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Introduction

Recommender systems have emerged in the past several years as an efficient tool to deliver users with more in-
telligent and proactive information service. Such systems apply knowledge discovery techniques to personalize
recommendations provided for each user. Recommendation systems use several algorithms to help us sort through
the masses of information to find the ”good product” in a very personalized way. They recommend products or
services that well fit to the learned users’ preferences and needs. These systems generally combine, on one hand, in-
formation extracted from users’ profiles and social interactions, and on the other hand, machine learning techniques
that are used to predict the user’s ratings or preferences.

Several types of recommenders have been proposed that can be categorized into three major categories (Ricci,
Rokach, Shapira, & Kantor, 2011) namely content-based filtering, collaborative filtering, and hybrid approaches.
In this work, we focus on the most popular approach (Ekstrand, Riedl, & Konstan, 2011), the collaborative filtering,
which predicts the user’s interest for a given item based on a collection of users profiles. Collaborative filtering
algorithms are divided into two main categories, namely memory-based and model-based. The first category focuses
on the entire collection of previously rated items, while the model-based one uses a model learned from the collection
of ratings to make predictions. In this work, we are in particular interested in memory-based approaches based on
user-item matrix representing users preferences.

Collaborative filtering gives good results in a certain context, in which ratings provided by users are known with
certainty. This does not reflect the reality, which is related to uncertainty and imprecision by nature. Consequently,
the recommendation results are deeply affected if uncertainty is not considered. So, a good recommender should
be able to suggest items even when information about ratings are imperfect. To improve the recommender’s accu-
racy, recent few researches have introduced uncertainty in the recommendation process. In fact, authors in (Samia,
Allel, & Aicha, 2014) modeled uncertain users preferences by means of fuzzy set theory. They handled evolu-
tion of preferences by taking into account the temporal dynamics of users preferences. Also, other research works
(K. Yu, Schwaighofer, Tresp, Xu, & Kriegel, 2004) have studied a probabilistic memory-based collaborative filter-
ing (PMCF) framework. In PMCF, authors used a generative probabilistic density to model preference profiles.
Then, a posterior distribution of user’s preferences is to predict an active user’s preferences. In addition, authors
(Price & Messinger, 2005) have proposed a new approach for recommender systems that optimize decision making.
This approach produces on the one hand a diversity of alternatives in the recommendation set by applying a specific
formulation ”expected utility” and on the other hand, covers the uncertainty over possible user preferences using
probability distributions. More recently, another research (Xiang, Guisheng, Long, & Yongjin, 2013) proposed a
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2 Introduction

new method of CF based on uncertain user interests clusters where uncertainty appears in the form of a trustworthy
degree to measure the rationality of clustering algorithm results. However to the best of our knowledge, no research
studied a purely uncertain recommender system dealing with uncertain ratings as an input.

In this report, we will develop a new collaborative filtering recommender under uncertainty, which uses the
possibility theory framework in order to cope with the uncertainty that may pervade users ratings. In fact, our
approach, denoted by ΠCF, is based on three steps, namely:

1. preferences representation handles users preferences using possibility distributions.

2. similarity computation calculates the similarity between items using a possibilitic similarity measure, namely
Information Affinity.

3. prediction and recommendation predicts the estimated preference of a target user towards an item he has
never seen before. Then, it generates a list of top K items for the target user using most similar items.

This report is organized as follows: Chapter 1 briefly presents basic concepts related to recommender system
and the possibility theory framework. Chapter 2 is dedicated to preferences-based research works. Chapter 3 details
our proposed possibilistic collaborative filtering approach ΠCF. Finally, chapter 4 presents experimental results
evaluating the performance of our proposed approach.



Chapter 1
Basics on recommendation and
possibility theory framework

1.1 Introduction

Recommendation plays an increasingly important role in our daily lives. Recommender systems may be helpful for
users that are choosing between a large number of items and aren’t able to browse information about all available
items (Cvengroš, 2011). Thus recommender systems give good results when ratings provided by users are known
with certainty. But this does not reflect the reality, which is related to uncertainty and imprecision by nature.
Consequently, the recommendation results are deeply affected if uncertainty is not considered. This uncertainty that
exists is not studied in previous recommender systems researches. Ignoring uncertainty puts the modeling in a less
realistic setting, and the resulting model does not precisely represent the reality (Zenebe & Norcio, 2009).

This chapter will be devoted to basics on both recommendation and possibility theory. Section 1.2 presents
recommendation systems and focuses in particular on collaborative filtering approach and Section 1.3 gives an
overview on possibility theory framework.

1.2 Recommender systems

Recommender systems (RSs) are computer-based techniques used to reduce information overload and provide rec-
ommendations of items (e.g., books, songs, etc.) based on expectations and tastes of users. RSs are very helpful for
indecisive users, who are not able to browse the whole information of items and choose the most appropriate ones.
This results in a decrease of the search time and an increasing of user’s satisfaction (Brun, Hamad, Buffet, & Boyer,
2010).

In this section, we will first give some notations and definitions relative to recommender systems. Then, we will
briefly present existing recommendation approaches with a particular focus on collaborative filtering. Figure 1.1

3



4 Chapter 1 : Basics on recommendation and possibility theory framework

illustrates the recommender system process.

Figure 1.1: The recommender system process (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013).
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1.2.1 Notations and definitions
• U = {u1, u2, ..., um, ..., uM} denotes the set of users in the system where M is the number of distinct users.

• I = {i1, i2, ..., in, ..., iN} denotes the set of items in the system where N is the number of distinct items.

• Target user: The user for whom the task is to find an item suggestion.

• Target item: The current item for which we would like to predict user’s preference.

• User profile: a set of user’s preferences.

1.2.2 Recommendation approaches

Based on the information used to perform recommendation, recommender systems generally fall into three cate-
gories: i) Content-based filtering, ii) Collaborative filtering and iii) Hybrid filtering.

Content-based filtering (CBF): learns to recommend items that are similar to the ones that the user liked in the
past (Ricci et al., 2011). For example, in a web-based E-commerce RS, if the user purchased some fiction
films in the past, the RS will probably recommend a recent fiction film that he has not yet purchased on this
website.
Content-based filtering analyzes items rated by a user, and builds a user’s profile based on the features of
the rated objects. The profile is a structured representation of user interests, adopted to recommend new
interesting items. The recommendation process basically consists in matching the attributes of the user
profile and the attributes of a content object. The result is a relevance judgment that represents user’s level
of interest (Lops, De Gemmis, & Semeraro, 2011).

Collaborative filtering (CF): is the process of filtering or evaluating items using the opinions of other people.
Intuitively, CF assumes that if user X and Y rate n items similarly or have similar behaviour (e.g. buying,
watching, listening), they will rate or act on other items similarly. Therefore, CF analyzes relationships
between users and interdependencies among products, in order to identify new user-item associations (Koren
& Sill, 2013).

The major difference between CF and content-based recommender systems is that CF only uses the user-
item ratings data to make predictions and recommendations, while content-based recommender systems rely
on the features of users and items for predictions.

Hybrid filtering: A hybrid recommender system combines different recommender systems using different hy-
bridization strategies, for example (Burke, 2002):

• Weighted: The scores (or votes) of several recommendation techniques are combined together to pro-
duce a single recommendation.

• Switching: The system switches between recommendation techniques depending on the current situa-
tion.

• Mixed: Recommendations from several different recommenders are presented at the same time.

• Cascade: One recommender refines the recommendations given by another.
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In this work, we will focus on collaborative filtering as it is the most widely implemented technology (Nair &
Kelkar, 2013). It works well with complex objects and it proves an explainable result which is an important aspect
in recommender systems.

1.2.3 Collaborative filtering approach

Collaborative Filtering approach (CF) is the most successful recommendation technique to date (Koren & Sill,
2013). The basic idea of CF-based algorithms is to provide item recommendations or predictions based on the
opinions of other users.
The goal of collaborative filtering algorithm is to predict the preferences of one user, referred to as the target user,
based on the preferences of a group of users. The key idea is that the target user, will prefer those items that his
neighbors preferred in the past. Intuitively, CF assumes that if user X and Y rate n items similarly or have similar
behavior (e.g. buying, watching, listening), they will rate or act on other items similarly. Therefore, CF analyzes
relationships between users and inter-dependencies among products, in order to identify new user-item associations.
Collaborative filtering first analyze the user-item preferences matrix to identify relations between different items,
then use this relations to compute prediction which is a numerical value expressing the predicted likeliness of item
for the target user. Finally generate a list of K items, that the target user will like the most, also known as Top-K
recommendation.

Collaborative filtering algorithms are divided into two main categories, namely memory-based and model-based
algorithms:

Model-based collaborative filtering groups together different users in the training database into a small number
of classes based on their rating patterns. In order to predict the ratings of a test user on a particular item, we can
simply categorize the test user into one of the predefined user classes and use the predicted class as the prediction
for the test user (Jin, Si, Zhai, & Callan, 2003).
Consequently, there exist several model-based recommendation methods such as bayesian classifiers (Park, Hong,
& Cho, 2007), neural networks (Roh, Oh, & Han, 2003), fuzzy systems (Yager, 2003), genetic algorithms (Linqi &
Li, 2008) have been investigated.

1. Bayesian collaborative filtering algorithms: use a naı̈ve bayes strategy to make prediction for CF tasks (Su
& Khoshgoftaar, 2009). Assuming the features are independent given the class, the probability of a certain
class can be computed, and then the class with the highest probability will be classified as the predicted class
(Park et al., 2007).

2. Clustering collaborative filtering algorithms: A cluster is a collection of data objects that are similar to one
another within the same cluster and are dissimilar to the objects in other clusters. The measurement of the
similarity between objects is determined using metrics such as Minkowski distance and Pearson correlation.
Clustering methods can be classified into three categories (Su & Khoshgoftaar, 2009):

• Partitioning methods: a commonly used partitioning method is k-means.

• Density-based clustering methods: search for dense clusters of users or items.

• Hierarchical clustering methods: create a hierarchical decomposition of users or items using some
criterion.
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Memory-based collaborative filtering makes predictions based on the entire collection of previously user’s rated
items. Typical memory-based approaches are (Ekstrand et al., 2011):

1. User to user collaborative filtering, also known as user-based CF, consists in exploiting past ratings users,
whose behaviors are similar to the one of the target user, to predict preferences (As shown in figure 1.2
below).

Figure 1.2: The user to user collaborative filtering.

2. Item to item collaborative filtering, also called item-based CF, computes how similar a set of items the target
user has rated, to the target item i and then selects K most similar items. (As shown in figure 1.3 below).

Figure 1.3: The item to item collaborative filtering.

In our work, we are in particular interested on the most widely used recommendation method, namely memory-based
collaborative filtering approach (Brun et al., 2010) . It executes the following tasks to generate recommendations
for a target user:

1. Calculate the similarity, S , which reflects distance correlation between two users or items. For item-based
CF algorithms, the basic idea is to work on the users who have both rated items i and j and then apply a
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similarity computation to determine the similarity S (i, j) between the two co-rated items of the users (Sarwar,
Karypis, Konstan, & Riedl, 2001). For a user-based CF, we calculate the similarity S (u, u′) between users u
and u′ who have both rated the same items.
There are many different methods to compute similarity between users or items, we cite in particular:

• Pearson correlation: computes the extent to which two users are linearly related to each other. It is
only based on items rated by both u and u′, formally:

S (u, u′) =

∑
i∈I′ (ru,i − ru)(ru′,i − ru′ )√∑

i∈I′ (ru,i − ru)2
√∑

i∈I′ (ru′,i − ru′ )2
(1.1)

where I′ is the set of items that both u and u′ have rated, ru,i is the rating of the user u for the item i
and ru is the average rating of the co-rated items of the user u.

• Cosine-based similarity: is computed by considering each user as a vector of users’ ratings and mea-
suring the cosine of the angle formed by these vectors. Formally:

S (u, u′) = cos(u, u′) =

−→
A •
−→
B

‖
−→
A‖ ∗ ‖

−→
B‖

(1.2)

where A and B correspond to vectors of u and u′, respectively and • denotes the dot product.

2. Produce a prediction for the target user by taking the weighted average of all the ratings of the user or item
on a certain item or user.

• Weighted sum of others’ ratings: To make prediction for the target user u′ on a certain item i ,we take
the weighted average of all the ratings on that item according to this formula:

Pu′,i = ru′ +

∑
u∈U(ru,i − ru) ∗ S (u, u′)∑

u∈U |S (u, u′)|
(1.3)

where ru and ru′ are the average ratings for the user u′ and user u on all other rated items, and S (u, u′)
is the similarity between the user u′ and user u.

• Simple weighted average: For item-based prediction, we use the simple weighted average to predict
the rating, Pu,i, for user u on item i. Formally:

Pu,i =

∑
j∈N ru, j ∗ S (i, j)∑

j∈N |S (i, j)|
(1.4)

where the summations are over all other rated items j ∈ N for user u, S (i, j) is the similarity between
items i and j, ru, j is the rating for user u on item j.

3. Top-K recommendations is to generate a set of K top-ranked items that will be of interest to a certain user.
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i1 i2 i3 i4 i5 i6 i7 i8

u1 ? 4 4 2 1 2 ? ?
u2 3 ? ? ? 5 1 ? ?
u3 3 ? ? 3 2 2 ? 3
u4 4 ? ? 2 1 1 2 4
u5 1 1 ? ? ? ? ? 1
u6 ? 1 ? ? 1 1 ? 1
ua ? ? 4 3 ? 1 ? 5

Table 1.1: The users’ ratings matrix

Example 1.1. Let us consider the user-item matrix of Table 1.1 composed of seven users {u1, u2, u3, u4, u5, u6, ua}

where ua is the active user and eight items {i1, i2, i3, i4, i5, i6, i7, i8}. Our aim is to recommend to the active user ua the
most preferred item not yet used. To this end, we should compute all of Pua,i1 , Pua,i2 , Pua,i5 and Pua,i7 using Equation
(1.1) as follows:

S (ua, u1) =
(rua ,i3−rua )(ru1 ,i3−ru1 )+(rua ,i4−rua )(ru1 ,i4−ru1 )+(rua ,i6−rua )(ru1 ,i6−ru1 )

√
(rua ,i3−rua )2+(rua ,i4−rua )2+(rua ,i6−rua )2∗

√
(ru1 ,i3−ru1 )2+(ru1 ,i4−ru1 )2+(ru1 ,i6−ru1 )2

=
(4−3.25)(4−2.6)+(3−3.25)(2−2.6)+(1−3.25)(2−2.6)√

(4−3.25)2+(3−3.25)2+(1−3.25)2∗
√

(4−2.6)2+(2−2.6)2+(2−2.6)2

= 0.655

S (ua, u2) =
(rua ,i6−rua )(ru2 ,i6−ru2 )

√
(rua ,i6−rua )2∗

√
(ru2 ,i6−ru2 )2

=
(1−3.25)(1−3)√

(1−3.25)2
√

(1−3)2

= 1

S (ua, u3) =
(rua ,i4−rua )(ru3 ,i4−ru3 )+(rua ,i6−rua )(ru3 ,i6−ru3 )+(rua ,i8−rua )(ru3 ,i8−ru3 )

√
(rua ,i4−rua )2+(rua ,i6−rua )2+(rua ,i8−rua )2∗

√
(ru3 ,i4−ru3 )2+(ru3 ,i6−ru3 )2+(ru3 ,i8−ru3 )2

=
(3−3.25)(3−3.4)+(1−3.25)(2−3.4)+(5−3.25)(3−3.4)√

(3−3.25)2+(1−3.25)2+(5−3.25)2∗
√

(3−3.4)2+(3−3.4)2+(3−3.4)2

= 0.586

S (ua, u4) =
(rua ,i4−rua )(ru4 ,i4−ru4 )+(rua ,i6−rua )(ru4 ,i6−ru4 )+(rua ,i8−rua )(ru4 ,i8−ru4 )

√
(rua ,i4−rua )2+(rua ,i6−rua )2+(rua ,i8−rua )2∗

√
(ru4 ,i4−ru4 )2+(ru4 ,i6−ru4 )2+(ru4 ,i8−ru4 )2
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=
(3−3.25)(2−2.33)+(1−2.33)(2−3.4)+(5−3.25)(4−2.33)√

(3−3.25)2+(1−3.25)2+(5−3.25)2∗
√

(2−2.33)2+(1−2.33)2+(4−2.33)2

= 0.9967 ' 1

S (ua, u5) =
(rua ,i8−rua )(ru5 ,i8−ru5 )

√
(rua ,i8−rua )2∗

√
(ru5 ,i8−ru5 )2

=
(5−3.25)(1−1)√

(5−3.25)2
√

(1−1)2

= 0

S (ua, u6) =
(rua ,i6−rua )(ru6 ,i4−ru6 )+(rua ,i8−rua )(ru6 ,i8−ru6 )

√
(rua ,i6−rua )2+(rua ,i8−rua )2∗

√
(ru6 ,i6−ru6 )2+(ru6 ,i8−ru6 )2

=
(1−3.25)(1−1)+(5−3.25)(1−1)√

(1−3.25)2+(5−3.25)2∗
√

(1−1)2+(1−1)2

= 0

We will only consider the most similar users to ua, namely u1, u2, u3 and u4 . The predicted preference is
therefore computed using Equation (1.3) as follows:

Pua,i1 = rua +
(ru2 ,i1−ru2 )∗S (ua,u2)+(ru3 ,i1−ru3 )∗S (ua,u3)+(ru4 ,i1−ru4 )∗S (ua,u4)

|S (ua,u2)|+|S (ua,u3)|+|S (ua,u4)|

= 3.25 +
(3−3)∗1(3−3.4)∗0.586+(4−2.33)∗0.9967

1+0.586+0.9967

= 2.685

Pua,i2 = rua +
(ru1 ,i2−ru1 )∗S (ua,u1)

|S (ua,u1)|

= 3.25 +
(4−2.6)∗0.655

0.655

= 4.65

Also, we compute Pua,i5 and we obtain:

Pua,i5 = rua +
(ru1 ,i5−ru1 )∗S (ua,u1)+(ru2 ,i5−ru2 )∗S (ua,u2)+(ru3 ,i5−ru3 )∗S (ua,u3)+(ru4 ,i5−ru4 )∗S (ua,u4)

|S (ua,u1)|+|S (ua,u2)|+|S (ua,u3)|+|S (ua,u4)|

= 3.25 +
(1−2.6)∗0.655+(5−3)∗1+(2−3.4)∗0.586+(1−2.33)∗0.9967

0.586+0.9967+0.655+1



Section 1.2 – Recommender systems 11

= 2.684

With the same manner, we compute Pua,i7 and we obtain:

Pua,i7 = rua +
(ru4 ,i7−ru4 )∗S (ua,u4)

|S (ua,u4)|

= 3.25 +
(2−2.33)∗1

1

= 2.92

As Pua,i2 = 4.65 > Pua,i7 = 2.92 > Pua,i1 = 2.685 > Pua,i5 = 2.684 , then item i2 is more preferred than i7 which
in turn more preferred than i1 and i5 and consequently i2 will be in the top one recommendation list of ua.

Example 1.2. Let us consider the same ratings matrix of Table 1.1. We want to compute user ua’s prediction
for items i1, i2 and i5 in order to recommend the most close item to user’s taste. So, we need to find the most similar
items for each of i1, i2 and i5 based on Pearson Correlation of Equation (1.1) as follows:

S (i1, i4) =
(ru3 ,i4−ri4 )(ru3 ,i1−ri1 )+(ru4 ,i1−ri1 )(ru4 ,i4−ri4 )

√
(ru3 ,i4−ri4 )2+(ru4 ,i4−ri4 )2∗

√
(ru3 ,i1−ri1 )2+(ru4 ,i1−ri1 )2

=
(3−2.75)(3−2.5)+(4−2.75)(2−2.5)√

(3−2.75)2+(4−2.75)2
√

(3−2.5)2+(2−2.5)2

= −0.555

S (i1, i6) =
(ru2 ,i1−ri1 )(ru2 ,i6−ri6 )+(ru3 ,i1−ri1 )(ru3 ,i6−ri6 )+(ru4 ,i1−ri1 )(ru4 ,i6−ri6 )

√
(ru2 ,i1−ri1 )2+(ru3 ,i1−ri1 )2+(ru4 ,i1−ri1 )2∗

√
(ru2 ,i6−ri6 )2+(ru3 ,i6−ri6 )2+(ru4 ,i8−ri8 )2

=
(3−2.75)(1−1.33)+(3−2.75)(2−1.33)+(4−2.75)(1−1.33)√

(3−2.75)2+(3−2.75)2+(4−2.75)2
√

(1−1.33)2+(2−1.33)2+(1−1.33)2

= −0.309

S (i1, i8) =
(ru3 ,i1−ri1 )(ru3 ,i8−ri8 )+(ru4 ,i1−ri1 )(ru4 ,i8−ri8 )+(ru5 ,i1−ri1 )(ru5 ,i8−ri8 )

√
(ru3 ,i1−ri1 )2+(ru4 ,i1−ri1 )2+(ru5 ,i1−ri1 )2∗

√
(ru3 ,i8−ri8 )2+(ru4 ,i8−ri8 )2+(ru5 ,i8−ri8 )2

=
(3−2.75)(3−2.8)+(4−2.75)(4−2.8)+(1−2.75)(1−2.8)√

(3−2.75)2+(4−2.75)2+(1−2.75)2
√

(3−2.8)2+(4−2.8)2+(1−2.8)2

= 1

We will consider the most similar item to i1 namely is i8. The predicted preference Pua,i1 is therefore computed based
on Equation (1.4) as follows:
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Pua,i1 =
rua ,i6 ∗S (i1,i8)
|S (i1,i8)|

= 5∗1
1

= 5

in the same way, we calculate:

S (i2, i3) =
(ru1 ,i2−ri2 )(ru1 ,i3−ri3 )

√
(ru1 ,i2−ri2 )2

√
(ru1 ,i3−ri3 )2

=
(4−2)(4−4)√

(4−2)2
√

(4−4)2

= 0

S (i2, i4) =
(ru1 ,i2−ri2 )(ru1 ,i4−ri4 )

√
(ru1 ,i2−ri2 )2

√
(ru1 ,i4−ri4 )2

=
(4−2)(2−2.5)√

(4−2)2
√

(2−2.5)2

= −1

S (i2, i6) =
(ru1 ,i2−ri2 )(ru1 ,i6−ri6 )+(ru6 ,i2−ri2 )(ru6 ,i6−ri6 )

√
(ru1 ,i2−ri2 )2+(ru6 ,i2−ri2 )2

√
(ru1 ,i6−ri6 )2+(ru6 ,i6−ri6 )2

=
(4−2)(2−1.33)+(1−2)(1−1.33)√

(4−2)2+(1−2)2
√

(2−1.33)2+(1−1.33)2

= 1

S (i2, i8) =
(ru5 ,i2−ri2 )(ru5 ,i8−ri8 )+(ru6 ,i2−ri2 )(ru6 ,i8−ri8 )

√
(ru5 ,i2−ri2 )2+(ru6 ,i2−ri2 )2

√
(ru5 ,i8−ri8 )2+(ru6 ,i8−ri8 )2

=
(1−2)(1−2.8)+(1−2)(1−2.8)√

(1−2)2+(1−2)2
√

(1−2.8)2+(1−2.8)2

= 1

We will consider the most similar item to i2 namely are i6 and i8. The predicted preference Pua,i2 is therefore
computed as follows:
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Pua,i2 =
rua ,i6 ∗S (i2,i6)+rua ,i8 ∗S (i2,i8)

|S (i2,i6)|+|S (i2,i8)|

=
(1∗1)+(5∗1)

2

= 3

Also, with the same manner, we calculate:

S (i3, i5) =
(ru1 ,i3−ri3 )(ru1 ,i5−ri5 )

√
(ru1 ,i3−ri3 )2

√
(ru1 ,i3−ri3 )2

=
(4−2)(4−4)√

(4−2)2
√

(4−4)2

= 0

S (i5, i4) =
(ru1 ,i4−ri4 )(ru1 ,i5−ri5 )+(ru3 ,i4−ri4 )(ru3 ,i5−ri5 )+(ru4 ,i4−ri4 )(ru5 ,i5−ri5 )

√
(ru1 ,i4−ri4 )2+(ru3 ,i4−ri4 )2+(ru4 ,i4−ri4 )2

√
(ru1 ,i5−ri5 )2+(ru3 ,i5−ri5 )2+(ru5 ,i5−ri5 )2

=
(2−2.5)(1−2)+(3−2.5)(2−2)+(2−2.5)(1−2)√

(2−2.5)2+(3−2.5)2+(2−2.5)2
√

(1−2)2+(2−2)2+(1−2)2

= 0.819

S (i5, i6) =
(ru1 ,i5−ri5 )(ru1 ,i6−ri6 )+(ru2 ,i5−ri5 )(ru2 ,i6−ri6 )+(ru3 ,i5−ri5 )(ru3 ,i6−ri6 )+(ru4 ,i5−ri5 )(ru4 ,i6−ri6 )

√
(ru1 ,i5−ri5 )2+(ru2 ,i5−ri5 )2+(ru3 ,i5−ri5 )2+(ru4 ,i5−ri5 )2

√
(ru1 ,i6−ri6 )2+(ru2 ,i6−ri6 )2+(ru3 ,i6−ri6 )2+(ru4 ,i6−ri6 )2

=
(1−2)(2−1.33)+(5−2)(1−1.33)+(2−2)(2−1.33)+(1−2)(1−1.33)√

(1−2)2+(5−2)2+(2−2)2+(1−2)2
√

(2−1.33)2+(1−1.33)2+(2−1.33)2+(1−1.33)2

= −0.360

S (i5, i8) =
(ru3 ,i5−ri5 )(ru3 ,i8−ri8 )+(ru4 ,i5−ri5 )(ru4 ,i8−ri8 )+(ru6 ,i5−ri5 )(ru6 ,i8−ri8 )

√
(ru3 ,i5−ri5 )2+(ru4 ,i5−ri5 )2+(ru6 ,i5−ri5 )2

√
(ru3 ,i8−ri8 )2+(ru4 ,i8−ri8 )2+(ru6 ,i8−ri8 )2

=
(2−2)(3−2.8)+(1−2)(4−2.8)+(1−2)+(1−2.8)√

(2−2)2+(1−2)2+(1−2)2
√

(3−2.8)2+(4−2.8)2+(1−2.8)2

= 0.195

This means that the most similar item to i5 are i4 and i8. The prediction Pua,i5 is therefore computed as follows:

Pua,i5 =
rua ,i4 ∗S (i5,i4)+rua ,i8 ∗S (i5,i8)

|S (i5,i4)|+|S (i5,i8)|
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=
(3∗0.819)+(5∗0.195)

0.819+0.195

= 3.384

⇒ Item i1 has the highest predicted preference, then item i5, and finally item i2. Consequently the top list
recommendation for user ua will be as follow:

ua, i1, Pua,i1 = 5
ua, i5, Pua,i5 = 3.384
ua, i2, Pua,i2 = 3

1.3 Possibility theory

The probability theory, which dates from the 17th century, is a classical theory that enables representing and quan-
tifying uncertain information. It has been involved in several real world areas. However, such theory, that does not
consider the situation of total ignorance, can be only used when the expert provides precise numerical values. This
situation is not always feasible, which has motivated the development of alternative uncertainty frameworks.

In order to deal with uncertain and imprecise data, several non classical theories have been proposed, such as
fuzzy sets theory (Zadeh, 1999), belief functions theory (Smets & Kennes, 1994), possibility theory (Dubois &
Prade, 1998), etc. We are, in particular interested in possibility theory introduced at first by Zadeh (Zadeh, 1999)
and then developed by Dubois and Prade (Dubois & Prade, 2011). It offers a natural and simple tool to handle
imperfect information. It represents an appropriate framework for experts to express their partial beliefs in a much
more flexible way than within the probability theory framework. In what follows, we present possibility theory
concepts (for more details see (Dubois & Prade, 1998)).

1.3.1 Notations
• Ω the universe of discourse. Ω = {ω1, ω2, ..., ωn}.

• The power set 2Ω is the set of all subsets of Ω. This power set includes obviously the empty set ∅ and the
universe of discourse Ω.

• ω is an element of Ω (ω ∈ Ω) and by A an element of the power set (A ∈ 2Ω or A ⊆ Ω). ∩ and ∪ denote,
respectively, the intersection and union operations.

1.3.2 Possibility distribution

The basic building block in the possibility theory is the concept of possibility distribution π, which corresponds
to a function associating to each element ωi from the universe of discourse Ω a value to a bounded and linearly
ordered valuation set (L,<). Contrary to the standard probability theory, the possibilistic scale could be interpreted
in twofold: a numerical interpretation when values have a real sense (L=[0,1]) and an ordinal one (>π) when values
only reflect a total pre-order between the different states of the world.
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Intuitively, in the qualitative way, ≥π corresponds to a plausibility relation on Ω which enables us to express
that some situations are more plausible than others.

Example 1.3. The plausibility relation relative to the possibility distribution given by the arbiter of Example 1.
is as follows: T1 = win >π T1 = equalize >π T1 = lose.

In the qualitative setting, the possibility distribution, denoted by πQ, , is equipped by a finite and totally ordered
scale denoted by L= {a0 = 1, a1, ..., an, an+1 = 0} such that a0 > a1 > ... > an+1.

Example 1.4. Let us continue with the same example. The possibility distribution can be represented qualita-
tively by the arbiter as follows:
πQ(T1 = win) = a0 = 1,
πQ(T1 = equalize) = a1 = 0.7,
πQ(T1 = lose) = a2 = 0.2.

We can deduce that T1= win is more plausible than T1= equalize, which is in its turn more plausible than T1=

lose since a0 = 1 > a1 = 0.7 > a2 = 0.2

In this work, we will focus on the numerical interpretation. The degree π(ω) represents the compatibility of ω
with available pieces of information. By convention, π(ω) = 1 means that ω is totally possible and π(ω) = 0 means
that ω is an impossible state. If π(ω) > π(ω′), this means that ω is preferred to ω′.
In the possibility theory framework, there are two extreme cases:

• Complete knowledge: ∃ ω0, π(ω0) = 1 and π(ω) = 0 ∀ω , ω0 (only ω0 is possible).

• Total ignorance: ∀ω ∈ Ω, π(ω) = 1 (all states are possible).

A possibility distribution π is said to be normalized if there exists at least one totally possible state. Formally:

∃ ω ∈ Ω, π(ω) = 1 (1.5)

Example 1.3. Let us consider a handball match. Each team can win, lose or equalize. Then, the universe of
discourse related to the match can be defined as follows: Ω = {win, equalize, lose}. Assuming that the arbiter gives
his point of view regarding the game result for team 1, in the form of a possibility distribution , denoted by π(T1)
and defined as follows:
π(T1 = win) = 1,
π(T1 = equalize) = 0.7,
π(T1 = lose) = 0.2,
π(T1 = win) = 1 means that it is fully possible for team 1 to win the game.

The possibility distribution given by the arbiter is normalized since max(1, 0.7, 0.2)=1.
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1.3.3 Inconsistency

In possibility theory, the inconsistency is measured by the degree of conflict between uncertain information. For-
mally:

Inc(π) = 1 − maxω∈Ω {π(ω)} (1.6)

In this case, π is considered as sub-normalized, otherwise, π is said to be normalized (i.e. maxω∈Ω π(ω) = π(ωi) = 1).
It is clear that, for normalized π, maxω∈Ω π(ω) = 1, hence Inc(π) = 0. The measure Inc is very useful in computing
the conflict between two distributions π1 and π2 given by Inc(π1, π2) = Inc(π1 ∧ π2), where ∧ is a conjunctive
t-norm operator. For simplicity, we take the minimum conjunctive (∧) operator. Obviously, when π1 ∧ π2 gives a
sub-normalized possibility distribution, it indicates that there is a conflict between π1 and π2. On the other hand,
π1 ∧ π2 is normalized, there is no conflict and hence Inc(π1, π2) = 0.

Example 1.4. Let π1[1, 0.2, 0.5, 0] and π2[0.8, 0, 0.3, 1] be two possibility distributions. We take the minimum
as the conjunctive operator, we obtain: Inc(π1, π2) = Inc([0.8, 0, 0.3, 0]) = 1 − 0.8 = 0.2. Thus, the two sources are
inconsistent with each other.

1.3.4 Possibility and necessity measures

Contrary to probability theory which only uses one measure, namely the probability measure P, possibility theory
uses two dual measures: the possibility (plausibility) measure Π and the necessity (certainty) measure N.

Possibility measure

Given a possibility distribution π, we can define a mapping grading the possibility measure of any subset φ ⊆ Ω

by:

Π(φ) = maxω∈φ π(ω) (1.7)

Π(φ) is called the possibility degree of φ, it corresponds to to the possibility degree to have one of the models of φ
as the real world. This measure evaluates at which level φ is consistent with our knowledge represented by π.

Necessity measure

The dual of the possibility measure is the necessity measure defined by ∀φ ⊆ Ω:

N(φ) = 1 − Π(¬φ) = minω<φ (1 − π(ω)) (1.8)

N(φ) is called the necessity degree of φ. It corresponds to the certainty degree associated with φ. This measure
evaluates at which level φ is certainly implied by our knowledge represented by π.

Example 1.5. Let us consider the possibility distribution π given in Example 1 and φ = {T1 = win}. Π(φ) =

max{1} = 1, which means that it is fully possible that Team 1 wins the game but we are not certain about this fact.
Hence, the certainty degree is given by: N(φ) = 1 − Π(¬φ) = 1 − max{0.7, 0.2} = 0.3.
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1.4 Conclusion

This chapter presented two main concepts for recommendation systems, more especially item-based and user-based
collaborative filtering approach, and possibility theory framework. Next chapter is devoted to preferences-based
research works related to our proposed attempt.



Chapter 2
Preferences-based recommendation

2.1 Introduction

Recommender systems are systems that provide users with recommendation of items and information that help them
to decide which items to procure or look based on the individual customer preferences. Recommendation systems
are generally consisting of background data such as historical data consisting of preferences of items before the
recommendation begins. In recent years, RSs have attracted a considerable amount of research attention resulting in
a large variety of approaches (Ekstrand et al., 2011; Koren & Sill, 2013). Among this relatively recent approaches,
it has already been proven the benefits of using collaborative filtering (Sarwar et al., 2001) preferences over absolute
ratings, to perform more accurate predictions for users. Although, in everyday life, rating items is not such a natural
mechanism, in contrast, there exists some kind of uncertainty behind using preferences. Yet, uncertainty in users’
ratings is so pervasive, that can’t be ignored. This uncertainty that inherently exists is not studied in previous
recommender systems research and ignoring this type of uncertainty puts the modeling in a less realistic setting, and
the resulting model does not precisely represent the reality (Zenebe & Norcio, 2009).

This chapter is organized as follows: Section 2.2 presents certain preferences-based recommendation and Sec-
tion 2.3 is dedicated to the uncertainty aspect of preferences-based recommendation.

2.2 Certain preferences-based recommendation

Many researches have been proposed to deal with preferences under recommendation. According to most collabo-
rative filtering, researches can be categorized into two classes:

• Handling preference order:

There have been some works that use preference orders instead of actual ratings for recommender systems.
According to the standard CF approach (Ricci et al., 2011), first, the user inputs his/her preferences to the

18
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system. The system then searches for other people whose preferences are similar to those of the target user.
Next, the system recommends to the user the items that those people prefer. Nantonac collaborative filtering
(Kamishima, 2003) has been proposed in the same context of CF using a new representation of the user’s
preferences. In fact, author adopted the order responses by the ranking method to represent preferences.
Obviously, the system in this framework shows a set of items Xi, to the user i, and the user sorts these items
according to his / her preferences, then, the sorted sequences are denoted by Oi = x1 � x2 � ... � x|Xi |

indicating that user i prefers item x1 to item x2. The rank, r(Oi, x j) indicates the position of the item x j in
the order Oi. For example, the order Oi = x1 � x3 � x2, r(Oi, x1) = 1, r(Oi, x3) = 2 and r(Oi, x2) = 3.
Consequently, the task of nantonac CF is estimating the items that the target user is expected to prefer. In the
same context, in (L. Yu & Yang, 2008), authors proposed an improved collaborative filtering algorithm based
on a preference order of items. In fact, in this CF recommendation, the most important step is to obtain a
preference order that can be gotten by several methods:

1. Explicit preference order by user, when number of items is few, users can directly give the preference
order according to their interests. For example, as shown in Figure 2.1, there is three items, A, B and
C:

Figure 2.1: The preference Order (L. Yu & Yang, 2008).

– Order number of item A in sequence is 1: r(O, A) = 1.

– Order number of item B in sequence is 1: r(O, B) = 3.

– Order number of item C in sequence is 1: r(O,C) = 2.

2. Implicit preference order based on transaction data, in this case, preference order can be gotten ac-
cording to the cost of product or to the quality of transaction on product.

3. Implicit preference order based on web mining, Web mining is an important method to get the users’
preference by analyzing browsing pattern. for example, preference for product can be measured by
time of browsing web pages.

Once preference order of items is acquired, collaborative filtering algorithm executes the remaining steps as
the traditional one, and finally gives recommendation result.

In addition, Jin et al. (Jin et al., 2003) handled separately users preferences and the users rating. More
specifically, for each user, they built two separate models, namely:

– A preference model capturing which items are preferred by the user.

– A rating model capturing how the user would rate an item given the preference information.

Hence, they proposed at first a memory-based probabilistic approach, which decouples the rating and the
preference of a user. Then a model-based bayesian approach can be used to predict the rating for a new user
by combining the prediction given by all the models.
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More recently, in (de Campos, Fernández-Luna, Huete, & Rueda-Morales, 2010) authors have presented a
novel CF idea to improve the predictions of the system by increasing the available information in the datasets.
The objective is to use all possible preferences to improve recommendations made with little information.
So, the purpose of second-hand information is when a similar user has not rated the target item then they will
guess his/her preferences using the available information.

• Handling preference relation:

Recently, there have been active researches on preference relations. In fact, in (Brun et al., 2010) authors
are interested in the collaborative filtering approach. In this framework, the user is not asked to vote for
resources but to express a qualitative interest about the resources he/she has already seen. For example, the
user will say ” I prefer resource j to resource i”. Formally, authors defined a preference relation as a binary
relation i � j where:

– ” j is strictly preferred to i” is noted i ≺ j.

– ” i and j are equivalent” or ” the user does not mind between i and j” is noted i ' j.

– i? j the user does not know.

However, these preferences are partially known. Consequently, some other preferences are missing and
CF aims to guess it. In this work, authors presented a new approach to compute recommendations using
preference relations instead of using ratings (utilities). They proposed to replace utilities by their qualitative
counterpart: preference relations. Figure 2.2 shows an example of representing preference relation where:
items a and e are equivalent and are more preferred than c, f and g which are in turn equivalent and more
preferred than item d which in its turn preferred than items b and h.

Figure 2.2: (a) a utility function, (b) a corresponding preference relation (Brun et al., 2010).

In (Sarwar et al., 2001), authors analyzed different item-based recommendations, the main idea is to analyze
the user-item representation preferences matrix to identify relations between different items and then use
these relations to compute the prediction score for a given user-item.
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Another CF framework based on matrix factorization is proposed in (Desarkar, Saxena, & Sarkar, 2012)
uses preference relations to solve the problem of personalized recommendation. First of all, in rating based
recommender systems, preferences of the users are of the form π(u, i, j). It indicates that for the ordered
item pair (i, j), the strength of user u’s preference relation is π(u, i, j). Then, a matrix factorization is used
to learn the user and item features. The goal is to develop a factorization model that is able to predict the
users’ preference relations for different item pairs. Finally, once the user and item features are computed, the
system can generate recommendations. Intuitively, if for a particular user u, an item i is predicted to be better
than many others items, then i can be recommended to u. Also, in (Hu, Koren, & Volinsky, 2008) authors
studied collaborative filtering on datasets with implicit feedback, which is a very common situation. The
main idea is that implicit user observations should be transformed into two paired magnitudes preferences
and confidence levels. In other words, for each user-item pair, they derived from the input data an estimate
to whether the user would like or dislike the item (”preference”) and couple this estimate with a confidence
level. So, this preference-confidence serves a key role in analyzing implicit feedback.
In (Liu & Yang, 2008), authors have proposed a new CF algorithm for ranking items based on the preferences
of similar users, so, they have modeled a user’s preference relation function denoted by Ψ(i, j) > 0 stating
that item i is more preferable to item j for a user u. The magnitude of this preference relation function |Ψ(i, j)|
indicates the strength of preference and a value of zero means that there is no preference relation between
the two items.
In (Yuan, Huang, & Zhong, 2013), a framework based on similarity measures on (user, item, tag) from qual-
itative and quantitative perspective has been developed. The qualitative measure makes use of the preference
structure relation, and the quantitative measure makes use of reflection on (user, item, tag). Then, the k
nearest neighbors and reverse k′ nearest neighbors are used to generate recommendations.

These methods only deal with certain preferences derived from datasets. Collaborative filtering gives good
results in a certain context, in which ratings provided by users are known with certainty (Liu & Yang, 2008).
But this does not reflect the reality, which is related to uncertainty and imprecision by nature. Consequently,
the recommendation results are deeply affected if uncertainty is not considered. For these reasons, new
studies have considered this uncertainty in order to improve the recommender’s accuracy. This will be the
focus of the following section.

2.3 Uncertain preferences-based recommendation

Research efforts that address the representation of user behavior and information about items under uncertainty are
limited. These researches focus on covering uncertainty over user preferences. A first attempt has been established
in (Price & Messinger, 2005). In fact, authors have proposed an approach for recommender systems that optimize
decision making. This approach selects the alternative set that:

• maximizes the expected valuation of the user’s choice: Expected Utility

• covers the uncertainty over user preferences: Probability distribution

Intuitively, authors developed a specific formulation called maximization expected max (MEM) that produces a
diversity of alternatives in the recommendation set and covers the uncertainty over possible user preferences. This
approach is limited since it is not obvious that an optimal set of MEM algorithm is treatable because a naı̈ve version
of a MEM set optimizer must enumerate all k−element subsets of the n alternatives.
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In addition, authors in (K. Yu et al., 2004) have studied a probabilistic memory-based collaborative filtering
(PMCF) framework similar to the classical memory-based CF approach. A schematic of the components of PMCF
is shown in Figure 2.3. The PMCF framework is based essentially on the two main phases:

• The interactively learning individual user profiles step: relates to the new user problem in case the available
information is insufficient and executes different steps:

1. Present informative items to the user for preference.

2. User rates items which are familiar to him.

3. Search profile space for similar profile.

4. Present probabilistic prediction results to user: First of all a generative probabilistic model in which the
preference of a target user are generated based on a probability density to model preference profiles.
Then, calculate the posterior density of the active user’s preferences on not yet rated items in order to
estimate user ratings. Finally,predictions are made by combining the predictions based on other users
weighted by their degree of agreement with the target user.

• The incrementally constructing a compact profile space step: allows to select a small subset, called the profile
space from a database of user ratings. The selection procedure is derived from the probabilistic framework
and ensures that the small profile space leads to predictions that are as accurate as predictions made by using
the whole database of user preferences.

Figure 2.3: The components of PMCF (K. Yu et al., 2004).

More recently, authors in (Xiang et al., 2013) proposed a new method of CF based on uncertain user interests
clusters. In fact, authors have proposed an architecture of a Collaborative Filtering Recommender System to adapt
uncertain users’ evolving interests based on the following steps:

1. Define uncertain interest.

2. Solve the uncertain feature using a clustering algorithm.

3. Compute the between-class entropy of any two clusters and get stable classes (see Figure 2.4).

4. Define a trustworthy degree of uncertain interests to measure the rationality of clustering algorithm results.
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Figure 2.4: The datasets after and before a clustering step (Xiang et al., 2013).

A recent work in (Samia et al., 2014) handles uncertainty in users’ preferences where authors have emphasized
on the presence of uncertainty’s hidden through fuzzy preferences’ analysis . For example, a recommender system
recommends to user u an item such as Tassili which is a restaurent that is renowned according to similar users’ past
reviews for its good food. But, after consuming the service, user u is not satisfied because the food wasn’t that good
as expected. Therefore, he/she dismiss the system because it becomes less trustworthy. So, they expressed prefer-
ences in multi-criteria fuzzy ratings through linguistic terms, then, preference relations are deduced and quantified
with a preference intensity degree that expresses to which extent is more preferable than another.

2.4 Conclusion

This chapter surveys previous works of preferences based recommendation. According to collaborative filtering
approaches, researches can be categorized into preferences orders (Jin et al., 2003; L. Yu & Yang, 2008) handling
preferences over a quantitative way, and a qualitative way by using preferences relations (Brun et al., 2010; De-
sarkar et al., 2012). However, almost of these works only deal with certain preferences. The few other works
that attempt to take into account the uncertainty aspect of preferences have not used a purely uncertain algorithm.
Based on uncertain preferences, we will propose in the next chapter a novel recommendation approach for uncertain
preferences.



Chapter 3
New possibilistic item-based
collaborative filtering recommender

3.1 Introduction

Representing the uncertain aspect of users’ preferences is crucial in recommender systems. There exist few recent
researches that modeled uncertain users preferences by means of fuzzy set theory (Yager, 2003; Zenebe & Norcio,
2009; Samia et al., 2014). Another research works (K. Yu et al., 2004) studied a probabilistic memory-based
collaborative filtering (PMCF) framework using a generative probabilistic density to model preference profiles.
Then, a posterior distribution of user’s preferences is to predict an active user’s preferences. However, no research
studied a purely uncertain recommender system dealing with uncertain rating as input. To this end, we propose
a new possibilistic item-based CF recommender based on a possibilistic representation of preferences, similarity
computation and prediction and recommendation. Section 3.2 will detail the different steps of the proposed new
possibilistic CF recommender.

3.2 Proposed possibilistic CF recommender

Our aim in this work is to take into consideration the uncertain aspect of users preferences under a possibilistic
framework. To ensure this task, uncertain preferences should be at first represented using possibility distributions,
then a purely possibilistic similarity measure should be used to compute the most similar items. Finally, the unknown
preference degree of a target item by a target user is predicted by averaging the preferences of other similar items
rated by this target user.

We propose a possibilistic item-based CF approach, denoted by ΠCF, based on three steps, namely, preferences
representation, similarity computation and prediction and recommendation generation. The whole process of the
proposed ΠCF method is illustrated by the diagram of Figure 3.1. The first step consists in building the user-item
matrix under a possibilistic framework. The second step applies a possibilistic similarity measure to calculate the

24
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Figure 3.1: The possibilistic item-based collaborative filtering process: ΠCF.
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similarity between items. The last step consists in recommending the top K most likely items that can interest the
target user. Section 3.2.1 presents the preferences representation step.

3.2.1 Preferences representation

The representation of users preferences is a primordial step in our approach. In fact, each user should provide his
preferences about items as a possibility distribution where each degree corresponds to a satisfaction degree for an
item i. When only one item is fully satisfactory by a user and all remaining items are not satisfactory at all, we deal
with the extreme case of complete knowledge. While when all items are satisfactory by a user, the total ignorance
case is tackled. Based on the simplicity of the possibility theory framework, we present users preferences using
possibility distributions described in Definition 1.

Definition 1. Let’s consider a list of M users U = {u1, .., um, .., uM} and a list of N items I = {i1, .., in, .., iN}.
P denotes a possibilistic user-item matrix where each entry xum (in) corresponds to the preference degree of item in
provided by user um. Each row in P is a user profile and represents user’s items preferences degrees. In ΠCF, each
user um should provide its preferences using a possibility distribution. Formally:

πum : I → [0, 1], where πum (in) denotes the degree of satisfaction of an item in by um such that:

• πum (in) = 1, the item in is fully satisfactory.

• 0 < πum (in) < 1, the item in is somewhat satisfactory.

• πum (in) = 0, the item in is not satisfactory at all.

π(in) expresses the preference degrees assigned to item in by all users.

Example 3.1. Table 3.1 represents an example of a possibilistic user-item matrix composed of five users
{u1, u2, u3, u4, u5} and four items {i1, i2, i3, i4}, representing users preferences of items using possibility distributions.

i1 i2 i3 i4

u1 πu1(i1) = 1 πu1(i2) = 0.5 πu1(i3) = 0.3 πu1(i4) = 1
u2 πu2(i1) = 1 πu2(i2) =? πu2(i3) = 0 πu2(i4) =?
u3 πu3(i1) =? πu3(i2) = 1 πu3(i3) = 0.3 πu3(i4) = 0.7
u4 πu4(i1) = 0 πu4(i2) = 1 πu4(i3) =? πu4(i4) = 0.7
u5 πu5(i1) = 0.2 πu5(i2) = 0 πu5(i3) = 1 πu5(i4) = 0.3

Table 3.1: User-item preferences matrix

For instance, item i1 is fully satisfactory for user u1 and not satisfactory at all for user u4, while ? for u3 means
an unknown preference degree.
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3.2.2 Similarity computation

One critical step in the ΠCF approach is to compute the similarity between items and then select the most similar
ones. These latter contribute more to predicting the target item preference degree. The basic idea in similarity
computation between two items i1 and i2 is to first isolate the users who have both rated these items and then apply
a similarity measure (as depicted by Figure 3.2). In the possibilistic framework, we will use a recent similarity mea-
sure for the comparison of uncertain information represented by possibility distributions, the so-called information
affinity (Jenhani, Benferhat, & Elouedi, 2010). In fact, Information Affinity is proposed to overcome the weaknesses
of the existing possibilistic similarity measures like information closeness, Sangüesa et al. distance and information
divergence since they do not satisfy all the properties discussed in (Jenhani et al., 2010) such as:

• Non-negativity: s(π1, π2) > 0.

• Symmetry: s(π1, π2) = s(π2, π1).

• Upper bound and non-degeneracy: ∀πi, s(πi, πi) = 1 and ∀πi, π j, s(πi, πi) ≤ 1. etc.

Therefore, information affinity chooses to combine two important criteria namely distance and inconsistency.
This combination is justified by the fact that a distance measure taken alone does not always decide which is the clos-
est distribution. Intuitively, information affinity takes into account the classical informative distance, e.g. Manhattan
or Euclidean which evaluates the difference between two normalized possibility distributions and the inconsistency
measure which evaluates the conflict between the possibility distributions.

Definition 2. Information Affinity similarity measure: Let π(in) and π(in′ ) be two possibility distributions
representing respectively, the preference degrees associated to items in and in′ . Information Affinity denoted by,
A f f (π(in), π(in′ )) is defined as follows:

A f f (π(in), π(in′ )) = 1 −
κ ∗ d(π(in), π(in′ )) + λ ∗ Inc(π(in), π(in′ ))

κ + λ
(3.1)

Where κ > 0 and λ > 0. d, denotes normalized metric distances between π(in) and π(in′ ):

• Euclidean distance:

d(π(in), π(in′ )) =
1
M

√√√ M∑
i=1

(π(in) − π(in′ ))2 (3.2)

• Manhattan distance:

d(π(in), π(in′ )) =
1
M

M∑
i=1

|π(in) − π(in′ )| (3.3)

Inc(π(in)∧ π(in′ )) denotes the degree of conflict between the two preference degrees (see Equation (1.6) ) where
∧ is taken as the product or min conjunctive operators. Intuitively, the use of min operator instead of the product
operator gives less importance to the inconsistency degree, since Inc(π(in) ∗ π(in′ )) > Inc(min(π(in), π(in′ ))).
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Figure 3.2: Isolation of the co-rated items and similarity computation.

The choice of parameters κ and λ depends on the problem under study. Generally, one gives the same importance
to distance and inconsistency (i.e. κ = λ) when assessing the similarity between two possibilistic pieces of evidence.
However, if someone wants to give more importance to distance than to inconsistency, he should set κ > λ and
vice-versa.

Algorithm 3.1 outlines the ΠCF similarity computation pseudo-code where M is a set of users and N is a set of
items. P denotes a possibilistic user-item matrix. We denote by A f f a value determining how similar two items are
to each other in order to generate recommendations and LstA f f a list of items similarities.

MANHATTAN-Distance, INCONSISTENCY and AFFINITY are the key functions of ΠCF similarity compu-
tation algorithm.

• MANHATTAN-Distance(π(in), π(in′ )): calculates the distance between two items π(in) and π(in′ ).

• INCONSISTENCY (π(in), π(in′ )): calculates the degree of conflict between preferences π(in) and π(in′ ).

• AFFINITY(π(in), π(in′ )): calculates similarities between items in and in′ based on the computation of MANHATTAN-
Distance and INCONSISTENCY measures.
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Algorithm 3.1 Similarity computation
1: input: Preferences matrix: P;
2: output: List of similarity measures between target item and other items;
3: forall um ∈ U do /* Manhattan distance */

4: forall in ∈ I do
5: MANHATTAN-Distance (π(in), π(in′ ));
6: end for
7: end for
8: forall um ∈ U do /* Inconsistency */

9: forall in ∈ I do
10: INCONSISTENCY (π(in), π(in′ ));
11: end for
12: end for
13: forall um ∈ U do /* Information Affinity measure */

14: forall in ∈ I do
15: A f f ← AFFINITY (π(in), π(in′ ));
16: LstA f f .add(A f f );
17: end for
18: end for

Example 3.2. Considering the preference matrix of Table 3.1. We aim to find the most similar items for i2
using the Information Affinity similarity measure. By using the Manhattan distance, ∧ as the minimum conjunctive
operator and κ = λ = 1. we obtain:

• A f f (πi2 , πi1 ) = 1 −
d(πi2 ,πi1 )∗Inc(πi2 ,πi1 )

2 , where:

– d(πi2 , πi1 ) = 1
3 (0.5 + 1 + 0.2) = 0.567

– Inc(πi2 , πi1 ) = 1 − max{0.5; 0; 0} = 0.5

⇒ A f f (πi2 , πi1 ) = 1 − 0.5+0.567
2 = 0.467

• A f f (πi2 , πi3 ) = 1 −
d(πi2 ,πi3 )∗Inc(πi2 ,πi3 )

2 , where:

– d(πi2 , πi3 ) = 1
3 (0.2 + 0.7 + 1) = 0.633

– Inc(πi2 , πi3 ) = 1 − max{0.3; 0.3; 0} = 0.7

⇒ A f f (πi2 , πi3 ) = 1 − 0.633+0.7
2 = 0.334

• A f f (πi2 , πi4 ) = 1 −
d(πi2 ,πi4 )∗Inc(πi2 ,πi4 )

2 , where:

– d(πi2 , πi4 ) = 1
4 (0.5 + 0.3 + 0.3 + 0.3) = 0.35

– Inc(πi2 , πi4 ) = 1 − max{0.5; 0.7; 0.7; 0} = 0.3

⇒ A f f (πi2 , πi4 ) = 1 − 0.35+0.3
2 = 0.675

As A f f (πi2 , πi4 ) > A f f (πi2 , πi1 ) > A f f (πi2 , πi3 ), we will consider the most similar items to i2, namely i4 then i1
and finally i3.
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3.2.3 Prediction and recommendation

The most important step in a collaborative filtering system is to generate the output interface in terms of prediction.
Once we isolate the set of most similar items based on the Information Affinity similarity measure, the next step is
to look into the target users preferences and use the weighted sum technique to obtain prediction as expressed in
equation (3.4). π̂um (in) represents the prediction on item in for user um, it is computed by picking the k most similar
items to the target item in. Formally:

π̂um (in) =

∑
Allsimilaritems A f f (π(in), π(in′ )) ∗ πum (in′ )∑

Allsimilaritems |A f f (π(in), π(in′ ))|
(3.4)

Once unknown items are predicted, the recommendation step consists in choosing one or more items from
a set of alternatives and sorting them in a descending order. In this context, there are various ways to present
recommendations to the user either by offering (choosing) the best item, or by presenting the top-K items as a
recommendation list, or by classifying items into categories, i.e.’highly recommended’ , ’fairly recommended’ and
’not recommended’.

Algorithm 3.2 presents the prediction and recommendation step. Intuitively, to predict a rating for an item a user
has not seen before, the algorithm takes as input a list of similarity measures namely lstA f f , then, by applying the
prediction formula, it generates a prediction list LstPrd sorted in a descending order. Intuitively, PREDICTION and
Top-K Recommendation are the key functions of this algorithm:

• PREDICTION(πum (in)): calculates the preference of um about item in.

• Top-K Recommendation: identifies a set of K items that will be of interest.

Algorithm 3.2 Prediction and recommendation
1: input: LstA f f (List of similarity measures between target item and other items);
2: output: Recommendation list;
3: LstAff, Lstpred: List
4: forall LstA f f ∈ LstA f f do /* Prediction */

5: π̂um (in)←PREDICTION (πum (in));
6: LstPrd.add(̂πum (in));
7: end for
8: forall π̂um (in) ∈ LstPrd do /* Top-K Recommendation */

9: LstPrd.Sort(̂πum (in));
10: end for

Example 3.3 Let us consider the preferences matrix of Table 3.1. We want to compute the u2’s prediction for
item i2 and i4 in order to recommend the most close item to user’s taste. We have previously, A f f (π(i2), π(i1)) =

0.467, A f f (π(i2), π(i3)) = 0.334 and A f f (π(i2), π(i4)) = 0.675. Based on this, the prediction π̂u2 (i2) is therefore
computed as follows:

π̂u2 (i2) =
A f f (π(i2),π(i1))∗πu2 (i1)+A f f (π(i2),π(i3))∗πu2 (i3)+A f f (π(i2),π(i4))∗πu2 (i4)

A f f (π(i2),π(i1))+A f f (π(i2),π(i3))+A f f (π(i2),π(i4))

⇒ π̂u2 (i2) = 0.316



Section 3.3 – Conclusion 31

In the same manner, we select the two most similar items to i4:

• A f f (πi4 , πi1 ) = 1 −
d(πi4 ,πi1 )∗Inc(πi4 ,πi1 )

2 , where:

– d(πi4 , πi1 ) = 1
3 (0 + 0.7 + 0.1) = 0.266

– Inc(πi4 , πi1 ) = 1 − max{1; 0; 0.2} = 0

⇒ A f f (πi4 , πi1 ) = 1 − 0.266+0
2 = 0.867

• A f f (πi4 , πi2 ) = 1 −
d(πi4 ,πi2 )∗Inc(πi4 ,πi2 )

2 , where:

– d(πi4 , πi2 ) = 1
4 (0.5 + 0.3 + 0.3 + 0.3) = 0.35

– Inc(πi4 , πi2 ) = 1 − max{0.5; 0.7; 0.7; 0} = 0.3

⇒ A f f (πi4 , πi2 ) = 1 − 0.35+0.3
2 = 0.675

• A f f (πi4 , πi3 ) = 1 −
d(πi4 ,πi3 )∗Inc(πi4 ,πi3 )

2 , where:

– d(πi4 , πi3 ) = 1
3 (0.7 + 0.4 + 0.7) = 0.6

– Inc(πi4 , πi3 ) = 1 − max{0.3; 0.3; 0.3} = 0.7

⇒ A f f (πi4 , πi3 ) = 1 − 0.6+0.7
2 = 0.35

Finally, we compute the prediction value of user u2 for item i4 as follows:

π̂u2 (i4) =
A f f (π(i4),π(i1))∗πu2 (i1)+A f f (π(i4),π(i3))∗πu2 (i3)+A f f (π(i4),π(i2))∗πu2 (i2)

A f f (π(i4),π(i1))+A f f (π(i4),π(i2))+A f f (π(i4),π(i3))

⇒ π̂u2 (i4) = 0.712

Item i4 has the highest predicted preference and consequently it will be in the top one recommendation list for
user u2.

3.3 Conclusion

In this chapter, we presented the three steps of our proposed approach. The first step consists in building user-item
preferences matrix. In the next step, a possibilistic similarity computation measure is applied to measure the weight
(similarity) between items in order to generate the recommendation list of the final step. Next chapter provides
an experimental study to evaluate our proposed approach comparing it with the traditional collaborative filtering
approach.



Chapter 4
Experimental study

4.1 Introduction

In this chapter we present the experimentation results relative to our possibilistic collaborative filtering approach
ΠCF comparing with traditional item-based collaborative filtering method. This chapter is composed of two Sec-
tions. Section 4.2 details the experimental protocol used in the implementation process of our approach, and Section
4.3 presents the experimental results evaluating the effectiveness of the recommendation based of proposed ap-
proach.

4.2 Experimental protocol

All our experiments were implemented using java language and compiled in Netbeans framework. We ran all our
experiments on a windows 7 based PC with intel Core i3 processor having a speed of 1.7 GHz and 4 GB of Ram.
This section describes our experimental data, then it presents the evaluation metrics that will be used to evaluate this
experiment. Finally, it presents the procedure that we have followed to implement the ΠCF approach.

4.2.1 Data sets

To evaluate the effectiveness of ΠCF, we choose to work on the well-known recommendation data sets movieLens
available through the movieLens1 website. MovieLens is a free service provided by GroupLens 2 Research at the
University of Minnesota. It has three available data sets: one with 100K ratings of movies, another with 1M ratings,
and a third containing 10M applying tags to movies. This data set helps users to find movies they will certainly like.
It is made up of a set of users preferences about movies. These preferences are user-provided star ratings, from 1

1http://movielens.org
2http://grouplens.org/datasets/movielens/
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(dislike) to 5 (like) stars. In our approach, we will convert these preferences into possibility degrees between 0 (not
satisfied) and 1 (fully satisfied) by dividing the rating by 5 then getting a normalized distribution between [0, 1]. The
dataset contains in total 100.000 ratings collected by 943 users on 1682 movies, from 19-09-1997 to 22-04-1998.
Each user has rated at least 20 movies. The dataset is divided into 2 parts, 80% of the data is used to train the
recommender system (the training set) and 20% are used to evaluate the approach (the test set). MovieLens data are
represented as a sequence of events in the following way:

• user u1 rates movie i1 with 1,

• user u1 rates movie i3 with 0.5,

• user u2 rates movie i1 with 0.6, etc.

In order to evaluate both of the effectiveness and efficiency of our proposed ΠCF approach we compare its per-
formance to the traditional item-based collaborative filtering using Pearson correlation similarity measure available
from Apache mahout library in Java3.

4.2.2 Evaluation metrics

In order to evaluate the performance of recommender systems, several metrics have been proposed. According
to (Cremonesi, Turrin, Lentini, & Matteucci, 2008) the evaluation metrics can be classified into three categories:
Predictive accuracy metrics, classification accuracy metrics and rank accuracy metrics. We introduce the commonly
used CF metrics of each class.

1. Predictive accuracy metrics: measure how much the prediction pi is close to the true numerical rating ri

expressed by the user. The evaluation can be done only for items that have been rated.

• Mean Absolute Error (MAE) takes the mean of the absolute difference between each prediction and
preference degree for all held-out preference degrees of users in the testing set. The lower the MAE
the more accurately the recommendation engine predicts user ratings. Formally:

MAE =

∑
um,in |̂πum (in) − πum (in)|

N
, (4.1)

where N is the total number of preferences over all users, π̂um (in) is the predicted preference degree
for user um on item in, and πum (in) is the actual preference.

• Normalized Mean Absolute Error (NMAE) normalizes MAE to express errors as percentages:

NMAE =
MAE

πmax − πmin
, (4.2)

where πmax and πmin are the upper and lower bounds of the preferences.

2. Classification accuracy metrics: evaluate how predictions help the active user in distinguishing good items
from bad items. Therefore, it is useful in finding if the active user will like or not the current item. With
classification metrics recommendation can be classified as:

3https://mahout.apache.org
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• True positive (TP): an interesting item is recommended to the user.

• True negative (TN): an uninteresting item is not recommended to the user.

• False negative (FN): an interesting item is not recommended to the user.

• False positive (FP): an uninteresting item is recommended to the user.

Precision and recall are the most popular metrics in the classification accuracy metrics. They are computed
from a 2 × 2 table, such as the one shown in Table 4.1.

Precision: is used to evaluate the validity of a given recommendation list and is defined as the ratio of
all recommended items that are used. In fact, if an algorithm has a measured precision of 80%, then the user
can expect that, on average, 8 out of every 10 movies returned to the user will be used. A perfect precision
score of 1.0 means that every item recommended in the list was good.

Precision =
T P

T P + FP
(4.3)

Recall: computes the ratio of all used items that were recommended for active user relative to the total
number of the objects actually collected. A perfect recall score of 1.0 means that all good recommended
items were suggested in the list.

Recall =
T P

T P + T N
(4.4)

Consequently, we exploit preference degrees in the whole recommendation process, to thus measure, among
the user’s preferences, the number of items that are evaluated as used and / or the number of items that are
evaluated as not used by the recommender.

F-measure: considers both precision and recall measures of the test to compute the score. We interpret
it as a weighted average of the precision and recall, where the best F-measure has its value at 1 and worst
score at the value 0. It is obtained combining both the precision and recall measures and indicates an overall
utility of the recommendation list.

F − measure =
2 ∗ precision ∗ recall

precision + recall
(4.5)

Table 4.1 shows the classification of recommendation of an item to a user where N is the number of items in the
database.

Recommended Not recommended Total

Used TP TN TP+TN
Not used FP FN FP+FN

Total TP+FP TN+FN N

Table 4.1: Classification of the possible result of a recommendation of an item to a user.

We will use as our choice for predictive accuracy metrics the MAE ans NMAE measures and for classification accu-
racy metrics we choose the Precision, Recall and F-measure of evaluation metrics to report prediction experiments
because they are the most commonly used in information retrieval (Herlocker, Konstan, Terveen, & Riedl, 2004).
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4.2.3 Implementation

Our goal is to recommend top K movies for the target user. In what follows, we present the implementation protocol
for each step:

1. Preferences representation step: The idea is to create a user-item matrix from the user preference data and
then to predict the missing entries by finding patterns from the user preference information.

In this step, the moviesLens ratings file is the most interesting since it’s the main input to our recommendation
where each line has the format:

UserID::MovieID::Preferences::Timestamp

where

• UsersIDs are integers.

• MovieIDs are integers.

• Ratings are in [0,1]. Mathematically, we convert the user rating from a certain space where preferences
are in [1, 5] to an uncertain space in [0,1], by dividing each user rating by 5.

The predicted preference computations are obtained from the training set and the evaluation of the efficiency
of recommended items is performed by the testing set.

2. Similarity computation step: In this stage, we compute the number of times each pair of items occurs to-
gether. In order to evaluate both of the effectiveness and efficiency of our proposed ΠCF approach we
compare its information affinity similarity measure to the Standard Collaborative Filtering (denoted SCF for
short) using Pearson correlation-based similarity and Vector cosine-based similarity measures as described
in chapter 1 ( Equation (1.1) and (1.2)). For each similarity measures, we implement the different algorithms
to compute the neighborhood. The implementation is based on Mahout Library tools, which provide an open
source java package for recommendation task.

3. Prediction and recommendation step: Once we know how similar the items are, we can then predict the
target user’s preference towards a subset of other items he/she has not seen before. Intuitively, we want to
predict a rating for an item a user has not seen before based on the information gathered from other users.
Consequently, to do this we look at all items that are similar to the unrated item, then we multiply the user
column vector with each item row vector. The sum creates a rating for each item relative to the user. We can
then select the top K most highly rated items to recommend to the user.

4.3 Experimental results

We perform our experiments by computing the MAE, NMAE, precision, recall and F-measure of the generated rec-
ommendations using ΠCF and item-based CF. We study the behavior of our approach using the possibility measure
information affinity and standard ones pearson correlation and vector cosine. The obtained results are summarized
in Tables 4.2 and 4.3. Figure 4.1 shows a capture screen of the Top-K recommendation on the MovieLens data.
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Figure 4.1: A capture screen showing the Top-K recommendation on the MovieLens data.

Prediction: As shown in Table 4.2, the mean error is higher when using the traditional item-based CF approach
for both of Pearson similarity (equal to 0.83) and Cosine similarity (equal to 0.82) measures. Thus, it can be
observed from the results that the user-average error for information affinity computation (equal to 0.149) has a
clear advantage, as the MAE is significantly lower in this case. Similarly, the NMAE information affinity measure
has the lowest value (equal to 0.186) despite those of pearson similarity (equal to 0.207) and cosine similarity (equal
to 0.205).

Approach Similarity measure MAE NMAE
ΠCF Information affinity 0.149 0.186
SCF Pearson similarity 0.83 0.207

Cosine similarity 0.82 0.205

Table 4.2: The MAE and NMAE accuracy

Recommendation: We exploit preference degrees in the whole recommendation process, we thus measure,
among the user’s preferences, the number of items that are evaluated as relevant and / or irrelevant by the recom-
mender. These measures are computed twice: when using traditional item-based CF approach and our approach
ΠCF. The obtained results are summarized in Table 4.3.
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Approach Classification accuracy measure

SCF
Precision 0.098

Recall 0.106
F-measure 0.102

ΠCF
Precision 0.433

Recall 0.787
F-measure 0.538

Table 4.3: The precision, recall and F-measure of the two approaches

From Table 4.3, results show that our approach outperforms SCF in terms of precision, recall and F-measures.
In fact, we pinpoint that the precision of our approach is equal to 0.433, which is higher than that of SCF (equal to
0.098). Similarly, ΠCF’s recall and F measure are largely higher than SCF’s ones. Intuitively, the precision value
equal to 0.433 means that on average 5 of 10 recommendations are good . Recall is 0.787 so on average about 8 of
10 are good recommendations among those top recommended. In addition to precision and recall, the F-measure
value 0.538 indicates an overall utility of the recommendation list compared to SCF’s one as shown in Figure 4.2.

This is explained by the fact that the possibility theory, especially the use of information affinity similarity
measure has a considerable effect on the quality of the recommendation rather than the traditional absolute ratings.
This confirms that considering uncertainty for the beginning of the process has a great impact on recommendation
results.

Figure 4.2: Evaluation of classification accuracy metrics: Precision, recall and F-measure.
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4.4 Conclusion

The experimental study provided in this chapter, shows that our proposed ΠCF approach gives motivating results
comparing to traditional item-based collaborative filtering approach. Consequently, the use of information affinity
measure shows a significant performance, giving higher results in terms of MAE, NMAE, precision, recall and
F-measure comparing to those of SCF.



Conclusion

Recommender systems are proving to be a useful tool for generating recommendations. Their evolution has ac-
companied the evolution of the web. They represent a powerful method for enabling users to filter through large
information and product spaces. Consequently, they have been attacking the interest of researchers during the last
decade.
With the aim to enhance the accuracy and the performance of the existing recommendations, many attempts have
incorporated the recommendation with certain absolute ratings. In fact, in general uncertainty occurs whenever
information pertaining to a situation is incomplete, contradictory or fluctuating. Intuitively, uncertainty can’t be ig-
nored in real word problems, but there is almost no research work addressing this issue in the recommender systems
framework, especially that relates to users ratings preferences.
Representing the uncertain aspect of users’ preferences is crucial in recommendation systems but it seems harder to
ensure with the current recommendation methods, because most of them rely on certain absolute ratings, no research
studied a purely uncertain recommender system dealing with uncertain ratings as an input.

In this work, we have proposed a new collaborative filtering recommender under uncertainty, which uses the
possibility theory framework in order to cope with the uncertainty that may pervade users ratings. We initially mod-
eled the uncertain aspects of user preferences in a user-item matrix. Then, we computed the similarity between items
using a purely possibilitic similarity measure, namely Information Affinity .Therefore, we estimated preference of
each target user towards an item he/she has never seen before. Finally, we generated the top K most similar items
for the target user.

The experimental results presented in this report are very promising and are proving the validity of these kind
of uncertain relations and the benefits of their use to improve the accuracy of recommendations system. In fact, we
showed that the prediction and recommendation performance of ΠCF are clearly superior to those of the traditional
method. This confirms that considering uncertainty for the beginning of the process has a great impact on recom-
mendation results. Consequently, we have shown that using a purely uncertain user-item preferences matrix in the
context of recommender systems presents a significant improvement on recommendation, therefore, it outperforms
the traditional collaborative filtering one. Our proposed approach shows that uncertainty is an ubiquitous aspect in
building recommender systems and taking into account such aspect predicts more accurate items. In addition, our
ΠCF is able to overcome the problem of sparsity data corresponding to the lack of rating information which seems
even harder to handle with the existing standard collaborative filtering recommendation techniques and which are
crucial for effective recommendation.

As a future work, we will address preference relations using the qualitative aspect of the possibility theory

39
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framework. It includes comparing the robustness and stability of uncertain preference relations instead of abso-
lute ratings and exploring a purely possibilistic qualitative similarity measure to compute the similarity between
preference relations.



References

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey.
Knowledge-Based Systems, 46, 109–132.

Brun, A., Hamad, A., Buffet, O., & Boyer, A. (2010). Towards preference relations in rec-
ommender systems. In Workshop on preference learning, european conference on ma-
chine learning and principle and practice of knowledge discovery in databases (ecml-pkdd
2010).

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and
user-adapted interaction, 12(4), 331–370.

Cremonesi, P., Turrin, R., Lentini, E., & Matteucci, M. (2008). An evaluation methodology for
collaborative recommender systems. In Automated solutions for cross media content and
multi-channel distribution, 2008. axmedis’08. international conference on (pp. 224–231).
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