plot (a),
when the manipulators desired alternative is 3, this latter is ranked first and declared the winner
with all values of k ∈ {1, ..., 5}. However, when P=3 (resp. P=4), manipulators are able to
achieve their goal only with restricted knowledge, that is, top-1 and top-2queries (resp. top-1,
top-2 and top-3 queries); with k ∈ {3, 4, 5} (resp. k ∈ {4, 5}), manipulators can only increase the
chances of their preferred alternative by ranking him second. While our goal is to determine the
minimal amount of information elicited, our results with M=1000, suggest that top-1 queries of
the manipulators knowledge, are always sufficient to achieve a successful manipulation, that is,
with any manipulators’ strategy.
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Figure 4.8: (a) Manipulation strategy with P=2 and M = 750, (b) Manipulation strategy with
P=3 and M = 750, and (c) Manipulation strategy with P=4 and M = 750
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Figure 4.9: (a) Manipulation strategy with P=2 and M = 1000, (b) Manipulation strategy with
P=3 and M = 1000, and (c) Manipulation strategy with P=4 and M = 1000
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Figure 4.10: (a) Probability of optimal manipulation with M = 500, (b) Probability of optimal
manipulation with M = 750, and (c) Probability of optimal manipulation with M = 1000
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The impact of manipulation on social welfare is evaluated in Figure 4.10, by measuring the
loss on social welfare depending on the knowledge held by the manipulators, as we vary the
manipulators number M ∈ {500, 750, 1000} and consider desired alternatives P=2, P=3 and P=4.
Results show that the impact of manipulation on social welfare is ’high’ when manipulators know
less about the votes of the non-manipulators, and the probabilities gradually drop as k grows. For
instance, in plot (b), with 750 manipulators who preferred P = 3, loss in social welfare is of
24% (resp. 20%, 16% and 12%) when they know only top-1 (resp. top-2, top-3 and top-4) of
non-manipulators votes. Also, the probability of optimal manipulation depends on the chosen
alternative by the manipulators under uncertainty. For instance, with top-2 queries, the curve
of P = 2 is always on the bottom with the different number of manipulators, while, with top-
3 queries, manipulators can ensure the victory of P = 3 with low loss. Finally, results show
that 10% of manipulators (M=500), are able to change the outcome with small impact on social
welfare by increasing the chances of victory of their most preferred alternative. While, 15% of
manipulators are able to make their alternative win the election.

4.5 Discussion

In order to evaluate the effectiveness of our multi-round elicitation process, we propose to com-
pare our results with those obtained in (Lu & Boutilier, 2011b). Authors in (Lu & Boutilier,
2011b) theoretically outlined a general framework for the design of a multi-round elicitation
protocol, however they have empirically dealt only with one-round elicitation of top-k candi-
dates. In this context, they have estimated the expected minimax regret using the MMR solution
(see Section 2.3) to determine winners given partial profile. As in our study, they have used
Borda scoring rule to evaluate the outcome of the election. Their results with Sushi data, suggest
that with top-5 queries one can usually find the true winner; but top-4 queries are usually enough
to obtain low regret and determine a high quality of the winner. While our goal is to minimize
the information elicited as well as the number of rounds, our results are more efficient when we
consider probabilistic models to complete profiles. Our results suggest that top-1 (resp. top-2)
queries, are sufficient to determine the correct winner in one round (resp. 2 rounds), using the
IC (resp. S P-IC) probabilistic model. More interesting results are obtained with single peaked
data, where the winner of the election is always determined with any value of k, using the two
probabilistic models.

More recent work proposed by authors in (Doucette, Larson, & Cohen, 2014), addressing the
problem of determining the outcome of an election with only partial information. In this context,
authors propose a novel application with stronger connections to machine learning, where they
used classification algorithms to predict the missing preferences of a ballot via latent patterns in
the partial information provided. To this end, an imputation based approach to social choice was
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derived relying on the ability of machine learning algorithms to provide reasonable imputations
of user’s preferences in order to deal with incompleteness. As in our work, authors consider
partial elicitation process in the form of top-k style preferences and Borda scoring rule to select
the winner. However, our work differs from this recent context insofar as it uses conventional
social choice techniques and recommends a particular elicitation strategy for voters i.e. the voter
is asked to incrementally send his partial preferences in rounds, one preference each round; but
instead works with the partial preferences to achieve the same goal.

While the proposed approach in (Doucette et al., 2014) provides good results with incom-
plete data expressed by a low error rate using the SVM classifier, however, there are a number
of reasons to suppose our multi-round vote elicitation process should be preferred, at least in
some situations. Chief among them is that in the case where the ballots have exceptionally high
incompleteness (e.g. voters provide only top-1 preferences), classification becomes a difficult
problem with the imputation method requiring additional refinement to perform well, thus, the
correct winner is not predicted. In the similar situation, our results show that even with high
incompleteness; not only the correct winner is determined but also the damage on social welfare
is limited, which guarantee a high approximation of the entire ordering using a scoring rule.

Regarding the evaluation of our new manipulation strategy, there is no study in the literature
that investigates the relation between the amount of information and the success of manipulation,
empirically.

4.6 Conclusion

Experiments with two different data sets (namely Sushi data from Preflib and a randomly gener-
ated single peaked data Gen-Ran data), demonstrate the practical viability and advantages of our
multi-round elicitation process to minimize the amount of information elicited; with a high qual-
ity of the approximate winner. Also, experiments performed with the new manipulation strategy
indicate that our approach is quite tractable. Our results suggest that an optimal manipulation is
always obtained when the manipulators have restricted knowledge (top-1 queries). Specifically,
the probability of manipulation is sometimes quite significant with fewer manipulators’ knowl-
edge than with full one. Furthermore, our results indicate that a few number of manipulators are
able to change the outcome (15% of manipulators).



Conclusion

This work has studied the connection between vote elicitation and manipulation problem. In this
context, we have addressed the problem of uncertainty in manipulators’ knowledge, using an
efficient multi-round elicitation process. Our contribution is of two-fold:

• First, we propose a multi-round elicitation process for choosing the ideal threshold k. In
this setting, the voters are asked to provide the length k prefix of their ranking; in order to
determine the minimal amount of information, with the minimal number of rounds, needed
to predict the right outcome of the election.

• Second, we propose a new manipulation strategy with uncertain knowledge, where the
incomplete knowledge of the manipulators is solved using the proposed multi-round elic-
itation process. This new approach presents an empirical framework for computational
optimal manipulation strategies, when manipulators have incomplete knowledge about
non-manipulators votes; by determining the minimal amount of information needed to
be known by the manipulators to achieve their goal with less damage on social welfare.

Experiments with two different data sets (namely Sushi data from Preflib and a randomly
generated single peaked data Gen-Ran data), prove the practical viability and advantages of our
multi-round elicitation process to predict the right outcome of the election; with the minimal
amount of information elicited. Results show that eliciting top-1 preferences from voters is
always sufficient to determine the true winner in only one round, with IC model. Interesting
results are derived when we consider a single peaked data, in particular, the high quality of the
approximate winner using only top-1 preferences from voters.

Moreover, experiments performed with the new manipulation strategy indicate that our ap-
proach is quite tractable. Specifically, our approach allows the determination of an optimal ma-
nipulation strategy using only a small fraction of sincere voters’ preferences (top-1) and with less
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impact on social welfare. Also, our results show that with restricted knowledge, the manipula-
tors are always able to change the outcome to their favor, however when we increase the number
of queries elicited, the manipulators can only raise the rank of their preferred candidates to the
second place. Furthermore, our results suggest that a few number of manipulators are able to
change the outcome (15% of manipulators). In addition, our experiments demonstrat that ma-
nipulation may not be as undesirable a phenomenon as is commonly believed, when the quality
of the outcome is the main objective i.e. minimize the impact of manipulation on social welfare.

While our results show the effectiveness of the proposed approaches with incomplete prefer-
ences, a number of interesting avenues remain:

Our first interest is to examine the implication of single-peakedness data on our manipulation
strategy. That is, study if it is sufficient to eliminate the possibility of profitable manipulation
by using single peaked preferences as demonstrated in Black’s median voter theorem (Grofman,
2004). Assessing the impact of manipulation on single peaked preferences is a very impor-
tant step since many intractable voting problems become tractable for single-peaked profiles
(Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009).

Extending our analysis to a richer class of probabilistic models, such as the Mallows model
(Mallows, 1957) which is used to learn preferences distributions from voters, allowing inferences
to be drawn about their preferences. This model performs well with pairwise preferences form
” e.g., I like alternative a better than b”, than with top-k preferences ”e.g., I like a better than
b, better than c,...”. While our data is in the latter form, as a next step, we aim to test Mallows
model on our framework by considering the appropriate data set.

Investigate the use of probabilistic conditional preference networks (PCP-nets) as a way to
aggregate partial preferences from voters. Since PCP-nets provide a compact representation of
a probability distribution over a collection of CP-nets (Cornelio et al., 2014), adapting PCP-nets
to our multi-round elicitation process might yield interesting results.

On the theoretical side, deriving bounds on the amount of information required when eliciting
voters preferences is a very interesting step to prove the effectiveness of our empirical results.
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